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Euler-Poisson equations describe the temporal evolution of a rigid body’s orientation through
the rotation matrix and angular velocity components, governed by first-order differential equations.
According to the Cauchy-Kovalevskaya theorem, these equations can be solved by expressing their
solutions as power series in the evolution parameter. In this work, we derive the sum of these
series for the case of a free symmetric rigid body. By using the integrals of motion and directly
summing the terms of these series, we obtain the general solution to the Euler-Poisson equations
for a free symmetric body in terms of elementary functions. This method circumvents the need
for standard parametrizations like Euler angles, allowing for a direct, closed-form solution. The
results are consistent with previous studies, offering a new perspective on solving the Euler-Poisson
equations.

I. INTRODUCTION

According to Euler’s rotation theorem [1–6], the temporal evolution of a point y(t) of the freely moving rigid body
can be presented as follows

yi(t) = yic + vict+Rij(t)x
j(0). (1)

In this expression, the term yic + vict describes the rectilinear motion of the center of mass, Rij(t) is an orthogonal
matrix, and xj(0) are coordinates of the point relative to the center-of-mass at t = 0. Euler’s theorem thereby reduces
the problem of describing the motion of a body to searching for the time dependence of the rotation matrix Rij(t).
The latter contains all information on the evolution of the body in the Laboratory (fixed in space) frame, in which
the body is observed.
Temporal evolution of the rotation matrix can be obtained from Euler-Poisson equations1

IΩ̇ = [IΩ,Ω], (2)

Ṙij = −ǫjkmΩkRim, (3)

where I is the inertia tensor, and the dynamical variables Ωi(t) turn out to be components of angular velocity in
the body-fixed frame. The formula (1) implies [3], that the Euler-Poisson equations should be solved with universal
initial data for the rotation matrix: Rij(0) = δij . Solutions with other initial conditions do not describe the rigid
body motions. The initial data for Ωi(t) can be any three numbers: Ωi(0) = Ω′

i = const. They determine the initial
angular velocity of the body.
In several recent studies, the dynamics of rotating rigid bodies under the influence of both external and internal

forces are explored through various physical systems and conditions [29–35]. These systems include bodies subjected
to gyrostatic torques, electromagnetic fields, constant and time-varying external forces, resistive effects from viscous
media and with a cavity filled with viscous fluid. Analytical solutions for key parameters such as angular velocities,
Euler angles, and stability criteria are derived, with phase diagrams and numerical simulations used to assess the
motion and stability of these bodies. In addition, the impact of applied forces on the equilibrium and periodicity of
the body’s motion is addressed, with particular relevance for practical applications in mechanical systems, spacecraft,
and satellite technology. These investigations provide valuable insights into the behavior of rigid bodies in rotational
motion, contributing to advancements in fields like aerospace, mechanical engineering, and astrophysics.
In this work, we consider a symmetrical body with the principal inertia moments I1 = I2 6= I3. It is known that in

this case, the most general movement of the body is a regular precession: a symmetrical body rotates uniformly around

∗Electronic address: guilherme.jfa@hotmail.com
1 We use the notation from work [3]. In particular, by (a,b) = aibi and [a,b]i = ǫijkajbk we denote the scalar and vector products of
the vectors a and b. ǫijk is Levi-Civita symbol in three dimensions, with ǫ123 = 1. A detailed derivation of the equations (2) and (3)
from the Lagrangian action functional is also given in [3].
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the third axis of inertia while this axis precesses with uniform angular velocity around the axis of conserved angular
momentum. There are various possibilities to arrive at this result. The traditional way is to solve the equations (2)
and (3) by rewriting them through the Euler angles, and in the Laboratory frame with a third axis directed along the
vector of conserved angular momentum [5]. Some specific features of rigid body dynamics, that must be taken into
account within this method, are discussed in recent works [7, 8].
Another possibility was presented in [9], where the explicit form of the rotation matrix through elementary functions

was obtained by resolution of equations (2) and (3) without assuming any kind of parametrization like Euler angles.
This was achieved by reducing the original problem to the problem of the motion of a one-dimensional harmonic
oscillator under the action of a constant external force. This method also allows one to find particular solutions in
elementary functions in several more complex problems, including the cases of dancing top [10], Lagrange top [7] and
free symmetric body in stationary and homogeneous electric and magnetic fields [11].
In the present work, we explore one more possibility based on a remarkable formula, which, in our opinion, is

unfairly forgotten and ignored in studies on rigid body dynamics. Euler-Poisson equations belong to the following
class of autonomous differential equations

