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3D consistency of negative flows
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Abstract

We study the 3D-consistency property for negative symmetries of KdV type equa-
tions. Its connection with the 3D-consistency of discrete equations is explained.
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1 Introduction

The paper is devoted to partial differential equations of general form

uxxz = g(u, ux, uxx, uxxx, uz, uxz;α), (1)

compatible with integrable equations of Korteweg-de Vries (KdV) type

ut = f(u, ux, uxx, uxxx). (2)

We call (1) a negative symmetry for (2) because in many examples such equations are con-
structed using the recursion operator R for (2) by the formula

uz = (R− α)−1(ut0). (3)

The seed symmetry ut0 is usually taken to be ux, ut, or simply 0. This yields expansions in
the parameter α

uz = −α−1(ut0 + α−1ut1 + α−2ut2 + . . . ) = ut
−1

+ αut
−2

+ α2ut
−3

+ . . . (4)

where utn = Rn(ut0). Thus, the flow (3) serves as a generating function for the hierarchy
of higher and negative symmetries of the equation (2), which explains its role in the theory.
This approach to negative symmetries, for equations of the KdV type and also for such
systems as the nonlinear Schrödinger equation, the Boussinesq equation, etc., was used, for
example, in papers [1, 2, 3, 4, 5, 6]. It is worth noting that in many cases negative symmetries
(3) are related with equations of independent interest. For example, the negative flow for
KdV is reduced by additional substitutions to the famous Camassa–Holm equation [7, 8],
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negative symmetry for the nonlinear Schrödinger equation is equivalent to the Maxwell–Bloch
system or a two-component analog of the Camassa–Holm equation [9, 10], some equations
(1) admit reductions to sine-Gordon type equations that define hyperbolic symmetries for
equations of KdV type [11]. An important application of negative symmetries is related with
the construction of non-autonomous finite-dimensional reductions of Painlevé type: it turns
out that stationary equations for symmetries from an additional subalgebra (the so-called
string equations) are equivalent to stationary equations for a linear combination of a higher
symmetry, a classical symmetry like the scaling or Galilean transformation, and a sum of
an arbitrary number of negative flows (3) corresponding to different values of parameter α
[12, 13, 5]. In this regard, the question arises about the compatibility of such negative flows,
which is discussed in this article.

In a typical situation, higher symmetries utn = Rn(ut0) for n ≥ 0 determine pairwise
commuting evolution differentiations, then from the first expansion (4) it follows that the
flows ∂zi and ∂zj corresponding to the values αi and αj also commute with each other. It
also follows that ∂tn are commutative for n < 0 (which is not easy to verify directly, since
these flows are non-local).

In general, we need a definition of the compatibility of the flows ∂zi and ∂zj that does
not depend on the method of their construction. We will show that such a definition must
include another equation involving both variables zi and zj. As a simplified illustration, let
us consider an example of a 3D-consistent triple of hyperbolic equations (Ferapontov [14]):

uxy = sinh u
√

1 + u2
y, uxz = cosh u

√

1 + u2
z, uyz =

√

1 + u2
y

√

1 + u2
z. (5)

Here, consistency means the equality of cross derivatives for each pair of equations, provided
that the third one is satisfied. For example, for the first two equations the calculations give

(uxy)z − (uxz)y =

(

uyz −
√

1 + u2
y

√

1 + u2
z

)

(

uz cosh u
√

1 + u2
z

− uy sinh u
√

1 + u2
y

)

(6)

which vanishes if the third equation is satisfied. Similar relations with the factorized right-
hand side hold for the other two pairs. As a result, each equation of the triple is restored
from the other two, if in the equality for cross derivatives the factors with lower derivatives
are discarded. For a pair of equations of type (1), the situation is less symmetrical, since the
additional third equation is of a different type, but the general scheme remains the same.
Section 2 defines the 3D-consistency property for equations (1) and explains the algorithm
for checking it for given equations. Section 3 contains several simple examples corresponding
to negative symmetries for equations of the KdV type.

