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Abstract. In this work, we propose a new approach called “stationary reduction method

based on nonisospectral deformation of orthogonal polynomials” for deriving discrete Painlevé-

type (d-P-type) equations. We successfully apply this approach to (bi)orthogonal polynomi-

als satisfying ordinary orthogonality, (1,m)-biorthogonality, generalized Laurent biorthog-

onality, Cauchy biorthogonality and partial-skew orthogonality. As a result, several seem-

ingly novel classes of high order d-P-type equations, along with their particular solutions

and respective Lax pairs, are derived. Notably, the d-P-type equation related to the Cauchy

biorthogonality can be viewed as a stationary reduction of a nonisospectral generalization

involving the first two flows of the Toda hierarchy of CKP type. Additionally, the d-P-type

equation related to the partial-skew orthogonality is associated with the nonisospectral Toda

hierarchy of BKP type, and this equation is found to admit a solution expressed in terms of

Pfaffians.
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1. Introduction

1.1. On OPs and their analogues. An orthogonal polynomial (OP) sequence is a family of

polynomials such that any two different polynomials in the sequence are orthogonal to each

other under some inner product, among which, the classical OPs, such as Jacobi, Laguerre and

Hermite OPs, are the most widely used. Since the 19th century, the theory of OPs has been

well developed; see e.g. [12, 13,15,20,39,58,99,122,138,143].

The theory of OPs encompasses two distinct but interconnected facets. The two facets have

many things in common, and the division line is quite blurred, it is more or less along algebra

vs. analysis. The first aspect pertains to the formal and algebraic elements of the theory, which

establishes strong links with special functions, combinatorics, and algebra. The exploration of

broader classes of OPs using mathematical analysis techniques constitutes the other facet of

the theory. In this regard, the primary inquiries revolve around the asymptotic properties of

the polynomials and their zeros, the reconstruction of the orthogonality measure, and related

aspects.

Nowadays, there have been some more general definitions of OPs [40,41,70,122,142], such as

matrix OPs, multiple OPs, multivariable OPs , bi-OPs, rational orthogonal functions etc., and

some analogues of orthogonality, such as skew-orthogonality, partial skew-orthogonality etc.

(Unless otherwise specified, polynomials or functions with certain orthogonality are collectively
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referred to as OPs for simplicity.) In particular, new concepts called Cauchy bi-OPs [26],

partial-skew-OPs [48] and generalized Laurent bi-OPs [152] were proposed very recently and

the corresponding theories and applications have been increasingly developed (see e.g. [22, 24–

28,46,49,51,54,73,81,86,87,100,114,115]).

OPs have emerged with great importance in the fields of mathematical physics, quantum

mechanics, numerical analysis, statistics, probability, and many other disciplines. In recent

decades, considerable attention has been paid to interdisciplinary studies between the theory

of OPs and integrable systems. For example, OPs can serve as wave functions appearing in

the Lax pairs of Toda-type lattices [3–8, 11, 48, 68, 99, 109, 125, 127, 132, 149, 150], while the

compatibility conditions of discrete spectral transformations of OPs can give rise to discrete

integrable systems [9,10,47,124,131,139–141,145]. The theory of OPs can play important roles

in the study of peaked soliton problems for a class of integrable partial differential equations

[18, 19, 46, 49, 52, 53, 115, 118, 119]. In addition, semi-classical OPs will lead to Painlevé-type

equations [148, 149]. This work is devoted to an interdisciplinary study on nonisospectral

deformation of OPs and integrable Painlevé-type equations.

1.2. On Painlevé equations. Around the early 20th century, Painlevé, Gambier and Fuchs

investigated the problem, proposed by Picard, related to second-order ordinary differential

equations of the following form

d2y

dx2
= F

(
dy

dx
, y, x

)
, (1.1)

where F is a rational function of dy
dx and y, and is analytic in terms of x. The objective is

to classify the differential equation (1.1) under the condition that all movable singularities of

the solution are poles. They discovered that, up to a Möbius transformation, there were fifty

equations of the form (1.1) that possess this property, now known as the Painlevé property.

Painlevé, Gambier and Fuchs further demonstrated that, among these fifty equations, forty-

four of them can be reduced to linear equations that can be solved using elliptic functions or

previously known special functions such as Airy functions or Bessel functions. The remaining

six equations, which cannot be reduced to linear form, give rise to new nonlinear ordinary

differential equations that define new transcendental functions. These equations are known as

the Painlevé equations [60,64,65,75,98,101,113,129,148]:

PI :
d2y

dx2
=6y2 + x,

PII :
d2y

dx2
=2y3 + xy + α,

PIII :
d2y

dx2
=
( dydx )

2

y
−

dy
dx

x
+
αy2 + β

x
+ γy3 +

δ

y
,

PIV :
d2y

dx2
=
( dydx )

2

2y
− 3y3

2
+ 4xy2 + 2(x2 − α)y +

β

y
,

PV :
d2y

dx2
=

(
1

2y
+

1

y − 1

)(
dy

dx

)2

−
dy
dx

x
+

(y − 1)2

x2

(
αy +

β

y

)
+
γy

x
+
δy(y + 1)

y − 1
,

PVI :
d2y

dx2
=
1

2

(
1

y
+

1

y − 1
+

1

y − x

)(
dy

dx

)2

−
(
1

x
+

1

x− 1
+

1

y − x

)
dy

dx

+
y(y − 1)(y − x)

x2(x− 1)2

(
α+

βx

y2
+
γ(x− 1)

(y − 1)2
+
δx(x− 1)

(y − x)2

)
,
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whose solutions are called the Painlevé transcendents. Here, α, β, γ, and δ are all constants.

It is also noted that each of the Painlevé equations can be written as a (non-autonomous)

Hamiltonian system for a suitable Hamiltonian function HJ(q, p, z). The function σ(z) ≡
HJ(q, p, z) satisfies a second-order, second-degree ordinary differential equation, known as the

Jimbo–Miwa–Okamoto equation or Painlevé σ-equation, whose solution is expressible in terms

of the solution of the associated Painlevé equation [103].

Although the Painlevé equations were initially regarded as purely mathematical objects, they

also widely appear in various studies of physical systems. For instance, PII is related to the

Korteweg-de Vries (KdV) equation [2,59,78,136], which models shallow water waves, and it also

appears in the long time asymptotics for the the mKdV equation [69]. The Painlevé equations

can also arise in the solutions of the nonlinear Schrödinger equation [29, 38, 153] and appear

in the study of the Camassa-Holm equation [17,67]. Additionally, the Painlevé equations have

applications in many other fields [1, 14, 16, 23, 30, 75, 79, 82, 102, 113, 123, 144], including OPs,

statistical mechanics, random matrices, plasma physics, quantum gravity, general relativity,

and etc.

In recent years, there has been increasing interest in discrete Painlevé (d-P) equations [42,64,

65,72,89,91,93,94,105–108,129,133,135,148,149]. d-P equations are nonlinear, non-autonomous,

second-order ordinary difference equations that tend to continuous Painlevé equations in a

certain limit. The systematic study of d-P equations started in the early 1990s in the work

of Grammaticos, Ramani, who first, together with Papageorgiou [93], introduced the notion

of singularity confinement as a discrete counterpart of the Painlevé property and proposed

to use it as an integrability detector for discrete systems, then, together with Hietarinta [133],

applied this idea to obtain non-autonomous version of the two-dimensional integrable mappings

known as the Quispel–Roberts–Thompson (QRT) mappings and succeeded in constructing d-P

equations systematically.

Based on whether the coefficients are linear, exponential, or elliptic functions of n, d-P

equations can be classified into three-types [65, 105, 108, 133], denoted by the prefixes d−, q−,

or ell− respectively, before the equation names. For example, there exist

d-PI : xn+1 + xn + xn−1 =
zn + a(−1)n

xn
+ b,

d-PII : xn+1 + xn−1 =
xnzn + a

1− x2n
,

d-PIV : (xn+1 + xn)(xn + xn−1) =
(x2n − a2)(x2n − b2)

(xn + zn)2 − c2
,

d-PV :
(xn+1 + xn − zn+1 − zn)(xn + xn−1 − zn − zn−1)

(xn+1 + xn)(xn + xn−1)

=
((xn − zn)

2 − a2)((xn − zn)
2 − b2)

(xn − c2)(xn − d2)
,

where zn = αn+ β, a, b, c, d are all constants, and

q-PIII : xn+1xn−1 =
(xn − aqn)(xn − bqn)

(1− cxn)(1− xn/c)
,

q-PV : (xn+1xn − 1)(xn−1xn − 1) =
(xn − a)(xn − 1/a)(xn − b)(xn − 1/b)

(1− cxnqn)(1− xnqn/c)
,

q-PVI :
(xn+1xn − qnqn+1)(xn−1xn − qnqn−1)

(xn+1xn − 1)(xn−1xn − 1)
=

(xn − aqn)(xn − qn/a)(xn − bqn)(xn − qn/b)

(xn − c)(xn − 1/c)(xn − d)(xn − 1/d)
,
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where qn = q0q
n + β, a, b, c, d are all constants. An example of a scalar elliptic d-P equation

is

cn(γn)dn(γn)(1− k2sn4(zn))xn(xn+1 + xn−1)

− cn(zn)dn(zn)(1− k2sn2(zn)sn
2(γn))(xn+1xn−1 + x2n)

+ (cn2(zn)− cn2(γn))cn(zn)dn(zn)(1 + k2x2nxn+1xn−1) = 0,

in which

zn = (γe + γ0)n+ ω, γn =

{
γe n = 2j,

γ0 n = 2j + 1,

and cn, dn, sn are all Jacobi elliptic functions.

It is Sakai that gave the definite classification scheme of d-P equations based on algebro-

geometric ideas [135]. There is also certain connection between d-P-type equations and bi-

rational representation of affine Weyl groups [129, 130]. For a comprehensive survey of the

geometric aspects of d-P equations, see the article by Kajiwara, Noumi and Yamada [108]

together with the references therein.

At the end of this subsection, we mention that d-P equations also appear in some applied

problems [35–37,76,77,96,97], such as the computations of gap probabilities of various ensem-

bles in the emerging field of integrable probability, quantum gravity, and reductions of lattice

equations etc.

1.3. Connection between Painlevé equations and OPs. It is known that there exists

close connections between the (discrete and continuous) Painlevé equations and OPs. The

relationship between Painlevé equations and OPs can be dated back to the work of Shohat [137]

in 1939 and later Freud [85] in 1976. However the equations in their works were not identified

as d-P equations until the work of Fokas, Its and Kitaev [76, 77] in the early 1990s. Later,

Magnus demonstrated certain relationship between semi-classical OPs and the (continuous)

Painlevé equations [121]. Nowadays, a multitude of connections between Painlevé equations

and OPs have been discovered; see a recent monography by Van Assche [148] and references

therein or some others e.g. [16,23,30,32,33,43,44,55–57,61–63,66,71,83,84,147,149,154,155].

The relationship can be summarized as follows:

(1) d-P equations are satisfied by the recurrence coefficients of certain semi-classical OPs.

(2) The recurrence coefficients of OPs undergoing a Toda-type evolution satisfy Painlevé

differential equations, and their special solutions are associated with special functions

such as Airy functions, Bessel functions, (confluent) hypergeometric functions, and

parabolic cylinder functions.

(3) Expressions for rational solutions of some Painlevé equations can be formulated utilizing

Wronskians of certain OPs.

(4) Special transcendental solutions of Painlevé equations are often used to establish the

local asymptotics of OPs at critical points.

Motivated by the fact that the cross-research on OPs and Painlevé equations has promoted

the mutual development of both fields, we are interested in the interdisciplinary studies of OPs

and d-P equations. Specifically, we are curious about what types of Painlevé equations are

related to the recently proposed Cauchy bi-OPs [26], partial-skew-OPs [48] and generalized

Laurent bi-OPs [152].
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To this end, we propose a new method called stationary reduction method based on non-

isospectral deformation of OPs for deriving d-P-type equations in Section 2. Subsequently,

this approach are successfully applied to various OPs, including ordinary OPs,

(1,m)-type bi-OPs, generalized Laurent bi-OPs, Cauchy bi-OPs and partial-skew

OPs, in Section 3-7. As a result, some seemingly new high order d-P-type equa-

tions are obtained. It is noted that the obtained d-P-type equations from partial-skew OPs

and Cauchy bi-OPs are associated to nonisospectral Toda hierarchies of BKP and CKP types,

respectively. In particular, the obtained d-P-type equation from partial-skew OPs enjoys solu-

tions in terms of Pfaffians. To the best our knowledge, this is the first instance of a d-P-type

equation that exhibits a solution expressed in terms of Pfaffians. Section 8 is devoted to con-

clusion and discussions.

2. Stationary reduction method based on nonisospectral deformation of OPs

In the literature, there exist some methods for deriving d-P equations (see e.g. [64, 74, 90,

91, 93, 112, 148]), among which two effective methods are the compatibility method based on

orthogonality and the approach according to stationary reduction of nonisospectral flow.

The compatibility method based on orthogonality [148] typically involves the following steps.

First one needs to construct a semi-classical weight function to derive a structure relation with

the help of the Pearson equation. Then one can derive a system of difference equations by

using the compatibility condition of the recurrence relation and the structure relation. Finally,

a d-P equation can be obtained by eliminating a number of variables. This method has been

successfully applied to some well-known orthogonalities so that different d-P equations have

been derived. However, this method fails for some novel orthogonalities, such as

partial-skew orthogonality, Cauchy biorthogonality. One of the difficulties lies in

deriving the corresponding structure relations.

The art of the approach according to stationary reduction of nonisospectral flow [112] is as

follows. Consider a nonisospectral flow

d

dt
Un + UnVn − Vn+1Un = 0 (2.1)

associated with the Lax pair

ψn+1 = Un(q, λ)ψn, (2.2a)

d

dt
ψn = Vn(q, λ)ψn. (2.2b)

Here q = (q1, q2, . . . , qN ) is a vector function in t and the spectral parameter λ depends on the

time variable t satisfying

λt + f = 0,

where f is a scalar function in t and λ satisfying f ̸= 0. By setting

Un = Pn, Vn = −fQn,

one will obtain a d-P equation

Pn,λ + PnQn −Qn+1Pn = 0,
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by considering the stationary equation associated with (2.1). In addition, when the partial

derivative of ψn with respect to t is zero, the Lax pair (2.2) degenerates into

ψn+1 = Pn(q, λ)ψn,

ψn,λ = Qn(q, λ)ψn.

which gives the Lax pair of the d-P equation. It is evident that this method involves

a direct performance of the stationary reduction on the nonisospectral equation.

Unfortunately, it cannot provide the solution to the d-P equations, nor can it show

the realization of the the stationary reduction from the perspective of the solution.

Due to the limitations of these two methods, a natural question arises: Can one derive

d-P equations and their solutions without constructing the semi-classical weight functions?

Furthermore, it is important to understand how the stationary reduction mechanism operates in

this context. To this end, we propose a new method for deriving d-P equations—the stationary

reduction method based on nonisospectral deformation of OPs. The research route is illustrated

in the following figure (Fig. 1).

Figure 1. Research route

More precisely, we start from a family of OPs without giving a specific weight function and

first perform nonisospectral deformation on the OPs by introducing the measure µ(λ; t), where

the spectral parameter λ(t) depends on the time variable t and satisfies

d

dt
λ(t) = αλ(t). (2.4)

Subsequently, we utilize the compatibility condition for the deformed OPs to derive the non-

isospectral integrable equations. By implementing stationary reduction, we are able to obtain

d-P equations along with explicit expressions of their particular solutions. This approach en-

ables us to rigorously demonstrate the achievability of stationary reduction. As we will see,

this new method can be successfully applied to various recently proposed new orthogonalities,

including Cauchy biorthogonality, partial-skew orthogonality, and etc. As a result, different

classes of d-P-type equations are derived.
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3. Nonisospectral deformation of ordinary OPs and d-P

It is well known that, upon introducing a suitable time deformation of the measure of the

OPs, one can derive the time evolution equation for the OPs by using the evolution rela-

tion of the measure µ(λ; t) with respect to the time variable t along with the recurrence rela-

tion and orthogonality of the OPs. By considering the compatibility condition of the recur-

rence relation and the time evolution relation satisfied by the OPs, one will obtain integrable

equations. For example, the Toda lattice can be obtained by considering ordinary OPs with

dµ(λ; t) = etxdµ(λ); the Lotka-Volterra lattice can be derived by considering ordinary OPs with

symmetric measure and dµ(λ; t) = etλ
2

dµ(x) (see e.g. [8, 132, 149]). Similarly, one can also de-

rive nonisospectral integrable equations by using the compatibility condition of the recurrence

relation and the time evolution relation satisfied by OPs [21, 50]. In this case, it is required

that not only the measures µ(λ; t) depends on the time variable t, but the spectral parameter

λ is also related to t.

In this section we shall take the nonisospectral deformation of the ordinary OPs (and those

with symmetric measure), together with nonisospectral Toda and Lotka-Volterra lattices and

the corresponding d-P-type equations, as examples to illustrate the process of our approach.

3.1. Ordinary OPs. Here the ordinary OPs denote a family of polynomials {Pn(λ)}n∈N sat-

isfying the “ordinary” orthogonality condition∫
Pn(λ)Pm(λ)dµ(λ) = hnδnm, (3.1)

where each Pn(λ) is a monic polynomial of degree n in λ and µ is a positive measure for which

all the moments

ci =

∫
λidµ(λ), i = 0, 1, 2, . . .

exist. In many cases, (3.1) can be written as∫
Pn(λ)Pm(λ)w(λ)dλ = hnδnm,

where w(λ) is the corresponding weight function. From the orthogonality condition (3.1), one

can get the three-term recurrence relation of the form

λPn(λ) = Pn+1(λ) + bnPn(λ) + a2nPn−1(λ), (3.2)

together with the initial values P−1(λ) = 0, P0(λ) = 1. The determinant expressions of the

polynomials {Pn(λ)}n∈N and recurrence coefficients {a2n}n≥0 and {bn}n≥0 can be obtained by

using the orthogonality condition

Pn(λ) =
1

∆n

∣∣∣∣∣∣∣∣∣∣∣∣

c0 c1 · · · cn

c1 c2 · · · cn+1

...
...

. . .
...

cn−1 cn · · · c2n−1

1 λ · · · λn

∣∣∣∣∣∣∣∣∣∣∣∣
, (3.3)

a2n =
∆n+1∆n−1

∆2
n

, bn =
∆∗
n+1

∆n+1
− ∆∗

n

∆n
, (3.4)
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where the Hankel determinant

∆n =

∣∣∣∣∣∣∣∣∣∣
c0 c1 · · · cn−1

c1 c2 · · · cn
...

...
. . .

...

cn−1 cn · · · c2n−2

∣∣∣∣∣∣∣∣∣∣
̸= 0, (3.5)

and the determinant ∆∗
n is obtained from ∆n by replacing the last column (cn−1, cn, . . . , c2n−2)

⊤

by (cn, cn+1, . . . , c2n−1)
⊤. In addition, {hn}n∈N admit the expressions

hn =
∆n+1

∆n
.

3.2. Nonisospectral Toda lattice. Consider the monic OPs {Pn(λ; t)}n∈N in (3.3) satisfy-

ing the three-term recurrence relation (3.2). Suppose that the spectral parameter λ evloves

according to the time evolution (2.4). We now choose a weight function such that the moments

satisfy the time evolution

d

dt
cj(t) = αjcj(t) + α1cj+1(t) + α2cj+2(t). (3.6)

Since

d

dt
cj(t) =

∫
λj
(
αjw(λ; t) +

d

dt
w(λ; t) + αw(λ; t)

)
dλ

=αjcj(t) +

∫
λj
(
d

dt
w(λ; t) + αw(λ; t)

)
dλ,

we have ∫
λj
(
d

dt
w(λ; t) + αw(λ; t)

)
dλ = α1cj+1(t) + α2cj+2(t).

Therefore, it is required that

d

dt
w(λ; t) + αw(λ; t) = (α1λ+ α2λ

2)w(λ; t),

based on which, concrete moments will be given in (3.21).

Lemma 3.1. Under the assumption of (2.4) and (3.6), the monic OPs (3.3) satisfy the time

evolution

d

dt
Pn(λ; t) =nαPn(λ; t)− a2n(α1 + α2(bn−1 + bn))Pn−1(λ; t)− α2a

2
n−1a

2
nPn−2(λ; t). (3.7)

Proof. We rewrite the orthogonality condition (3.1) as∫
Pn(λ; t)Pm(λ; t)w(λ; t)dλ = 0, m = 0, 1, . . . , n− 1. (3.8)

By taking derivation of both sides of (3.8) with respect to t for m = 0, 1, . . . , n− 1, we are led

to

0 =

∫ (
d

dt
Pn(λ; t)Pm(λ; t) + Pn(λ; t)

d

dt
Pm(λ; t)

)
w(λ, t)dλ

+

∫
Pn(λ; t)Pm(λ; t)

(
d

dt
w(λ; t) + αw(λ; t)

)
dλ

=

∫ (
d

dt
Pn(λ; t) + (α1λ+ α2λ

2)Pn(λ; t)

)
Pm(λ; t)w(λ; t)dλ.



10 XIAO-LU YUE, XIANG-KE CHANG∗, AND XING-BIAO HU

Then, by using the recurrence relation (3.2), we obtain

0 =

∫ (
d

dt
Pn(λ; t) + α1a

2
nPn−1

)
Pm(λ; t)w(λ; t)dλ

+

∫
α2a

2
n

(
(bn−1 + bn)Pn−1(λ; t) + a2n−1Pn−2(λ; t)

)
Pm(λ; t)w(λ; t)dλ.

Since the polynomial d
dtPn(λ; t) is of degree n, we can express it as a linear combination of the

OPs Pi with 0 ≤ i ≤ n, that is,

d

dt
Pn(λ; t) =

n∑
i=0

γiPi(λ; t),

using which, we get

d

dt
Pn(λ; t) + α1a

2
nPn−1(λ; t) + α2a

2
n[(bn−1 + bn)Pn−1(λ; t) + a2n−1Pn−2(λ; t)]

=γnPn(λ; t) + (γn−1 + a2n(α1 + α2(bn−1 + bn)))Pn−1(λ; t)

+ (γn−2 + α2a
2
n−1a

2
n)Pn−2(λ; t) +

n−3∑
i=0

γiPi(λ; t).

By comparing the highest degree of λ on both sides, it is evident from (2.4) that

γn = nα.

According to the orthogonality condition, it is not hard to see that γ0 = γ1 = · · · , γn−3 = 0

and

γn−2 = −α2a
2
n−1a

2
n,

γn−1 = −(α1a
2
n + α2a

2
n(bn−1 + bn)).

Therefore, the conclusion (3.7) follows. □

The compatibility condition between the recurrence relation (3.2) and the time evolution (3.7)

can be employed to produce a nonisospectral Toda lattice. In fact, we have the following theo-

rem.

Theorem 3.2. Under the assumption of (2.4) and (3.6), the recurrence coefficients {a2n} and

{bn} for the monic OPs (3.3) satisfy the nonisospectral Toda lattice

da2n
dt

= 2αa2n + α1a
2
n(bn − bn−1) + α2a

2
n(a

2
n+1 − a2n−1 + b2n − b2n−1), (3.9a)

dbn
dt

= αbn + α1(a
2
n+1 − a2n) + α2(a

2
n+1(bn+1 + bn)− a2n(bn−1 + bn)). (3.9b)

Proof. Differentiating (3.2), we first have

αλPn(λ; t) + λ
d

dt
Pn(λ; t)

=
d

dt
Pn+1(λ; t) +

dbn
dt

Pn−1(λ; t) + bn
d

dt
Pn−1(λ; t) +

da2n
dt

Pn−1(λ; t) + a2n
d

dt
Pn−1(λ; t). (3.10)

By substituting the corresponding expressions (3.7) for d
dtPn+1(λ; t),

d
dtPn(λ; t),

d
dtPn−1(λ; t)

into both sides of (3.10), we then obtain

LHS of (3.10)

=(n+ 1)α(Pn+1(λ; t) + bnPn(λ; t) + a2nPn−1(λ; t))
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− a2n(α1 + α2(bn−1 + bn))(Pn(λ; t) + bn−1Pn−1(λ; t) + a2n−1Pn−2(λ; t))

− α2a
2
n−1a

2
n(Pn−1(λ; t) + bn−2Pn−2(λ; t) + a2n−2Pn−3(λ; t)), (3.11)

RHS of (3.10)

=(n+ 1)αPn+1(λ; t)− a2n+1(α1 + α2(bn+1 + bn))Pn(λ; t)− α2a
2
n+1a

2
nPn−1(λ; t)

+
dbn
dt

Pn(λ; t) + bn(nαPn(λ; t)− a2n(α1 + α2(bn−1 + bn))Pn−1(λ; t)

− α2a
2
n−1a

2
nPn−2(λ; t)) +

da2n
dt

Pn−1(λ; t) + a2n((n− 1)αPn−(λ; t)

− a2n−1(α1 + α2(bn−2 + bn−1))Pn−2(λ; t)− α2a
2
n−2a

2
n−1Pn−3(λ; t)), (3.12)

where (3.2) is used to replace λPn(λ; t), λPn−1(λ; t), λPn−2(λ; t) in (3.11).

Finally, we obtain the desired equation (3.9) by comparing the coefficients of Pn+1(λ; t),

Pn(λ; t), Pn−1(λ; t), Pn−2(λ; t) and Pn−3(λ; t) in (3.11) and (3.12). □

Remark 3.3. It is worth noting that, when α ̸= 0, (3.9) represents a generalized nonisospectral

Toda lattice that encompasses both the first and second flows of the isospectral Toda hierarchy.

When α = α2 = 0, (3.9) reduces to the first isospectral Toda flow. Similarly, it yields the

second isospectral Toda flow when α = α1 = 0.

3.3. Asymmetric d-PI related to nonisospectral Toda. The three-term recurrence rela-

tion (3.2) and the time evolution (3.7) constitute the Lax pair of the nonisospectral Toda lattice

(3.9), which we can write in matrix form as

ψn+1 = Unψn,
dψn
dt

= Vnψn, (3.13)

where ψn = (Pn−1(λ; t), Pn(λ; t))
⊤ and

Un =

(
0 1

−a2n λ− bn

)
,

Vn =

(
α2a

2
n−1 − (λ− bn−1) (α2λ+ α1 + α2bn−1) + α(n− 1) α2λ+ α1 + α2bn−1

−a2n (α2λ+ α1 + α2bn) α2a
2
n + αn

)
.

We claim that the compatibility condition of the linear system

ψn+1 = Pnψn,
∂ψn
∂λ

= Qnψn, (3.14)

with

Pn = Un, Qn = Vn/

(
dλ

dt

)
=

1

αλ
Vn

yields a d-P-type equation.

Theorem 3.4. Under the assumption of (2.4) and (3.6) as well as the stationary reduction, the

recurrence coefficients {a2n}n∈N and {bn}n∈N for the monic OPs (3.3) satisfy the asymmetric

d-PI

α2un(un + vn+1 + vn) + α1un + αn+ e1 = 0, (3.15a)

α2vn(un + un−1 + vn) + α1vn + α(n− 1) + f1 = 0, (3.15b)
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with the Lax pair (3.14), where

un =
α2a

2
n+1 + αn+ e1

−α2bn − α1
,

vn =
α2a

2
n + α(n− 1) + f1
−α2bn − α1

,

with some arbitrary constants e1 and f1.

Proof. The compatibility condition in (3.14) gives a difference system in matrix form

Pn,λ + PnQn −Qn+1Pn = 0,

the explicit form of which reads

2α+ α1(bn − bn−1) + α2(a
2
n+1 − a2n−1 + b2n − b2n−1) = 0, (3.17a)

αbn + α1(a
2
n+1 − a2n) + α2(a

2
n+1(bn+1 + bn)− a2n(bn−1 + bn)) = 0. (3.17b)

Now we are ready to simplify (3.17) to obtain the asymmetric d-PI (see e.g. [88]). It is noted

that (3.17) can be equivalently written as(
Ea2n − a2nE

−1 bn(E − 1)

(1− E−1)bn (E − E−1)

)(
α2bn + α1

α2a
2
n + (n− 1)α

)
=

(
0

0

)
, (3.18)

where E is the shift operator on n, Ekfn = fn+k. Multiplying (3.18) from the left by(
0 E

α2bn + α1 (α2a
2
n+1 + nα)E

)
,

we can get

(E − 1)

(
bnF1,n + (E + 1)G1,n

a2nF1,n−1F1,n + bnF1,nG1,n +G1,n+1G1,n

)
=

(
0

0

)
, (3.19)

where

F1,n = α2bn + α1,

G1,n = α2a
2
n + (n− 1).

Expanding the expression (3.19) explicitly, we have

α2(a
2
n+1 + a2n + b2n) + α1bn + (2n− 1)α+ c1 = 0, (3.20a)

a2n(α2bn + α1)(α2bn−1 + α1)− (α2a
2
n + (n− 1)α)2 − c1(α2a

2
n + (n− 1)α) + d1 = 0, (3.20b)

where c1, d1 are two arbitrary constants. Finally, we can derive the asymmetric d-PI (3.15)

from (3.20) via the Bäcklund transformation

bn = un + vn,

a2n = un−1vn,

un =
α2a

2
n+1 + αn+ e1

−α2bn − α1
,

vn =
α2a

2
n + α(n− 1) + f1
−α2bn − α1

,

c1 = e1 + f1, d1 = −e1f1.