żi = hi(zj), i, j = 1, 2, . . . p, (4)

for determining integral lines zi(t) of given vector field hi(zj). It is known [12–18] that the following family of
functions:

zi(t, zj0) = e
thk(zj

0
) ∂

∂zk
0 zi0, where e

thk(zj
0
) ∂

∂zk
0 =

∞
∑

n=0

tn

n!

(

hk(zj0)
∂

∂zk0

)n

, (5)

parameterized by n parameters zi0, represents their general solution. This is an immediate consequence of the following

properties of the differential operator e
thk(zj

0
) ∂

∂zk
0 :

e
thk ∂

∂zk
0 f(zi0) = f(e

thk ∂

∂zk
0 zi0) = f(zi(t, zj0)), (6)

żi(t, zj0) =
d

dt

(

e
thk ∂

∂zk
0 zi0

)

= e
thk ∂

∂zk
0

[(

hk(zj0)
∂

∂zk0

)

zi0

]

= e
thk ∂

∂zk
0 hi(zj0), (7)

where f(zi0) is an analytic function. Besides, the Cauchy-Kovalevskaya theorem [13–17] guarantees the convergence
of the series (5) in some vicinity of t = 0.
So, it is not necessary to directly solve the system (2) and (3) in one or another way. Instead, we can calculate the

explicit form of the series terms (5) and then try to sum them. As we will show below, for the case of a free symmetric
body this turns out to be possible, leading to its rotation matrix in terms of elementary functions.
The work is organized as follows. In Sect. 2, after presenting our notation and basic equations, we sum up the

power series for Ωi(t), thereby obtaining the general solution to Euler equations (2) in elementary functions. The
summation of the series for Rij(t) of Poisson equations (3) turns out to be a much more involved task. In Sect. 3 we
solve this task in a somewhat trick way, by making use of integrals of motion to represent the components Ri1 and Ri2

through the previously found Ri3. The direct summation of all components in an independent manner will be done
in Sect. 4. Both methods lead to the same final expression for the rotation matrix, coinciding with that obtained in
[9]. In the Appendix, for the convenience of the reader, we proved the formulas (5)-(7).

II. NOTATION AND BASIC EQUATIONS OF THE PROBLEM

Before discussing those solutions to the Euler-Poisson equations that describe the motions of a rigid body, we use
the formula (5) to obtain their general solution with arbitrary initial data.
Using columns of the matrix RT : Gi(t) = (Ri1, Ri2, Ri3)

T , the Poisson equations (3) can be written in the vector-like

form: Ġi = [Gi,Ω]. Let us consider the following Cauchy problem:

Ω̇ = I−1[IΩ,Ω], Ωi(0) = Ω′

i, (8)

Ġi = [Gi,Ω], Rij(0) = R′

ij , (9)

where the initial data Ω′

i and R′

ij are arbitrary numbers, and I is a diagonal matrix of the following form:
I = diagonal(I2, I2, I3). Solutions to this problem with the data R′

ij = δij will describe all possible motions of
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a symmetrical body that at the initial instant t = 0 had its inertia axes directed along the laboratory (fixed in space)
axes: Ri(0) = ei, see [3] for details.
Euler-Poisson equations admit several integrals of motion. They are

Ω3(t) = Ω′

3 = const, (10)

1

2

3
∑

i=1

IiΩ
2
i = E = const, (11)

(RIΩ)i =
3

∑

j=1

IjRijΩj = mi = const. (12)

For the case of rigid-body motions, E and mi represent the rotational energy and components of angular momentum,
respectively. Besides, taking the equality (12) at t = 0 and using Rij(0) = δij , we get the relation between conserved
angular momentum and initial values of angular velocity: Ωi(0) = mi/Ii. Using this in (11), we conclude that energy
along any trajectory is fixed by the angular momentum: E = 1

2

∑

im
2
i /Ii.