Section 4 describes the connection of the equations under consideration with the discrete
case which has been studied much better. Recall that the concept of 3D-consistency for
discrete equations on a square lattice (quad-equations) has been studied in detail in many
publications, see e.g. [15, 16, 17]; some generalizations to higher order equations considered
in [18, 19] can be interpreted as difference analogues of (1). Continuous symmetries for quad-
equations (references are given in section 4) are divided into two types: dressing chains and
Volterra-type chains,

a(un, un,x, un+1, un+1,x;α) = 0, un,z = g(un−1, un, un+1) (7)
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where the subscript n denotes a disrete variable (one of many on a multidimensional lattice).
If the pair (7) is consistent, then eliminating the variables un±1 and their derivatives leads
to an equation of type (1) for un, which was noted in the work of Yamilov [20]. Symbolically
we can write

negative flow =
Volterra chain

dressing chain
,

that is, an equation of type (1) is introduced as a “quotient equation” for the Volterra type
chain modulo the dressing one. In this setting, the 3D-consistency of negative flows follows
from the commutativity of the base flows on the discrete 3D-consistent lattice. This method is
an alternative to the formula (3) with a recursion operator and, generally speaking, may lead
to different answers. Of the equations discussed in section 4, the example of the Krichever–
Novikov equation is of particular interest. For it, the recursion operator is of the fourth
order, and not the second, as for other equations of the KdV type. The general negative
symmetry constructed by this recursion operator is more complicated compared to (1), but
it was shown in [6] that it allows a non-trivial reduction to an equation of this type. We now
show that lattice equations provide a simpler way to derive this special negative symmetry.

2 Definition of 3D-consistency

We will say that (1) is a negative symmetry for (2) if differentiating (1) due to (2) is a
differential consequence of the equation (1) itself, that is, a relation holds

(

D2Dz −
∂g

∂u
− ∂g

∂ux

D − · · · − ∂g

∂uxz

DDz

)

(f) = A(uxxz − g) (8)

where D = Dx is the total x-derivative and A = a0D
3 + a1D

2 + a2D+ a3 is some differential
operator. In practice, verifying the equality (8) for a given pair of equations comes down to
eliminating the derivatives ∂n

x (uz) = Dn−2(g) with n ≥ 2 from the left hand side, which is an
algorithmic calculation. A more difficult question is the following: suppose that the equation
(2) admits different negative symmetries (or a family depending on a continuous parameter),
are they compatible with each other? As explained in the Introduction, this can be expected
if negative symmetries are constructed by formula (3) using the recursion operator. However,
even in this case, an independent algorithm for checking compatibility is required. Let us
accept the following definition.

Definition 1. Let the derivations Dzi be defined by equations

uxxzi = gi(u, ux, uxx, uxxx, uzi, uxzi), i ∈ I, (9)

for some set of indices I. We say that equations (9) are 3D-consistent if there exist additional
equations

uzizj = gij(u, ux, uxx, uzi, uxzi, uzj , uxzj), i 6= j, (10)

such that gij = gji and the following equalities for pairwise distinct i, j, k ∈ I

Dzi(gj) = Dzj (gi) = D2(gij), (11)

Dzi(gjk) = Dzj (gik) = Dzk(gij) (12)
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hold identically by virtue of the equations (9), (10) and their differential consequences uxxxzi =
D(gi), uxzizj = D(gij).

The identities (11) and (12) imply the coincidence of cross derivatives of an arbitrary
order, which guarantees the existence of local solutions of general form that simultaneously
satisfy (9) and (10) for all i, j.

At first glance, the Definition 1 is not constructive, since the equations (10) are unknown
in advance. However, if such equations exist, then they can be restored from the given
equations (9) by direct, albeit tedious, calculations. At the first step we obtain a relation of
the form

0 = Dzi(gj)−Dzj (gi) = Pij(u, ux, uxx, uxxx, uzi, uxzi, uzj , uxzj , uzizj , uxzizj ),

where the derivatives uxxxzi, uxxxzj , uxxzi and uxxzj are eliminated from the right hand side
due to (9). By solving this equality with respect to uxzizj (here we additionally assume that
this derivative does not cancel identically), we obtain an equation of the form

uxzizj = hij(u, ux, uxx, uxxx, uzi, uxzi, uzj , uxzj , uzizj ) (13)

which should be a consequence (10) to ensure consistency. At the second step, we analyze
the condition

0 = D(hij)−Dzj (gi) = Qij(u, ux, uxx, uxxx, uxxxx, uzi, uxzi, uzj , uxzj , uzizj ),

where, again, uxxxzi, uxxxzj , uxxzi and uxxzj are eliminated by (9), and uxzizj is eliminated
in virtue of obtained equation (13). By solving this equality with respect to uzizj (again,
assuming that this derivative has not been vanished) we obtain the desired equation (10).
After this, all that remains is to check whether the equalities D(gij) = hij and Dzi(gjk) =
Dzj(gik) turn into identities, which is done by direct calculations. Let us illustrate this scheme
with several specific equations.