□
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Remark 3.5. It is noted that the asymmetric d-PI can be obtained from the d-PI

α2wn(wn+1 + wn + wn−1) + α1wn +
1

2
αn− 1

4
(3α− 2e1 − 2f1)

− (−1)n
1

4
(α− 2e1 − 2f1) = 0,

by considering the cases of odd and even values of n as a coupled system and then setting

w2n = vn, w2n+1 = un (see. e.g. [92]).

Remark 3.6. Obviously, (3.17) is the stationary reduction (i.e. setting
da2n
dt = dbn

dt = 0) of

the nonisospectral Toda lattice (3.9). This means that the asymmetric d-PI (3.15) together

with its Lax pair (3.14) can be deduced from stationary reduction of the Lax pair (3.13) of the

nonisospectral Toda lattice (3.9).

3.4. Realization of stationary reduction. In this subsection, we would like to demonstrate

the feasibility of the stationary reduction from the perspective of solution. To this end, we will

introduce a concrete weight function to define the corresponding moments.

Lemma 3.7. Under the assumption of (2.4) together with α2

α < 0, define the moments as

cj(t) =

∫ +∞

0

λj(0)ejαte
α1
α λ(0)eαt+

α2
2α λ

2(0)e2αt

dλ(0). (3.21)

Then the moments simultaneously satisfy the time evolution (3.6) and

d

dt
cj(t) = −αcj(t). (3.22)

Proof. First, let’s seek for an appropriate weight function so that the moments satisfy the

evolution relation (3.6). It follows from (2.4) that

λ(t) = λ(0)eαt,

where λ(0) is the spectral parameter at initial time. In the case of the integral interval [0,+∞),

the moments can be written as

cj(t) =

∫ +∞

0

λj(t)dµ(λ; t) =

∫ +∞

0

λj(0)ejαtf(λ(0); t)dλ(0),

where ejαtf(λ(0); t) is the deformed weight function that needs to be determined. Differenti-

ating the above expressions for the moments produces

d

dt
cj(t) = αjcj(t) +

∫ +∞

0

λj(0)ejαt
df(λ(0); t)

dt
dλ(0),

from which we can obtain

d

dt
f(λ(0); t) = (α1λ(0)e

αt + α2λ
2(0)e2αt)f(λ(0); t),

with the help of the evolution relation (3.6). This implies that it is reasonable to take

f(λ(0); t) = e
α1
α λ(0)eαt+

α2
2α λ

2(0)e2αt

,

which yields the expressions of the moments (3.21).

Next we aim to verify the evolution relation (3.22) satisfied by (3.21). Integration by parts

gives

cj(t) =

∫ +∞

0

λj(0)ejαte
α1
α λ(0)eαt+

α2
2α λ

2(0)e2αt

dλ(0),
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=−
∫ +∞

0

λ(0)jλj−1(0)ejαt+
α1
α λ(0)eαt+

α2
2α λ

2(0)e2αt

dλ(0)

−
∫ +∞

0

α1

α
λj+1(0)e(j+1)αte

α1
α λ(0)eαt+

α2
2α λ

2(0)e2αt

dλ(0)

−
∫ +∞

0

α2

α
λj+2(0)e(j+2)αte

α1
α λ(0)eαt+

α2
2α λ

2(0)e2αt

dλ(0)

=− jcj −
α1

α
cj+1 −

α2

α
cj+2,

where we used the fact at the boundary

lim
λ(0)→0

λj+1(0)f(λ(0); t) = lim
λ(0)→+∞

λj+1(0)f(λ(0); t) = 0.

Therefore we have

cj+2 = −(j + 1)
α

α2
cj −

α1

α2
cj+1,

inserting which into Eq. (3.6), we obtain Eq. (3.22). The proof is completed □

Finally, we show that under time evolution (3.22), the nonisospectral Toda lattice and the

corresponding Lax pair can indeed be stationary. In fact, the following result immediately

follows from the above lemma.

Theorem 3.8. Under the definition of the moments (3.21), we have

da2n(t)

dt
=
dbn
dt

= 0,

and
dγn,j(t)

dt
= 0,

where {a2n} and {bn} are the recurrence coefficients for the monic OPs (3.3) and {γn,j} are the

coefficients in the expansion Pn(λ; t) =
∑n
j=0 γn,j(t)λ(t)

j.

Proof. The main argument involves the utilization of (3.22), which holds based on the definition

(3.21) of the moments. It obviously follows from (3.22) that

d

dt
∆n = −nα∆n,

d

dt
∆∗
n = −nα∆∗

n,

where ∆∗
n is the determinant obtained from the matrix of ∆n by replacing the last column

(cn−1, cn, . . . , c2n−2)
T by (cn, cn+1, . . . , c2n−1)

T . Then we easily get

da2n
dt

=
d

dt

(
∆n+1∆n−1

∆2
n

)
= 0,

dbn
dt

=
d

dt

(
∆∗
n+1

∆n+1
− ∆∗

n

∆n

)
= 0.

Furthermore, recall that the coefficients of the expansion for Pn(λ) are written as

γn,j =
Tn,j
∆n

, j = 0, . . . , n

with

Tn,j = (−1)n+j

∣∣∣∣∣∣∣∣∣∣
c0 c1 · · · cj−1 cj+1 · · · cn

c1 c2 · · · cj cj+2 · · · cn+1

...
...

. . .
...

...
. . .

...

cn−1 cn · · · cn+j−2 cn+j · · · c2n−1

∣∣∣∣∣∣∣∣∣∣
.
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By employing the evolution relation (3.22), one can obtain

d

dt
Tn,j = −nαTn,j ,

from which it is not hard to see
dγn,j
dt

= 0.

□

In summary, under the definition (3.21) of moments, the nonisospectral Toda lattice (3.9)

does indeed exhibit the stationary reduction. Besides, we also have demonstrated that the

coefficients γn,j in the expansion of the monic OPs don’t depend on time t, which means that
∂ψn

∂t = 0 so that the Lax pair (3.13) of the nonisospectral Toda lattice does indeed exhibit the

stationary reduction under the definition of the moments (3.21), from which the asymmetric

d-PI (3.15) together with its Lax pair (3.14) arises.

3.5. Nonisospectral Lotka-Volterra lattice. Now we consider the monic OPs {Pn(λ; t)}n∈N

(3.3) with symmetric measure. Let the weight function w(λ; t) be an even function with respect

to λ and the integral interval be symmetric. In fact, in this case, it is obvious that the moments

satisfy

c2n ̸= 0, c2n+1 = 0,

from which it is not hard to see bn = 0 and the recurrence relation (3.2) becomes

λPn(λ; t) = Pn+1(λ; t) + a2nPn−1(λ; t). (3.23)

Suppose that the spectral parameter λ satisfies the time evolution (2.4). We now seek for a

weight function such that the moments satisfy the time evolution

d

dt
cj(t) = αjcj(t) + α1cj+2(t) + α2cj+4(t). (3.24)

Since

d

dt
cj(t) =

∫
λj
(
αjw(λ; t) +

d

dt
w(λ; t) + αw(λ; t)

)
dλ

=αjcj(t) +

∫
λj
(
d

dt
w(λ; t) + αw(λ; t)

)
dλ,

we have ∫
λj
(
d

dt
w(λ; t) + αw(λ; t)

)
dλ = α1cj+2(t) + α2cj+4(t),

from which it suffices to set

d

dt
w(λ; t) + αw(λ; t) = (α1λ

2 + α2λ
4)w(λ; t). (3.25)

This implies that such a weight function exists and it is reasonable to choose the expressions

(3.36) for the moments.

Lemma 3.9. Under the assumption of (2.4) and (3.24), the monic OPs (3.3) satisfy the time

evolution

d

dt
Pn(λ; t) =nαPn(λ; t)− a2n−1a

2
n(α1 + α2(a

2
n−2 + a2n−1 + a2n

+ a2n+1))Pn−2(λ; t)− α2a
2
n−3a

2
n−2a

2
n−1a

2
nPn−4(λ; t). (3.26)
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Proof. For m = 0, 1, . . . , n − 1, by taking the derivative to the orthogonality condition (3.1)

with respect to time t, we have

0 =

∫ (
d

dt
Pn(λ; t)Pm(λ; t) + Pn(λ; t)

d

dt
Pm(λ; t)

)
w(λ; t)dλ

+

∫
Pn(λ; t)Pm(λ; t)(

d

dt
w(λ; t) + αw(λ; t))dλ,

which immediately results in∫ (
d

dt
Pn(λ; t) + (α1λ

2 + α2λ
4)Pn(λ; t)

)
Pm(λ; t)w(λ; t)dλ = 0

by virtue of (3.25). With the help of the recurrence relation (3.23), we obtain

0 =

∫ (
d

dt
Pn(λ; t) + α1a

2
n−1a

2
nPn−2

)
Pm(λ; t)w(λ; t)dλ

+

∫
α2a

2
n−1a

2
n(a

2
n−2 + a2n−1 + a2n + a2n+1)Pn−2(λ; t)Pm(λ; t)w(λ; t)dλ

+

∫
α2a

2
n−1a

2
na

2
n−3a

2
n−2Pn−4(λ; t)Pm(λ; t)w(λ; t)dλ.

Upon setting d
dtPn(λ; t) =

∑n
i=0 γiPi(λ; t), we have

d

dt
Pn(λ; t) + α1a

2
n−1a

2
nPn−2(λ; t)

+ α2a
2
n−1a

2
n((a

2
n−2 + a2n−1 + a2n + a2n+1)Pn−2(λ; t) + a2n−3a

2
n−2Pn−4(λ; t))

=γnPn(λ; t) + γn−1Pn−1(λ; t) + (γn−2 + α1a
2
n−1a

2
n + α2a

2
n−1a

2
n(a

2
n−2 + a2n−1 + a2n

+ a2n+1))Pn−2(λ; t) + γn−3Pn−3(λ; t) + (γn−4 + α2a
2
n−3a

2
n−2a

2
n−1a

2
n)Pn−4(λ; t)

+

n−5∑
i=0

γiPi(λ; t). (3.27)

Comparing the highest power of λ on both sides of the equation (3.27) immediately gives

γn = nα. By making use of the orthogonality condition, it is not hard to get

γ0 = γ1 = · · · = γn−5 = γn−3 = γn−1 = 0

and

γn−4 = −α2a
2
n−3a

2
n−2a

2
n−1a

2
n,

γn−2 = −a2n−1a
2
n(α1 + α2(a

2
n−2 + a2n−1 + a2n + a2n+1)),

Therefore, the time evolution (3.26) of {Pn(λ; t)}n∈N is verified. □

The compatibility condition of the three-term recurrence relation (3.23) and the time evolu-

tion (3.26) enables us to derive a differential equation. In fact, we have the following theorem.

Theorem 3.10. Under the assumption of (2.4) and (3.24), the recurrence coefficients {a2n}n∈N

for the monic OPs (3.3) satisfy the nonisospectral Lotka-Volterra lattice

da2n
dt

=2αa2n + α1a
2
n(a

2
n+1 − a2n−1)

+ α2a
2
n(a

2
n+1(a

2
n + a2n+1 + a2n+2)− a2n−1(a

2
n−2 + a2n−1 + a2n)). (3.28)
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Proof. Taking the derivative of (3.23) with respect to time t, we have

αλPn(λ; t) + λ
d

dt
Pn(λ; t)

=
d

dt
Pn+1(λ; t) +

da2n
dt

Pn−1(λ; t) + a2n
d

dt
Pn−1(λ; t), n ≥ 0. (3.29)

By inserting the three-term recurrence relation (3.23) and the time evolution (3.26) into both

sides of the equation (3.29), we obtain

LHS of (3.29)

=α(Pn+1(λ; t) + a2nPn−1(λ; t)) + nα(Pn+1(λ; t) + a2nPn−1(λ; t))

− a2n−1a
2
n(α1 + α2(a

2
n−2 + a2n−1 + a2n + a2n+1))(Pn−1(λ; t) + a2n−2Pn−3(λ; t))

− α2a
2
n−3a

2
n−2 + a2n−1a

2
n(Pn−3(λ; t) + a2n−4Pn−5(λ; t)), (3.30)

RHS of (3.29)

=(n+ 1)αPn+1(λ; t)− a2n+1a
2
n(α1 + α2(a

2
n−1 + a2n + a2n+1 + a2n+2))Pn−1(λ; t)

− α2a
2
n−2a

2
n−1a

2
na

2
n+1Pn−3(λ; t) +

da2n
dt

Pn−1(λ; t) + (n− 1)αa2nPn−1(λ; t)

− α2a
2
n−4a

2
n−3a

2
n−2a

2
n−1a

2
nPn−5(λ; t)

− a2n−2a
2
n−1a

2
n(α1 + α2(a

2
n−3 + a2n−2 + a2n−1 + a2n))Pn−3(λ; t). (3.31)

Comparing the right hand sides of (3.30) and (3.31), one will see that the differential equation

(3.28) follows from the coefficient of Pn−1(λ; t). □

Remark 3.11. It is noted that (3.28) can be identified as a nonisosepctral generalization that

incorporates both the first and second flows of the isospectral Lotka-Volterra hierarchy when

α ̸= 0. In fact, when α = α2 = 0, it reduces to the first isospectral Lotka-Volterra flow, and

when α = α1 = 0, it gives the second isospectral Lotka-Volterra flow.

3.6. d-PI related to nonisospectral Lotka-Volterra. In the previous subsection, we uti-

lized the orthogonality condition (3.1) to derive the time evolution (3.26) of the OPs, which

together with the recurrence relation (3.23) constitute the Lax pair of the nonisospectral Lotka-

Volterra (3.28). As we will see, we can obtain a d-P-type equation from a stationary Lax pair

by employing the method introduced in Section 2.

The recurrence relation (3.23) and time evolution (3.26) can be rewritten in matrix form as

ψn+1 = Unψn,
dψn
dt

= Vnψn, (3.32)

where ψn = (Pn−1(λ; t), Pn(λ; t))
⊤,

Un =

(
0 1

−a2n λ

)
,

Vn =

(
−α2λ

4 − λ2
(
α2a

2
n + α1

)
+ ωn + α(n− 1) α2λ

3 + λ
(
α2

(
a2n−1 + a2n

)
+ α1

)
−α2λ

3a2n − λa2n
(
α2

(
a2n+1 + a2n

)
+ α1

)
α2λ

2a2n + ωn+1 + αn

)
,

with ωn = a2n−1

(
α2

(
a2n−2 + a2n−1 + a2n

)
+ α1

)
. Now we claim that the compatibility condition

of the linear system

ψn+1 = Pnψn,
∂ψn
∂λ

= Qnψn, (3.33)
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with

Pn = Un, Qn = Vn/

(
dλ

dt

)
=

1

αλ
Vn

will yield a d-P-type equation. In fact, we have the following theorem.

Theorem 3.12. Under the assumption of (2.4) and (3.24) as well as the stationary reduction,

the recurrence coefficients {a2n}n∈N for the monic OPs (3.3) satisfy the following d-PI

α1a
2
n+1(a

2
n + a2n+1 + a2n+2 +

α2

α1
) + (n+

1

2
)α− (−1)nA0 − c̃ = 0, (3.34)

with the Lax pair (3.33), where

A0 =
α

2
+ α1a

2
1 + α2a

2
1(a

2
1 + a22),

c = −α1a
2
1 − α2a

2
1(a

2
1 + a22),

and when n is odd, c̃ = −c; when n is even, c̃ = 0.

Proof. By considering the compatibility condition of (3.33), i.e.

Pn,λ + PnQn −Qn+1Pn = 0,

we can obtain

2α+ α1(a
2
n+1 − a2n−1) + α2(a

2
n+1(a

2
n + a2n+1 + a2n+2)− a2n−1(a

2
n−2 + a2n−1 + a2n)) = 0, (3.35)

which can be further simplified to get the d-PI. In fact, summing the above equation results in

2nα+ α1(a
2
n+1 + a2n) + α2(a

2
n+1(a

2
n + a2n+1 + a2n+2) + a2n(a

2
n−1 + a2n+1 + a2n)) + c = 0,

from which, (3.34) follows. □

Remark 3.13. It is worth noting that the equation (3.35) is the stationary reduction, i.e.

setting
da2n
dt = 0, of the nonisospectral Lotka-Volterra equation (3.28). This means that the

d-PI (3.34) together with its Lax pair (3.33) can be deduced from the stationary reduction of

the Lax pair (3.32) for the nonisospectral Lotka-Volterra equation.

3.7. Realization of stationary reduction. In the previous section, we derive the d-PI by

formally applying the stationary reduction to the nonisospectral Lotka-Volterra equation. Now

we will construct an explicit weight function and rigorously demonstrate the feasibility of the

stationary reduction from the perspective of solution.

Lemma 3.14. Under the assumption of (2.4) together with α2

α < 0, define the moments as

cj(t) =

∫ +∞

−∞
λj(0)ejαte

α1
2α λ

2(0)e2αt+
α2
4α λ

4(0)e4αt

dλ(0). (3.36)

Then the moments simultaneously satisfy the time evolution (3.24) and

d

dt
cj(t) = −αcj(t). (3.37)

Proof. First, let’s seek for an appropriate weight function so that the moments satisfy the

evolution relation (3.24). Since it follows from (2.4) that

λ(t) = λ(0)eαt,
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where λ(0) is the spectral parameter at the initial time, in the case of the integral interval

(−∞,+∞), the moments can be written as

cj(t) =

∫ +∞

−∞
λj(t)dµ(λ; t) =

∫ +∞

−∞
λj(0)ejαtf(λ(0); t)dλ(0),

where ejαtf(λ(0); t) is the deformed weight function that needs to be determined. By taking

the derivative of the moments, we have

d

dt
cj(t) = αjcj(t) +

∫ +∞

−∞
λj(0)ejαt

df(λ(0); t)

dt
dλ(0).

It can be seen from the evolution relation (3.24) that f(λ(0); t) needs to satisfy the time

evolution

d

dt
f(λ(0); t) = (α1λ

2(0)e2αt + α2λ
4(0)e4αt)f(λ(0); t),

so it is reasonable to set

f(λ(0); t) = e
α1
2α λ

2(0)e2αt+
α2
4α λ

4(0)e4αt

,

from which we have the explicit expression (3.36) for the moments. Now it remains to be

confirmed that the evolution relation (3.37) is satisfied by the moments in (3.36).

Using integration by parts and the fact at the boundary

lim
λ(0)→−∞

λj+1(0)f(λ(0); t) = lim
λ→+∞

λj+1(0)f(λ(0); t) = 0,

we have

cj(t) =

∫ +∞

−∞
λj(0)ejαte

α1
2α λ

2(0)e2αt+
α2
4α λ

4(0)e4αt

dλ(0)

=−
∫ +∞

−∞
λ(0)jλj−1(0)ejαt+

α1
2α λ

2(0)e2αt+
α2
4α λ

4(0)e4αt

dλ(0)

−
∫ +∞

−∞

α1

α
λj+2(0)e(j+2)αte

α1
2α λ

2(0)e2αt+
α2
4α λ

4(0)e4αt

dλ(0)

−
∫ +∞

−∞

α2

α
λj+4(0)e(j+4)αte

α1
2α λ

2(0)e2αt+
α2
4α λ

4(0)e4αt

dλ(0)

=− jcj −
α1

α
cj+2 −

α2

α
cj+4,

which results in

cj+4 = −(j + 1)
α

α2
cj −

α1

α2
cj+2.

It is evident that (3.37) immediately follows from substituting the above relation into the

evolution relation (3.24). Therefore, we complete the proof. □

The above lemma implies the following result.

Theorem 3.15. Under the definition of the moments (3.36), we have

da2n(t)

dt
= 0

and
dγn,j(t)

dt
= 0,

where {a2n} are the recurrence coefficients for the monic OPs (3.3) and {γn,j} are the coefficients

of OPs in the expansions Pn(λ; t) =
∑n
j=0 γn,j(t)λ(t)

j.
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Proof. The argument is mainly based on the time evolution (3.37), which holds for the moments

definied in (3.36). It follows from the time evolution (3.37) of the moments that the Hankel

determinant ∆n satisfies the evolution d
dt∆n = −nα∆n. Therefore we have

da2n(t)

dt
=

d

dt

(
∆n+1∆n−1

∆2
n

)
= 0.

Furthermore, recall that the coefficients of OPs are written as

γn,j =
Tn,j
∆n

, j = 0, . . . , n

with

Tn,j = (−1)n+j

∣∣∣∣∣∣∣∣∣∣
c0 c1 · · · cj−1 cj+1 · · · cn

c1 c2 · · · cj cj+2 · · · cn+1

...
...

. . .
...

...
. . .

...

cn−1 cn · · · cn+j−2 cn+j · · · c2n−1

∣∣∣∣∣∣∣∣∣∣
.

By utilizing the evolution relation (3.37), one gets

d

dt
Tn,j = −nαTn,j ,

based on which, it is not hard to see
d

dt
γn,j = 0.

□

It follows from the above theorem that, for the moments defined in (3.36), the nonisospectral

Lotka-Volterra equation (3.28) does indeed exhibit the stationary reduction. Besides, we also

have demonstrated that the coefficients γn,j of OPs don’t depend on time t, implying ∂ψn

∂t = 0,

which means that the Lax pair (3.32) of the nonisospectral Lotka-Volterra equation does indeed

allow the stationary reduction under the definition of the moments (3.36), from which the d-PI

(3.34) together with its Lax pair (3.33) arises.

4. Nonisospectral deformation of (1,m)-type bi-OPs and d-P

In this section, we consider the corresponding problems related to the (1,m)-type bi-OPs

[47, 120], which are generalizations of the ordinary OPs discussed in the previous section and

associated with the Muttalib-Borodin random ensemble [34,126]. Firstly, the time evolution of

the (1,m)-type bi-OPs is deduced by utilizing the biorthogonality condition. Subsequently, the

nonisospectral integrable equations are derived based on the compatibility condition between

the recurrence relation and the obtained time evolution. Then, by considering stationary reduc-

tion of the Lax pair of the nonisospectral integrable equations, we obtain a family of d-P-type

equations together with the corresponding Lax pair. Lastly, we construct an explicit weight

function that ensures the validity of the aforementioned process.

4.1. (1,m)-type bi-OPs. For a fixed m ∈ N+, define the inner product ⟨·|·⟩m according to

⟨f(λ)|w(λ)dλ|g(λ)⟩m =

∫
f(λ)g(λm)w(λ)dλ,

where w(λ) is a formal weight function so that all the moments

ci =

∫
λiw(λ)dλ, i ∈ N
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exist. Two families of monic polynomials {Pn(λ)}n∈N and {Qn(λ)}n∈N with an exact degree

n for each Pn(λ) and Qn(λ) are called (1,m)-type bi-OPs with respect to the bilinear 2-form

⟨·|·⟩m if they satisfy biorthogonality condition

⟨Pn(λ)|w(λ)dλ|Qs(λ)⟩m = hnδns, hn ̸= 0. (4.1)

Obviously, when m = 1, the biorthogonality condition reduces to the case for the ordinary OPs

in Section 3.

It is noted that the biorthogonality condition (4.1) can be equivalently written as

⟨Pn(λ)|w(λ)dλ|λs⟩m = 0, s = 0, 1, . . . , n− 1,

for the sequence of polynomials {Pn(z)}n∈N and

⟨λs|w(λ)dλ|Qn(λ)⟩m = 0, s = 0, 1, . . . , n− 1

for the sequence of polynomials {Qn(z)}n∈N. Based on the biorthogonality, we have the follow-

ing determinant expressions for the (1,m)-type bi-OPs

Pn(λ) =
1

τn

∣∣∣∣∣∣∣∣∣∣∣∣

c0 c1 · · · cn

cm c1+m · · · cn+m
...

...
. . .

...

c(n−1)m c1+(n−1)m · · · cn+(n−1)m

1 λ · · · λn

∣∣∣∣∣∣∣∣∣∣∣∣
, (4.2a)

Qn(λ) =
1

τn

∣∣∣∣∣∣∣∣∣∣
c0 c1 · · · cn−1 1

cm c1+m · · · cm+n−1 λ
...

...
. . .

...
...

cnm c1+nm · · · cn−1+nm λn

∣∣∣∣∣∣∣∣∣∣
, (4.2b)

under the assumption of τn = det(cmi+j)
n−1
i,j=0 ̸= 0. In addition, {hn}n∈N admit the determinant

representations

hn =
τn+1

τn
.

It can also be proved that Pn(λ) and Qn(λ) respectively satisfy the following m+2 recurrence

relations

λmPn(λ) = bn,mPn+m(λ) + bn,m−1Pn+m−1(λ) + bn,m−2Pn+m−2(λ) + · · ·+ bn,−1Pn−1(λ),

(4.3a)

λQn(λ) = an,n+1Qn+1(λ) + an,nQn(λ) + an,n−1Qn−1(λ) + · · ·+ an,n−mQn−m(λ), (4.3b)

where bn,m = an,n+1 = 1 and bn,j = 0, j > m or j < −1. Since Pn(λ) and Qn(λ) have similar

structures, we shall maintain our focus on {Pn(λ)}n∈N.

In order to facilitate our discussion, we rewrite the recurrence relation (4.3a) in matrix form

as

λmP = JP, (4.4)
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where

P =


P0

P1

P2

...

 , J =


b0,0 b0,1 b0,2 · · · b0,m 0 0 0 · · ·
b1,−1 b1,0 b1,1 · · · b1,m−1 b1,m 0 0 · · ·
0 b2,−1 b2,0 · · · b2,m−2 b2,m−1 b2,m 0 · · ·
...

...
...

. . .
...

...
...

...
. . .

 .

4.2. Nonisospectral Blaszak-Marciniak lattice. In this subsection, we consider nonisospec-

tral deformation of the (1,m)-type bi-OPs, and use the compatibility condition to derive non-

isospectral integrable equations.

Under the condition that the spectral parameter λ satisfies the time evolution (2.4), we seek

for an appropriate weight function to ensure that the moments satisfy the time evolution

d

dt
cj(t) = αjcj(t) + α1cj+m(t) + α2cj+2m(t). (4.5)

Based on

d

dt
cj(t) =

∫
λj(t)

(
αjw(λ; t) +

d

dt
w(λ; t) + αw(λ; t)

)
dλ

=αjcj(t) +

∫
λj(t)

(
d

dt
w(λ; t) + αw(λ; t)

)
dλ,

we thus obtain ∫
λj(t)

(
d

dt
w(λ; t) + αw(λ; t)

)
dλ = α1cj+m(t) + α2cj+2m(t),

which implies that it is reasonable to set

d

dt
w(λ; t) + αw(λ; t) = (α1λ

m + α2λ
2m)w(λ; t). (4.6)

Such a weight function is given in (4.27).

Lemma 4.1. Under the assumption of (2.4) and (4.5), the (1,m)-type bi-OPs (4.2a) satisfy

the time evolution

d

dt
Pn(λ; t) =nαPn(λ; t)− (α1bn,−1 + α2bn,−1(bn−1,0 + bn,0))Pn−1(λ; t)

− α2bn,−1bn−1,−1Pn−2(λ; t). (4.7)

Proof. Recall that the biorthogonality condition (4.1) gives∫
Pn(λ; t)Qs(λ

m; t)w(λ; t)dλ = 0,

for s = 0, 1, . . . , n− 1. By taking derivation of the above relation with respect to t, we obtain

0 =

∫ (
d

dt
Pn(λ; t)Qs(λ

m; t) + Pn(λ; t)
d

dt
Qs(λ

m; t)

)
w(λ; t)dλ

+

∫
Pn(λ; t)Qs(λ

m; t)

(
d

dt
w(λ; t) + αw(λ; t)

)
dλ. (4.8)

Then, inserting Eq. (4.6) into Eq. (4.8) gives

0 =

∫ (
d

dt
Pn(λ; t) + (α1λ

m + α2λ
2m)Pn(λ; t)

)
Qs(λ

m; t)w(λ; t)dλ

=

∫ (
d

dt
Pn(λ; t) + α1bn,−1Pn−1(λ; t)

)
Qs(λ

m; t)w(λ; t)dλ
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+ α2bn,−1

(∫
(bn−1,0 + bn,0)Pn−1(λ; t)Qs(λ

m; t)w(λ; t)dλ

+

∫
bn−1,−1Pn−2(λ; t)Qs(λ

m; t)w(λ; t)dλ

)
,

where we used the recurrence relation (4.3a) to replace the expressions λmPn(λ; t) and λ
2mPn(λ; t).

Upon the reasonable setting

d

dt
Pn(λ; t) =

n∑
i=0

γiPi(λ; t),

we have

d

dt
Pn(λ; t) + α1bn,−1Pn−1(λ; t) + α2bn,−1[(bn−1,0 + bn,0)Pn−1(λ; t) + bn−1,−1Pn−2(λ; t)]

=γnPn(λ) + (γn−1 + α1bn,−1 + α2bn,−1(bn−1,0 + bn,0))Pn−1(λ; t)

+ (γn−2 + α2bn,−1bn−1,−1)Pn−2(λ; t) +

n−3∑
i=0

γiPi(λ; t). (4.9)

Comparing the highest power of λ on both sides of the equation (4.9) shows that γn = nα.

According to the biorthogonality condition for s = 0, 1, . . . , n− 1, we conclude from (4.9) that

γ0 = γ1 = · · · = γn−3 = 0, and

γn−2 = −α2bn,−1bn−1,−1,

γn−1 = −α1bn,−1 − α2bn,−1(bn−1,0 + bn,0).

Therefore (4.7) follows. □

In the following theorem, we will derive a nonisospectral Blaszak-Marciniak (BM) lattice

by means of the compatibility condition of the recurrence relation (4.3a) and the time evolu-

tion (4.7).