Equations (8) and (9) form an autonomous system of 3 + 9 nonlinear first-order differential equations. Their right
sides are polynomials and hence represent analytical functions. According to the formula (5), the unique solution to
our initial value problem is given by the series

Ω(t,Ω′

j) = exp

[

t

(

[G′

a,Ω
′]b

∂

∂R′
ab

+ (I−1[IΩ′,Ω′])c
∂

∂Ω′
c

)]

Ω′ = exp

[

t(I−1[IΩ′,Ω′])c
∂

∂Ω′
c

]

Ω′, (13)

Gi(t,Ω
′

j , R
′

kl) = exp

[

t

(

[G′

a,Ω
′]b

∂

∂R′
ab

+ (I−1[IΩ′,Ω′])c
∂

∂Ω′
c

)]

G′

i. (14)

Our goal is to sum these series and try to write them in elementary functions. We start with the analysis of Euler
equations.
General solution to the Euler equations. The first term of the power series (13) is just Ω′. The next term we
present as follows:

[

(I−1[IΩ′,Ω′])c
∂

∂Ω′
c

]

Ω′ = φ′





Ω′
2

−Ω′
1

0



 = φ′T3Ω
′, where φ′ = (I2 − I3)Ω

′

3/I2, and T3 =





0 1 0
−1 0 0
0 0 0



 . (15)

Above we have three equations and the most interesting of them is the one in the third component. This means that the
component Ω′

3 belongs to the kernel of the linear differential operator (I
−1[IΩ′,Ω′])c

∂
∂Ω′

c
. As a consequence of using the

formula (5), functions of elements of the kernel of the vector field hk also belongs to its kernel, proposition 3 in the ap-
pendix. That is, since functions f(Ω′

3) belongs to the kernel, consequently we have
[

(I−1[IΩ′,Ω′])c
∂

∂Ω′

c

]

φ′ = 0. Then,

the next terms become immediate: for n = 2 we have
[

(I−1[IΩ′,Ω′])c
∂

∂Ω′

c

]2
Ω′ =

[

(I−1[IΩ′,Ω′])c
∂

∂Ω′

c

](

φ′T3Ω
′
)

=
(

φ′T3

)2
Ω′, and so on. Performing mathematical induction, the series (13) is rewritten as2

Ω(t,Ω′

j) = etφ
′T3Ω′ =

( ∞
∑

n=0

tn

n!
φ′nT n

3

)

Ω′. (16)

Moreover, the even and odd powers of the matrix T3 satisfies the relations T 2n
3 = (−1)ndiag(1, 1, 0) (except by n = 0)

and T 2n+1
3 = (−1)nT3, respectively. Then, considering this in the above sum, we obtain

Ω(t,Ω′

j) =





cosφ′t sinφ′t 0
− sinφ′t cosφ′t 0

0 0 1



Ω′ =





Ω′
1 cosφ

′t+Ω′
2 sinφ

′t
−Ω′

1 sinφ
′t+Ω′

2 cosφ
′t

Ω′
3



 , (17)

2 Previously it was mentioned: if the system were linear, the solution would be immediate. That is the solution. More specifically, with
the condition I1 = I2, the Euler equations (2) turn out to be an autonomous and linear system with constant coefficients. This class of
systems has an immediate general solution. The interesting thing is that we could arrive at this result from the formula (5).
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the known general solution to the Euler equations for the case of I1 = I2 in elementary functions. That also represents
the general solution to the Euler equations in the case of a free symmetric rigid body, since the unique condition that
separates the two situations (of all solutions to the system and the solutions that describes a rigid body) is the data
Rij(0) = δij . Then, the angular velocity Ω(t,Ω′

j) rotates around the third axis of the body-fixed frame clockwise with
frequency φ′.