3 Examples

3.1 Potential KdV equation

The KdV equation
ut = uxxx − 6uux (14)

admits the recursion operator R = D2−4u−2uxD
−1. For the convenience of further formulas,

we replace α in the defining equation (3) with −4α and take ut0 = 0 as the seed symmetry
(the choice ut0 = ux is essentially the same, taking into account the integration constant in
the term uxD

−1). This gives the relation R(uz) = −4αuz which is equivalent to

uz = qx, qxxx − 4(u− α)qx − 2uxq = 0. (15)

The order of second equation is lowered by integration with the factor 2q:

2qqxx − q2x − 4(u− α)q2 + 4β = 0, (16)

4



where 4β is the integration constant. This is a well-known equation for the resolvent of the
Sturm–Liouville operator [21], with α playing the role of the spectral parameter. Eliminating
the variable q, it is possible to obtain an equation of the form (1) for the variable u, but it is
quite cumbersome. It is more convenient to make the substitution 2vx = u, 2vz = q, which
leads to the potential KdV equation

vt = vxxx − 6v2x (17)

and the associated Camassa–Holm equation [7, 8] as its negative symmetry:

2vzvxxz − v2xz − 4(2vx − α)v2z + β = 0. (18)

The pair of equations (17) and (18) is consistent: one can check that if Φ is the left hand
side of (18) then differentiating in virtue of (17) gives the identity

Dt(Φ) = D3(Φ)− 3vxz
vz

D2(Φ) + 3

(

v2xz
v2z

− 4vx

)

D(Φ).

In the equation family (18), the main parameter is α. We will show that 3D-consistency
holds for equations corresponding to different values of α, with no restrictions on the values
of β.

Proposition 1. Equations

vxxzi =
v2xzi − βi

2vzi
+ 2(2vx − αi)vzi, (19)

are 3D-consistent with equations

vzizj =
vzivxzj − vzjvxzi

αi − αj

, αi 6= αj. (20)

The proof is obtained by direct calculation. Let’s use this example to demonstrate the
main steps, including the procedure described above for deriving additional equations (20).
First, the equality (vxxzi)zj = (vxxzj)zi brings to an equation of the form (13):

vxzizj =

(

2(αi − αj)vzivzj +
βjvzi
2vzj

−
βivzj
2vzi

)

vzizj
vzjvxzi − vzivxzj

+
1

2

(

vxzi
vzi

+
vxzj
vzj

)

vzizj + 4vzivzj .

(21)

In the second step, the condition (vxzizj )x = (vxxzi)zj brings to the factorized equation

((αi − αj)vzizj + vzjvxzi − vzivxzj )×

×
(v2ziv

2
xzj

− v2zjv
2
xzi

− 4(αi − αj)v
2
zi
v2zj + βiv

2
zj
− βjv

2
zi
)

(vzjvxzi − vzivxzj )
2

= 0,
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where vzizj is contained only in the first factor (compare with the example (6) from the
Introduction). Equating this factor to zero gives equation (20). Next, we check that the
equality (vzizj )x = vxzizj is satisfied identically, that is, that the equation (21) is a consequence
of equations (20) and (19). More precisely, differentiation (20) with respect to x gives

vxzizj = 2vzivzj +
1

2(αi − αj)

(

vzi
vzj

(v2xzj − βj)−
vzj
vzi

(v2xzi − βi)

)

, (22)

which coincides with (21) where vzizj is replaced according to (20). At the final step we check
the fulfillment of the identities (12), that is (vzizj)zk = (vzizk)zj , which completes the proof of
3D-consistency.

Remark 1. It should be noted that the equation (20) is an independent three-dimensional
integrable equation associated with the universal hydrodynamic Alonso–Shabat hierarchy
[22]. It was shown in [23] that the identity (vzizj )zk = (vzizk)zj is fulfilled for this equation
without taking the equations (19) into account. Equations (19) define a 2D reduction of this
3D equation which preserves the consistency property. The same is true also for the equation
(25) from the next section, which also was noted in [23]. However, in general, the Definition
1 does not require that the identities (12) hold regardless of (9).

3.2 Schwarzian KdV equation

For the Schwarzian KdV equation

ut = uxxx −
3u2

xx

2ux

, (23)

the recursion operator is [24, 25]

R = D2 − 2uxx

ux

D +
uxxx

ux

− u2
xx

u2
x

− uxD
−1 ·

(

uxxxx

u2
x

− 4uxxuxxx

u3
x

+
3u3

xx

u4
x

)

.