Theorem 4.2. Under the assumption of (2.4) and (4.5), the recurrence coefficients {bn,l} for

the (1,m)-type bi-OPs (4.3a) satisfy the following differential system

dbn,l
dt

=(m− l)αbn,l + α1(bn,l+1bn+l+1,−1 − bn−1,l+1bn,−1)

+ α2(bn,l+2bn+l+2,−1bn+l+1,−1 + bn,l+1bn+l+1,−1(bn+l+1,0 + bn+l,0)

− bn−1,l+1bn,−1(bn−1,0 + bn,0)− bn,−1bn−1,−1bn−2,l+2),

l = −1, 0, . . . ,m− 1 (4.10)

with bn,m = 1 and bn,j = 0 for j > m or j < −1.

Proof. First of all, take the derivative of (4.3a) with respect to time t to get

αmλmPn(λ; t) + λm
d

dt
Pn(λ; t)

=
d

dt
Pn+m(λ; t) +

dbn,m−1(t)

dt
Pn+m−1(λ; t) + bn,m−1(t)

d

dt
Pn+m−1(λ; t)

+
dbn,m−2(t)

dt
Pn+m−2(λ; t) + bn,m−2(t)

d

dt
Pn+m−2(λ) + · · ·+ dbn,−1(t)

dt
Pn−1(λ; t)

+ bn,−1(t)
d

dt
Pn−1(λ; t) n ≥ 0. (4.11)
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Substituting the recurrence relation (4.3a) and the time evolution (4.7) into the both sides

of (4.11), and then comparing the coefficients of polynomials Pn+m(λ; t), Pn+m−1(λ; t), . . . , Pn−3(λ; t)

of the both sides, we finally obtain

dbn,m−1

dt
=αbn,m−1 + α1(bn+m,−1 − bn,−1) + α2(bn+m,−1(bn+m−1,0 + bn+m,0)

− bn,−1(bn−1,0 + bn,0)),

dbn,m−2(t)

dt
=2αbn,m−2 + α1(bn,m−1bn+m−1,−1 − bn−1,m−1bn,−1)

+ α2(bn+m,−1bn+m−1,−1 + bn,m−1bn+m−1,−1(bn+m−2,0 + bn+m−1,0)

− bn−1,m−1bn,−1(bn−1,0 + bn,0)− bn,−1bn−1,−1),

dbn,m−3(t)

dt
=3αbn,m−3 + α1(bn,m−2bn+m−2,−1 − bn−1,m−2bn,−1)

+ α2(bn,m−1bn+m−1,−1bn+m−2,−1 + bn,m−2bn+m−2,−1(bn+m−3,0

+ bn+m−2,0)− bn−1,m−2bn,−1(bn−1,0 + bn,0)− bn,−1bn−1,−1bn−2,m−1),

...

dbn,−1(t)

dt
=(m+ 1)αbn,−1 + α1(bn,0bn,−1 − bn−1,0bn,−1) + α2(bn,1bn+1,−1bn,−1

+ bn,0bn,−1(bn,0 + bn−1,0)− bn−1,0bn,−1(bn−1,0

+ bn,0)− bn,−1bn−1,−1bn−2,1),

which can be written as (4.10) in a unified form. □

Remark 4.3. When α ̸= 0, (4.10) is a generalized nonisospectral BM lattice that incorparates

both the first and second flows of the isospectral BM hierarchy [31]. In the case of α = α2 = 0,

it is reduced to the first isospectral BM flow, while it becomes the second isospectral BM flow

when α = α1 = 0.

4.3. d-P related to nonisospectral BM. The recurrence relation (4.3a) and the time evolu-

tion (4.7) form the Lax pair of the nonisospectral BM lattice, which can be expressed in matrix

form as

λmP = BP,
d

dt
P =MP, (4.12)

where P (λ; t) = (P0(λ; t), P1(λ; t), P2(λ; t), . . .)
⊤,

M =



0

f1 α

−α2b2,−1b1,−1 f2 2α

−α2b3,−1b2,−1 f3 3α
. . .

. . .
. . .

 ,

B =


b0,0 · · · b0,m−1 1

b1,−1 b1,0 · · · b1,m−1 1

b2,−1 b2,0 · · · b2,m−1 1
. . .

. . .
. . .

. . .

 ,

with fn = −bn,−1(α1 + α2(bn,0 + bn−1,0)).
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By following the process in Section 2, we can consider the stationary reduction of the Lax

pair

λmP = B̂P,
∂

∂λ
P = M̂P, (4.13)

where

B̂ = B, M̂ =M/

(
dλ

dt

)
=

1

αλ
M.

Its compatibility condition gives

mλm−1I + λmM̂ =
∂

∂λ
B + B̂M̂ ,

which can be equivalently written as the following explicit form

(m− l)αbn,l + α1(bn,l+1bn+l+1,−1 − bn−1,l+1bn,−1)

+ α2[bn,l+2bn+l+2,−1bn+l+1,−1 + bn,l+1bn+l+1,−1(bn+l+1,0 + bn+l,0)

− bn−1,l+1bn,−1(bn−1,0 + bn,0)− bn,−1bn−1,−1bn−2,l+2] = 0,

l = −1, 0, . . . ,m− 1. (4.14)

Here I denotes the identity matrix. The above equation corresponds to the stationary reduction

of the nonisospectral BM lattice and it can be associated with a class of d-P-type equations.

Theorem 4.4. Under the assumption of (2.4) and (4.5) as well as the stationary reduction,

the recurrence coefficients {bn,0, bn,−1} for the (1,m)-type bi-OPs (4.3a) satisfy the following

difference system

myn+1bn,1 +mynbn−1,1

=
2m2α

α2xn
(− α1√

2mα
+

1

xn
) + (m+ 1−m(bn,1 + bn−1,1))n+

A

α
−mbn,1, (4.15a)

−α2xnxn−1

2m2α
=

(yn + n)bn−1,1

Hn
, (4.15b)

where

Hn =mb2n−1,1y
2
n +m(1− (n+ 1)bn,1 + nbn−1,1)bn−1,1yn +

1

2
(m+ 1

− 2mbn,1bn−1,1)n
2 +

1

2
(−m+ 1 + 2mbn−1,1 − 2mbn,1bn−1,1)n

− ((m+ 1−m(bn,1 + bn−1,1))n+ 1−mbn,1)(yn + n)bn−1,1

−
√
2m2α

α2xn
(yn + n)× (yn−1 + n− 1)bn−2,2 −

√
2m2α

α2
(yn + n)(yn+1 + n+ 1)

×
(

1

xn−1
+

1

xn
+

1

xn+1
− α1√

2mα

)
bn−1,2 +

m2α

α2
(yn + n)(yn+1 + n+ 1)

× ((yn+2 + n+ 2)bn−1,3 + (yn−1 + n− 1)bn−2,3),
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bn,m−l =
1

l!

[ l2 ]∑
p=0

l∑
i=0

(−1)iCil

n+m∏
j=n+m−l+1

(√
2m2α

α2
(yj + j)

(
1

xj
+

1

xj−1
− α1

2
√
2m

))

×
i−1∏
k=0

(yn−k + n− k)
(

1
xn−k

+ 1
xn−k−1

− α1

2
√
2m

)
(yn+m−k + n+m− k)

(
1

xn+m−k
+ 1

xn+m−k−1
− α1

2
√
2m

)
×

∑
Dp

∏
j∈Jp1

− α2(m− i− j + 1)

2m2α
(

1
xn+j

+ 1
n+xj−1

− α1

2
√
2m

)(
1

xn+j−1
+ 1

xn+j−2
− α1

2
√
2m

)
×
∏

j∈Kp2

− α2(−i+ 1− j)

2m2α
(

1
xn+j

+ 1
xn+j−1

− α1

2
√
2m

)(
1

xn+j−1
+ 1

n+xj−2
− α1

2
√
2m

)
 ,

l = m− 3,m− 2,m− 1.

and

xn =

√
2mα

α1 + α2bn,0
, yn = − α2

αm
bn,−1 − n,

A = −α2(b1,−1b0,1 + b0,−1b−1,1 + b20,0)− α1b0,0.

Here Dp = {Jp1 ∪Kp2 | Jp1 indicates the integer set of p1-element with elements belonging in

the set [m− l + 2,m− i] separated by at least 2, Kp2 indicates the integer set of p2-element

with elements belonging in the set [−i+ 2, 0] separated by at least 2, p1 + p2 = p}.

Proof. Write the equations in (4.14) for l = −1 0, 1 as follows

(m+ 1)αbn,−1 + α1bn,−1(bn,0 − bn−1,0) + α2bn,−1[bn,1bn+1,−1 + bn,0(bn,0 + bn−1,0)

− bn−1,0(bn−1,0 + bn,0)− bn−1,−1bn−2,1] = 0, (4.16a)

mαbn,0 + α1(bn,1bn+1,−1 − bn−1,1bn,−1) + α2[bn,2bn+2,−1bn+1,−1 + bn,1bn+1,−1(bn+1,0 + bn,0)

− bn−1,1bn,−1(bn−1,0 + bn,0)− bn,−1bn−1,−1bn−2,2] = 0, (4.16b)

(m− 1)αbn,1 + α1(bn,2bn+2,−1 − bn−1,2bn,−1) + α2[bn,3bn+3,−1bn+2,−1 − bn,−1bn−1,−1bn−2,3

+ bn,2bn+2,−1(bn+2,0 + bn+1,0)− bn−1,2bn,−1(bn−1,0 + bn,0)] = 0. (4.16c)

Dividing both sides of (4.16a) by bn,−1 and summing it for n gives

− α2(bn+1,−1bn,1 + bn,−1bn−1,1 + b2n,0)− α1bn,0

=− α2(b1,−1b0,1 + b0,−1b−1,1 + b20,0)− α1b0,0 + (m+ 1)nα.

Upon setting

−α2(b1,−1b0,1 + b0,−1b−1,1 + b20,0)− α1b0,0 ≜ A,

we obtain

−α2(bn+1,−1bn,1 + bn,−1bn−1,1 + b2n,0)− α1bn,0 = (m+ 1)nα+A. (4.17)

After implementing the summation on (4.16b), we can get

− α2bn,−1(bn+1,−1bn−1,2 + bn−1,−1bn−2,2 + bn−1,1(bn,0 + bn−1,0))

− α1bn,−1bn−1,1 = mα

n−1∑
j=0

bj,0. (4.18)
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Multiplying both sides of (4.16a) by bn−1,1 and summing it for n, we have

Xn+1bn,1bn−1,1

=(m+ 1)α

n∑
j=0

bj,−1bj−1,1 +

n∑
j=0

Wjbj−1,1(bj−1,0 − bj,0)

=(m+ 1)α

n∑
j=0

bj,−1bj−1,1 +

n−1∑
j=0

(Wj+1bj,1 −Wjbj−1,1)bj,0 −Wnbn−1,1bn,0,

(4.19)

where

Xn = −α2bn,−1bn−1,−1, (4.20)

Wn = −bn,−1(α2(bn,0 + bn−1,0) + α1). (4.21)

Subsequently, by virtue of (4.16b), we obtain

Xn+1bn,1bn−1,1

=(m+ 1)α

n∑
j=0

bj,−1bj−1,1 +

n−1∑
j=0

(mαbj,0 +Xjbj−2,2 −Xj+2bj,2)bj,0 −Wnbn−1,1bn,0

=mα

n−1∑
j=0

(bj+1,−1bj,1 + bj,−1bj−1,1 + b2j,0) +mαbn,−1bn−1,1 −Wnbn−1,1bn,0

− (m− 1)α

n∑
j=0

bj,−1bj−1,1 +

n−1∑
j=0

(Xjbj−2,2 −Xj+2bj,2)bj,0. (4.22)

Based on (4.17) and (4.18), we can conclude

mα

n−1∑
j=0

(bj+1,−1bj,1 + bj,−1bj−1,1 + b2j,0)

=− mα

α2

n−1∑
j=0

(mjα+ jα+A+ α1bj,0)

=− n(n− 1)mα

2α2
((m+ 1)α+A))− α1

α2
(Xn+1bn−1,2 +Xnbn−2,2 +Wnbn−1,1). (4.23)

Furthermore, we can deduce from (4.16c), (4.20) and (4.21)

− (m− 1)α

n∑
j=0

bj,−1bj−1,1 +

n−1∑
j=0

(Xjbj−2,2 −Xj+2bj,2)bj,0

=−
n∑
j=0

bj,−1(Xj+2bj−1,3 −Xj−1bj−3,3 −Wj−1bj−2,2 +Wj+1bj−1,2)

+

n−1∑
j=0

(Xjbj−2,2 −Xj+2bj,2)bj,0

=− α1(

n∑
j=0

bj,−1bj−1,−1bj−2,2 −
n∑
j=1

bj+1,−1bj,−1bj−1,2)

+

n−1∑
j=0

Xjbj,0bj−2,2 −
n∑
j=0

Xj+1bj+1,0bj−1,2 +

n∑
j=0

Xjbj−1,0bj−2,2
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−
n∑
j=0

Xj+1bj,0bj−1,2 +

n∑
j=0

Xjbj−2,0bj−2,2 −
n−1∑
j=0

Xj+2bj,0bj,2

− α2

n∑
j=0

(bj−2,−1bj−1,−1bj,−1bj−3,3 − bj,−1bj+1,−1bj+2,−1bj−1,3)

=α1bn,−1bn+1,−1bn−1,2 + α2bn,−1bn+1,−1(bn+2,−1bn−1,3

+ bn−1,−1bn−2,3)−Xnbn,0bn−2,2 −Xn+1bn−1,2(bn−1,0 + bn,0 + bn+1,0). (4.24)

By inserting (4.20), (4.21), (4.23) and (4.24) into (4.22), the resulting expression becomes

α2
2bn,−1bn+1,−1bn,1bn−1,1

=
n(n− 1)mα2

2
((m+ 1)α+A)− α2αmbn,−1bn−1,1

− α2(bn,−1bn−1,−1bn−2,2(α2bn,0 + α1) + bn+1,−1bn,−1bn−1,2

× (α2(bn+1,0 + bn,0 + bn−1,0) + 2α1))− α2
2bn,−1bn+1,−1(bn+2,−1bn−1,3

+ bn−1,−1bn−2,3)− bn,−1bn−1,1(α2bn,0 + α1)(α2(bn,0 + bn−1,0) + α1). (4.25)

In addition, by taking l = 1, 2, . . . ,m− 1 from (4.14), we have

bn,l =− α2

α(m− l)
(bn+l+2,−1bn+l+1,−1bn,l+2 − bn,−1bn−1,−1bn−2,l+2

− bn,−1bn−1,l+1(bn,0 + bn−1,0 +
α1

α2
)

+ bn+l+1,−1bn,l+1(bn+l+1,0 + bn+l,0 +
α1

α2
)), l = 1, 2 · · ·m− 1, (4.26)

from which it follows that all bn,j can be represented by bn,0 and bn,−1, by noting that bn,m = 1

and bn,j = 0, j > m or j < −1.

The desired equation (4.15) is obtained by (4.17), (4.25) with the help of the transformation

xn =

√
2mα

α1 + α2bn,0
, yn = − α2

αm
bn,−1 − n

in conjunction with (4.26).

□

Remark 4.5. It’s worth noting that, when m = 1, we get from (4.15)
yn+1 + yn = 2α

α2xn
(− α1√

2α
+ 1

xn
) + A

α − 1,

−α2

2α xnxn−1 = yn+n
y2n

,

which can be identified as the asymmetric d-PI via a Miura transform [134] and can also be

related to an asymmetric d-PIV via a rational transformation and a limiting process [147, p.65].

In a more general sense, (4.15) can be regarded as a general class of d-P equations including

the asymmetric d-PIV.

4.4. Realization of stationary reduction. In the previous two subsections, we performed

a nonisospectral deformation on the (1,m)-type bi-OPs, resulting in the nonisospectral BM

lattice. Then, we obtained a family of d-P-type equations together with the Lax pair by

applying the stationary reduction to the Lax pair for the nonisospectral BM lattice.
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In the following, we will construct an explicit weight function under the assumption of the

time evolution (4.5) for the moments, with the purpose of demonstrating the validity of the

above mentioned stationary reduction process.

Lemma 4.6. Under the assumption of (2.4) together with α2

α < 0, define the moments as

cj(t) =

∫ +∞

0

λj(0)ejαte
α1
mαλ

m(0)emαt+
α2

2mαλ
2m(0)e2mαt

dλ(0). (4.27)

Then the moments simultaneously satisfy the time evolution (4.5) and

d

dt
cj(t) = −αcj(t). (4.28)

Proof. Firstly, we attempt to find a weight function so that the moments satisfy the evolution

relation (4.5). Recall that (2.4) gives

λ = λ(0)eαt,

where λ(0) represents the spectral parameter at the initial time. In the case of the integral

interval (0,+∞), the moments can be written as

cj(t) =

∫ +∞

0

λj(t)dµ(λ; t)

=

∫ +∞

0

λj(0)ejαtf(λ(0); t)dλ(0),

from which, we have

d

dt
cj(t) = αjcj(t) +

∫ +∞

0

λj(0)ejαt
df(λ(0); t)

dt
dλ(0).

It is not hard to see that the moments satisfy the time evolution relation (4.5) as long as

f(λ(0); t) satisfies the time evolution

d

dt
f(λ(0); t) = (α1λ

m(0)emαt + α2λ
2m(0)e2mαt)f(λ(0); t). (4.29)

Consequently, it is reasonable to set

f(λ(0); t) = e
α1
mαλ

m(0)emαt+
α2

2mαλ
2m(0)e2mαt

so that the concrete moments are given as (4.27). The remaining part is to confirm that the

concrete moments given by (4.27) also satisfy the evolution relation (4.28).

By observing the fact at the boundary

lim
λ(0)→0

λ(0)f(λ(0); t) = lim
λ(0)→+∞

λ(0)f(λ(0); t) = 0,

we perform integration by parts to get

cj(t) =

∫ +∞

0

λj(0)ejαte
α1
mαλ

m(0)emαt+
α2

2mαλ
2m(0)e2mαt

dλ(0)

=−
∫ +∞

0

λ(0)jλj−1(0)ejαtf(λ(0); t)dλ(0)

−
∫ +∞

0

λj+1(0)
α1

α
λm−1(0)emαtejαtf(λ(0); t)dλ(0)

−
∫ +∞

0

λj+1(0)
α2

α
λ2m−1(0)e2mαtejαtf(λ(0); t)dλ(0)
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=− jcj −
α1

α
cj+m − α2

α
cj+2m,

which yields

cj+2m =
1

α2
(−α(j + 1)cj − α1cj+m).

By inserting the above equation into (4.5), we can arrive at the evolution relation (4.28). □

Using the above lemma, we immediately have the following conclusion.

Theorem 4.7. Under the definition of the moments (4.27), we have

d

dt
bn,j(t) = 0

and

d

dt
γn,j(t) = 0,

where {bn,j} are the recurrence coefficients for the monic (1,m)-type bi-OPs (4.3a) and {γn,j}
are the coefficients of (1,m)-type bi-OPs with the expansions Pn(λ) =

∑n
j=0 γn,jλ

j.

Proof. Using the evolution relation (4.28) satisfied by the moments (4.27), we will now prove

that the coefficients and the recurrence coefficients of (1,m)-type bi-OPs are not dependent on

time t. Firstly, it can be easily shown that

d

dt
τn = −nατn,

together with
d

dt
hn =

d

dt

(
τn+1

τn

)
= −αhn.

Assume that

Pn(λ) = λn + γn,n−1λ
n−1 + γn,n−2λ

n−2 + · · ·+ γn,0,

Qn(λ
m) = (λm)n + βn,n−1(λ

m)n−1 + βn,n−2(λ
m)n−2 + · · ·+ βn,0.

Then the determinant representation of Pn(λ) provided in the previous context tells us

γn,j =
Tn,j
τn

, j = 0, . . . , n− 1,

where

Tn,j = (−1)n+j

∣∣∣∣∣∣∣∣∣∣
c0 c1 · · · cj−1 cj+1 · · · cn

cm c1+m · · · cj−1+m cj+1+m · · · cn+m
...

...
...

...
. . .

...

c(n−1)m c1+(n−1)m · · · cj−1+(n−1)m cj+1+(n−1)m · · · cn+(n−1)m

∣∣∣∣∣∣∣∣∣∣
.

By making use of (4.28), we can deduce that

d

dt
Tn,j = −nαTn,j .

from which, it follows that

d

dt
γn,j = 0.

Similarly, it can also be inferred that d
dtβn,j = 0.
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Furthermore, by taking the inner product of both sides of the recurrence relation (4.3a) with

Qn+j(λ
m), we have

bn,jhn+j =

∫ +∞

0

λmPn(λ)Qn+j(λ
m)w(λ(t); t)dλ,

=
1

τn

n+j∑
l=0

βn+j,lMn+1,l,

for j = 0, 1, . . . ,m− 1, where

Mn+1,l =

∣∣∣∣∣∣∣∣∣∣∣∣

c0 c1 · · · cn−1 cn

cm c1+m · · · cn−1+m cn+m
...

...
. . .

...
...

c(n−1)m c1+(n−1)m · · · cn−1+(n−1)m cn+(n−1)m

c(l+1)m c1+(l+1)m · · · cn−1+(l+1)m cn+(l+1)m

∣∣∣∣∣∣∣∣∣∣∣∣
.

It is not hard to obtain from (4.28)

d

dt
Mn+1,l = −(n+ 1)αMn+1,l,

which leads to

d

dt
bn,j =

d

dt

(
1

hn+jτn

n+j∑
l=0

βn+j,lMn+1,l

)
= 0

□

In summary, since the coefficients are independent of time t, we have ∂Pn(λ)
∂t = ∂Qn(λ

m)
∂t = 0,

the stationary reduction of the Lax pair of the nonisospectral BM equation is valid so that

the Lax pair of the family of d-P-type equations is derived. And, we also conclude that the

nonisospectral equation (4.10) does indeed admit the stationary reduction to (4.14) related to

the family of d-P-type equations (4.15).

5. Nonisospectral deformation of generalized Laurent bi-OPs and d-P

Laurent bi-OPs (LBOPs) appear in problems related to the two-point Padé approxima-

tions [104], which can be regarded as a generalization of the OPs on the unit circle [109] whose

moments satisfy certain symmetry conditions. There has been much literatures on the con-

nection between LBOPs and integrable systems [109, 146, 151, 156]. A link between LBOPs

and d-P equations was established in [155]. Recently, generalizations of LBOPs were proposed

and the corresponding integrable equations were also investigated in [152]. See also more recent

results [86,100] related to the generalized LBOPs. In this section, we study the related problem

of nonisospectral deformation of the generalized LBOPs and d-P-type equations.

5.1. Generalized Laurent bi-OPs. Let’s first give a brief review on the generalized LBOPs

proposed in [152]. For a fixed k ∈ N+, we define the inner product

⟨f(λ)|dµ|g(λ)⟩k =

∫
f(λ)g(

1

λk
)dµ(λ), (5.1)

where µ is a formal measure such that all moments

ci =

∫
λidµ(λ), i ∈ Z
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exist. In many cases, (5.1) can be written in the following form

⟨f(λ)|dµ|g(λ)⟩k =

∫
f(λ)g(

1

λk
)w(λ)dλ, (5.2)

and the moments can be rewritten as

ci =

∫
λiw(λ)dλ, i ∈ Z,

where w(λ) is the weight function.

Two families of monic polynomials {Pn(λ)}n∈N and {Qm(λ)}m∈N with deg(Pn(λ)) = deg(Qn(λ)) =

n are called generalized LBOPs with respect to the bilinear 2-form ⟨·|·⟩k, if they satisfy biorthog-

onality condition

⟨Pn(λ)|dµ|Qm(λ)⟩k = hnδnm, hn ̸= 0. (5.3)

It is not difficult to find that the biorthogonality condition (5.3) can be equivalently written as

⟨Pn(λ)|dµ|λm⟩k = 0, m = 0, 1, . . . , n− 1,

for {Pn(λ)}n∈N and

⟨λm|dµ|Qn(λ)⟩k = 0. m = 0, 1, . . . , n− 1,

for {Qn(λ)}n∈N.

From the biorthogonality condition, it can be deduced that the generalized LBOPs admit

the following determinant expressions

Pn(λ) =
1

τ
(0)
n

∣∣∣∣∣∣∣∣∣∣∣∣

c0 c−k c−2k · · · c−(n−1)k 1

c1 c1−k c1−2k · · · c1−(n−1)k λ

c2 c2−k c2−2k · · · c2−(n−1)k λ2

...
...

...
. . .

...
...

cn cn−k cn−2k · · · cn−(n−1)k λn

∣∣∣∣∣∣∣∣∣∣∣∣
, (5.4a)

Qn(λ) =
1

τ
(0)
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c0 c−k c−2k · · · c−nk

c1 c1−k c1−2k · · · c1−nk

c2 c2−k c2−2k · · · c2−nk
...

...
...

. . .
...

cn−1 cn−1−k cn−1−2k · · · cn−1−nk

1 λ λ2 · · · λn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (5.4b)

where τ
(l)
n = det(cl+i−kj)

n−1
i,j=0 ̸= 0. Moreover, the generalized LBOPs satisfy the recurrence

relation of (k + 2)-term as follows

λk(Pn(λ) + anPn−1(λ)) = Pn+k(λ) + bn,k−1Pn+k−1(λ) + · · ·+ bn,0Pn(λ), (5.5)

with

an = − ⟨Pn(λ)|dµ|λ−1⟩k
⟨Pn−1(λ)|dµ|λ−1⟩k

=
τ
(0)
n−1τ

(k)
n+1

τ
(k)
n τ

(0)
n

.

In the following we mainly focus on the family of polynomials {Pn(z)}n∈N.

5.2. Nonisospectral generalized mixed relativistic Toda lattice. In [152], it is shown

that isospectral deformation of the generalized LBOPs lead to two different generalizations of

the relativistic Toda (rToda) lattice. In this section we consider nonisospectral deformation
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to the generalized LBOPs, which actually lead to a nonisospectral generalized mixed rToda

lattice.

Suppose that the spectral parameter λ satisfies the time evolution (2.4), and we select a

weight function w(λ; t) such that the moments satisfy the evolution relation

d

dt
cj(t) = αjcj(t) + α1cj+k(t) + α2cj−k(t). (5.6)

Since we have

d

dt
cj(t) =

∫
λj
(
αjw(λ; t) +

d

dt
w(λ; t) + αw(λ; t)

)
dλ

=αjcj(t) +

∫
λj
(
d

dt
w(λ; t) + αw(λ; t)

)
dλ,

by taking the derivative of the moments with respect to t, it is reasonable to set

d

dt
w(λ; t) + αw(λ; t) = (α1λ

k + α2λ
−k)w(λ; t). (5.7)

It is noted that a weight function satisfying the above evolution relation is constructed in (5.17).

Lemma 5.1. Under the assumption of (2.4) and (5.7), the monic generalized LBOPs {Pn(λ)}n∈N

in (5.4) satisfy the time evolution

d

dt
Pn(λ; t) + an

d

dt
Pn−1(λ; t)

=nαPn(λ; t)− α2
an−1an
bn−1,0

Pn−2(λ; t)

−

−(n− 1)αan + α1

 n∏
j=n−k

(−aj) +
k∑
i=1

n∏
j=n−i+1

(−aj)bn−i,i−1

+ α2
an
bn,0

Pn−1(λ; t).

(5.8)

Proof. For m = 0, 1, . . . , n− 1, the biorthogonality condition (5.3) gives∫
Pn(λ; t)Qm(λ−k; t)w(λ; t)dλ = 0.

By taking the derivative of the above equation with respect to time t, we have

0 =

∫ (
d

dt
(Pn(λ; t))Qm(λ−k; t) + Pn(λ; t)

d

dt
Qm(λ−k; t)

)
w(λ; t)dλ

+

∫
Pn(λ; t)Qm(λ−k; t)(

d

dt
w(λ; t) + αw(λ; t))dλ

=

∫ (
d

dt
(Pn(λ; t)) + (α1λ

k + α2λ
−k)Pn(λ; t)

)
Qm(λ−k; t)w(λ; t)dλ

=

∫ (
d

dt
Pn(λ; t)− α1anλ

kPn−1

)
Qm(λ−k; t)w(λ; t)dλ

+
α2

bn,0

∫ +∞

0

anPn−1(λ; t)Qm(λ−k; t)w(λ; t)dλ

=

∫ (
d

dt
Pn(λ; t) + α1anan−1λ

kPn−2(λ; t))

)
Qm(λ−k; t)w(λ; t)dλ

+ α1(−an)bn−1,0

∫
Pn−1(λ; t)Qm(λ−k; t)w(λ; t)dλ

+
α2

bn,0

∫
anPn−1(λ; t)Qm(λ−k; t)w(λ; t)dλ
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= · · ·

=

∫  d

dt
Pn(λ; t)− α1

n∏
j=n−k+1

(−aj)(−λkPn−k(λ; t))

Qm(λ−k; t)w(λ; t)dλ

+ α1

k−1∑
i=1

i∑
l=1

n∏
j=n−i+1

(−aj)bn−i,i−l
∫
Pn−lQm(λ−k; t)w(λ; t)dλ

+
α2

bn,0

∫
anPn−1(λ; t)Qm(λ−k; t)w(λ; t)dλ

=

∫  d

dt
Pn(λ; t)− α1

n∏
j=n−k+1

(−aj)(Pn(λ; t)− λkPn−k(λ; t))

Qm(λ−k; t)w(λ; t)dλ

+ α1

k−1∑
i=1

i∑
l=1

n∏
j=n−i+1

(−aj)bn−i,i−l
∫
Pn−l(λ; t)Qm(λ−k; t)w(λ; t)dλ

+
α2

bn,0

∫
anPn−1(λ; t)Qm(λ−k; t)w(λ; t)dλ, (5.9)

where we used the recurrence relation (5.5) and (5.7).