III. GENERAL SOLUTION TO POISSON EQUATIONS BY MAKING USE OF INTEGRALS OF

MOTION

The energy (11) and angular momentum (12) are integrals of motion of the system (8), (9), even though now we
are not considering a physical system or even the condition Rij(0) = δij . These integrals are found by physical laws
however, they continue being constant relative to t considering the equations (8), (9), without thinking about any
physical interpretation. These equations at t = 0 are read as

2E = I2(Ω
′

1
2
+Ω′

2
2
) + I3Ω

′

3
2
, mi = I2(Ω

′

1R
′

i1 +Ω′

2R
′

i2) + I3Ω
′

3R
′

i3 = (IΩ′,G′

i). (18)

By direct computation, we obtain3 ∇E = 0 and ∇mi = 0, which endorses a relation between integrals of motion and
the kernel of ∇. This relationship also is exploited by proposition 3 in the appendix. Besides, recall that functions
of the elements in the kernel as f(E,mi) or g(Ω

′
3) satisfies ∇f(E,mi) = 0 = ∇g(Ω′

3). These facts about integrals of
motion will be important to explain the following lemma:

Lemma 1. Given a numerical matrix A = diag(A2, A2, A3), then the linear differential operator ∇ obeys the relations:

∇2n(AΩ′,G′

i) =

(

A3 −
I3
I2
A2

)[

− (−1)nk′
2n (MΩ′,G′

i)

k′2

]

, for n ≥ 1, (19)

∇2n+1(AΩ′,G′

i) =

(

A3 −
I3
I2

A2

)[

(−1)nk′
2n+1Ω′

3[G
′

i,Ω
′]3

k′

]

, for n ≥ 0, (20)

where:

M = diag

(

I3
I2

Ω′

3
2
,
I3
I2

Ω′

3
2
,−(Ω′

1
2
+Ω′

2
2
)

)

, and k′ ≡
√

Ω′
1
2 +Ω′

2
2 +

I3
2

I2
2Ω

′
3
2. (21)

The above lemma will be used to obtain the coefficients of the series (14). It is a consequence of the integrals of
motion of the EP equations. Firstly, consider the useful facts:

1. The function f(E,Ω′
3) = (2E − I3Ω

′
3
2
)/I2 = Ω′

1
2
+Ω′

2
2
also belongs to the kernel of ∇. With this, we see that the

components of the matrix M satisfies ∇Mi = 0. Evidently, since k′ =
√

M3 − I3M2/I2, we also have ∇k′ = 0.
2. The application of ∇ in the third component in G′

i provide us with ∇R′
i3 = [G′

i,Ω
′]3. Substituting this in

∇mi = I2∇(Ω′
1R

′

i1 +Ω′
2R

′

i2) + I3Ω
′
3∇R′

i3 = 0, we get the relation ∇(Ω′
1R

′

i1 +Ω′
2R

′

i2) = −I3Ω
′
3∇R′

i3/I2. Then, we are
able to write a linear combination of ∇(Ω′

1R
′
i1 +Ω′

2R
′
i2) and ∇(Ω′

3R
′
i3) as follows

∇(AΩ′,G′

i) = A2∇(Ω′

1R
′

i1 +Ω′

2R
′

i2) +A3∇(Ω′

3R
′

i3) =

(

A3 −
I3
I2

A2

)

Ω′

3[G
′

i,Ω
′]3. (22)

Next, applying ∇ in (22), by direct computation, we get ∇2(AΩ′,G′

i) = (A3 − I3A2/I2)(MΩ′,G′

i). Since the
components in M belong to the kernel of ∇, the matrix M is treated in the same way as A in relative to that
operator. Then, we can changeA intoM in the latter equation and write∇2(MΩ′,G′

i) = (M3−I3M2/I2)(MΩ′,G′

i) =

−k′
2
(MΩ′,G′

i). This relation can be understood as a geometric progression. Indeed, considering the sequence an =