Deriving negative symmetry from the equation R(uz) = 4αuz is staightforward and we will
immediately give the answer.

Proposition 2. Equations

uxxzi =
u2
xzi

− βiu
2
x

2uzi

+
uxxuxzi

ux

+ 2αiuzi (24)

are consistent with equation (23) and 3D consistent with equations

uzizj =
αiuziuxzj − αjuzjuxzi

(αi − αj)ux

, αi 6= αj . (25)

Equation (24) is slightly more complicated compared to (19), due to occurrence of uxx in
the right hand side. However, computational verification of 3D-consistency follows the same
scheme. As in the case of KdV, the identity (uzizj )zk = (uzizk)zj is fulfilled without using
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equations (24); moreover, equation (25) is even more symmetric than (20) since in it variable
x is on equal footing with zi and zj .

It is interesting to note that equation (23) is consistent along with (24) also with each of
the following hyperbolic equations:

uxz = 2ux

√
uz, uxz = 2uux, uxz =

2uuxuz

u2 + 1
,

which can be interpreted as degenerate negative symmetries. It is easy to verify that the first
of these equations determines special solutions of negative symmetry of the form (24) with
α = β = 0, but the other two equations seem to have a different origin. We will not dwell on
the question of their consistency with each other and with the flows (24). Many integrable
evolution equations [11] have hyperbolic symmetries, although not all of them: in particular,
they do not exist for the KdV (14) and pot-KdV (17) equations.

3.3 Dym equation

The Dym equation
ut = u3uxxx (26)

admits the recursion operator (see e.g. [25])

R = u2D2 − uuxD + uuxx + u3uxxxD
−1u−2 = u3D3uD−1u−2.

Equation for the negative symmetry R(uz) = αuz is equivalent to the system

uz = u2qx, u3(uq)xxx − αu2qx = 0. (27)

The second equation admits an integrating factor u−2q and reduces to

2uq(uq)xx − (uq)2x − αq2 = β

where β is an integration constant. Similar to the KdV case, it is more convenient to use the
potential form of the equation. The substitution

u = −1/vx, q = vz (28)

turns (26) into equation

vt = −vxxx
v3x

+
3v2xx
2v4x

(29)

(which is related to (23) by the change x ↔ v) while equations for q turn into a negative
symmetry of the form (1).

Proposition 3. Equations

2
vzi
vx

(

vzi
vx

)

xx

=

(

vzi
vx

)2

x

+ αiv
2
zi
+ βi (30)

are consistent with (29) and 3D-consistent with equations

vzizj =
αivzjvxzi − αjvzivxzj

(αi − αj)vx
, αi 6= αj . (31)
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Notice that equations (31) coincide with (25) up to the change α → 1/α.
The equation (R−α)(uz) = c1ux+ c2ut with more general seed symmetry is still reduced

to R(uz) = αuz if α 6= 0, by suitable choice of antiderivative in the integral term of R and
additional transformation ∂z 7→ ∂z − c1

α
∂x. If α = 0 then we get the system

uz = u2qx, u3(uq)xxx = ux

instead of (27), which admits the integrating factor u−3. The change (28) brings to one more
negative symmetry which complements the family (30) and is consistent with it:

2(vz/vx)xx = v2x + β.

It can be combined with (30) into a more general 3D-consistent family

2

(

αi

vzi
vx

+ γi

)(

vzi
vx

)

xx

= αi

(

vzi
vx

)2

x

+ (αivzi + γivx)
2 + βi,

with (31) replaced by

vzizj =
αivzjvxzi − αjvzivxzj + γj(vxvxzi − vxxvzi)− γi(vxvxzj − vxxvzj)

(αi − αj)vx
.

3.4 Potential mKdV and sine-Gordon equations

For the modified KdV equation
ut = uxxx + 6u2ux, (32)

the recursion operator is R = D2 + 4u2 +4uxD
−1u; the negative symmetry is determined by

equation R(uz) = αuz, that is

uxxz + 4u2uz + 4uxD
−1(uuz) = αuz.

As in the previous examples, we consider the potential form of the equation

vt = vxxx + 2v3x (33)

and also introduce the auxiliary variable q according to the substitutions

u = vx, uz = qx/u = vxz.