Upon setting

d

dt
Pn(λ; t) =

n∑
i=0

γiPi(λ; t),

where γi are some coefficients to be determined, we obtain

d

dt
Pn(λ; t)− α1

n∏
j=n−k+1

(−aj)(Pn(λ; t)− λkPn−k(λ; t))

+ α1

k−1∑
i=1

i∑
l=1

n∏
j=n−i+1

(−aj)bn−i,i−lPn−l(λ; t) +
α2

bn,0
anPn−1(λ; t)

=γnPn(λ; t) +

n−1∑
i=0

γiPi(λ; t)− α1

n∏
j=n−k+1

(−aj)(Pn(λ; t)− λkPn−k(λ; t))

+ α1

k−1∑
i=1

i∑
l=1

n∏
j=n−i+1

(−aj)bn−i,i−lPn−l(λ; t) +
α2

bn,0
anPn−1(λ; t).

Comparing the coefficients of the highest powers of λ on both sides of the above equation

shows that γn = nα. Since the formula (5.9) hold for m = 0, 1, . . . , n − 1, according to the

orthogonality condition, it is not hard to see

d

dt
Pn(λ; t)

=nαPn(λ; t)−
α2

bn,0
anPn−1(λ; t)

+ α1

 n∏
j=n−k+1

(−aj)(Pn(λ; t)− λkPn−k(λ; t))−
k−1∑
i=1

i∑
l=1

n∏
j=n−i+1

(−aj)bn−i,i−lPn−l(λ; t)

 ,

from which in conjunction with the corresponding expression for an
d
dtPn−1(λ; t), we can even-

tually arrive at (5.8). □
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Now we are ready to derive an integrable lattice from the compatibility condition between

(5.5) and (5.8).

Theorem 5.2. Under the assumption of (2.4) and (5.7), the recurrence coefficients {an} and

{bn,j} in (5.5) for the monic generalized LBOPs satisfy the following ODE system

dan
dt

=αan + α1(ansn − f̃n) + α2an

(
1

bn,0
− 1

bn−1,0

)
, (5.10a)

dbn,0
dt

=kαbn,0 + α1(bn,0sn − gn,0f̃n+1) + α2

(
an+1

bn+1,0
bn,1 −

an
bn−1,0

bn−1,1

)
, (5.10b)

dbn,i
dt

=(k − i)αbn,i + α1

bn,isn − gn,if̃n+i+1 + (1− gn,k−1)

i−1∑
k=0

k∏
j=i−l+1

(−an+j)bn+i−l,l


+ α2

(
an+i+1

bn+i+1,0
bn,i+1 −

an
bn−1,0

bn−1,i+1

)
i = 1, . . . , k − 2, (5.10c)

dbn,k−1

dt
=αbn,k−1 + α1

bn,k−1sn − gn,k−1f̃n+k + (1− gn,k−1)

k−2∑
k=0

k∏
j=k−l

(−an+j)bn+k−l−1,l


+ α2

(
an+k
bn+k,0

− an
bn−1,0

)
(5.10d)

with

f̃n = −

 k∏
j=0

(−an−j) +
k−1∑
i=0

i∏
j=0

(−an−j)bn−i−1,i

 ,

gn,i = −
i∑
l=0

i+1∏
j=l+1

(
− 1

an+j

)
bn,l,

sn =

k∏
j=1

(−an+j) +
k−1∑
l=0

l∏
j=1

(−an+j)bn,l.

Proof. (5.5) and (5.8) can be written in matrix form as

λkAP = BP, A
dP

dt
= LP, (5.11)

where P (λ; t) = (P0(λ; t), P1(λ; t), P2(λ; t), . . .)
T and

A =


1

a1 1

a2 1
. . .

. . .

 , L =



0

f1 − α2a1
b1,0

α

−α2a1a2
b1,0

f2 − α2a2
b2,0

2α

−α2a2a3
b2,0

f3 − α2a3
b3,0

3α

. . .
. . .

. . .


,

B =


b0,0 · · · b0,k−1 1

b1,0 · · · b1,k−1 1

b2,0 · · · b2,k−1 1
. . .

. . .
. . .
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with fn = (n− 1)αan − α1

(∏k
j=0(−an−j) +

∑k−1
i=0

∏i
j=0(−an−j)bn−i−1,i

)
. The compatibility

condition of (5.11) yields

d

dt
(A−1B) = (kαI +A−1L)A−1B −A−1BA−1L,

where I represents the identity matrix. After a lengthy calculation, we get the desired explicit

expression of the nonisospectral integrable lattice (5.10).

□

The integrable lattice (5.10) is a nonisospectral generalized mixed rToda lattice incorporating

positive and negative flows. To get a better understanding on this generalized lattice, we present

some special cases below.

When k = 1, we obtain a nonisospectral generalization of the mixed rToda lattice

dan
dt

= αan + α1an(an−1 − an+1 + bn,0 − bn−1,0) + α2an

(
1

bn,0
− 1

bn−1,0

)
,

dbn,0
dt

= αbn,0 + α1bn,0(an − an+1) + α2

(
an+1

bn+1,0
− an
bn−1,0

)
,

in the case of α ̸= 0. It is easy to see that when α = α2 = 0, the above equation reduces to the

first positive flow of the rToda lattice and it gives the first negative flow of the rToda lattice

when α = α1 = 0.

When k = 2, we get the following integrable lattice

dan
dt

= αan + α1an((T
3 − 1)an−1an−2 + (1− T 2)an−1bn−2,1

+ (T − 1)bn−1,0) + α2an

(
1

bn,0
− 1

bn−1,0

)
,

dbn,0
dt

= 2αbn,0 + α1bn,0((T
2 − 1)an−1an + (1− T )anbn−1,1)

+ α2

(
an+1

bn+1,0
bn,1 −

an
bn−1,0

bn−1,1

)
,

dbn,1
dt

= αbn,1 + α1 (bn,1an+1(an+2 − an) + anbn,0 − an+2bn+1,0) + α2

(
an+2

bn+2,0
− an
bn−1,0

)
,

where T is the shift operator on n.
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When k = 3, we have

dan
dt

= αan − α1an((T
4 − 1)an−1an−2an−3 + (1− T 3)an−1an−2bn−3,2

+ (T 2 − 1)an−1bn−2,1 + (1− T )bn−1,0) + α2an

(
1

bn,0
− 1

bn−1,0

)
,

dbn,0
dt

= 3αbn,0 − α1bn,0((T
3 − 1)anan−1an−2 + (1− T 2)an−1anbn−2,2

+ (T − 1)anbn−1,1) + α2

(
an+1

bn+1,0
bn,1 −

an
bn−1,0

bn−1,1

)
,

dbn,1
dt

= 2αbn,1 + α1(−bn,1an+1(an+2an+3 − an−1an − an+2bn,2 + anbn−1,2)

− an+2bn+1,0(bn,2 − an+3) + anbn,0(bn−1,2 − an−1))

+ α2

(
an+2

bn+2,0
bn,2 −

an
bn−1,0

bn−1,2

)
,

dbn,2
dt

= αbn,2 + α1(−bn,2an+1an+2(an+3 − an) + an+2an+3bn+1,1 − anan+1bn,1

+ anbn,0 − an+3bn+2,0) + α2

(
an+3

bn+3,0
− an
bn−1,0

)
.

5.3. d-P related to nonisospectral generalized mixed rToda. Based on the Lax pair of

the nonisospectral generalized mixed rToda lattice (5.11), we implement stationary reduction

to get

λkAP = B̂P,
∂

∂λ
P = M̂P, (5.12)

where

B̂ = B, M̂ =M/

(
dλ

dt

)
=

1

αλ
M, M = A−1L.

Its compatibility condition will yield a family of d-P-type equations.

Theorem 5.3. Under the assumption of (2.4) and (5.7), the recurrence coefficients {an} and

{bn,j} in (5.5) for the monic generalized LBOPs satisfy the following integrable difference system

αan + α1(ansn − f̃n) + α2an

(
1

bn,0
− 1

bn−1,0

)
= 0, (5.13a)

kαbn,0 + α1(bn,0sn − gn,0f̃n+1) + α2

(
an+1

bn+1,0
bn,1 −

an
bn−1,0

bn−1,1

)
= 0, (5.13b)

(k − i)αbn,i + α1

(
bn,isn − gn,if̃n+i+1 + (1− gn,k−1)

i−1∑
k=0

k∏
j=i−l+1

(−an+j)bn+i−l,l
)

+ α2

(
an+i+1

bn+i+1,0
bn,i+1 −

an
bn−1,0

bn−1,i+1

)
= 0 i = 1, . . . , k − 2, (5.13c)

αbn,k−1 + α1

(
bn,k−1sn − gn,k−1f̃n+k + (1− gn,k−1)

k−2∑
k=0

k∏
j=k−l

(−an+j)bn+k−l−1,l

)
+ α2

(
an+k
bn+k,0

− an
bn−1,0

)
= 0, (5.13d)

with the Lax pair (5.12).
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Proof. From the compatibility condition of (5.12), we obtain

kλk−1I + λkM̂ =
∂

∂λ
(A−1B̂) +A−1B̂M̂ ,

from which the following explicit expressions in (5.13) follows. □

When k = 1, it follows from (5.13) that

αan + α1an(an−1 − an+1 + bn,0 − bn−1,0) + α2an

(
1

bn,0
− 1

bn−1,0

)
= 0, (5.14a)

αbn,0 + α1bn,0(an − an+1) + α2

(
an+1

bn+1,0
− an
bn−1,0

)
= 0. (5.14b)

Dividing the both sides of (5.14a) by an and making a summation, we can get

α1(bn,0 − an+1 − an) + α2
1

bn,0
+ nα+A0 = 0, (5.15)

where A0 = α1(a1 − b0,0)− α2
1
b0,0

. Similarly, dividing the both sides of (5.14b) and making a

summation gives

α1an+1 − α2
an+1

bn,0bn+1,0
− nα−B0 = 0, (5.16)

where B0 = α1a1 − α2
a1

b0,0b1,0
. Observe that (5.16) produces the following equations

an+1 =
(nα+B)bn,0bn+1,0

α1bn,0bn+1,0 − α2
,

an =
((n− 1)α+B)bn−1,0bn,0

α1bn−1,0bn,0 − α2
,

plugging which into (5.15), we get

α1

(
bn,0 −

(nα+B0)bn,0bn+1,0

α1bn,0bn+1,0 − α2
− ((n− 1)α+B0)bn−1,0bn,0

α1bn−1,0bn,0 − α2

)
+ α2

1

bn,0
+ nα+A0 = 0.

By further simplifying it, we finally obtain√
−α1

α2

nα+B0

α1

1 +

√
−α1

α2

bn+1,0

√
−α1

α2

bn,0

+

√
−α1

α2

(n−1)α+B0

α1

1 +

√
−α1

α2

bn,0

√
−α1

α2

bn−1,0

= −

√
−α2

α1

bn,0
+

√
−α1

α2
bn,0 +

√
−α1

α2

nα+A0

α1
,

which is nothing but the alternate d-PII (alt d-PII) appearing in [128]

zn
xn+1xn + 1

+
zn−1

xnxn−1 + 1
= −xn +

1

xn
+ zn + µ

with

zn =

√
−α1

α2

nα+B0

α1
, xn =

√
−α1

α2

bn,0
, µ = −

√
−α1

α2

B0 −A0

α1
.

Remark 5.4. We obtain a generalized family of d-P equations including the alt d-PII from

a nonisospectral deformation of the generalized LBOPs. In fact, (5.13) together with its Lax

pair is the stationary form of nonisospectral generalized mixed rToda lattice (5.10) and its Lax

pair, which is associated with a nonisospectral deformation of the generalized LBOPs.

5.4. Realization of stationary reduction. In the previous subsections, we have obtained

the nonisospectral generalized mixed rToda lattice, based on which, the d-P-type equations are
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obtained as stationary reduction of the nonisospectral equations. In this subsection we will

show the feasibility of stationary reduction from the perspective of solutions.

Lemma 5.5. Under the assumption of (2.4) together with α2

α > 0 and α1

α < 0, define the

moments as

cj(t) =

∫ +∞

0

λj(0)ejαte
α1
kαλ

k(0)ekαt−α2
kαλ

−k(0)e−kαt

dλ(0). (5.17)

Then the moments simultaneously satisfy the time evolution (5.6) and

d

dt
cj(t) = −αcj(t). (5.18)

Proof. Based on (2.4), we have

λ = λ(0)eαt,

where λ(0) is the spectral parameter at initial time. In the case of the integral interval (0,+∞),

the moments can be written in terms of λ(0) as

cj(t) =

∫ +∞

0

λjdµ(λ; t)

=

∫ +∞

0

λj(0)ejαtf(λ(0); t)dλ(0),

from which we get

d

dt
cj(t) = αjcj(t) +

∫ +∞

0

λj(0)ejαt
df(λ(0); t)

dt
dλ(0).

In order to ensure that the moments satisfy the time evolution relation (5.6), it is sufficient to

set for f(λ(0); t)

d

dt
f(λ(0); t) = (α1λ

k(0)ekαt + α2λ
−k(0)e−kαt)f(λ(0); t).

Consequently, it is reasonable to define

f(λ(0); t) = e
α1
kαλ

k(0)ekαt−α2
kαλ

−k(0)e−kαt

,

from which we get the specific expressions of the moments as (5.17).

The remaining part is to confirm the evolution relation (5.18). Using the relations at the

boundary

lim
λ(0)→0

λ(0)f(λ(0); t) = lim
λ(0)→+∞

λ(0)f(λ(0); t) = 0,

we integrate the moments by parts to obtain

cj(t) =

∫ +∞

0

λj(0)ejαte
α1
kαλ

k(0)ekαt−α2
kαλ

−k(0)e−kαt

dλ(0),

=−
∫ +∞

0

λ(0)jλj−1(0)ejαtf(λ(0); t)dλ(0)

−
∫ +∞

0

λj+1(0)
α1

α
λk−1(0)ekαtejαtf(λ(0); t)dλ(0)

−
∫ +∞

0

λj+1(0)
α2

α
λ−k−1(0)e−kαtejαtf(λ(0); t)dλ(0)

=− jcj −
α1

α
cj+k −

α2

α
cj−k,

combining which and the evolution equation (5.6), we immediately get (5.18). □
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Theorem 5.6. Under the definition of the moments (5.17), we have

d

dt
bn,j(t) =

d

dt
an(t) = 0

and
d

dt
γn,j(t) = 0,

where {an} and {bn,j} are the recurrence coefficients in (5.5) for the monic generalized LBOPs

and {γn,j} are the coefficients of the generalized LBOPs with the expansions Pn(λ) =
∑n
j=0 γn,jλ

j.

Proof. Let

Pn(λ; t) =γn,nλ
n + γn,n−1λ

n−1 + γn,n−2λ
n−2 + · · ·+ γn,0,

Qn(λ; t) =βn,nλ
n + βn,n−1λ

n−1 + βn,n−2λ
n−2 + · · ·+ βn,0,

where γn,n = βn,n = 1. From the determinant expression of Pn(λ; t) given in (5.4), we have

γn,j =
Tn,j

τ
(0)
n

, j = 0, . . . , n− 1,

where

Tn,j = (−1)n+j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c0 c−k c−2k · · · c−(n−1)k

c1 c1−k c1−2k · · · c1−(n−1)k

...
...

...
. . .

...

cj−1 cj−1−k cj−1−2k · · · cj−1−(n−1)k

cj+1 cj+1−k cj+1−2k · · · cj+1−(n−1)k

...
...

...
. . .

...

cn cn−k cn−2k · · · cn−(n−1)k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

By the aid of (5.18), it is easy to get

d

dt
Tn,j = −nαTn,j ,

d

dt
τ (l)n = −nατ (l)n , (5.19)

from which d
dtγn,j = 0 immediately follows. In a similar way, we also have d

dtβn,j = 0.

By imposing the inner products with Qn+j(λ; t), j = 0, 1, . . . , k − 1 on the both sides of

recurrence relation (5.5), we have

bn,jhn+j =

∫ +∞

0

λk(Pn(λ; t) + anPn−1(λ; t))Qn+j(λ
−k; t)w(λ; t)dλ,

=
1

τ
(0)
n

n+j∑
l=0

βn+j,lMn+1,l +
an

τ
(0)
n−1

n+j∑
l=0

βn+j,lMn,l,

where

Mn+1,l =

∣∣∣∣∣∣∣∣∣∣
c0 c−k · · · c−(n−1)k c−(l−1)k

c1 c1−k · · · c1−(n−1)k c1−(l−1)k

...
...

. . .
...

...

cn cn−k · · · cn−(n−1)k cn−(l−1)k

∣∣∣∣∣∣∣∣∣∣
. (5.20)

With the help of (5.18), we easily get

d

dt
Mn+1,l = −(n+ 1)αMn+1,l,

d

dt
hn = −αhn,
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resulting in
d

dt
bn,j = 0.

In addition, since we also have from (5.18)

d

dt
τ (l)n = −nατ (l)n ,

we obtain

d

dt
an =

d

dt

(
τ
(0)
n−1τ

(k)
n+1

τ
(k)
n τ

(0)
n

)
= 0.

□

The above theorem implies that the nonisospectral equation (5.10) can indeed allow the sta-

tionary reduction so that a class of d-P-type equations (5.13) are obtained. Since the coefficients

of the OPs are independent of the time t, it also shows that ∂
∂tPn(λ; t) = 0, which means that

the Lax pair of the nonisospectral generalized mixed rToda lattice can indeed admit stationary

reduction so that a class of d-P-type equations are obtained as well as their Lax pairs.

6. Nonisospectral deformation of Cauchy bi-OPs and d-P

Motivated by the result that the explicit expression of the N-peakon solitons of the Degasperis-

Procesi equation are given by Cauchy bi-moment determinants [116,117], Cauchy bi-OPs were

first proposed in [26] and have been extensively investigated in the literature, including the

inspired Cauchy two-matrix model, Toda lattice of CKP-type (C-Toda), as well as their gener-

alizations etc. (see e.g. [22,24–28,49,49,54,81,87,114,115]). It is noted that the C-Toda lattice

can arise from isospectral deformation of the Cauchy bi-OPs [49]. However, to the best of our

knowledge, there is no existing literature that addresses Painlevé-type equations in relation to

the Cauchy bi-OPs. In this section, we shall consider nonisospectral deformation of the Cauchy

bi-OPs and derive a nonisospectral C-Toda lattice, from which we implement stationary reduc-

tion so that a d-P-type equation is obtained as well as its Lax pair. Additionally, we construct

a concrete weight function to guarantee the feasibility of the stationary reduction process.

6.1. Cauchy bi-OPs.

Definition 6.1. Define an inner product ⟨·, ·⟩ of the form

⟨f(z), g(z)⟩ =
∫∫

f(x)g(y)

x+ y
dµ1(x)dµ2(y), (6.1)

where dµ1, dµ2 are two positive measures defined on the integral interval (here the integral inter-

val is omitted). The Cauchy bi-OPs denote a pair of polynomials {Pn(z)}∞n=0 and {Qn(z)}∞n=0

that are orthogonal with respect to the inner product (6.1), that is, they satisfy the biorthogo-

nality condition

⟨Pn(z), Qm(z)⟩ = hnδn,m. (6.2)

Suppose that each Pn(z) or Qn(z) is a monic polynomial of degree n in z and µ1, µ2 are

two positive measures on R+ such that all the bimoments

Ii,j =
〈
zi, zj

〉
=

∫∫
xiyj

x+ y
dµ1(x)dµ2(y), i, j = 0, 1, · · ·
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and the single moments

αi =

∫
xidµ1(x), βi =

∫
yidµ2(y), i = 0, 1, · · ·

exist. In this case, it can be shown that τn = det(Ii,j)
n−1
i,j=0 ̸= 0, as a result of which, the monic

Cauchy bi-OPs are uniquely determined by the biorthogonality condition [26]. In fact, based

on the biorthogonality condition (6.2), the explicit determinant representations of the monic

Cauchy bi-OPs are given by

Pn(z) =
1

τn

∣∣∣∣∣∣∣∣∣∣∣∣

I0,0 I0,1 · · · I0,n

I1,0 I1,1 · · · I1,n
...

...
. . .

...

In−1,0 In−1,1 · · · In−1,n

1 z · · · zn

∣∣∣∣∣∣∣∣∣∣∣∣
, Qn(z) =

1

τn

∣∣∣∣∣∣∣∣∣∣
I0,0 · · · I0,n 1

I1,0 · · · I1,n z
...

. . .
...

...

In,0 · · · In,n−1 zn

∣∣∣∣∣∣∣∣∣∣
,

and hn can be expressed as

hn =
τn+1

τn
.

It is noted that there holds the following relation for the moments

Ii+1,j + Ii,j+1 = αiβj . (6.3)

Furthermore, the Cauchy bi-OPs satisfy the four-term recurrence relation and admit the gen-

eralized Christoffel–Darboux formulation, and their zeros exhibit an interlacing pattern [26].

In the following, we focus on the Cauchy bi-OPs with symmetric measures, that is, dµ1(x) =

dµ2(x) = w(x)dx. In such case, Pn(z) = Qn(z) and the biorthogonality condition (6.2) and

moments can be rewritten as

⟨Pn(z), Pm(z)⟩ =
∫∫

Pn(x)Pm(y)

x+ y
w(x)w(y)dxdy = hnδn,m, (6.4)

Ii,j =

∫∫
xiyj

x+ y
w(x)w(y)dxdy, i, j = 0, 1, . . . , (6.5)

αi = βi =

∫
xiw(x)dx, i = 0, 1, . . . , (6.6)

where w(x) is the weight function.

By introducing

an = −
∫
Pnw(x)dx∫
Pn−1w(x)dx

, (6.7)

and using the biorthogonality conditions (6.4), it can be shown that the symmetric Cauchy

bi-OPs satisfy the four-term recurrence relation

z(Pn(z) + anPn−1(z)) = Pn+1(z) + bnPn(z) + cnPn−1(z) + dnPn−2(z), (6.8)

with P−1(z) = 0, P0(z) = 1, where the recurrence coefficients {an, bn, cn, dn} can be expressed

in terms of the variables {un, vn} as follows (see [49])

an = −
√
vnun
vn−1

, bn =
1

2
vn −

√
vnun
vn−1

, cn = −un +
1

2

√
vnunvn−1, dn = un−1

√
vnun
vn−1

,

with

un =
τn+1τn−1

(τn)2
, vn =

(σn+1)
2

τn+1τn
,
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σn =

∣∣∣∣∣∣∣∣
β0 I0,0 · · · I0,n−2

...
...

. . .
...

βn−1 In−1,0 · · · In−1,n−2

∣∣∣∣∣∣∣∣ , τn =

∣∣∣∣∣∣∣∣∣∣
I0,0 I0,1 · · · I0,n−1

I1,0 I1,1 · · · I1,n−1

...
...

. . .
...

In−1,0 In−1,1 · · · In−1,n−1

∣∣∣∣∣∣∣∣∣∣
.

The C-Toda lattice was obtained by imposing isospectral deformation on Cauchy bi-OPs [49].

Very recently, in [110], Krichever and Zabrodin introduced the so-called constrained Toda (C-

Toda) hierarchy as a certain subhierarchy of the 2D Toda lattice. In fact, we can prove that

two flows produced by isospectral deformation of Cauchy bi-OPs coincide with the first two

members in this hierarchy; see Remark 6.3.

6.2. Nonisospectral C-Toda lattice. In this subsection, we derive a nonisospectral C-Toda

lattice by considering nonisospectral deformation of the monic Cauchy bi-OPs. To this end,

we introduce the time variable t into the measure and suppose that the spectral parameters

are also related to t. We then deduce a time evolution equation satisfied by {Pn(x; t)}∞n=0. By

investigating the compatibility condition between this evolution equation and the recurrence

relation, we obtain the nonisospectral C-Toda lattice.

Suppose that the integral variables x, y and the spectral parameters z satisfy the time evo-

lution

d

dt
x = αx,

d

dt
y = αy,

d

dt
z = αz, (6.9)

and we seek for an appropriate weight function to ensure that the moments admit the time

evolution

d

dt
Ii,j(t) =α(i+ j − 1)Ii,j(t) + α1(Ii+1,j(t) + Ii,j+1(t))

+ α2(Ii+2,j(t) + Ii,j+2(t)). (6.10)

Since taking the derivation of the moments (6.5) gives

d

dt
Ii,j(t) =⟨α(i+ j − 1)xi, yj⟩

+

∫∫
xiyj

x+ y

(
d

dt
w(x; t)w(y; t) + w(x; t)

d

dt
w(y; t) + 2αw(x; t)w(y, t)

)
dxdy

=α(i+ j − 1)Ii,j(t)

+

∫∫
xiyj

x+ y

(
d

dt
w(x; t)w(y; t) + w(x; t)

d

dt
w(y; t) + 2αw(x; t)w(y; t)

)
dxdy,

we have ∫∫
xiyj

x+ y

(
d

dt
w(x; t)w(y; t) + w(x; t)

d

dt
w(y; t) + 2αw(x; t)w(y; t)

)
dxdy

=α1(Ii+1,j(t) + Ii,j+1(t)) + α2(Ii+2,j(t) + Ii,j+2(t)).

Therefore it is reasonable to consider the weight function satisfying

d

dt
(w(x; t))w(y; t) + w(x; t)

d

dt
w(y; t) + 2αw(x; t)w(y; t)

=(α1(x+ y) + α2(x
2 + y2))w(x; t)w(y; t). (6.11)

Such an explicit weight function exist; see (6.20) for the corresponding moments.
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Lemma 6.1. Under the assumption of (6.9) and (6.10), the monic Cauchy bi-OPs {Pn(z; t)}n∈N

satisfy the evolution relation

d

dt
Pn(z; t)

=nαPn − (α1 − α2an+1)(zPn − Pn+1 + (an − bn)Pn)

+

(
α1
dn+1

an+1
− α2(dn+1 + (bn − an)cn − dn+1

an+1

(
cn+1

an+1
+
cn
an

− dn+2

an+1an+2
− dn+1

anan+1

))
Pn−1

+ α2(an(bn − an)− cn + anbn−1 − an−1an)(zPn−1 − Pn)

− α2

(
dndn+1

anan+1
+ dn(bn − an) + x(dn − ancn−1 + an−1anbn−2)

)
Pn−2

+ α2zan(zan−2an−1 + dn−1 − an−1cn−2)Pn−3 − α2zan−1andn−2Pn−4. (6.12)

Proof. Please refer to Appendix B for the detailed proof. □

Using the recurrence relation (6.8) and the evolution relation (6.12), we can expand the

derivative formulae for Pn, Pn−1, Pn−2 in terms of the linear combinations of themselves. In

fact, we have

d

dt
Pn(z; t) =(nα− α1an + α2 (an(an+1 + an + an−1 − bn − bn−1 − z) + cn))Pn

+

(
(α1 − α2an+1)(zan − cn) + α2(zan − cn)(z + bn − an) +

dn+1

an+1
α1

− α2dn+1 −
dn+1

an+1

(
α2

(
cn+1

an+1
+
cn
an

− dn+2

an+1an+2
− dn+1

anan+1

))
Pn−1

− dn

(
α1 − α2(an+1 + an − dn+1

anan+1
− bn − z)

)
Pn−2,

d

dt
Pn−1(z; t) =

(
α1 − α2

(
an + an−1 −

dn
anan−1

− bn−1 − z

))
Pn

+

(
(n− 1)α− (α1 − α2an)(an−1 − bn−1 + z) + α2

(
an−1(an−1 + an−2

− 2bn−1 − bn−2) + cn−1 −
dn

anan−1
z − z2 +

bn−1dn
anan−1

+ b2n−1

))
Pn−1

+

(
α1
dn
an

− α2dn

(
1 +

cn
a2n

− dn+1

a2nan+1
− dn
a2nan−1

+
z

an

))
Pn−2,

d

dt
Pn−2(z; t) =

(
− α1

an−1
+ α2

(
1 +

cn−1

a2n−1

− dn
a2n−1an

− dn−1

a2n−1an−2
+

z

an−1

))
Pn

+

(
α1 − α2

(
an−1 + an−2 − bn−1 − bn−2 −

dn−1

an−2an−1

)
+ (z − bn−1)

(
α1

an−1
− α2

an−1

(
cn−1

an−1
− dn
anan−1

− dn−1

an−2an−1
+ z

)))
Pn−1

+

(
(n− 2)α− (α1 − α2an−1)(an−2 − bn−2) + α2

(
an−2(an−2 + an−3 − 2bn−2

− bn−3) + cn−2 − 2z2 +
bn−2dn−1

an−1an−2
+ b2n−2 − zan−1

(
cn−1

a2n−1

− dn
ana2n−1

))
− cn−1

(
α1

an−1
− α2(1 +

cn−1

a2n−1

− dn
a2n−1an

− dn−1

a2n−1an−2
+

z

an−1

)))
Pn−2.
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Consequently, we immediately derive the following overdetermined system in matrix form

φn+1 = Unφn,
dφn
dt

= Vnφn, (6.13)

where φni(z; t) = (Pn−2(z; t), Pn−1(z; t), Pn(z; t))
T , and

Un =

 0 1 0

0 0 1

−dn zan − cn z − bn

 , Vn =

 e11 e12 e13

e21 e22 e23

e31 e32 e33

 ,

with

e11 =α2

( bn−2dn−1

an−1an−2
− an−2(2bn−2 − an−2 + bn−3)− zan−1(

cn−1

a2n−1

− dn
a2n−1an

)

+ an−3an−2 + b2n−2 + cn−2 − 2z2
)
− (an−2 − bn−2)(α1 − α2an−1)

− cn−1

(
− α2(

cn−1

a2n−1

− dn−1

a2n−1an−2
− dn
a2n−1an

+ 1)− α2z

an−1
+

α1

an−1

)
+ α(n− 2),

e12 =(z − bn−1)
(
− α2(

cn−1

a2n−1

− dn−1

a2n−1an−2
− dn
a2n−1an

+
z

an−1
) +

α1

an−1

)
+ α2(

dn−1

an−1an−2
− an−2 + bn−2 + bn−1) + (α1 − α2an−1),

e13 =α2(
cn−1

a2n−1

− dn−1

a2n−1an−2
− dn
a2n−1an

+
z

an−1
+ 1)− α1

an−1
,

e21 =− α2(
cndn
a2n

− d2n
a2nan−1

− dn+1dn
a2nan+1

+
zdn
an

+ dn) +
α1dn
an

,

e22 =α2

( bn−1dn
anan−1

− an−1(2bn−1 − an−1)− an−1bn−2 −
zdn

an−1an
+ an−2an−1

+ b2n−1 + cn−1 − z2
)
− (α1 − α2an)(an−1 − bn−1 + z) + α(n− 1),

e23 =α2(−an−1 + bn−1 + z) +
α2dn
an−1an

+ (α1 − α2an),

e31 =− dn(α1 − α2an+1)− α2(dn(−an + bn + z) +
dn+1dn
anan+1

),

e32 =− α2(cn(bn − an) +
cn+1dn+1

a2n+1

+
cndn+1

anan+1
− dn+1dn+2

a2n+1an+2
−

d2n+1

a2n+1an
− z2an + dn+1)

+ α2z(an (bn − an)− cn) + (α1 − α2an+1)(zan − cn) +
α1dn+1

an+1
,

e33 =− α2(an(bn − an) + anbn−1 + zan − an−1an − cn)− an(α1 − α2an+1) + αn.