This gives
vxxxz + 4uqx + 4uxq = αvxz ⇒ vxxz + 4vxq = αvz + β;

then multiplying by 2vxz and integrating once again brings to

2vxzvxxz + 8qqx = 2(αvz + β)vxz ⇒ v2xz + 4q2 = αv2z + 2βvz + γ.

Eliminating q from these equations gives the negative symmetry for (33):

vxxz = 2vx
√

αv2z + 2βvz + γ − v2xz + αvz + β. (34)

The following statement can be proved by direct calculations.
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Proposition 4. Equations

vxxzi = 2vx

√

αiv2zi + 2βivzi + γi − v2xzi + αivzi + βi, (35)

are consistent with equation (33) and 3D-consistent (for αi 6= αj) with equations

vzizj =
2

αj − αi

(

vxzj

√

αiv2zi + 2βivzi + γi − v2xzi − vxzi

√

αjv2zj + 2βjvzj + γj − v2xzj

)

. (36)

Unlike previous examples, checking the identities (vzizj )zk = (vzizk)zj requires taking into
account the equations (35).

If α = 0 then the negative symmetry is simplified: one can check that in this case the
original variable u = vx satisfies the equation

uuxxz − uxuxz + 4u3uz + βux = 0,

which is consistent with (32). If also β = 0, then the negative symmetry allows further
degeneration to a hyperbolic equation: let us denote the corresponding independent variable
by y and set γ = 1 (without loss of generality), then (34) takes the form

vxxy = 2vx

√

1− v2xy

and it is easy to verify that the sine-Gordon equation

vxy = sin 2v (37)

defines special solutions of this equation. It can also be verified that consistency with other
negative symmetries is maintained provided that for them α 6= 0 and β = 0. As a result, the
equation (37) forms a compatible triple with the equations

vxxz = 2vx
√

αv2z + γ − v2xz + αvz,

vyz =
2

α

(

cos 2v vxz − sin 2v
√

αv2z + γ − v2xz

)

.

4 Negative symmetries from the lattice equations

4.1 General scheme

The formula (3) with the recursion operator is not the only way to derive equations of the
form (1). An alternative approach is associated with compatible pairs of differential-difference
equations, of the dressing chain type

a(un, un,x, un+1, un+1,x;α) = 0 (38)

and of the Volterra lattice type

un,z = b(un−1, un, un+1). (39)
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The α parameter in all formulas in this section plays the same role as the parameter in (3),
but does not necessarily coincide with it. Compatibility means that differentiating (38) with
respect to z in virtue of (39) gives an identity in virtue of the chain (38) itself. Such pairs
of chains have been studied in the literature for a long time, see e.g. [20, 26, 27] where
examples and a number of classification results are given. It was also noted in these works
that eliminating the variables un±1 leads to equations of the type (1).

Proposition 5. Let equations (38) and (39) be compatible and satisfy the non-degeneracy
conditions ∂a/∂un,x 6= 0, ∂a/∂un+1,x 6= 0, ∂b/∂un±1 6= 0. Then the variable u = un satisfies,
for any n, some equation of type (1).

Proof. Due to the non-degeneracy conditions, equation (38) and its copy for n = n − 1 can
be solved with respect to un±1,x:

un+1,x = A+(un,x, un, un+1), un−1,x = A−(un,x, un−1, un).

Then differentiation (39) with respect to x gives a relation of the form

un,xz = h(un,x, un−1, un, un+1;α).

From here and from (39), the variable un+1 is expressed as a function of un, un,x, un,z, un,xz,
and we arrive at an equation of the form (1) by its substitution to (38).

A dressing chain (38) is a hyperbolic equation with the continuous variable x and the
discrete variable n. The evolution symmetries of this equation fall into two subalgebras:
one includes the chain (39) and its higher symmetries, and the second contains a KdV type
equation

ut = uxxx + f(u, ux, uxx) (40)

and its higher symmetries. In other words, equations of type (38) describe the x-part of the
Bäcklund transformations for equations of type (40). Note that Bäcklund transformations in
the form (38) exist only for such equations (2) in which the derivative uxxx appears linearly
with a constant coefficient. For equations with more complex occurrences of uxxx, additional
transformations like x ↔ u are required, which complicates the construction. In particular,
for the Dym equation (26) this method is not directly applicable.

The commutativity property of Bäcklund transformations corresponding to different pa-
rameters αi leads to 3D-consistent quad-equations

F (u, Ti(u), Tj(u), TiTj(u);αi, αj) = 0 (41)

where Ti : ni 7→ ni +1 denote shifts along discrete variables ni that form a multidimensional
integer lattice. Each coordinate ni corresponds to a continuous variable zi, a parameter αi

and a consistent pair of equations (38) and (39):

a(u, ux, Ti(u), Ti(ux);αi) = 0, uzi = b(T−1
i (u), u, Ti(u)). (42)

Then the elimination of the shifted variables, as described above, leads to equations (9), and
their consistency becomes a corollary of the consistency of equations on the lattice.
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The consistency of equations of the Volterra lattice type with quad-equations (41) has
also been studied in a lot of works. In [28, 15, 29] such equations were used for derivation of
PDEs (with respect to variables zi, zj in our notation) and their Painlevé type reductions.
This topic was also developed in articles [30, 31, 32] where the symmetries of the Volterra
lattice type (including non-autonomous ones) were systematically studied for the list of quad-
equations from [16]. Generalizations to equations of higher order with respect to shifts are
also known [18, 33, 34]. The papers [35, 36, 37, 38, 39] are devoted to the classification
problem of quad-equations of general form, based on the existence of symmetries of the
Volterra or Bogoyavlensky latttice type. Thus, compatible systems of equations (41) and
(42) have been studied quite well. However, to the best of the author’s knowledge, their
connection with the 3D-consistency of negative flows (9) have not been discussed previously.

4.2 Simplest examples

Let us illustrate the described scheme using the example of the pot-KdV equation. For it,
the Bäcklund transformation is determined by the dressing chain

vn+1,x + vn,x = (vn+1 − vn)
2 + α (43)

and one can check that this equation is consistent with

vn,z =
1

vn+1 − vn−1

. (44)

In order to eliminate vn±1, we use the relation

vn,xz = −vn+1,x − vn−1,x

(vn+1 − vn−1)2
= −(vn+1 − vn)

2 − (vn − vn−1)
2

(vn+1 − vn−1)2
= −vn+1 − 2vn + vn−1

vn+1 − vn−1

.

From here and from the previous equation we find

vn+1 = vn −
vn,xz − 1

2vn,z

and substitution into (43) gives, after simple manipulations, the following equation for v = vn:

2vzvxxz = v2xz + 4(2vx − α)v2z − 1,

which coincides with (18) for β = 1. It is easy to see that equation with an arbitrary β 6= 0
is obtained by scaling of z which amounts to multiplying the right-hand side of (44) by

√
β .

As a result, it turns out that the negative symmetries of pot-KdV (19) and the additional
equation (20) are obtained by eliminating shifts from the chains

Ti(vx) + vx = (Ti(v)− v)2 + αi, vzi =

√
βi

Ti(v)− T−1
i (v)

and from the quad-equation H1 (we use the notation for quad-equations from [16])

(v − TiTj(v))(Ti(v)− Tj(v)) = αi − αj.

11



The consistency of these equations on the lattice is easily verified (and this is a known result),
from which the Proposition 1 about the 3D-consistency of equations (19) follows. However, it
should be noted that in this scheme the value β = 0 is omitted, which is not distinguished in
the approach with the recursion operator where this parameter plays the role of an arbitrary
integration constant.

For the Schwarzian-KdV equation, quite similarly, the Proposition 2 about the negative
symmetry (24) and additional equations (25) is derived by eliminating shifts from the chains

Ti(ux)ux = αi(Ti(u)− u)2, uzi =
√

βi

(Ti(u)− u)(u− T−1
i (u))

Ti(u)− T−1
i (u)

and from the quad-equation Q1(0)

αi(u− Tj(u))(Ti(u)− TiTj(u)) = αj(u− Ti(u))(Tj(u)− TiTj(u)).

The pot-mKdV equation with the minus sign vt = vxxx − 2v3x corresponds to the chains

Ti(vx) + vx = ai cosh(Ti(v)− v), vzi = ci
eTi(v) + eT

−1

i
(v)

eTi(v) − eT
−1

i (v)
− bi

for which the elimination of shifts leads to the negative symmetry

vxxzi = 2vx

√

v2xzi + a2i (vzi + bi)2 − a2i c
2
i − a2i (vzi + bi),

which coincides with (35) up to the change v → v
√
−1 and denoting the parameters, and

the corresponding quad-equation becomes H3(0) for the variables q = ev:

ai(qTi(q) + Tj(q)TiTj(q)) = aj(qTj(q) + Ti(q)TiTj(q)).