The compatibility condition in (6.13) yields a matrix representation of the integrable lattice

dUn
dt

= Vn+1Un − UnVn, (6.14)

from which, after a lengthy calculation, we obtain the explicit expression for the nonisospectral

lattice. In summary, we have the following theorem.

Theorem 6.2. Under the assumption of (6.9) and (6.10), the variables {un(t), vn(t)} in the

four-term recurrence relation (6.8) for the monic Cauchy bi-OPs {Pn(x; t)}n∈N satisfy the fol-

lowing integrable ODE system

d

dt
un =2αun + α1un(vn − vn−1)
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− 1

2
α2un

(
(v2n−1 − v2n) + 4(un+1 − un−1)

− 4
(√
vnvn+1un+1 −

√
vn−2vn−1un−1

))
, (6.15a)

d

dt
vn =αvn + 2α1

(√
vnvn+1un+1 −

√
vn−1vnun

)
− α2

((
vn−1

√
vn−1vnun − vn

√
vnvn+1un+1

)
− 2

(√
vnvn+2un+1un+2 −

√
vn−2vnun−1un

)
−
(
vn+1

√
vnvn+1un+1 − vn

√
vn−1vnun

))
, (6.15b)

with the Lax pair (6.13).

Remark 6.3. When α ̸= 0, the lattice (6.15) is a nonisosepctral generalized C-Toda latice

that incorporates the first and second flows of the C-Toda hierarchy. In the case of α = α2 = 0,

it reduces to the first flow of the isospectral C-Toda hierarchy, while it gives the second flow

in the case of α = α1 = 0. The first flow of nonlinear form has been studied in [49], while it

seems that the explicit second flow is introduced for the first time. It is noted that these two

flows coincide with the results obtained by Krichever and Zabrodin in [110, eq. (2.40)], where

a combination of the first two flows was presented.

6.3. d-P related to nonisospectral C-Toda. In this subsection, by applying stationary

reduction to the Lax pair for the nonisospectral C-Toda lattice obtained in the previous sub-

section, we derive a d-P-type equation together with its Lax pair.

First, we obtain the following stationary reduction from the Lax pair of the nonisospectral

equations

φn+1 = Pnφn,
∂φn
∂z

= Qnφn, (6.16)

where

Pn = Un, Qn = Vn/

(
dz

dt

)
=

1

αz
Vn.

Then, by considering the compatibility condition in (6.16), we have the following theorem.

Theorem 6.4. Under the assumption of (6.9) and (6.10) as well as the stationary reduction,

the variables {un, vn}n∈N in the four-term recurrence relation (6.8) for the monic Cauchy bi-

OPs satisfy the following integrable difference system with the Lax pair (6.16)

α1vn + 2nα+A0,

+
1

2
α2

(
v2n − 4un+1 − 4un + 4

√
vnvn+1un+1 + 4

√
vnvn−1un

)
= 0, (6.17a)

α
√
vn + α1(

√
vn+1un+1 −

√
vn−1un)

+ α2((vn +
1

2
vn+1)

√
vn+1un+1 − (vn +

1

2
vn−1)

√
vn−1un)

−
√
un+1

vn+1
(α2(−2un+2 − 2un+1 + 2

√
vnvn+1un+1) + 2(n+ 1)α+A0)

+

√
un
vn−1

(α2(−2un − 2un−1 + 2
√
vnvn−1un) + 2(n− 1)α+A0) = 0, (6.17b)

where A0 = −α1v0 − 1
2α2

(
v20 − 4u1 − 4u0 + 4

√
v0v1u1

)
.
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Proof. The compatibility condition in (6.16) yields

Pn,x + PnQn −Qn+1Pn = 0,

from which we derive the following difference system

2αun + α1un(vn − vn−1)

− 1

2
α2un

(
(v2n−1 − v2n) + 4(un+1 − un−1)

− 4
(√
vnvn+1un+1 −

√
vn−2vn−1un−1

))
= 0, (6.18a)

αvn + 2α1

(√
vnvn+1un+1 −

√
vn−1vnun

)
− α2

((
vn−1

√
vn−1vnun − vn

√
vnvn+1un+1

)
− 2

(√
vnvn+2un+1un+2 −

√
vn−2vnun−1un

)
−
(
vn+1

√
vnvn+1un+1 − vn

√
vn−1vnun

))
= 0. (6.18b)

Eliminating un in (6.18a) and then summing for n, we readily obtain (6.17a). Furthermore, it

is straightforward to obtain from (6.17a) that

2α2
√
vn+1vn+2un+2

=− α1vn+1 −
1

2
α2(v

2
n+1 − 4(un+2 + un+1) + 4

√
vnvn+1un+1)− 2(n+ 1)α−A0,

2α2
√
vn−2vn−1un−1

=− α1vn−1 −
1

2
α2(v

2
n−1 − 4(un + un−1) + 4

√
vn−1vnun)− 2(n− 1)α−A0,

using which, we can substitute the terms
√
vnvn+2un+1un+2 and

√
vn−2vnun−1un in (6.18b),

and thus obtain (6.17b). □

Remark 6.5. Obviously, (6.18) can be recognized as the stationary form of the nonisospectral

C-Toda lattice equation (6.15). Also we note that the d-P-type (6.17) is integrable with a 3×3

Lax pair and it is associated with the Toda hierarchy of CKP type. A further simplification

will be considered in the future.

6.4. Realization of stationary reduction. Having derived the d-P-type equations through

the stationary reduction of the nonisospectral C-Toda lattice, we proceed to construct specific

moments to guarantee the validity of the aforementioned stationary reduction.

First, based on the time evolution (6.9) resulting

x = x(0)eαt, y = y(0)eαt, z = z(0)eαt,

we observe that the moments can be rewritten as follows

Ii,j(t) =

∫∫
R2

+

xi(t)yj(t)

x(t) + y(t)
w(x; t)w(y; t)dx(t)dy(t)

=

∫∫
R2

+

xi(0)yj(0)e(i+j)αt

(x(0) + y(0))eαt
f(x(0); t)f(y(0); t)dx(0)dy(0),

where f(·; t), that is related to the weight function, needs to be determined, and the integral

interval (0,+∞) is considered.
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Then we differentiate the above relation to derive

d

dt
Ii,j(t) =(i+ j − 1)αIi,j(t)

+

∫∫
R2

+

xi(0)yj(0)e(i+j)αt

(x(0) + y(0))eαt
d(f(x(0); t)f(y(0); t))

dt
dx(0)dy(0).

Since the moments satisfy the time evolution (6.10), we require f(x(0); t), f(y(0); t) to obey

d

dt
f(x(0); t) = (α1x(0)e

αt + α2x
2(0)e2αt)f(x(0); t),

d

dt
f(y(0); t) = (α1y(0)e

αt + α2y
2(0)e2αt)f(y(0); t).

This means that it is reasonable to set

f(x(0); t) = e
α1
α x(0)eαt+

α2
2α x

2(0)e2αt

,

f(y(0); t) = e
α1
α y(0)eαt+

α2
2α y

2(0)e2αt

,

from which the following exact expressions of the moments are obtained

Ii,j(t) =

∫∫
R2

+

xi(0)yj(0)e(i+j)αt

(x(0) + y(0))eαt
e

α1
α (x(0)+y(0))eαt+

α2
2α (x2(0)+y2(0))e2αt

dx(0)dy(0),

βi(t) =

∫
R+

xi(0)eiαte
α1
α x(0)eαt+

α2
2α x

2(0)e2αt

dx(0).

Furthermore, it is easy to show that single moments satisfy the time evolution

d

dt
βi(t) = iαβi(t) + α1βi+1(t) + α2βi+2(t). (6.19)

Lemma 6.6. Under the assumption of (6.9) together with α2

α < 0, define the moments as

Ii,j(t) =

∫∫
R2

+

xi(0)yj(0)e(i+j)αt

(x(0) + y(0))eαt
e

α1
α (x(0)+y(0))eαt+

α2
2α (x2(0)+y2(0))e2αt

dx(0)dy(0), (6.20a)

βi(t) =

∫
R+

xi(0)eiαte
α1
α x(0)eαt+

α2
2α x

2(0)e2αt

dx(0). (6.20b)

Then the moments simultaneously satisfy the time evolution (6.10) and

d

dt
Ii,j(t) = −2αIi,j(t), (6.21a)

d

dt
βi(t) = −αβi(t). (6.21b)

Proof. It is sufficient to confirm the relations in (6.21). In the case of α2

α < 0, we observe at

the boundary

lim
x(0)→0+

x(0)f(x(0); t) = lim
x(0)→+∞

x(0)f(x(0); t) = 0.

As for the exact expression (6.20a) for bimoments, by using integration by parts with respect

to x(0), we have

Ii,j(t) =

∫∫
R2

+

xi(0)yj(0)e(i+j)αt

(x(0) + y(0))eαt
f(x(0); t)f(y(0); t)dx(0)dy(0)

=−
∫∫

R2
+

ixi(0)yj(0)e(i+j)αt

(x(0) + y(0))eαt
f(x(0); t)f(y(0); t)dx(0)dy(0)

+

∫∫
R2

+

xi+1(0)yj(0)e(i+j+1)αt

(x(0) + y(0))2e2αt
f(x(0); t)f(y(0); t)dx(0)dy(0)
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−
∫∫

R2
+

xi+1(0)yj(0)e(i+j)αt

(x(0) + y(0))eαt
α1

α
eαtf(x(0); t)f(y(0); t)dx(0)dy(0)

−
∫∫

R2
+

xi+1(0)yj(0)e(i+j)αt

(x(0) + y(0))eαt
α2

α
x(0)e2αtf(x(0); t)f(y(0); t)dx(0)dy(0)).

Similarly, by integrating the bimoments by parts with respect to y(0), we have

Ii,j(t) =

∫∫
R2

+

xi(0)yj(0)e(i+j)αt

(x(0) + y(0))eαt
f(x(0); t)f(y(0); t)dx(0)dy(0)

=−
∫∫

R2
+

jxi(0)yj(0)e(i+j)αt

(x(0) + y(0))eαt
f(x(0); t)f(y(0); t)dx(0)dy(0)

+

∫∫
R2

+

xi(0)yj+1(0)e(i+j+1)αt

(x(0) + y(0))2e2αt
f(x(0); t)f(y(0); t)dx(0)dy(0)

−
∫∫

R2
+

xi(0)yj+1(0)e(i+j)αt

(x(0) + y(0))eαt
α1

α
eαtf(x(0); t)f(y(0); t)dx(0)dy(0)

−
∫∫

R2
+

xi(0)yj+1(0)e(i+j)αt

(x(0) + y(0))eαt
α2

α
y(0)e2αtf(x(0); t)f(y(0); t)dx(0)dy(0).

Summing the above two formulae gives

(i+ j + 1)αIi,j(t) + α1(Ii+1,j(t) + Ii,j+1(t)) + α2(Ii+2,j(t) + Ii,j+2(t)) = 0,

combining which with (6.10) immediately gives

d

dt
Ii,j(t) = −2αIi,j(t).

Similarly, d
dtβi(t) = −αβi(t) can also be deduced. □

Based on the above lemma, it is not hard to conclude the following result.

Theorem 6.7. Given the moments in (6.20), we have

d

dt
un(t) =

d

dt
vn(t) = 0,

and
d

dt
γn,j(t) = 0,

where {un} and {vn} are the variables in the four-term recurrence relation (6.8) for the monic

Cauchy bi-OPs and {γn,j} are the expansion coefficients of the monic Cauchy bi-OPs with

Pn(z) =
∑n
j=0 γn,jz

j.

Proof. By use of (6.21), it is easy to see that the determinants τn and σn evolve according to

d

dt
τn = −2nατn,

d

dt
σn = −(2n− 1)ασn,

from which, we conclude that {un, vn}n∈N are independent of time t by recalling the formulae

un =
τn+1τn−1

(τn)2
, vn =

(σn+1)
2

τn+1τn
.

As for the coefficients γn,j in the expansion of Pn(z), it follows from the determinant expres-

sion of {Pn(z)}∞n=0 that

γn,j =
Tn,j
τn

,
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where

Tn,j = (−1)n+j

∣∣∣∣∣∣∣∣∣∣
I0,0 I0,1 · · · I0,j−1 I0,j+1 · · · I0,n

I1,0 I1,1 · · · I1,j−1 I1,j+1 · · · I1,n
...

...
. . .

...
...

. . .
...

In−1,0 In−1,1 · · · In−1,j−1 In−1,j+1 · · · In−1,n

∣∣∣∣∣∣∣∣∣∣
.

Due to the evolution relation (6.21) satisfied by moments, we have

d

dt
τn = −2nατn,

d

dt
Tn,j = −2nαTn,j .

which immediately leads to d
dtγn,j = 0.

□

In summary, we have demonstrated that the variables {un, vn}n∈N and the expansion co-

efficients γj of OPs are independent of time t. Therefore, under the definition of the mo-

ments (6.20), the nonisospectral C-Toda lattice can indeed admit stationary reduction, so that

a d-P-type equation associated with the Toda hierarchy of CKP-type and Cauchy BOPs arises.

Furthermore, the Lax pair of the nonisospectral C-Toda lattice can also indeed allow stationary

reduction so that the Lax pair of the d-P-type equation is obtained.

7. Nonisospectral deformation of partial-skew OPs and d-P

Recently, the concept of partial-skew OPs was introduced in [48], with the motivation by

the study of a random matrix model called the Bures random ensemble [80] as well as the hints

from the formulation of the Novikov peakon solution in terms of Pfaffians [51]. It is shown that

isospectral deformation of the partial-skew OPs are closely related to integrable lattices [48] and

they also solve certain mixed Hermite–Padé approximation problem [46]. To the best of our

knowledge, there is currently no existing literature that establishes a connection between the

partial-skew OPs and and Painlevé-type equations, which is the main objective of this section.

To achieve this objective, we first perform a nonisospectral deformation of the partial-skew

OPs without specifying the weight function. It is noted that we employ the Pfaffian as an

algebraic tool (for an introduction on the Pfaffians, please refer to Appendix A), and utilize the

derivative rules and identities on Pfaffians to derive nonisospectral deformation of the partial-

skew OPs and the nonisospectral B-Toda lattice. Then, by applying the stationary reduction to

the Lax pair of the nonisospectral equation, we obtain a d-P-type equation along with its Lax

pair. To our knowledge, this is the first instance of a d-P-type equation that features a solution

expressed in terms of Pfaffians. Finally, we construct a specific weight function to demonstrate

the viability of the aforementioned stationary reduction process.

7.1. Partial-skew OPs. In this subsection, let’s briefly review the relevant basic knowledge

about partial-skew OPs. For more details please refer to [48].

Definition 7.1. Consider a skew symmetric inner product ⟨·, ·⟩ on the space of real coefficient

polynomials, where ⟨·, ·⟩ is a bilinear 2-form R(z)×R(z) → R(z) satisfying the skew symmetric

relation

⟨f(z), g(z)⟩ = −⟨g(z), f(z)⟩ .
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Define the bimoment sequence {µi,j}∞i,j=0 as

µi,j =
〈
zi, zj

〉
= −

〈
zj , zi

〉
= −µj,i. (7.1)

A family of monic polynomials {Pn(z)}∞n=0 are called partial-skew OPs if they satisfy the or-

thogonality relation

⟨P2n(z), z
m⟩ = τ2n+2

τ2n
δ2n+1,m, 0 ≤ m ≤ 2n+ 1,

⟨P2n+1(z), z
m⟩ = −τ2n+2

τ2n+1
βm, 0 ≤ m ≤ 2n+ 1,

with

τ2n = Pf(0, 1, . . . , 2n− 1) ̸= 0, τ2n+1 = Pf(d0, 0, 1, . . . , 2n) ̸= 0,

where βi are some constants and the Pfaffian entries are defined as

Pf(i, j) = µi,j , Pf(i, z) = zi, (7.2a)

Pf(d0, i) = βi, Pf(d0, z) = 0. (7.2b)

According to the orthogonality, it can be shown that the monic partial-skew OPs admit the

following determinant expressions

P2n(z) =
1

det(µi,j)0≤i,j≤2n−1

∣∣∣∣∣∣∣∣∣∣∣∣

µ0,0 µ0,1 · · · µ0,2n

µ1,0 µ1,1 · · · µ1,2n

...
...

. . .
...

µ2n−1,0 µ2n−1,1 · · · µ2n−1,2n

1 z · · · z2n

∣∣∣∣∣∣∣∣∣∣∣∣
,

P2n+1(z) =
1

det(C2n+2,2n+2)

∣∣∣∣∣∣∣∣∣∣∣∣

µ0,0 µ0,1 · · · µ0,2n+1 −β0
µ1,0 µ1,1 · · · µ1,2n+1 −β1
...

...
. . .

...
...

µ2n+1,0 µ2n+1,1 · · · µ2n+1,2n+1 −β2n+1

1 z · · · z2n+1 0

∣∣∣∣∣∣∣∣∣∣∣∣
,

where

Ck,l =


β0

Ak,l−1

...

βk−1


Ak,l = (µi,j)0≤i≤k−1,0≤j≤l−1. It follows from (7.1) that the determinant det(µi,j)0≤i,j≤2n−1

is a skew symmetric determinant of 2n order, implying that it can be written in terms of

Pfaffians. In fact, in conjunction with (A.4) and (A.5), it is not hard to see that the Pfaffian

representations of partial-skew OPs can be given by

P2n(z) =
1

τ2n
Pf(0, 1, . . . , 2n− 1, 2n, z), (7.3a)

P2n+1(z) =
1

τ2n+1
Pf(d0, 0, 1, . . . , 2n, 2n+ 1, z). (7.3b)

In this work, we address the skew symmetric inner product of the following specific form

⟨f(z), g(z)⟩ =
∫∫

f(x)g(y)
y − x

x+ y
w(x)w(y)dxdy, (7.4)
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in which y−x
x+y is the skew symmetric integral kernel to guarantee the skew symmetric property

and w(x) is the weight function ensuring the bimoments

µi,j =

∫∫
xiyj

y − x

x+ y
w(x)w(y)dxdy = Pf(i, j),

and the single moments

βi =

∫
xiw(x)dx = Pf(d0, i)

exist. In this case, it is not difficult to see that the Pfaffian entries satisfy

Pf(i+ 1, j) + Pf(i, j + 1) = −Pf(d0, d1, i, j), (7.5a)

Pf(d0, i+ 1) = Pf(d1, i), (7.5b)

where

Pf(d1, i) = βi+1, Pf(d0, d1) = 0.

It is worth noting that the specific partial-skew OPs satisfy a four-term recurrence relation

z(Pn(z)− unPn−1(z)) =Pn+1(z) + (bn+1 − bn − un)Pn(z)

− un(bn − bn+1 + un+1)Pn−1(z) + u2nun−1Pn−2(z), (7.6)

where

un =
τn+1τn−1

τ2n
, bn =

σn
τn
,

with τn denoting the Pfaffians with the Pfaffian entries (7.2) and σn denoting the following

Pfaffians

σ2m = Pf(0, . . . , 2m− 2, 2m), σ2m+1 = Pf(d0, 0, . . . , 2m− 1, 2m+ 1).

7.2. Nonisospectral B-Toda lattice. In this subsection we perform nonisospectral defor-

mation on partial-skew OPs. To this end, we suppose that the integral variables x, y and the

spectral parameter z satisfy the following time evolution

d

dt
x = αx,

d

dt
y = αy,

d

dt
z = αz (7.7)

and we require an appropriate weight function to ensure that the moments undergo the time

evolution

d

dt
µi,j(t) =α(i+ j)µi,j(t) + α1(µi+1,j(t) + µi,j+1(t)) + α2(µi+2,j(t) + µi,j+2(t)), (7.8a)

d

dt
βi(t) =iαβi(t) + α1βi+1(t) + α2βi+2(t). (7.8b)

According to the definitions (7.2) of Pfaffian entries, the above relations can be equivalently

written as

d

dt
Pf(i, j) =α(i+ j) Pf(i, j) + α1(Pf(i+ 1, j) + Pf(i, j + 1))

+ α2(Pf(i+ 2, j) + Pf(i, j + 2)),

d

dt
Pf(d0, i) =iαPf(d0, i) + α1 Pf(d0, i+ 1) + α2 Pf(d0, i+ 2).

Under the assumption of (7.7) and (7.8), we can obtain some derivative formulae for the

Pfaffians and the specific partial-skew OPs by employing (A.6)-(A.11) in Appendix A.2. For
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facilitate the presentation, we first introduce the intermediate variable t1 and list some deriva-

tive formulae with respect to t1.

Introduce the evolution on t1 according to

∂

∂t1
Pf(i, j) =(Pf(i+ 1, j) + Pf(i, j + 1)),

∂

∂t1
Pf(d0, i) =Pf(d0, i+ 1),

which can actually be regarded as a special evolution in the case of α = α2 = 0, α1 = 1. Then

it follows from (A.6) and (A.7) that

∂

∂t1
Pf(i1, . . . , i2N ) =

i2N∑
k=i1

Pf(i1, i2, . . . , ik + 1, . . . , i2N ), (7.10a)

∂

∂t1
Pf(a0, i1, . . . , i2N−1) =

i2N−1∑
k=i1

Pf(a0, i1, i2, . . . , ik + 1, . . . , i2N−1). (7.10b)

Based on the results in [48, Lemma 3.15, Lemma 3.20], we immediately obtain the derivative

formulae for τ2n, τ2n+1, τ2nP2n(z; t), τ2n+1P2n+1(z; t) with respect to t1.

Lemma 7.1. There hold the following differential relations

∂

∂t1
τ2n = Pf(0, . . . , 2n− 2, 2n), (7.11a)

∂

∂t1
τ2n+1 = Pf(d0, 0, . . . , 2n− 1, 2n+ 1), (7.11b)

∂

∂t1
(τ2nP2n(z; t)) = Pf(0, . . . , 2n− 1, 2n+ 1, z)− z Pf(0, 1, . . . , 2n, z), (7.11c)

∂

∂t1
(τ2n+1P2n+1(z; t)) = Pf(d0, 0, . . . , 2n, 2n+ 2, z)− z Pf(d0, 0, . . . , 2n+ 1, z). (7.11d)

By successively applying (A.6) and (A.7), we can also derive the following corollary on the

second derivative with respect to t1.

Corollary 7.2. There hold

∂2

∂t21
τ2n = Pf(0, . . . , 2n− 3, 2n− 1, 2n) + Pf(0, . . . , 2n− 2, 2n+ 1), (7.12a)

∂2

∂t21
τ2n+1 = Pf(d0, 0, . . . , 2n− 2, 2n, 2n+ 1) + Pf(d0, 0, . . . , 2n− 1, 2n+ 2), (7.12b)

∂2

∂t21
(τ2nP2n(z; t))

=− 2z Pf(0, . . . , 2n− 1, 2n+ 1, z) + Pf(0, . . . , 2n− 2, 2n, 2n+ 1, z)

+ Pf(0, . . . , 2n− 1, 2n+ 2, z) + z2 Pf(0, . . . , 2n, z), (7.12c)

∂2

∂t21
(τ2n+1P2n+1(z; t))

=− 2z Pf(d0, 0, . . . , 2n, 2n+ 2, z) + Pf(d0, 0, . . . , 2n, 2n+ 3, z)

+ Pf(d0, 0, . . . , 2n− 1, 2n+ 1, 2n+ 2, z) + z2 Pf(d0, 0, . . . , 2n+ 1, z). (7.12d)

Proof. See Appendix C. □
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Furthermore, observe that the derivative for the Pfaffian entries with respect to t1 can be

equivalently written as

∂

∂t1
Pf(i, j) =− Pf(d0, d1, i, j),

∂

∂t1
Pf(d0, i) =Pf(d1, i),

by recalling (7.5). By employing (A.8) and (A.9) with α = α2 = 0, α1 = 1, similar to the

results in [48, Lemma 3.15, Corollary 3.16], we also have the following evolution relations.

Lemma 7.3. There hold the following differential relations

∂

∂t1
τ2n = −Pf(d0, d1, 0, . . . , 2n− 1), (7.13a)

∂

∂t1
τ2n+1 = Pf(d1, 0, . . . , 2n), (7.13b)

∂

∂t1
(τ2nP2n(z; t)) = −Pf(d0, d1, 0, . . . , 2n, z), (7.13c)

∂

∂t1
(τ2n+1P2n+1(z; t)) = Pf(d1, 0, . . . , 2n+ 1, z). (7.13d)

After comparing the relations in Lemma 7.1 and Lemma 7.3, we immediately obtain the

following identities.

Lemma 7.4. As for the specific Pfaffians, there hold the following relations:

Pf(0, 1, . . . , 2n− 2, 2n) = −Pf(d0, d1, 0, . . . , 2n− 1), (7.14a)

− Pf(d0, d1, 0, . . . , 2n, z) = Pf(0, . . . , 2n− 1, 2n+ 1, z)− z Pf(0, . . . , 2n, z), (7.14b)

Pf(d0, 0, . . . , 2n− 1, 2n+ 1) = Pf(d1, 0, . . . , 2n), (7.14c)

Pf(d1, 0, . . . , 2n+ 1, z) = Pf(d0, 0, . . . , 2n, 2n+ 2, z)− z Pf(d0, 0, . . . , 2n+ 1, z). (7.14d)

In general, it is not hard to obtain the derivative expressions for τn with respect to t by

using the derivative formulae (A.6) and (A.7).

Lemma 7.5. Under the assumption of (7.7) and (7.8), we have

d

dt
τ2n =n(2n− 1)ατ2n + α1 Pf(0, 1, . . . , 2n− 2, 2n)

+ α2(−Pf(0, 1, . . . , 2n− 3, 2n− 1, 2n) + Pf(0, 1, . . . , 2n− 2, 2n+ 1)), (7.15a)

d

dt
τ2n+1 =n(2n+ 1)ατ2n+1 + α1 Pf(d0, 0, 1, . . . , 2n− 1, 2n+ 1)

+ α2(−Pf(d0, 0, 1, . . . , 2n− 2, 2n+ 1, 2n) + Pf(d0, 0, 1, . . . , 2n− 1, 2n+ 2)).

(7.15b)

The expressions for the derivative of τnPn(z; t) with respect to the t can also be derived.

Lemma 7.6. Under the assumption of (7.7) and (7.8), we have

d

dt
(τ2nP2n(z; t))

=αn(2n+ 1)Pf(0, 1, . . . , 2n, z)

+ α1

(
Pf(0, . . . , 2n− 1, 2n+ 1, z)− z Pf(0, 1, . . . , 2n, z)

)
− α2

(
+ Pf(0, 1, . . . , 2n− 2, 2n, 2n+ 1, z)
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− Pf(0, 1, . . . , 2n− 1, 2n+ 2, z) + z2 Pf(0, 1, . . . , 2n, z)
)

(7.16a)

d

dt
(τ2n+1P2n+1(z; t))

=α(n+ 1)(2n+ 1)Pf(d0, 0, 1, . . . , 2n+ 1, z)

+ α1

(
− z Pf(d0, 0, . . . , 2n+ 1, z) + Pf(d0, 0, . . . , 2n, 2n+ 2, z)

)
− α2

(
Pf(d0, 0, . . . , 2n− 1, 2n+ 1, 2n+ 2, z)

− Pf(d0, 0, . . . , 2n, 2n+ 3, z) + z2 Pf(d0, 0, . . . , 2n+ 1, z)
)
. (7.16b)

Proof. See Appendix D for the proof. □

Now we are ready to present the time evolution equation of the partial-skew OPs {Pn(z; t)}.
By employing (7.11), (7.15), Lemma 7.6 and Corollary 7.2 as well as the Pfaffian identities, we

can derive the following theorem, whose detailed proof is placed in Appendix E.