For the pot-mKdV equation with the plus sign (33), the real form of quad-equation is obtained
by another change q = tan(v/2).

4.3 Krichever–Novikov equation

The most complicated example is related with the Krichever–Novikov equation [40]

ut = uxxx −
3(u2

xx − r(u))

2ux

, r = c4u
4 + c3u

3 + c2u
2 + c1u+ c0. (45)

Let us recall that linear fractional transformations preserve the form of this equation, but
change the polynomial r, which makes possible to reduce it to one of the canonical forms,
depending on the multiplicity of its zeroes. In the case of multiple zeroes, differential substi-
tutions are known that connect (45) with the KdV equation, but if all the zeroes are simple,
such a substitution does not exist [41]. The recursion operator [42, 43] in the case of simple
zeroes has the minimal order equal to 4 and it generates the higher symmetries starting
from two seed symmetries: ut0 = ux and equation (45) itself. From here it is clear that the
formula (3) gives an equation of higher order with respect to the derivatives comparing to

12



(1), but it turns out that an equation like (1) arises from the reduction found in [6] using a
method involving squared eigenfunctions for the Lax representation. Up to some changes1,
this special negative symmetry is given in the following proposition, which is proven by direct
calculation.

Proposition 6. Let u satisfy equation (45) with r = 4u3−g2u−g3 and (α, β) is a parameter
on the curve β2 = r(α). Then: 1) equations

2qqxx − q2x + 2qqx

(

uxx

ux

− ux

u− α

)

− q2
(

r(u)

u2
x

− 2β

u− α

)

+
(u− α)2

u2
x

= 0, (46)

qt = −qx

(

uxxx

ux

− u2
xx − r(u)

2u2
x

− 2(uxx − β)

u− α

)

− q

ux

(

2(βuxx − r(u))

u− α
+ r′(u)

)

(47)

are consistent, that is, this pair of equations defines a prolongation of equation (45) onto the
variable q; 2) the flow

uz = γ

(

u2
xq

2
x − r(u)q2

(u− α)q
− u− α

q

)

(48)

is consistent with (45).

The variable q can be eliminated from equations (46) and (48), which brings the negative
symmetry to the form (1):

P (u)(uxuxxz − uxxuxz)
2

− u2
x

(

P ′(u)uxz − (4u2 − 8αu− 8α2 + g2)uxuz

)

(uxuxxz − uxxuxz)

+ (2βu2
x − P (u))

(

r(u)u2
xz − r′(u)uxuzuxz + 4(2u+ α)u2

xu
2
z

)

+ 4u2
x((u− α)uxz − uxuz)

2 − 16γ2u2
x(βu

2
x − P (u))2 = 0

(49)

where P (u) = u4 + 1
2
g2u

2 + 2g3u+ 1
16
g22 − αr(u).

The cumbersome form of this equation makes the direct verification of its 3D-consistency
very difficult. However, this can be done in other variables by using the representation of the
negative flow by the pair of chains

un,xun+1,x = h(un, un+1), (50)

un,z = f(un−1, un, un+1) =
2h(un, un+1)

un+1 − un−1
− h(0,1)(un, un+1) (51)

where h(u, v) is a symmetric biquadratic polynomial, that is

h(3,0)(u, v) = h(0,3)(u, v) = 0, h(u, v) = h(v, u). (52)

The chain (50) defines the x-part of the Bäcklund transformation for equation (45) with the
polynomial

r(u) = h(0,1)(u, v)2 − 2h(u, v)h(0,1)(u, v), (53)

1The correspondence with equations (58)–(60) from [6] is given by formulas −2u = v, q = 2βg/vx,
−2α = β, −2β = γ and ∂z = −β∂z with the present variables in the left hand side and old variables in the
right hand side.
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and the chain (51) is the equation V4(0) in the Yamilov’s classification [44, 45], which de-
fines a discretization of the Krichever–Novikov equation, and is also related to the Bäcklund
transformation for the Landau–Lifshitz equation [46, 35]. It is known [47, 48, 35] that each
of the chains (50) and (51) defines a continuous symmetry for the multi-dimensional lattice
governed by Q4 quad-equation. Therefore, all that needs to be done is to check the consis-
tency of these two chains with each other and make sure that eliminating un±1 leads to the
equation (49), for a suitable choice of polynomial h. The following statement is easy to prove
in general form, using only the properties (52).

Proposition 7. Equations (50) and (51) are consistent.

Proof. We denote hn = h(un, un+1) and fn = f(un−1, un, un+1). From (52) it follows that fn
can be expressed in terms of hn−1 as well:

fn =
2hn

un+1 − un−1

− h(0,1)
n =

2hn−1

un+1 − un−1

+ h
(1,0)
n−1 . (54)

The coincidence of two expressions follows from the Taylor expansion

h(un, un+1) = h(un, un−1) + h(0,1)(un, un−1)(un+1 − un−1) +
1

2
h(0,2)(un, un−1)(un+1 − un−1)

2

after alternating un−1 and un+1. The consistency of (50) and (51) means that the following
equality is fulfilled identically in virtue of (50):

D(fn)un+1,x + un,xD(fn+1) = h(1,0)
n fn + h(0,1)

n fn+1. (55)

We have

un,xz = D(fn) = f (1,0,0)
n un−1,x + f (0,1,0)

n un,x + f (0,0,1)
n un+1,x = f (0,1,0)

n un,x, (56)

since the first and third terms are canceled due to the consequences of (54):

f (1,0,0)
n =

2hn

(un+1 − un−1)2
, f (0,0,1)

n = − 2hn−1

(un+1 − un−1)2
, un−1,x =

hn−1

un,x

, un+1,x =
hn

un,x

.

Therefore (55) amounts to

(

f (0,1,0)
n + f

(0,1,0)
n+1

)

hn = h(1,0)
n fn + h(0,1)

n fn+1,

and this is equivalent to the identity:

( 2h
(1,0)
n

un+1 − un−1

− h(1,1)
n +

2h
(0,1)
n

un+2 − un

+ h(1,1)
n

)

hn

= h(1,0)
n

( 2hn

un+1 − un−1

− h(0,1)
n

)

+ h(0,1)
n

( 2hn

un+2 − un

+ h(1,0)
n

)

.
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Next, let us denote u = un and v = un+1, and eliminate un−1 from equations (51) and
(56). It is easy to check that the resulting system is of the form (cf. with [49])

uxvx = h, h = h(u, v),

huxz − h(1,0)uxuz + ux(hh
(1,1) − h(0,1)h(1,0)) = 0.

(57)

The variable v is algebraically expressed from the second equation, then the substitution into
the first one gives some equation of the form (1). This step must be done by passing to a
specific form of the polynomial h related to r = 4u3 − g2u− g3 by formula (53):

h(u, v) =
1

ν
((uv + µu+ µv + g2/4)

2 − (u+ v + µ)(4µuv − g3)), ν2 = r(µ). (58)

The points (µ, ν) and (α, β) are different, although they lie on the same algebraic curve.
Straightforward, rather tedious calculations prove that the system (57), (58) is equivalent to
(49) under the choice

α =
16µ4 + 8g2µ

2 + 32g3µ+ g22
16r(µ)

,

β =
ν(64µ6 − 80g2µ

4 − 320g3µ
3 − 20g22µ

2 − 16g2g3µ− 32g23)

32r(µ)2

and γ = ±1
2
(this parameter can be changed by scaling of z).

5 Conclusion

In our study, equations of the Volterra lattice type (39) played an auxiliary role as a tool for
constructing negative flows for equations of the KdV type (2). However, these equations can
also be considered as the main ones. For example, the negative symmetry for the Volterra
lattice

un,t = un(un+1 − un−1)

was obtained by the recursion operator method in [5]. In the potential variables given by
un = vn,t = evn+1−vn−1 , it takes the form

evn+1−vn−1(vn+1,z + vn,z)(vn,z + vn−1,z) = αv2n,z + (−1)nβvn,z + γ,

which can be viewed as a discrete analog of type (1) equation. This equation satisfies the 3D-
consistency property in the sense analogous to the definition from section 2, with replacement
of derivatives with respect to x by shifts with respect to n. The results from section 4 also
have their analogues for other Volterra type lattices, which are planned to be presented in
future publication.

Similar results on the 3D-consistency of negative symmetries can be obtained for some
other classes of equations. The method of constructing negative symmetries by use of aux-
iliary differential-difference equations also allows generalizations (for example, for systems
like the nonlinear Schrödinger equation, pairs of Toda and relativistic Toda type lattices can
be used), but its equivalence to the direct method based on the recursion operator remains
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an open question. It should be noted that for equations associated with spectral problems
of order higher than 2, the form of recursion operators, and hence negative symmetries, be-
comes noticeably more complicated (examples associated with the Boussinesq equation and
the Drinfeld–Sokolov system were studied in [6]).
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