Theorem 7.7. Under the assumption of (7.7) and (7.8), the monic partial-skew OPs {Pn(z; t)}n∈N

in (7.3) with the inner product (7.4) admit the time evolution

d

dt
Pn(z; t)

=nαPn + α1(Pn+1 + (−z + bn+1 − bn)Pn − unun+1Pn−1)

+ α2

(
Pn+2 + (bn+2 − bn)Pn+1 − un−1u

2
nun+1Pn−2 + unun+1(bn − bn+2)Pn−1

+
(
− z2 + (bn+1 − bn)

2 − un+1un+2 − un+1(bn − bn+2)

− unun+1 − un(bn−1 − bn+1)
)
Pn

)
. (7.17)

By utilizing the four-term recurrence relation (7.6), we can rewrite the derivative expressions

for Pn(z; t). As a consequence, the Lax pair, consisting of the recurrence relation and the time

evolution, can be expressed in matrix form.

In fact, it follows from the four-term recurrence relation that

Pn+2 =z(Pn+1 − un+1Pn)− (bn+2 − bn+1 − un+1)Pn+1

+ un+1(−bn+2 + bn+1 + un+2)Pn − unu
2
n+1Pn−1,

Pn+1 =z(Pn − unPn−1)− (bn+1 − bn − un)Pn

+ un(−bn+1 + bn + un+1)Pn−1 − un−1u
2
nPn−2,

Pn−2 =− 1

un−1u2n
(Pn+1 + (bn+1 − bn − un)Pn

− un(−bn+1 + bn + un+1)Pn−1 − z(Pn − unPn−1)),

Pn−3 = − 1

u2n−1un−2
(Pn + (bn − bn−1 − un−1)Pn−1

− un−1(−bn + bn−1 + un)Pn−2 − z(Pn−1 − un−1Pn−2)),

employing which, we can derive the following evolution relations

d

dt
Pn(z; t)

=(nα+ α1un + α2un(−bn−1 + 2bn+1 − bn + z))Pn

+ (−α1un(z + bn+1 − bn)

+ α2un(−z2 + (bn+1 − bn)(−2z − bn+1 + bn)− un+1(bn+2 − bn)))Pn−1
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+ un−1u
2
n(−α1 − α2(z + bn+1 − bn + 2un+1))Pn−2,

d

dt
Pn−1(z; t)

=(α1 + α2(z + bn − bn−1 + 2un))Pn

+ ((n− 1)α+ α1(bn − bn−1 − z)

+ α2(−z2 + (bn − bn−1)
2 − un−1(bn−2 − bn) + 2un(bn − bn−1 − un−1 − z)))Pn−1

+ un−1un(−α1 + α2(bn − bn+1 − 2un + z))Pn−2,

d

dt
Pn−2(z; t)

=
1

un−1
(α1 − α2(bn−1 − bn − 2un−1 + z))Pn

+ (
1

un−1
(α1 + α2(−bn−1 + bn − z))(bn − bn−1 − z) + α2(bn − bn−2))Pn−1

+ ((n− 2)α+ α1(bn − bn−2 − un)

+ α2(bn(bn − 2bn−1 + 2un−1 + un)− 2z2 + bn−1(bn−1 + un) + un(z − 2un−1)

+ (bn−1 − bn−2)
2 − un−2(bn−3 − bn−1)− 2un−1(bn−2 + un−2)))Pn−2.

As a result, the recurrence relation (7.6) and the above time evolution equations of the partial-

skew OPs {Pn(z; t)}n∈N can yield the following matrix form

φn+1 = Unφn,
dφn
dt

= Vnφn, (7.18)

where φ(z; t) = (Pn−2(z; t), Pn−1(z; t), Pn(z; t))
T and

Un =

 0 1 0

0 0 1

−u2nun−1 un (−bn+1 + bn + un+1)− zun −bn+1 + bn + z + un

 ,

Vn =

 v11 v12 v13

v21 v22 v23

v31 v32 v33

 ,

with

v11 =(n− 2)α+ α1(bn − bn−2 − un) + α2(bn(bn − 2bn−1 + 2un−1 − un)

+ z(un − 2z) + bn−1(bn−1 + un)− 2un−1un + (bn−1 − bn−2)
2

− un−2(bn−3 − bn−1)− 2un−1(bn−2 + un−2)),

v12 =
1

un−1
(α1 + α2(−bn−1 + bn − z))(bn − bn−1 − z) + α2(bn − bn−2),

v13 =
1

un−1
(α1 − α2(bn−1 − bn − 2un−1 + z)),

v21 =un−1un(−α1 + α2(bn − bn+1 − 2un + z)),

v22 =(n− 1)α+ α1(bn − bn−1 − z) + α2(−z2 + (bn − bn−1)
2 − un−1(bn−2 − bn)

+ 2un(bn − bn−1 − un−1 − z)),

v23 =α1 + α2(z + bn − bn−1 + 2un),

v31 =un−1u
2
n(−α1 − α2(z + bn+1 − bn + 2un+1)),
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v32 =− α1un(z + bn+1 − bn) + α2un(−z2 + (bn+1 − bn)(−2z − bn+1 + bn)− un+1(bn+2 − bn)),

v33 =nα+ α1un + α2un(−bn−1 + 2bn+1 − bn + z).

The compatibility condition of the overdetermined system (7.18) yields a matrix representation

of the nonisospectral integrable lattice

dUn
dt

= Vn+1Un − UnVn,

from which we can write down the explicit differential equations for {un, bn} so that the fol-

lowing theorem is derived.

Theorem 7.8. Under the assumption of (7.7) and (7.8), the variables {un(t), bn(t)} in the

four-term recurrence relation (7.6) for the monic partial-skew OPs {Pn(z; t)}n∈N in (7.3) with

the inner product (7.4) satisfy the following integrable ODE system

d

dt
un =αun + α1un(bn+1 − 2bn + bn−1)

+ α2un[b
2
n+1 − b2n−1 − 2bn(bn+1 − bn−1)

+ un−1(2un − bn + bn−2)− un+1(2un − bn+2 + bn)], (7.19a)

d

dt
bn =αbn + α1un(bn+1 − bn−1) + α2un[(bn+1 − bn−1)

2

+ un+1(bn+2 − bn) + un−1(bn − bn−2)], (7.19b)

with the Lax pair (7.18).

Remark 7.9. When α ̸= 0, the above equation represents a nonisospectral generalized lattice

that incorporates the first and second flows of the B-Toda hierarchy. In the case of α = α2 = 0,

it corresponds to the first flow of the isospectral B-Toda hierarchy, while it gives the second flow

of the isospectral B-Toda hierarchy in the case of α = α1 = 0. The first flow was investigated

in [48] etc, while it seems that the explicit form of the second flow has not been reported

elsewhere. It is noted that the first and second flows of the B-Toda hierarchy given here

coincides with those obtained by Krichever and Zabrodin [111, eq. (1.3)], where a combination

was presented.

7.3. d-P related to nonisospectral B-Toda. In the previous subsection, we provided the

Lax pair for a nonisospectral B-Toda lattice. By implementing stationary reduction, we can

obtain

φn+1 = Pnφn,
∂φn
∂z

= Qnφn, (7.20)

where

Pn = Un, Qn = Vn/

(
dz

dt

)
=

1

αz
Vn.

The compatibility condition of the above overdetermined system results in a d-P-type equation.

In summary, we have the following theorem.

Theorem 7.10. Under the assumption of (7.7) and (7.8) as well as stationary reduction,

the variables {un(t), bn(t)} in the four-term recurrence relation (7.6) for the monic partial-

skew OPs {Pn(z; t)}n∈N in (7.3) with the inner product (7.4) satisfy the following integrable

difference system with the Lax pair (7.20)

(n− 2)α+ α1(bn − bn−1) + α2[(bn − bn−1)
2 − 2un−1un
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+ un−1(bn − bn−2) + un(bn+1 − bn−1)]−A0 = 0, (7.21a)

α(bn − (2n− 3)un) + 2α2un((bn − bn−1)(bn+1 − bn)

+ un(un−1 + un+1 − bn+1 + bn−1)) + 2A0un = 0, (7.21b)

where A0 = α1(b2 − b1) + α2[(b2 − b1)
2 − 2u1u2 + u2(b3 − b1) + u1(b2 − b0)].

Proof. By use of the compatibility condition

Pn,z + PnQn −Qn+1Pn = 0,

we can obtain

α+ α1(bn+1 − 2bn + bn−1) + α2[b
2
n+1 − b2n−1 − 2bn(bn+1 − bn−1)

+ un−1(2un − bn + bn−2)− un+1(2un − bn+2 + bn)] = 0, (7.22a)

αbn + α1un(−bn−1 + bn+1) + α2un[(bn+1 − bn−1)
2

+ un+1(bn+2 − bn) + un−1(bn − bn−2)] = 0. (7.22b)

It is not hard to see that summing (7.22a) for n yields (7.21a). In addition, it is readily known

from (7.21a) that

α2un−1(bn − bn−2) =− (n− 2)α− α1(bn − bn−1)

− α2[(bn − bn−1)
2 − 2un−1un + un(bn+1 − bn−1)] +A0,

α2un+1(bn+2 − bn) =− (n− 1)α− α1(bn+1 − bn)

− α2[(bn+1 − bn)
2 − 2un+1un + un(bn+1 − bn−1)] +A0,

which can be used to simplify (7.22b) to arrive at (7.21b). □

Remark 7.11. It is evident that Eq.(7.22) corresponds to the stationary form of the non-

isospectral B-Toda lattice (7.19). It is worth noting that the d-P-type equation (7.21) is in-

tegrable with a 3×3 Lax pair and it is associated with the Toda hierarchy of BKP type. A

further simplification will be investigated in the future work. Furthermore, the argument also

implies that it exhibits solutions with a Pfaffian structure.

7.4. Realization of stationary reduction. In the previous subsections, we have derived

the nonisospectral B-Toda lattice and obtained the d-P-type equation by applying stationary

reduction. In this subsection, we shall construct concrete moments to demonstrate that both

the nonisospectral equation and its Lax pair can indeed allow the stationary reduction.

From (7.7), we obviously have

x = x(0)eαt, y = y(0)eαt, z = z(0)eαt. (7.23)

If we let x(0), y(0) ∈ R+, then the moments can be rewritten as

µi,j(t) =

∫∫
R2

+

xi(t)yj(t)
y(t)− x(t)

x(t) + y(t)
w(x; t)w(y; t)dx(t)dy(t)

=

∫∫
R2

+

xi(0)yj(0)e(i+j)αt
y(0)− x(0)

x(0) + y(0)
f(x(0); t)f(y(0); t)dx(0)dy(0),

where f( ; t) needs to be determined. Differentiating the moments leads to

d

dt
µi,j(t) =(i+ j)αµi,j(t)
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+

∫∫
R2

+

xi(0)yj(0)e(i+j)αt
y(0)− x(0)

x(0) + y(0)

d(f(x(0); t)f(y(0); t))

dt
dx(0)dy(0).

If one wants to the moments to satisfy the time evolution in (7.8a), it is required that f(x(0); t)

and f(y(0); t) adhere to the time evolution

d

dt
f(x(0); t) = (α1x(0)e

αt + α2x
2(0)e2αt)f(x(0); t),

d

dt
f(y(0); t) = (α1y(0)e

αt + α2y
2(0)e2αt)f(y(0); t).

As a result, it is reasonable to set

f(x(0); t) = e
α1
α x(0)eαt+

α2
2α x

2(0)e2αt

,

f(y(0); t) = e
α1
α y(0)eαt+

α2
2α y

2(0)e2αt

,

which results in the exact expression of the moments

µi,j(t) =

∫∫
R2

+

xi(0)yj(0)e(i+j)αt
y(0)− x(0)

x(0) + y(0)
e

α1
α (x(0)+y(0))eαt+

α2
2α (x2(0)+y2(0))e2αt

dx(0)dy(0),

βi(t) =

∫
R+

xi(0)eiαte
α1
α x(0)eαt+

α2
2α x

2(0)e2αt

dx(0).

It is obvious that the single moments βi given above satisfy the time evolution

d

dt
βi(t) = iαβi(t) + α1βi+1(t) + α2βi+2(t).

Theorem 7.12. Under the assumption of (7.7) together with α2

α < 0, define the moments as

µi,j(t) =

∫∫
R2

+

xi(0)yj(0)e(i+j)αt
y(0)− x(0)

x(0) + y(0)
e

α1
α (x(0)+y(0))eαt+

α2
2α (x2(0)+y2(0))e2αt

dx(0)dy(0),

(7.24a)

βi(t) =

∫
R+

xi(0)eiαte
α1
α x(0)eαt+

α2
2α x

2(0)e2αt

dx(0). (7.24b)

Then the moments simultaneously satisfy the evolution relations (7.8) and

d

dt
µi,j(t) = −2αµi,j(t), (7.25a)

d

dt
βi(t) = −αβi(t). (7.25b)

Proof. It is sufficient to prove (7.25). By performing integration by parts with respect to x(0)

and observing the fact at the boundary

lim
x(0)→0

x(0)f(x(0); t) = lim
x(0)→+∞

x(0)f(x(0); t) = 0,

we obtain

µi,j(t) =

∫∫
R2

+

xi(0)yj(0)e(i+j)αt
y(0)− x(0)

x(0) + y(0)
f(x(0); t)f(y(0); t)dx(0)dy(0)

=−
∫∫

R2
+

ixi(0)yj(0)e(i+j)αt
y(0)− x(0)

x(0) + y(0)
f(x(0); t)f(y(0); t)dx(0)dy(0)

+

∫∫
R2

+

xi+1(0)yj(0)e(i+j)αt
2y(0)

(x(0) + y(0))2
f(x(0); t)f(y(0); t)dx(0)dy(0)
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−
∫∫

R2
+

xi+1(0)yj(0)e(i+j)αt
y(0)− x(0)

x(0) + y(0)

α1e
αt + α2x(0)e

2αt

α
f(x(0); t)f(y(0); t)dx(0)dy(0)).

On the other hand, by applying integration by parts to the bimoments with respect to y(0), we

also have

µi,j(t) =

∫∫
R2

+

xi(0)yj(0)e(i+j)αt
y(0)− x(0)

x(0) + y(0)
f(x(0); t)f(y(0); t)dx(0)dy(0)

=−
∫∫

R2
+

jxi(0)yj(0)e(i+j)αt
y(0)− x(0)

x(0) + y(0)
f(x(0); t)f(y(0); t)dx(0)dy(0)

−
∫∫

R2
+

xi(0)yj+1(0)e(i+j)αt
2x(0)

(x(0) + y(0))2
f(x(0); t)f(y(0); t)dx(0)dy(0)

−
∫∫

R2
+

xi(0)yj+1(0)e(i+j)αt
y(0)− x(0)

x(0) + y(0)

α1e
αt + α2y(0)e

2αt

α
f(x(0); t)f(y(0); t)dx(0)dy(0).

By taking a summation on the above two equations, we see that the bimoments satisfy the

recurrence relationship

(i+ j + 2)αµi,j(t) +
α1

α
(µi+1,j(t) + µi,j+1(t)) +

α2

α
(µi+2,j(t) + µi,j+2(t)) = 0. (7.26)

In a similar manner, we also get

βi(t) =

∫
R+

xi(0)eiαte
α1
α x(0)eαt+

α2
2α x

2(0)e2αt

dx(0)

=−
∫
R+

ixi(0)eiαte
α1
α x(0)eαt+

α2
2α x

2(0)e2αt

dx(0)

−
∫
R+

α1

α
xi+1(0)e(i+1)αte

α1
α x(0)eαt+

α2
2α x

2(0)e2αt

dx(0)

−
∫
R+

α2

α
xi+2(0)e(i+2)αte

α1
α x(0)eαt+

α2
2α x

2(0)e2αt

dx(0)

=− iβi(t)−
α1

α
βi+1(t)−

α2

α
βi+2(t),

which leads to the recurrence relationship

(i+ 1)βi(t) +
α1

α
βi+1(t) +

α2

α
βi+2(t) = 0. (7.27)

Finally, it is straightforward to derive the desired result by utilizing the time evolution of the

moments (7.8) along with the recurrence relationships (7.26) and (7.27). □

Applying the time evolution (7.25) for the moments and the derivative formulae for Pfaffians

(A.10) and (A.11), we can conclude the following result.

Theorem 7.13. Given the moments in (7.24), we have

d

dt
un(t) =

d

dt
bn(t) = 0

and
d

dt
γn,j(t) = 0,

where {un} and {bn} are the variables in the four-term recurrence relation (7.6) for the monic

partial-skew OPs {Pn(z; t)}n∈N in (7.3) with the inner product (7.4) and {γn,j} are the coeffi-

cients of the monic partial-skew OPs with the expansion Pn(z) =
∑n
j=0 γn,jz

j.
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Proof. By use of (7.25) and the derivative formulae for Pfaffians (A.10) and (A.11), it is easy

to see that the Pfaffians τn satisfy

d

dt
τn = −nατn.

Recall that we have

un =
τn+1τn−1

τ2n
, bn =

σn
τn
.

By taking derivative with respect to t for un and bn and applying the above evolution relation,

we conclude that {un, bn}n∈N are independent of time t.

As for the coefficients γn,j in the expansion of Pn(z), it follows from the Pfaffian expression

of {Pn(z)}∞n=0 that

γn,j =
Tn,j
τn

,

where

T2n,j = (−1)j Pf(0, 1, . . . , ĵ, . . . , 2n),

T2n+1,j = (−1)j+1 Pf(d0, 0, 1, . . . , ĵ, . . . , 2n+ 1).

Employing the derivative formulae for Pfaffians (A.10) and (A.11), one can see that

d

dt
Tn,j = −nαTn,j ,

based on which it is not hard to see d
dtγn,j = 0.

□

The above theorem implies that the nonisospectral B-Toda lattice (7.19) can indeed allow

stationary reduction so that a d-P-type equation (7.21) is obtained. Furthermore, since the

coefficients of the partial-skew OPs {Pn(z; t)}n∈N are independent of t, it is valid that the Lax

pair (7.18) of the nonisospectral B-Toda lattice is transferred into a stationary form, resulting

in the Lax pair (7.20) of the d-P-type equation.

At the end of this section, we note that the d-P-type equation (7.21) admits a solution in

terms of Pfaffians. To the best of our knowledge, d-P-type equations with Pfaffian solutions

have never been reported before.

8. Conclution and discussions

We have developed a new approach called “stationary reduction method based on non-

isospectral deformation of OPs” for generating d-P-type equations and its effectiveness has

been demonstrated by considering different classes of bi-OPs. As a result, we are enabled to

obtain diverse families of d-P-type equations, along with their particular solutions and asso-

ciated Lax pairs. It seems that the derived d-P-type equations exhibit several new features.

In particular, the d-P-type equation related to partial-skew orthogonality admits a solution

expressed in terms of Pfaffians. We believe that these obtained d-P-type equations deserve

further investigations.
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Appendix A. On the Pfaffians

Consider a skew symmetric matrix A of order n

A = (ai,j)
n
i,j=1.

It is obvious that the determinant of A is zero when n is odd. We remark that, when n is even,

specifically in the case of n = 2m, the determinant of A is equal to the square of a Pfaffian of

order m (see e.g. [45, 95])

det(A) = (Pf(1, 2, . . . , 2m))2, (A.1)

where the Pfaffian entries Pf(i, j) = ai,j . In general, following e.g. [95], a Pfaffian of order m is

defined according to the following expansion based on Pfaffian entries

Pf(1, 2, . . . , 2m) =
∑
P

(−1)P Pf(i1, i2) Pf(i3, i4) Pf(i5, i6) · · ·Pf(i2m−1, i2m), (A.2)

where
∑
P denotes the summation over all pairs satisfying the conditions

i1 < i2, i3 < i4, i5 < i6, . . . , i2m−1 < i2m,

i1 < i3 < i5 < · · · < i2m−1,

with ij belongs to the set {1, 2, . . . , 2m}, and (−1)P takes the value of +1 (−1) respectively if

{i1, i2, . . . , i2m} represents an even (odd) permutation of {1, 2, . . . , 2m}. It can also be shown

that the Pfaffian admits the following expansion

Pf(1, 2, . . . , 2m)

=Pf(1, 2)Pf(3, 4, . . . , 2m)− Pf(1, 3)Pf(2, 4, 5, . . . , 2m)

+ Pf(1, 4)Pf(2, 3, 5, . . . , 2m)− · · ·+ Pf(1, 2m) Pf(2, 3, . . . , 2m− 1)

=

2m∑
j=2

(−1)j Pf(1, j) Pf(2, 3, . . . , ĵ, . . . , 2m), (A.3)

where, ĵ represents the removal of the element j.

A.1. Formulae related to determinants and Pfaffians. There are a number of interesting

connections between certain determinants and Pfaffians (see e.g. [46, Appendix A.1]).

(1). For a skew-symmetric matrix A2n−1 of size 2n − 1 augmented with an arbitrary row

and column, there holds

det


x1

A2n−1

...

x2n−1

−y1 · · · −y2n−1 z

 = Pf(B2n) Pf(C2n), (A.4)
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where

B2n =


x1

A2n−1

...

x2n−1

−x1 · · · −x2n−1 0

 , C2n =


y1

A2n−1

...

y2n−1

−y1 · · · −y2n−1 0

 .

(2). For a skew-symmetric matrix A2n of size 2n augmented with an arbitrary row and

column, there holds

det


x1

A2n

...

x2n

−y1 · · · −y2n z

 = Pf(A2n) Pf(B2n+2), (A.5)

where

B2n+2 =



x1 −y1

A2n

...
...

x2n −y2n
−x1 · · · −x2n 0 z

y1 · · · y2n −z 0


.

A.2. Derivative formulae for some special Pfaffians. For some special Pfaffians, there

hold some derivative formulae (see e.g. [95, Chapter 2]).

(1). If the t-derivative of a Pfaffian entry Pf(i, j) satisfy

d

dt
Pf(i, j) =α(i+ j) Pf(i, j) + α1(Pf(i+ 1, j) + Pf(i, j + 1))

+ α2(Pf(i+ 2, j) + Pf(i, j + 2)),

then

d

dt
Pf(i1, . . . , i2N )

=α

i2N∑
k=i1

kPf(i1, . . . , i2N ) + α1

i2N∑
k=i1

Pf(i1, i2, . . . , ik + 1, . . . , i2N )

+ α2

i2N∑
k=i1

Pf(i1, i2, . . . , ik + 2, . . . , i2N ). (A.6)

(2). If

d

dt
Pf(i, j) =α(i+ j) Pf(i, j) + α1(Pf(i+ 1, j) + Pf(i, j + 1))

+ α2(Pf(i+ 2, j) + Pf(i, j + 2))

and

d

dt
Pf(a0, i) = αiPf(a0, i) + α1 Pf(a0, i+ 1) + α2 Pf(a0, i+ 2),

then

d

dt
Pf(a0, i1, . . . , i2N−1)
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=α

i2N−1∑
k=i1

kPf(a0, i1, . . . , i2N−1) + α1

i2N−1∑
k=i1

Pf(a0, i1, i2, . . . , ik + 1, . . . , i2N−1)

+ α2

i2N∑
k=i1

Pf(a0, i1, i2, . . . , ik + 2, . . . , i2N−1). (A.7)

(3). If

d

dt
Pf(i, j) = α(i+ j) Pf(i, j) + α1 Pf(a0, b0, i, j) + α2(Pf(i+ 2, j) + Pf(i, j + 2))

and Pf(a0, b0) = 0, then

d

dt
Pf(i1, . . . , i2N )

=α

i2N∑
k=i1

kPf(i1, . . . , i2N ) + α1 Pf(a0, b0, i1, . . . , i2N )

+ α2

i2N∑
k=i1

Pf(i1, i2, . . . , ik + 2, . . . , i2N ). (A.8)

(4). If

d

dt
Pf(i, j) = α(i+ j) Pf(i, j) + α1 Pf(a0, b0, i, j) + α2(Pf(i+ 2, j) + Pf(i, j + 2))

and

d

dt
Pf(a0, j) = αiPf(a0, j) + α1 Pf(b0, j) + α2 Pf(a0, i+ 2),

then

d

dt
Pf(a0, i1, · · · i2N−1)

=α

i2N−1∑
k=i1

kPf(a0, i1, . . . , i2N−1) + α1 Pf(b0, i1, i2, . . . , i2N−1)

+ α2

i2N∑
k=i1

Pf(a0, i1, i2, . . . , ik + 2, . . . , i2N−1). (A.9)

(5). If

d

dt
Pf(i, j) = −2αPf(i, j),

then

d

dt
Pf(i1, · · · i2N ) = −2NαPf(i1, · · · i2N ). (A.10)

(6). If

d

dt
Pf(i, j) = −2αPf(i, j), and

d

dt
Pf(a0, i) = −αPf(a0, i),

then

d

dt
Pf(a0, i1, · · · i2N+1) = −(2N + 1)αPf(a0, i1, · · · i2N+1). (A.11)
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A.3. Bilinear identities on Pfaffians. Here we present two commonly used Pfaffian identi-

ties (see e.g. [95, Chapter 2]), that is,

Pf(a1, a2, a3, a4, 1, 2, . . . , 2N) Pf(1, 2, . . . , 2N)

=

4∑
j=2

(−1)j Pf(a1, aj , 1, 2, . . . , 2N) Pf(a2, âj , a4, 1, 2, . . . , 2N), (A.12)

Pf(a1, a2, a3, 1, 2, . . . , 2N − 1)Pf(1, 2, . . . , 2N)

=

3∑
j=1

(−1)j−1 Pf(aj , 1, 2, . . . , 2N − 1)Pf(a1, âj , a3, 1, 2, . . . , 2N). (A.13)

Appendix B. Proof of Lemma 6.1

Proof. As for the biorthogonal relation (6.4)

⟨Pn(x; t), Pm(y; t)⟩ = 0, m = 0, 1, . . . , n− 1,

by differentiating it with respect to time t, we get

0 =

∫∫ (
d
dt (Pn(x; t))Pm(y; t) + Pn(x; t)

d
dtPm(y; t)

)
(x+ y)

(x+ y)2
w(x; t)w(y; t)dxdy

−
∫∫

α(x+ y)Pn(x; t)Pm(y; t)

(x+ y)2
w(x; t)w(y; t)dxdy

+

∫∫
Pn(x; t)Pm(y; t)

x+ y

(
d

dt
w(x; t)w(y; t) + w(x; t)

d

dt
w(y; t) + 2αw(x; t)w(y; t)

)
dxdy

=

〈
d

dt
Pn(x; t), Pm(y; t)

〉
+ ⟨(α1(x+ y) + α2(x

2 + y2))Pn(x; t), Pm(y; t)⟩, (B.1)

where we used the orthogonality and (6.11) in the last step. In addition, it obviously follows

from (6.7) that

⟨(x+ y)(Pn+1(x; t) + an+1Pn(x; t)), Pm(y; t)⟩

=

∫∫
(Pn+1(x; t) + an+1Pn(x; t))Pm(y; t)w(x; t)w(y; t)dxdy

=

∫
(Pn+1(x; t) + an+1Pn(x; t))w(x; t)dx

∫
Pm(y; t)w(y; t)dy = 0. (B.2)

Now we simplify (B.1) by use of the orthogonality (6.4) and (B.2). First, we deal with the

term −⟨(x+ y)Pn(x; t), Pm(y; t)⟩. Since

⟨Pn(x; t), yPk(y; t)⟩ = 0, k < n− 1,

we have

− ⟨(x+ y)Pn(x; t), Pm(y; t)⟩

=− ⟨xPn(x; t), Pm(y; t)⟩ − 1

an+1
⟨(x+ y − x)(Pn+1(x; t) + an+1Pn(x; t)), Pm(y; t)⟩

=− ⟨xPn(x; t), Pm(y; t)⟩ − 1

an+1

∫∫
(Pn+1(x; t) + an+1Pn(x; t))Pm(y; t)w(x; t)w(y; t)dxdy

+
1

an+1
⟨x(Pn+1(x; t) + an+1Pn(x; t)), Pm(y; t)⟩.
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By employing (B.2), we immediately get

−⟨(x+ y)Pn(x; t), Pm(y; t)⟩ = 1

an+1
⟨xPn+1(x; t), Pm(y; t)⟩

=
1

an+1
⟨(xPn+1(x; t)− Pn+2(x; t)), Pm(y; t)⟩.

It is noted that, by rewriting the recurrence relation (6.8) as

xPn+1(x; t)− Pn+2(x; t) = bn+1Pn+1(x) + cn+1Pn(x) + dn+1Pn−1(x; t)− an+1xPn(x; t),

and using the orthogonality, we have

1

an+1
⟨(xPn+1(x; t)− Pn+2(x; t)), Pm(y; t)⟩

=
1

an+1
⟨(dn+1Pn−1(x; t)− an+1xPn(x; t)), Pm(y; t)⟩

=

〈
dn+1

an+1
Pn−1(x; t)− xPn(x; t), Pm(y; t)

〉
=

〈
dn+1

an+1
Pn−1(x; t)− xPn(x; t) + Pn+1(x; t)− (an − bn)Pn(x; t), Pm(y; t)

〉
.

Therefore we conclude

− ⟨(x+ y)Pn(x; t), Pm(y; t)⟩

=

〈
dn+1

an+1
Pn−1(x; t)− xPn(x; t) + Pn+1(x; t)− (an − bn)Pn(x; t), Pm(y; t)

〉
. (B.3)

Next, we proceed to simplify the expression −α2⟨(x2 + y2)Pn(x; t), Pm(y; t)⟩. On one hand,

we utilize the orthogonality condition and the recurrence relation (6.8) as well as Eq. (B.2) to

get

− α2⟨Pn(x; t), y2Pm(y; t)⟩

=− α2

an+1
⟨Pn+1(x; t) + an+1Pn(x; t), y

2Pm(y; t)⟩+ α2

an+1
⟨Pn+1(x; t), y

2Pm(y; t)⟩.

One can easily observe that

− α2

an+1
⟨Pn+1(x; t) + an+1Pn(x; t), y

2Pm(y; t)⟩

=− α2

an+1
⟨(y(x+ y)− xy)Pn+1(x; t) + an+1Pn(x; t), Pm(y; t)⟩

=− α2

an+1

∫∫
R2

+

(Pn+1(x; t) + an+1Pn(x; t))yPm(y; t)w(x; t)w(y; t)dxdy

+
α2

an+1
⟨x(Pn+1(x; t) + an+1Pn(x; t)), yPm(y; t)⟩,

based on which and using the recurrence relation (6.8) and (B.2), we can get

− α2⟨Pn(x; t), y2Pm(y; t)⟩

=
α2

an+1
⟨cn+1Pn(x; t) + dn+1Pn−1(x; t)), yPm(y; t)⟩+ α2

an+1
⟨Pn+1(x; t), y

2Pm(y; t)

=
α2

an+1
⟨cn+1Pn(x; t) + dn+1Pn−1(x; t)), yPm(y; t)⟩

+
α2

an+1an+2
⟨Pn+2(x; t) + an+2Pn+1(x; t), y

2Pm(y; t)⟩
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=
α2

an+1
⟨cn+1Pn(x; t) + dn+1Pn−1(x; t), yPm(y; t)⟩

− α2

an+1an+2
⟨x(Pn+2(x; t) + an+2Pn+1(x; t)), yPm(y; t)⟩

+
α2

an+1an+2

∫∫
R2

+

(Pn+2(x; t) + an+2Pn+1(x; t))yPm(y; t)w(x; t)w(y; t)dxdy

= · · ·

=− α2dndn+1

anan+1
⟨Pn−2(x; t), Pm(y; t)⟩

− α2dn+1

an+1

(
cn+1

an+1
+
cn
an

− dn+2

an+1an+2
− dn+1

anan+1

)
⟨Pn−1(x; t), Pm(y; t)⟩ (B.4)

On the other hand, we can simplify −α2⟨x2Pn(x; t), Pm(y; t)⟩ in the same way. In fact, we have

− α2⟨x2Pn(x; t), Pm(y; t)⟩

=− α2⟨x2(Pn(x; t) + anPn−1(x; t)), Pm(y; t)⟩+ α2an⟨x2Pn−1(x; t), Pm(y; t)⟩

=− α2⟨x(Pn+1(x; t) + bnPn(x; t) + cnPn−1(x; t) + dnPn−2(x; t)), Pm(y; t)⟩

+ α2an⟨x2(Pn−1(x; t) + an−1Pn−2(x; t)), Pm(y; t)⟩ − α2an−1an⟨x2Pn−2(x; t), Pm(y; t)⟩

=− α2⟨x(Pn+1(x; t) + bnPn(x; t) + cnPn−1(x; t) + dnPn−2(x; t)), Pm(y; t)⟩

+ α2an⟨x(Pn(x; t) + bn−1Pn−1(x; t) + cn−1Pn−2(x; t) + dn−1Pn−3(x; t)), Pm(y; t)⟩

− α2an−1an⟨x2Pn−2(x; t), Pm(y; t)⟩,

where we used the recurrence relation (6.8) in the last two steps. By means of orthogonality

and the recurrence relation, we can derive

− α2⟨x(Pn+1(x; t) + bnPn(x; t) + cnPn−1(x; t) + dnPn−2(x; t)), Pm(y; t)⟩

+ α2an⟨x(Pn(x; t) + bn−1Pn−1(x; t) + cn−1Pn−2(x; t) + dn−1Pn−3(x; t)), Pm(y; t)⟩

− α2an−1an⟨x2Pn−2(x; t), Pm(y; t)⟩

=− α2⟨xPn+1(x; t)− Pn+2(x; t), Pm(y; t)⟩ − α2(bn − an)⟨xPn(x; t)− Pn+1(x; t), Pm(y; t)⟩

− α2⟨x(cnPn−1(x; t) + dnPn−2(x; t)), Pm(y; t)⟩ − α2an−1an⟨x2Pn−2(x; t), Pm(y; t)⟩

+ α2an⟨x(bn−1Pn−1(x; t) + cn−1Pn−2(x; t) + dn−1Pn−3(x; t)), Pm(y; t)⟩

= · · ·

=α2⟨an+1(xPn(x; t)− Pn+1(x; t) + (an − bn)Pn(x; t)), Pm(y; t)⟩ − α2⟨dn+1Pn−1(x; t), Pm(y; t)⟩

− α2(bn − an)⟨cnPn−1(x; t) + dnPn−2(x; t), Pm(y; t)⟩

+ α2an(bn − an)⟨xPn−1(x; t)− Pn(x; t), Pm(y; t)⟩

− α2⟨x(cnPn−1(x; t) + dnPn−2(x; t))− cnPn(x; t), Pm(y; t)⟩

+ α2an⟨x(bn−1Pn−1(x; t) + cn−1Pn−2(x; t) + dn−1Pn−3(x; t))− bn−1Pn(x; t), Pm(y; t)⟩

− α2an−1an⟨x(Pn−1(x; t) + bn−2Pn−2(x; t) + cn−2Pn−3(x; t) + dn−2Pn−4(x; t))− Pn(x; t), Pm(y; t)⟩

+ α2an−2an−1an⟨x2Pn−3(x; t), Pm(y; t)⟩.

Consequently, we have

− α2⟨x2Pn(x; t), Pm(y; t)⟩

=α2⟨an+1(xPn(x; t)− Pn+1(x; t) + (an − bn)Pn(x; t)), Pm(y; t)⟩
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− α2⟨dn+1Pn−1(x; t), Pm(y; t)⟩ − α2(bn − an)⟨cnPn−1(x; t) + dnPn−2(x; t), Pm(y; t)⟩

+ α2an(bn − an)⟨xPn−1(x; t)− Pn(x; t), Pm(y; t)⟩

− α2⟨x(cnPn−1(x; t) + dnPn−2(x; t))− cnPn(x; t), Pm(y; t)⟩

+ α2an⟨x(bn−1Pn−1(x; t) + cn−1Pn−2(x; t) + dn−1Pn−3(x; t))− bn−1Pn(x; t), Pm(y; t)⟩

− α2an−1an⟨x(Pn−1(x; t) + bn−2Pn−2(x; t) + cn−2Pn−3(x; t) + dn−2Pn−4(x; t))− Pn(x; t), Pm(y; t)⟩

+ α2an−2an−1an⟨x2Pn−3(x; t), Pm(y; t)⟩. (B.5)

Finally, by inserting Eq. (B.3), (B.4) and (B.5) into (B.1), we eventually obtain〈
d

dt
Pn(x; t)− nαPn(x; t), Pm(y; t)

〉
=⟨−(α1 − α2an+1)(xPn(x; t)− Pn+1(x; t) + (an − bn)Pn(x; t)) +

(
α1
dn+1

an+1
− α2dn+1

− α2(bn − an)cn − α2dn+1

an+1

(
cn+1

an+1
+
cn
an

− dn+2

an+1an+2
− dn+1

anan+1

))
Pn−1(x; t)

+ α2(an(an − bn)− cn + anbn−1 − an−1an)(xPn−1(x)− Pn(x; t))

+ α2

(
− dndn+1

anan+1
+ dn(an − bn)− x(dn − ancn−1 + an−1anbn−2)

)
Pn−2(x; t)

+ α2anx(xan−2an−1 + dn−1 − an−1cn−2)Pn−3(x; t)− α2an−1andn−2xPn−4(x; t), Pm(y; t)⟩,

where we used the fact that ⟨nαPn(x; t), Pm(y; t)⟩ = 0 for m = 0, 1, . . . , n − 1. Observe that

the d
dtPn(x; t)−nαPn(x; t), xPn(x; t)−Pn+1(x; t)+(an−bn)Pn(x; t) and xPn−1(x; t)−Pn(x; t)

are all polynomials of degree n − 1 in x, the expression (6.12) for d
dtPn(x; t) follows from the

orthogonality. Therefore, we complete the proof. □

Appendix C. Proof of Corollary 7.2

Proof. Since (7.12a) and (7.12b) are straightforward consequence of applying the derivative

formulae (7.10) to (7.11a) and (7.11b), we are remaining to prove (7.12c) and (7.12d). Based

on (7.11c), by use of the derivative formulae (7.10), we get

∂2

∂t21
(τ2nP2n(z; t))

=
∂

∂t1
(Pf(0, . . . , 2n− 1, 2n+ 1, z)− z Pf(0, 1, . . . , 2n, z))

=
∂

∂t1

( 2n−1∑
j=0

(−z)j Pf(0, . . . , ĵ, . . . , 2n− 1, 2n+ 1)

+

2n−1∑
j=0

(−1)j+1zj+1 Pf(0, 1, . . . , ĵ, . . . , 2n)

)

=

2n−2∑
j=0

(−z)j Pf(0, . . . , ĵ, . . . , 2n− 2, 2n, 2n+ 1)

+

2n−1∑
j=0

(−z)j Pf(0, . . . , ĵ, . . . , 2n− 1, 2n+ 2)

− 2z

2n−2∑
j=0

(−z)j Pf(0, . . . , ĵ, . . . , 2n− 1, 2n+ 1)
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+ z2
2n−2∑
j=0

(−z)j Pf(0, . . . , ĵ, . . . , 2n) + (−1)2nz2n Pf(0, . . . , 2n− 2, 2n+ 1), (C.1)

Observe that the expansion of the Pfaffian gives

Pf(0, . . . , 2n− 1, 2n+ 1, z) =

2n−2∑
j=0

(−z)j Pf(0, . . . , ĵ, . . . , 2n− 1, 2n+ 1)

− z2n−1 Pf(0, . . . , 2n− 2, 2n+ 1) + z2n+1 Pf(0, . . . , 2n− 1),

Pf(0, . . . , 2n− 2, 2n, 2n+ 1, z) =

2n−2∑
j=0

(−z)j Pf(0, . . . , ĵ, . . . , 2n− 2, 2n, 2n+ 1)

− z2n Pf(0, . . . , 2n− 2, 2n+ 1) + z2n+1 Pf(0, . . . , 2n− 2, 2n),

Pf(0, . . . , 2n− 1, 2n+ 2, z) =

2n−1∑
j=0

(−z)j Pf(0, . . . , ĵ, . . . , 2n− 1, 2n+ 2)

+ z2n+2 Pf(0, . . . , 2n− 1),

Pf(0, . . . , 2n, z) =

2n−2∑
j=0

(−z)j Pf(0, . . . , ĵ, . . . , 2n)− z2n−1 Pf(0, . . . , 2n− 2, 2n)

+ z2n Pf(0, . . . , 2n− 1),

from which it is not hard to see that (C.1) can be equivalently written as

∂2

∂t21
(τ2nP2n(z; t))

=− 2z Pf(0, . . . , 2n− 1, 2n+ 1, z) + Pf(0, . . . , 2n− 2, 2n, 2n+ 1, z)

+ Pf(0, . . . , 2n− 1, 2n+ 2, z) + z2 Pf(0, . . . , 2n, z).

This confirms the validity of (7.12c).

Similarly, we can demonstrate the formula (7.12d). In fact, based on the expression (7.11d)

and the derivative formula (7.10), we have

∂2

∂t21
(τ2n+1P2n+1(z; t))

=
∂

∂t1
(Pf(d0, 0, . . . , 2n, 2n+ 2, z)− z Pf(d0, 0, . . . , 2n+ 1, z))

=
∂

∂t1

( 2n∑
j=0

(−1)j+1zj Pf(d0, 0, . . . , ĵ, . . . , 2n, 2n+ 2)

− z

2n∑
j=0

(−1)j+1zj Pf(d0, 0, . . . , ĵ, . . . , 2n+ 1)

)

=

2n∑
j=0

(−1)j+1zj Pf(d0, 0, . . . , ĵ, . . . , 2n, 2n+ 3)

+

2n−1∑
j=0

(−1)j+1zj Pf(d0, 0, . . . , ĵ, . . . , 2n− 1, 2n+ 1, 2n+ 2)

+ 2z

2n−1∑
j=0

(−z)j Pf(d0, 0, . . . , ĵ, . . . , 2n, 2n+ 2)
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− z2
2n−1∑
j=0

(−z)j Pf(d0, 0, . . . , ĵ, . . . , 2n+ 1) + z2n+1 Pf(d0, 0, . . . , 2n− 1, 2n+ 2).

Recall that Pfaffian’s expansion gives

Pf(d0, 0, . . . , 2n, 2n+ 2, z) =

2n−1∑
j=0

(−1)j+1zj Pf(d0, 0, . . . , ĵ, . . . , 2n, 2n+ 2)

− z2n Pf(d0, 0, . . . , 2n− 1, 2n+ 2) + z2n+2 Pf(d0, 0, . . . , 2n),

Pf(d0, 0, . . . , 2n, 2n+ 3, z) =

2n∑
j=0

(−1)j+1zj Pf(d0, 0, . . . , ĵ, . . . , 2n, 2n+ 3)

+ z2n+3 Pf(d0, 0, . . . , 2n),

Pf(d0, 0, . . . , 2n− 1, 2n+ 1, 2n+ 2, z)

=

2n−1∑
j=0

(−1)j+1zj Pf(d0, 0, . . . , ĵ, . . . , 2n− 1, 2n+ 1, 2n+ 2)

− z2n+1 Pf(d0, 0, . . . , 2n− 1, 2n+ 2) + z2n+2 Pf(d0, 0, . . . , 2n− 1, 2n+ 1),

Pf(d0, 0, . . . , 2n+ 1, z) =

2n−1∑
j=0

(−1)j+1zj Pf(d0, 0, . . . , ĵ, . . . , 2n+ 1)

− z2n Pf(d0, 0, . . . , 2n− 1, 2n+ 1) + z2n+1 Pf(d0, 0, . . . , 2n),

based on which, we are led to (7.12d) from (7.12d). □

Appendix D. Proof of Lemma 7.6

Proof. We first proceed the proof of (7.16a). Based on the expansion formulae of the Pfaffian,

we have

d

dt
(τ2nP2n(z; t))

=
d

dt

 2n∑
j=0

(−1)j Pf(0, 1, . . . , ĵ, . . . , 2n)zj


=

2n∑
j=0

(
(−z)j d

dt
Pf(0, 1, . . . , ĵ, . . . , 2n)

)

+

2n∑
j=0

(
(−1)jαj Pf(0, 1, . . . , ĵ, . . . , 2n)zj

)
. (D.1)

As for the first expression at the right hand side above, applying the derivative formula (A.6),

we have

2n∑
j=0

(
(−z)j d

dt
Pf(0, 1, . . . , ĵ, . . . , 2n)

)

=α

2n∑
j=0

(−z)j(n(2n+ 1)− j) Pf(0, 1, . . . , ĵ, . . . , 2n)

+ α1

(
Pf(1, . . . , 2n− 1, 2n+ 1) + z2n Pf(0, 1, . . . , 2n− 2, 2n)
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+

2n−1∑
j=1

(−z)j
(
Pf(0, 1, . . . , ĵ − 1, . . . , 2n) + Pf(0, 1, . . . , ĵ, . . . , 2n− 1, 2n+ 1)

))

+ α2

( 2n−2∑
j=0

(−z)j Pf(0, . . . , ĵ, . . . , 2n− 2, 2n+ 1, 2n)

+

2n−1∑
j=0

(−z)j Pf(0, . . . , ĵ, . . . , 2n− 1, 2n+ 2)

+

2n−1∑
j=3

(−z)j Pf(0, . . . , j − 3, j, j − 1, j + 1, . . . , 2n) + z2 Pf(2, 1, 3, . . . , 2n)

+ z2n
(
Pf(0, . . . , 2n− 3, 2n, 2n− 1) + Pf(0, . . . , 2n− 2, 2n+ 1)

))
=α

2n∑
j=0

(−z)j(n(2n+ 1)− j) Pf(0, 1, . . . , ĵ, . . . , 2n)

+ α1

( 2n−1∑
j=0

(−z)j Pf(0, . . . , ĵ, . . . , 2n− 1, 2n+ 1)

+

2n∑
j=1

(−z)j Pf(0, 1, . . . , ĵ − 1, . . . , 2n)

)

+ α2

( 2n−2∑
j=0

(−z)j Pf(0, . . . , ĵ, . . . , 2n− 2, 2n+ 1, 2n)

+

2n−1∑
j=0

(−z)j Pf(0, . . . , ĵ, . . . , 2n− 1, 2n+ 2)−
2n−1∑
j=3

(−z)j Pf(0, . . . , ĵ − 2, . . . , 2n)

− z2 Pf(1, . . . , 2n)− z2n(Pf(0, . . . , 2̂n− 2, 2n− 1, 2n)− Pf(0, . . . , 2n− 2, 2n+ 1))

)
.

By use of the Pfaffian expansion, we easily see

2n−1∑
j=0

(−z)j Pf(0, . . . , ĵ, . . . , 2n− 1, 2n+ 1)

=Pf(0, . . . , 2n− 1, 2n+ 1, z)− z2n+1 Pf(0, . . . , 2n− 1),

2n∑
j=1

(−z)j Pf(0, 1, . . . , ĵ − 1, . . . , 2n)

=− z Pf(0, 1, . . . , 2n, z) + z2n+1 Pf(0, . . . , 2n− 1),

2n∑
j=2

(−z)j Pf(0, . . . , ĵ − 2, . . . , 2n)

=

2n−1∑
j=3

(−z)j Pf(0, . . . , ĵ − 2, . . . , 2n) + z2 Pf(1, . . . , 2n) + z2n Pf(0, . . . , 2̂n− 2, 2n− 1, 2n).

Consequently, we obtain

2n∑
j=0

(−z)j d
dt

Pf(0, 1, . . . , ĵ, . . . , 2n)
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=α

2n∑
j=0

(−z)j(n(2n+ 1)− j) Pf(0, 1, . . . , ĵ, . . . , 2n)

+ α1

(
Pf(0, . . . , 2n− 1, 2n+ 1, z)− z Pf(0, 1, . . . , 2n, z)

)
+ α2

(
−

2n−2∑
j=0

(−z)j Pf(0, . . . , ĵ, . . . , 2n− 2, 2n, 2n+ 1)

+

2n−1∑
j=0

(−z)j Pf(0, . . . , ĵ, . . . , 2n− 1, 2n+ 2)

−
2n∑
j=2

(−z)j Pf(0, . . . , ĵ − 2, . . . , 2n) + z2n Pf(0, . . . , 2n− 2, 2n+ 1)

)
.

Furthermore, it is noted that

Pf(0, 1, . . . , 2n− 2, 2n, 2n+ 1, z) =

2n−2∑
j=0

(−z)j Pf(0, . . . , ĵ, . . . , 2n− 2, 2n, 2n+ 1)

− z2n Pf(0, . . . , 2n− 2, 2n+ 1)

+ z2n+1 Pf(0, . . . , 2n− 2, 2n),

Pf(0, 1, . . . , 2n− 1, 2n+ 2, z) =

2n−1∑
j=0

(−z)j Pf(0, . . . , ĵ, . . . , 2n− 1, 2n+ 2)

+ z2n+2 Pf(0, . . . , 2n− 1),

z2 Pf(0, 1, . . . , 2n, z) =

2n∑
j=2

(−z)j Pf(0, . . . , ĵ − 2, . . . , 2n)

− z2n+1 Pf(0, . . . , 2n− 2, 2n) + z2n+2 Pf(0, . . . , 2n− 1),

from which we derive for the second expression in (D.1) that

2n∑
j=0

(−z)j d
dt

Pf(0, 1, . . . , ĵ, . . . , 2n)

=α

2n∑
j=0

(−z)j(n(2n+ 1)− j) Pf(0, 1, . . . , ĵ, . . . , 2n)

+ α1

(
Pf(0, . . . , 2n− 1, 2n+ 1, z)− z Pf(0, 1, . . . , 2n, z)

)
+ α2

(
− Pf(0, 1, . . . , 2n− 2, 2n, 2n+ 1, z)

+ Pf(0, 1, . . . , 2n− 1, 2n+ 2, z)− z2 Pf(0, 1, . . . , 2n, z)
)
. (D.2)

Inserting (D.2) into (D.1) immediately leads to (7.16a).

Similarly, we can establish the validity of (7.16b). In fact, we have

d

dt
(τ2n+1P2n+1(z; t))

=
d

dt

( 2n+1∑
j=0

(−1)j+1 Pf(d0, 0, 1, . . . , ĵ, . . . , 2n+ 1)zj
)
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=

2n+1∑
j=0

(−1)j+1zj
d

dt
Pf(d0, 0, . . . , ĵ, . . . , 2n+ 1)

+

2n+1∑
j=0

(−1)j+1αj Pf(d0, 0, . . . , ĵ, . . . , 2n+ 1)zj . (D.3)

By employing the derivative formula (A.7), we obtain

2n+1∑
j=0

(−1)j+1zj
d

dt
Pf(d0, 0, . . . , ĵ, . . . , 2n+ 1)

=α

2n+1∑
j=0

(−1)j+1((n+ 1)(2n+ 1)− j)zj Pf(d0, 0, . . . , ĵ, . . . , 2n+ 1)

+ α1

( 2n+1∑
j=1

(−1)j+1zj Pf(d0, 0, . . . , ĵ − 1, . . . , 2n+ 1)

+

2n∑
j=0

(−1)j+1zj Pf(d0, 0, . . . , ĵ, . . . , 2n, 2n+ 2)

)

+ α2

( 2n−1∑
j=0

(−1)j+1zj Pf(d0, 0, . . . , ĵ, . . . , 2n− 1, 2n+ 2, 2n+ 1)

+

2n∑
j=0

(−1)j+1zj Pf(d0, 0, . . . , ĵ, . . . , 2n, 2n+ 3)− z2 Pf(d0, 2, 1, 3, . . . , 2n+ 1)

+

2n∑
j=3

(−1)j+1zj Pf(d0, 0, . . . , j − 3, j, j − 1, j + 1, . . . , 2n+ 1)

+ z2n+1(Pf(d0, 0, . . . , 2n− 2, 2n+ 1, 2n) + Pf(d0, 0, . . . , 2n− 1, 2n+ 2))

)
.

According to the expansion formulae for Pfaffians, we have

z Pf(d0, 0, . . . , 2n+ 1, z),

=−
2n+1∑
j=1

(−1)j+1zj Pf(d0, 0, . . . , ĵ − 1, . . . , 2n+ 1) + z2n+2 Pf(d0, 0, . . . , 2n),

Pf(d0, 0, . . . , 2n, 2n+ 2, z),

=

2n∑
j=0

(−1)j+1zj Pf(d0, 0, . . . , ĵ, . . . , 2n, 2n+ 2) + z2n+2 Pf(d0, 0, . . . , 2n),

using which, we obtain

2n+1∑
j=0

(−1)j+1zj
d

dt
Pf(d0, 0, . . . , ĵ, . . . , 2n+ 1)

=α

2n+1∑
j=0

(−1)j+1((n+ 1)(2n+ 1)− j)zj Pf(d0, 0, . . . , ĵ, . . . , 2n+ 1)

+ α1

(
− z Pf(d0, 0, . . . , 2n+ 1, z) + Pf(d0, 0, . . . , 2n, 2n+ 2, z)

)
+ α2

( 2n−1∑
j=0

(−z)j Pf(d0, 0, . . . , ĵ, . . . , 2n− 1, 2n+ 1, 2n+ 2)
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−
2n∑
j=0

(−z)j Pf(d0, 0, . . . , ĵ, . . . , 2n, 2n+ 3)

+

2n+1∑
j=2

(−z)j Pf(d0, 0, . . . , ĵ − 2, . . . , 2n+ 1) + z2n+1 Pf(d0, 0, . . . , 2n− 1, 2n+ 2)

)
.

Recall that we also have the following expansions

Pf(d0, 0, . . . , 2n− 1, 2n+ 1, 2n+ 2, z)

=−
2n−1∑
j=0

(−z)j Pf(d0, 0, . . . , ĵ, . . . , 2n− 1, 2n+ 1, 2n+ 2)

− z2n+1 Pf(d0, 1, . . . , 2n− 1, 2n+ 2) + z2n+2 Pf(d0, 0, . . . , 2n− 1, 2n+ 1),

Pf(d0, 0, . . . , 2n, 2n+ 3, z)

=−
2n∑
j=0

(−z)j Pf(d0, 0, . . . , ĵ, . . . , 2n, 2n+ 3) + z2n+3 Pf(d0, 0, . . . , 2n),

z2 Pf(d0, 0, . . . , 2n− 1, 2n, 2n+ 1, z)

=−
2n+1∑
j=2

(−z)j Pf(d0, 0, . . . , ĵ − 2, . . . , 2n+ 1) + z2n+3 Pf(d0, 0, . . . , 2n)

− z2n+2 Pf(d0, 0, . . . , 2n− 1, 2n+ 1).

Consequently, we are led to

2n+1∑
j=0

(−1)j+1zj
d

dt
Pf(d0, 0, . . . , ĵ, . . . , 2n+ 1)

=α

2n+1∑
j=0

(−1)j+1((n+ 1)(2n+ 1)− j)zj Pf(d0, 0, . . . , ĵ, . . . , 2n+ 1)

+ α1

(
− z Pf(d0, 0, . . . , 2n+ 1, z) + Pf(d0, 0, . . . , 2n, 2n+ 2, z)

)
+ α2

(
− Pf(d0, 0, . . . , 2n− 1, 2n+ 1, 2n+ 2, z)

+ Pf(d0, 0, . . . , 2n, 2n+ 3, z)− z2 Pf(d0, 0, . . . , 2n+ 1, z)
)
. (D.4)

Plugging (D.4) into Eqs. (D.3), we immediately get the desired formula (7.16b). Therefore, we

complete the proof. □

Appendix E. Proof of Theorem 7.7

Proof. We proceed the proof based on the parity.

(I). Let’s first consider the even case. It follows from (7.15) and (7.16a) that

τ22n
d

dt
P2n(z; t)

=− Pf(0, . . . , 2n, z)
(
n(2n− 1)ατ2n + α1 Pf(0, . . . , 2n− 2, 2n)

+ α2

(
Pf(0, . . . , 2n− 3, 2n, 2n− 1) + Pf(0, . . . , 2n− 2, 2n+ 1)

))
+ τ2n

(
n(2n+ 1)αPf(0, . . . , 2n, z) + α1(Pf(0, . . . , 2n− 1, 2n+ 1, z)

− z Pf(0, . . . , 2n, z)) + α2

(
− Pf(0, . . . , 2n− 2, 2n, 2n+ 1, z)
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+ Pf(0, . . . , 2n− 1, 2n+ 2, z)− z2 Pf(0, . . . , 2n, z)
))
. (E.1)

Regarding the terms with α1, we have

− Pf(0, . . . , 2n, z) Pf(0, . . . , 2n− 2, 2n)

+ τ2n
(
Pf(0, . . . , 2n− 1, 2n+ 1, z)− z Pf(0, . . . , 2n, z)

)
=− τ2nP2n

∂

∂t1
τ2n + τ2n

∂

∂t1
(τ2nP2n) = τ22n

∂

∂t1
P2n (E.2)

from (7.11a) and (7.11c). In the following, we deal with the terms with α2. We begin with

collecting some useful formulae. By employing the Pfaffian identities in (A.12) and (A.13), it

is easy to see that the following equalities hold

Pf(d0, d1, 0, . . . , 2n, z)τ2n

=Pf(d0, d1, 0, . . . , 2n− 1)Pf(0, . . . , 2n, z)

− Pf(d0, 0, . . . , 2n) Pf(d1, 0, . . . , 2n− 1, z)

+ Pf(d0, 0, . . . , 2n− 1, z) Pf(d1, 0, . . . , 2n), (E.3)

− Pf(0, . . . , 2n− 2, 2n+ 1)Pf(0, . . . , 2n, z)

=Pf(2n− 1, 2n, z, 0, . . . , 2n− 2)Pf(0, . . . , 2n− 2, 2n+ 1)

− Pf(0, . . . , 2n− 2, 2n) Pf(0, . . . , 2n− 2, 2n− 1, 2n+ 1, z)

− Pf(0, . . . , 2n− 2, z) Pf(0, . . . , 2n− 2, 2n− 1, 2n, 2n+ 1), (E.4)

− Pf(0, . . . , 2n− 2, 2n, 2n+ 1, z) Pf(0, . . . , 2n− 1)

=Pf(0, . . . , 2n− 2, 2n− 1)Pf(0, . . . , 2n− 2, 2n, 2n+ 1, z)

− Pf(0, . . . , 2n− 2, 2n) Pf(0, . . . , 2n− 2, 2n− 1, 2n+ 1, z)

− Pf(0, . . . , 2n− 2, z) Pf(0, . . . , 2n− 2, 2n− 1, 2n, 2n+ 1). (E.5)

With the help of (E.4), (E.5), (7.14b) and (7.12a), we obtain

− Pf(0, . . . , 2n, z)(Pf(0, . . . , 2n− 3, 2n, 2n− 1) + Pf(0, . . . , 2n− 2, 2n+ 1))

+ τ2n(−Pf(0, . . . , 2n− 2, 2n, 2n+ 1, z) + Pf(0, . . . , 2n− 1, 2n+ 2, z)− z2 Pf(0, . . . , 2n, z))

=Pf(0, . . . , 2n, z)
∂2

∂t21
τ2n

+ τ2n(Pf(0, . . . , 2n− 1, 2n+ 2, z)− z2 Pf(0, . . . , 2n, z))

+ 2Pf(0, . . . , 2n− 1)Pf(0, . . . , 2n− 2, 2n, 2n+ 1, z)

+ Pf(0, . . . , 2n− 2, 2n+ 1)Pf(0, . . . , 2n, z)

− 3Pf(0, . . . , 2n− 2, 2n) Pf(0, . . . , 2n− 1, 2n+ 1, z)

− 3Pf(0, . . . , 2n− 2, z) Pf(0, . . . , 2n+ 1). (E.6)

We can also get from (7.14b) and the Pfaffian identity (E.3)

− z2 Pf(0, . . . , 2n, z)τ2n

=z(−Pf(d0, d1, 0, . . . , 2n, z)− Pf(0, . . . , 2n− 1, 2n+ 1, z))τ2n

=− z Pf(0, . . . , 2n− 1, 2n+ 1, z)τ2n − z(Pf(d0, d1, 0, . . . , 2n− 1)Pf(0, . . . , 2n, z)

− Pf(d0, 0, . . . , 2n) Pf(d1, 0, . . . , 2n− 1, z) + Pf(d0, 0, . . . , 2n− 1, z) Pf(d1, 0, . . . , 2n)),
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by substituting which into (E.6), we have

− Pf(0, . . . , 2n, z)(Pf(0, . . . , 2n− 3, 2n, 2n− 1) + Pf(0, . . . , 2n− 2, 2n+ 1))

+ τ2n(−Pf(0, . . . , 2n− 2, 2n, 2n+ 1, z) + Pf(0, . . . , 2n− 1, 2n+ 2, z)− z2 Pf(0, . . . , 2n, z))

=Pf(0, . . . , 2n, z)
∂2

∂t21
τ2n

+ τ2n(Pf(0, . . . , 2n− 1, 2n+ 2, z)− z Pf(0, . . . , 2n− 1, 2n+ 1, z))

+ 2Pf(0, . . . , 2n− 1)Pf(0, . . . , 2n− 2, 2n, 2n+ 1, z)

+ Pf(0, . . . , 2n− 2, 2n+ 1)Pf(0, . . . , 2n, z)

− 3Pf(0, . . . , 2n− 2, 2n) Pf(0, . . . , 2n− 1, 2n+ 1, z)

− 3Pf(0, . . . , 2n− 2, z) Pf(0, . . . , 2n+ 1)

− z(Pf(d0, d1, 0, . . . , 2n− 1)Pf(0, . . . , 2n, z)

+ Pf(d0, 0, . . . , 2n) Pf(d1, 0, . . . , 2n− 1, z)− Pf(d0, 0, . . . , 2n− 1, z) Pf(d1, 0, . . . , 2n))

=Pf(0, . . . , 2n, z)
∂2

∂t21
τ2n

+ (Pf(0, . . . , 2n− 1, 2n+ 2, z)− z Pf(0, . . . , 2n− 1, 2n+ 1, z)) Pf(0, . . . , 2n− 1)

+ 2Pf(0, . . . , 2n− 1)Pf(0, . . . , 2n− 2, 2n, 2n+ 1, z)

+ Pf(0, . . . , 2n− 2, 2n+ 1)Pf(0, . . . , 2n, z)

− 2Pf(0, . . . , 2n− 2, 2n) Pf(0, . . . , 2n− 1, 2n+ 1, z)

− 3Pf(0, . . . , 2n− 2, z) Pf(0, . . . , 2n+ 1) + z Pf(d0, 0, . . . , 2n) Pf(d1, 0, . . . , 2n− 1, z)

− Pf(d0, d1, 0, . . . , 2n− 1)Pf(d0, d1, 0, . . . , 2n, z)

− Pf(d1, 0, . . . , 2n)(Pf(d0, 0, . . . , 2n− 2, 2n, z)− Pf(d1, 0, . . . , 2n− 1, z)),

where (7.14b) and (7.14d) are used. If we make use of the Pfaffian identity

Pf(0, . . . , 2n− 2, 2n) Pf(0, . . . , 2n− 1, 2n+ 1, z)

=Pf(0, . . . , 2n− 1)Pf(0, . . . , 2n− 2, 2n, 2n+ 1, z)

+ Pf(0, . . . , 2n− 2, 2n+ 1)Pf(0, . . . , 2n, z)

− Pf(0, . . . , 2n− 2, z) Pf(0, . . . , 2n+ 1),

then we can arrive at

− Pf(0, . . . , 2n, z)(Pf(0, . . . , 2n− 3, 2n, 2n− 1) + Pf(0, . . . , 2n− 2, 2n+ 1))

+ τ2n(−Pf(0, . . . , 2n− 2, 2n, 2n+ 1, z) + Pf(0, . . . , 2n− 1, 2n+ 2, z)− z2 Pf(0, . . . , 2n, z))

=Pf(0, . . . , 2n, z)
∂2

∂t21
τ2n

+ (Pf(0, . . . , 2n− 1, 2n+ 2, z)− z Pf(0, . . . , 2n− 1, 2n+ 1, z)) Pf(0, . . . , 2n− 1)

− Pf(0, . . . , 2n− 2, 2n+ 1)Pf(0, . . . , 2n, z)− Pf(0, . . . , 2n− 2, z) Pf(0, . . . , 2n+ 1)

+ z Pf(d0, 0, . . . , 2n) Pf(d1, 0, . . . , 2n− 1, z)

− Pf(d0, d1, 0, . . . , 2n− 1)Pf(d0, d1, 0, . . . , 2n, z)

− Pf(d1, 0, . . . , 2n)(Pf(d0, 0, . . . , 2n− 2, 2n, z)− Pf(d1, 0, . . . , 2n− 1, z))
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=τ2nP2n
∂2

∂t21
τ2n + Pf(0, . . . , 2n− 1, 2n+ 2, z) Pf(0, . . . , 2n− 1)

− zτ2n(
∂

∂t1
(τ2nP2n) + zτ2nP2n)− Pf(0, . . . , 2n− 2, 2n+ 1)Pf(0, . . . , 2n, z)

− τ2n−2P2n−2τ2n+2 + zτ2n+1
∂

∂t1
(τ2n−1P2n−1)

+
∂

∂t1
τ2n

∂

∂t1
(τ2nP2n)− zτ2n−1P2n−1

∂

∂t1
τ2n+1. (E.7)

Recall that (7.12c) gives

(Pf(0, . . . , 2n− 1, 2n+ 2, z) + Pf(0, . . . , 2n− 2, 2n, 2n+ 1, z)) τ2n

=

(
∂2

∂t21
(τ2nP2n) + 2z

∂

∂t1
(τ2nP2n) + z2τ2nP2n

)
τ2n. (E.8)

If we plug the Pfaffian identities

− Pf(0, . . . , 2n− 2, 2n+ 1)Pf(0, . . . , 2n, z)

=Pf(0, . . . , 2n− 1)Pf(0, . . . , 2n− 2, 2n, 2n+ 1, z)

− Pf(0, . . . , 2n− 2, 2n) Pf(0, . . . , 2n− 1, 2n+ 1, z)

− Pf(0, . . . , 2n− 2, z) Pf(0, . . . , 2n+ 1)

=τ2n Pf(0, . . . , 2n− 2, 2n, 2n+ 1, z)− ∂

∂t1
τ2n(

∂

∂t1
(τ2nP2n)

+ zτ2nP2n)− τ2n−2P2n−2τ2n+2

and (E.8) to the right hand side of (E.7), we get

− Pf(0, . . . , 2n, z)(Pf(0, . . . , 2n− 3, 2n, 2n− 1) + Pf(0, . . . , 2n− 2, 2n+ 1))

+ τ2n(−Pf(0, . . . , 2n− 2, 2n, 2n+ 1, z) + Pf(0, . . . , 2n− 1, 2n+ 2, z)− z2 Pf(0, . . . , 2n, z))

=τ2nP2n
∂2

∂t21
τ2n + zτ2n

∂

∂t1
(τ2nP2n)− 2τ2n−2τ2n+2P2n−2

+ zτ2n+1
∂

∂t1
(τ2n−1P2n−1)− zτ2n−1P2n−1

∂

∂t1
τ2n+1 − 2

∂

∂t1
τ2n

∂

∂t1
(τ2nP2n)

− zτ2nP2n
∂

∂t1
τ2n + τ2n

∂2

∂t21
(τ2nP2n)

=2τ2nP2n
∂2

∂t21
τ2n + zτ22n

∂

∂t1
P2n − 2τ2n−2τ2n+2P2n−2 + zτ2n−1τ2n+1

∂

∂t1
P2n−1

+ zτ2n+1P2n−1
∂

∂t1
τ2n−1 − zτ2n−1P2n−1

∂

∂t1
τ2n+1 − 2P2n(

∂

∂t1
τ2n)

2 + τ22n
∂2

∂t21
P2n. (E.9)

According to the formula in [48, eq.(3.38)], it can be inferred that

τ22n
∂

∂t1
P2n = −

(
τ2n−1

∂

∂t1
τ2n+1 − τ2n+1

∂

∂t1
τ2n−1

)
P2n−1 + τ2n−1τ2n+1

∂

∂t1
P2n−1,

by plugging which into (E.9), we can arrive at

− Pf(0, . . . , 2n, z)(Pf(0, . . . , 2n− 3, 2n, 2n− 1) + Pf(0, . . . , 2n− 2, 2n+ 1))

+ τ2n(−Pf(0, . . . , 2n− 2, 2n, 2n+ 1, z) + Pf(0, . . . , 2n− 1, 2n+ 2, z)− z2 Pf(0, . . . , 2n, z))

=2τ2nP2n
∂2

∂t21
τ2n − 2τ2n−2τ2n+2P2n−2 + 2zτ2n−1τ2n+1

∂

∂t1
P2n−1 + 2zτ2n+1P2n−1

∂

∂t1
τ2n−1
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− 2zτ2n−1P2n−1
∂

∂t1
τ2n+1 − 2P2n(

∂

∂t1
τ2n)

2 + τ22n
∂2

∂t21
P2n, (E.10)

Finally, based on (E.1), (E.2) and (E.10), we deduce that

τ22n
d

dt
P2n(z; t)

=2nατ22nP2n + α1τ
2
2n

∂

∂t1
P2n + α2

(
2τ2nP2n

∂2

∂t21
τ2n − 2τ2n−2τ2n+2P2n−2

+ 2zτ2n−1τ2n+1
∂

∂t1
P2n−1 + 2zτ2n+1P2n−1

∂

∂t1
τ2n−1

− 2zτ2n−1P2n−1
∂

∂t1
τ2n+1 − 2P2n

(
∂

∂t1
τ2n

)2

+ τ22n
∂2

∂t21
P2n

)
. (E.11)

(II). Now we focus on some formulae on τ22n+1
d
dtP2n+1(z; t). We first collect some useful

formulae. Combining equations (7.15) and (7.16b), we obtain

τ22n+1

d

dt
P2n+1(z; t)

=(2n+ 1)ατ22n+1P2n+1 + α1

(
− Pf(d0, 0, . . . , 2n− 1, 2n+ 1)Pf(d0, 0, . . . , 2n+ 1, z)

+
(
− z Pf(d0, 0, . . . , 2n+ 1, z) + Pf(d0, 0, . . . , 2n, 2n+ 2, z)

)
τ2n+1

)
+ α2

((
Pf(d0, 0, . . . , 2n− 2, 2n, 2n+ 1)− Pf(d0, 0, . . . , 2n− 1, 2n+ 2)

)
Pf(d0, 0, . . . , 2n+ 1, z)

+
(
− Pf(d0, 0, . . . , 2n− 1, 2n+ 1, 2n+ 2, z) + Pf(d0, 0, . . . , 2n, 2n+ 3, z)

− z2 Pf(d0, 0, . . . , 2n+ 1, z)
)
Pf(d0, 0, . . . , 2n)

)
. (E.12)

By employing equations (7.11b) and (7.11d), we have

− Pf(d0, 0, . . . , 2n− 1, 2n+ 1)Pf(d0, 0, . . . , 2n+ 1, z)

+ (−z Pf(d0, 0, . . . , 2n+ 1, z) + Pf(d0, 0, . . . , 2n, 2n+ 2, z))τ2n+1

=− τ2n+1P2n+1
∂

∂t1
τ2n+1 + τ2n+1

∂

∂t1
(τ2n+1P2n+1)

=τ22n+1

∂

∂t1
P2n+1. (E.13)

Furthermore, it easily follows from the Pfaffian identity (A.12) and (A.13) that

− Pf(d0, 0, . . . , 2n− 1, 2n+ 2)Pf(d0, 0, . . . , 2n+ 1, z)

=Pf(d0, 0, . . . , 2n) Pf(d0, 0, . . . , 2n− 1, 2n+ 1, 2n+ 2, z)

− Pf(d0, 0, . . . , 2n− 1, 2n+ 1)Pf(d0, 0, . . . , 2n, 2n+ 2, z)

− Pf(d0, 0, . . . , 2n− 1, z) Pf(d0, 0, . . . , 2n+ 2), (E.14)

− Pf(d0, 0, . . . , 2n− 1, 2n+ 1, 2n+ 2, z) Pf(d0, 0, . . . , 2n)

=Pf(d0, 0, . . . , 2n+ 1, z) Pf(d0, 0, . . . , 2n− 1, 2n+ 2)

− Pf(d0, 0, . . . , 2n+ 1, 2n+ 1)Pf(d0, 0, . . . , 2n, 2n+ 2, z)

− Pf(d0, 0, . . . , 2n− 1, z) Pf(d0, 0, . . . , 2n+ 2), (E.15)

and

Pf(d1, 0, . . . , 2n+ 1, z) Pf(d0, 0, . . . , 2n)
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=Pf(d1, 0, . . . , 2n) Pf(d0, 0, . . . , 2n+ 1, z)

− Pf(0, . . . , 2n+ 1)Pf(d0, d1, 0, . . . , 2n, z)

+ Pf(0, . . . , 2n, z) Pf(d0, d1, 0, . . . , 2n+ 1). (E.16)

By virtue of (E.14) and (E.15), we can derive

(Pf(d0, 0, . . . , 2n− 2, 2n, 2n+ 1)− Pf(d0, 0, . . . , 2n− 1, 2n+ 2))Pf(d0, 0, . . . , 2n+ 1, z)

+ (−Pf(d0, 0, . . . , 2n− 1, 2n+ 1, 2n+ 2, z) + Pf(d0, 0, . . . , 2n, 2n+ 3, z)

− z2 Pf(d0, 0, . . . , 2n+ 1, z)) Pf(d0, 0, . . . , 2n)

=Pf(d0, 0, . . . , 2n+ 1, z)
∂2

∂t21
τ2n+1 + 2Pf(d0, 0, . . . , 2n) Pf(d0, 0, . . . , 2n− 1, 2n+ 1, 2n+ 2, z)

+ Pf(d0, 0, . . . , 2n+ 1, z) Pf(d0, 0, . . . , 2n− 1, 2n+ 2)

− 3Pf(d0, 0, . . . , 2n− 1, 2n+ 1)Pf(d0, 0, . . . , 2n, 2n+ 2, z)

− 3Pf(d0, 0, . . . , 2n− 1, z) Pf(d0, 0, . . . , 2n+ 2)

+ Pf(d0, 0, . . . , 2n, 2n+ 3, z) Pf(d0, 0, . . . , 2n)

+ z(Pf(d1, 0, . . . , 2n+ 1, z)− Pf(d0, 0, . . . , 2n, 2n+ 2, z)) Pf(d0, 0, . . . , 2n). (E.17)

where (7.14d) is also employed. Substituing (E.16) into the right-hand side of (E.17), we obtain

(Pf(d0, 0, . . . , 2n− 2, 2n, 2n+ 1)− Pf(d0, 0, . . . , 2n− 1, 2n+ 2))Pf(d0, 0, . . . , 2n+ 1, z)

+ (−Pf(d0, 0, . . . , 2n− 1, 2n+ 1, 2n+ 2, z) + Pf(d0, 0, . . . , 2n, 2n+ 3, z)

− z2 Pf(d0, 0, . . . , 2n+ 1, z)) Pf(d0, 0, . . . , 2n)

=Pf(d0, 0, . . . , 2n+ 1, z)
∂2

∂t21
τ2n+1

+ 2Pf(d0, 0, . . . , 2n) Pf(d0, 0, . . . , 2n− 1, 2n+ 1, 2n+ 2, z)

+ Pf(d0, 0, . . . , 2n+ 1, z) Pf(d0, 0, . . . , 2n− 1, 2n+ 2)

− 2Pf(d0, 0, . . . , 2n− 1, 2n+ 1)Pf(d0, 0, . . . , 2n, 2n+ 2, z)

− 3Pf(d0, 0, . . . , 2n− 1, z) Pf(d0, 0, . . . , 2n+ 2)

+ Pf(d0, 0, . . . , 2n, 2n+ 3, z) Pf(d0, 0, . . . , 2n)

− z Pf(d0, 0, . . . , 2n, 2n+ 2, z) Pf(d0, 0, . . . , 2n)

− z Pf(0, . . . , 2n+ 1)Pf(d0, d1, 0, . . . , 2n, z)

− Pf(d1, 0, . . . , 2n) Pf(d1, 0, . . . , 2n+ 1, z)

+ Pf(d0, d1, 0, . . . , 2n+ 1)(Pf(0, . . . , 2n− 1, 2n+ 1, z) + Pf(d0, d1, 0, . . . , 2n, z)),

from which we have

(Pf(d0, 0, . . . , 2n− 2, 2n, 2n+ 1)− Pf(d0, 0, . . . , 2n− 1, 2n+ 2))Pf(d0, 0, . . . , 2n+ 1, z)

+ (−Pf(d0, 0, . . . , 2n− 1, 2n+ 1, 2n+ 2, z) + Pf(d0, 0, . . . , 2n, 2n+ 3, z)

− z2 Pf(d0, 0, . . . , 2n+ 1, z)) Pf(d0, 0, . . . , 2n)

=Pf(d0, 0, . . . , 2n+ 1, z)
∂2

∂t21
τ2n+1

− Pf(d0, 0, . . . , 2n+ 1, z) Pf(d0, 0, . . . , 2n− 1, 2n+ 2)
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− Pf(d0, 0, . . . , 2n− 1, z) Pf(d0, 0, . . . , 2n+ 2)

+ Pf(d0, 0, . . . , 2n, 2n+ 3, z) Pf(d0, 0, . . . , 2n)

− z Pf(d0, 0, . . . , 2n, 2n+ 2, z) Pf(d0, 0, . . . , 2n)

− z Pf(0, . . . , 2n+ 1)Pf(d0, d1, 0, . . . , 2n, z)

− Pf(d1, 0, . . . , 2n) Pf(d1, 0, . . . , 2n+ 1, z)

+ Pf(d0, d1, 0, . . . , 2n+ 1)(Pf(0, . . . , 2n− 1, 2n+ 1, z)

+ Pf(d0, d1, 0, . . . , 2n, z))

with the help of the Pfaffian identity

Pf(d0, 0, . . . , 2n− 1, 2n+ 1)Pf(d0, 0, . . . , 2n, 2n+ 2, z)

=Pf(d0, 0, . . . , 2n) Pf(d0, 0, . . . , 2n− 1, 2n+ 1, 2n+ 2, z)

+ Pf(d0, 0, . . . , 2n+ 1, z) Pf(d0, 0, . . . , 2n− 1, 2n+ 2)

− Pf(d0, 0, . . . , 2n− 1, z) Pf(d0, 0, . . . , 2n+ 2).

Moreover, by observing that

− Pf(d0, 0, . . . , 2n+ 1, z) Pf(d0, 0, . . . , 2n− 1, 2n+ 2)

=Pf(d0, 0, . . . , 2n) Pf(d0, 0, . . . , 2n− 1, 2n+ 1, 2n+ 2, z)

− Pf(d0, 0, . . . , 2n− 1, 2n+ 1)Pf(d0, 0, . . . , 2n, 2n+ 2, z)

− Pf(d0, 0, . . . , 2n− 1, z) Pf(d0, 0, . . . , 2n+ 2)

=− τ2n−1P2n−1τ2n+3 −
(
∂

∂t1
(τ2n+1P2n+1) + zτ2n+1P2n+1

)
∂

∂t1
τ2n+1

+ Pf(d0, 0, . . . , 2n− 1, 2n+ 1, 2n+ 2, z)τ2n+1,

and

(Pf(d0, 0, . . . , 2n, 2n+ 3, z) + Pf(d0, 0, . . . , 2n− 1, 2n+ 1, 2n+ 2, z))τ2n+1

=

(
∂2

∂t21
(τ2n+1P2n+1) + 2z

∂

∂t1
(τ2n+1P2n+1) + z2τ2n+1P2n+1

)
τ2n+1,

we can arrive at

(Pf(d0, 0, . . . , 2n− 2, 2n, 2n+ 1)− Pf(d0, 0, . . . , 2n− 1, 2n+ 2))Pf(d0, 0, . . . , 2n+ 1, z)

+ (−Pf(d0, 0, . . . , 2n− 1, 2n+ 1, 2n+ 2, z) + Pf(d0, 0, . . . , 2n, 2n+ 3, z)

− z2 Pf(d0, 0, . . . , 2n+ 1, z)) Pf(d0, 0, . . . , 2n)

=τ2n+1P2n+1
∂2

∂t21
τ2n+1 − 2τ2n−1τ2n+3P2n−1 + zτ2n+2

∂

∂t1
(τ2nP2n)

− 2
∂

∂t1
τ2n+1

∂

∂t1
(τ2n+1P2n+1)− zτ2nP2n

∂

∂t1
τ2n+2 − zτ2n+1P2n+1

∂

∂t1
τ2n+1

+ τ2n+1

(
∂2

∂t21
(τ2n+1P2n+1) + z

∂

∂t1
(τ2n+1P2n+1)

)
=2τ2n+1P2n+1

∂2

∂t21
τ2n+1 − 2τ2n−1τ2n+3P2n−1 + zτ2n+2

∂

∂t1
(τ2nP2n)

− 2P2n+1(
∂

∂t1
τ2n+1)

2 − zτ2nP2n
∂

∂t1
τ2n+2 + τ22n+1

∂2

∂t21
P2n+1 + zτ22n+1

∂

∂t1
P2n+1.
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Consequently, we have

(Pf(d0, 0, . . . , 2n− 2, 2n, 2n+ 1)− Pf(d0, 0, . . . , 2n− 1, 2n+ 2))Pf(d0, 0, . . . , 2n+ 1, z)

+ (−Pf(d0, 0, . . . , 2n− 1, 2n+ 1, 2n+ 2, z) + Pf(d0, 0, . . . , 2n, 2n+ 3, z)

− z2 Pf(d0, 0, . . . , 2n+ 1, z)) Pf(d0, 0, . . . , 2n)

=2τ2n+1P2n+1
∂2

∂t21
τ2n+1 − 2τ2n−1τ2n+3P2n−1 + 2zτ2n+2

∂

∂t1
(τ2nP2n)

− 2P2n+1(
∂

∂t1
τ2n+1)

2 − 2zτ2nP2n
∂

∂t1
τ2n+2 + τ22n+1

∂2

∂t21
P2n+1, (E.18)

by applying the similar relationship in [48, eq.(3.38)]

τ22n+1

∂

∂t1
P2n+1 = −

(
τ2n

∂

∂t1
τ2n+2 − τ2n+2

∂

∂t1
τ2n

)
P2n + τ2nτ2n+2

∂

∂t1
P2n.

Finally, we combine (E.12), (E.13) and (E.18) to get

τ22n+1

d

dt
P2n+1(z; t)

=(2n+ 1)ατ22n+1P2n+1 + α1τ
2
2n+1

∂

∂t1
P2n+1 + α2

(
2τ2n+1P2n+1

∂2

∂t21
τ2n+1

− 2τ2n−1τ2n+3P2n−1 + 2zτ2n+2
∂

∂t1
(τ2nP2n)− 2P2n+1(

∂

∂t1
τ2n+1)

2

− 2zτ2nP2n
∂

∂t1
τ2n+2 + τ22n+1

∂2

∂t21
P2n+1

)
. (E.19)

(III). The odd case (E.19) and the even case (E.11) can be written together as

τ2n
d

dt
Pn(z; t)

=nατ2nPn + α1τ
2
n

∂

∂t1
Pn + α2

(
2τnPn

∂2

∂t21
τn − 2τn−2τn+2Pn−2

+2zτn+1
∂

∂t1
(τn−1Pn−1)− 2Pn(

∂

∂t1
τn)

2 − 2zτn−1Pn−1
∂

∂t1
τn+1 + τ2n

∂2

∂t21
Pn

)
.

Consequently, we have

d

dt
Pn(z; t)

=nαPn + α1
∂

∂t1
Pn + α2

2Pn

∂2

∂t21
τn

τn
− 2

τn−2τn+2

τ2n
Pn−2 + 2z

τn+1τn−1

τ2n

∂

∂t1
Pn−1

+2z
τn+1τn−1

τ2n
Pn−1

∂
∂t1
τn−1

τn−1
− 2Pn

(
∂
∂t1
τn

τn

)2

− 2z
τn+1τn−1

τ2n
Pn−1

∂
∂t1
τn+1

τn+1
+
∂2

∂t21
Pn


=nαPn + α1

∂

∂t1
Pn + α2

(
2
∂

∂t1
bnPn − 2un−1u

2
nun+1Pn−2 + 2zun

∂

∂t1
Pn−1

+2zunbn−1Pn−1 − 2zunbn+1Pn−1 +
∂2

∂t21
Pn

)
, (E.20)

where

un =
τn+1τn−1

τ2n
, bn =

∂

∂t1
log τn,
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and
∂

∂t1
bn = un(bn+1 − bn−1).

Furthermore, observe that Pn satisfies the time evolution (following [48, eq.(3.42)])

∂

∂t1
Pn = −zPn + Pn+1 + (bn+1 − bn)Pn − unun+1Pn−1, (E.21)

from which we can get

∂2

∂t21
Pn =− z

∂

∂t1
Pn +

∂

∂t1
Pn+1 + (

∂

∂t1
bn+1 −

∂

∂t1
bn)Pn

+ (bn+1 − bn)
∂

∂t1
Pn − ∂

∂t1
(unun+1Pn−1)

=Pn+2 + (−2z − bn + bn+2)Pn+1 + ((−z + bn+1 − bn)
2 − un+1un+2

− un+1(bn − bn+2) + un(bn−1 − bn+1)− unun+1)Pn

+ unun+1(2z + bn − bn+2)Pn−1 + un−1u
2
nun+1Pn−2. (E.22)

The formula (7.17) is eventually confirmed by substituting (E.21) and (E.22) into (E.20) and

therefore we complete the proof. □
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Appl. Math., 66(5):678–752, 2013.

[30] M. Bertola and A. Tovbis. Asymptotics of orthogonal polynomials with complex varying quartic weight:

global structure, critical point behavior and the first Painlevé equation. Constr. Approx., 41:529–587,
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[36] A. Borodin and D. Boyarchenko. Distribution of the first particle in discrete orthogonal polynomial en-

sembles. Commun. Math. Phys., 234:287–338, 2003.

[37] A. Borodin and V. Gorin. Lectures on integrable probability. In Probability and Statistical Physics in St.

Petersburg, Proceedings of Symposia in Pure Mathematics, volume 91, pages 162–221. Amer. Math. Soc.,

2016.

[38] S. Boscolo, S. K. Turitsyn, V. Y. Novokshenov, and J. Nijhof. Self-similar parabolic optical solitary waves.

Theoretical and mathematical physics, 133:1647–1656, 2002.
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equations. SIGMA, 14:075, 2018.
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Phys. Rev. Lett., 67(14):1825–1828, 1991.

[94] J. Hietarinta, N. Joshi, and F. Nijhoff. Discrete Systems and Integrability, volume 54. Cambridge Univer-

sity Press, Cambridge, 2016.

[95] R. Hirota. The direct method in soliton theory. Cambridge University Press, Cambridge, 2004. Translated

by Nagai, A., Nimmo, J. and Gilson, C.

[96] A. Hone. Lattice equations and τ -functions for a coupled Painlevé system. Nonlinearity, 15(3):735, 2002.
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[105] N. Joshi. Discrete Painlevé Equations. Amer. Math. Soc., Providence, RI, 2019.

[106] N. Joshi and P. Roffelsen. On the Riemann-Hilbert problem for a q-difference Painlevé equation. Commun.
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[121] A. Magnus. Painlevé-type differential equations for the recurrence coefficients of semi-classical orthogonal

polynomials. J. Comp. Appl. Math., 57(1-2):215–237, 1995.

[122] F. Marcellán and E. Huertas. Orthogonal Polynomials: Current Trends and Applications. Springer, 2021.

[123] M. Mehta. Random matrices, volume Third edition. Pure and Applied Mathematics (Amsterdam), 142.

Amsterdam: Elsevier/Academic Press, 2004.

[124] H. Miki, H. Goda, and S. Tsujimoto. Discrete spectral transformations of skew orthogonal polynomials

and associated discrete integrable systems. SIGMA, 8:008, 2012.

[125] A. Mukaihira and Y. Nakamura. Schur flow for orthogonal polynomials on the unit circle and its integrable

discretization. J. Comput. Appl. Math., 139(1):75–94, 2002.

[126] K. Muttalib. Random matrix models with additional interactions. J. Phys. A: Math. Gen., 28(5):159–164,

1995.



NONISOSPECTRAL DEFORMATION OF OPS AND PAINLEVÉ 87
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