∇2n(MΩ′,G′

i), we have an+1 = ∇2n[∇2(MΩ′,G′

i)] = −k′
2∇2n(MΩ′,G′

i) = −k′
2
an. Furthermore, its general term

3 In sections III and IV we fixed the notation ∇ ≡ [G′

a,Ω
′]b

∂
∂R′

ab
+ (I−1[IΩ′,Ω′])c

∂
∂Ω′

c
to simplify our equations.
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has a well-known form given by∇2n(MΩ′,G′

i) = (−k′)2n(MΩ′,G′

i). Then, substituting this result in∇2n(AΩ′,G′

i) =
(A3 − I3A2/I2)∇2n−2(MΩ′,G′

i), we get the expression (19) and, after this, applying ∇ in both sides we get (20).
In contrast, this lemma also could be obtained by direct computation of terms ∇n(AΩ′,G′

i) and then made a
mathematical induction. That means that, despite this result being a consequence of the integrals of motion, we
see that the direct computation of the series (14) already knows this information.
Now, we will use this result sum the series (14). The simplest coefficients to obtain are those of the components

Ri3. Just put A2 = 0 and A3 = 1/Ω′
3 in the lemma and the result will be the equations below:

∇2nR′
i3 = − 1

Ω′
3

(−1)nk′
2n (MΩ′,G′

i)

k′2
, for n ≥ 1, (23)

∇2n+1R′
i3 = (−1)nk′

2n+1 [G
′

i,Ω
′]3

k′
, for n ≥ 0. (24)

Substituting them in (14), we get the general solution to the third component of the Poisson equations in elementary
functions:

Ri3(t,Ω
′

γ , R
′

αβ) = R′
i3 −

1

Ω′
3

∞
∑

n=1

t2n

2n!
(−1)nk′

2n (MΩ′,G′

i)

k′2
+

∞
∑

n=0

t2n+1

(2n+ 1)!
(−1)nk′

2n+1 [G
′

i,Ω
′]3

k′

= R′
i3 + (1− cos k′t)

(MΩ′,G′

i)

Ω′
3k

′2
+ sin k′t

[G′

i,Ω
′]3

k′
. (25)

The functions Ri1(t,Ω
′
γ , R

′

αβ) and Ri2(t,Ω
′
γ , R

′

αβ) we present through Ri3(t,Ω
′
γ , R

′

αβ) as follows. Using (24) with

n = 0 and the component mi of the conserved angular moment (18) we get the linear system

Ω′

2R
′
i1 − Ω′

1R
′
i2 = ∇R′

i3, I2(Ω
′

1R
′
i1 +Ω′

2R
′
i2) = mi − I3Ω

′

3R
′
i3, (26)

for determining the initial data R′
i1 and R′

i2 through R′
i3. Resolving, we get

R′
i1 =

1

I2(Ω′
1
2 +Ω′

2
2)
[I2Ω

′

2∇R′
i3 + (mi − I3Ω

′

3R
′
i3)Ω

′

1], R′
i2 =

1

I2(Ω′
1
2 +Ω′

2
2)
[−I2Ω

′

1∇R′
i3 + (mi − I3Ω

′

3R
′
i3)Ω

′

2].

(27)

These relations hold for the initial data Ω′
1
2
+ Ω′

2
2 6= 0. The case Ω′

1 = Ω′
2 = 0 should be considered separately, see

below.
Let us apply the operator et∇ to both sides of these relations among the initial data. With the use of (6) and (7),

we turn out them into the relations among the solutions

Ri1(t,Ω
′

γ , R
′

αβ) =
1

I2(Ω′
1
2 +Ω′

2
2)
[I2Ω2(t,Ω

′

γ)Ṙi3(t,Ω
′

γ , R
′

αβ) + (mi − I3Ω
′

3Ri3(t,Ω
′

γ , R
′

αβ)Ω1(t,Ω
′

γ)], (28)

Ri2(t,Ω
′

γ , R
′

αβ) =
1

I2(Ω′
1
2 +Ω′

2
2)
[−I2Ω1(t,Ω

′

γ)Ṙi3(t,Ω
′

γ , R
′

αβ) + (mi − I3Ω
′

3Ri3(t,Ω
′

γ , R
′

αβ))Ω2(t,Ω
′

γ)]. (29)

In obtaining this result were used that the quantities Ω′
3, (Ω

′
1)

2 + (Ω′
2)

2 and mi are in the kernel of ∇. Substituting
(17) and (25) in the above equations, we get them through the elementary functions:

Ri1(t,Ω
′, R′) =

{[(

I2Ω
′

2

sink′t

Ω′
3k

′
− I3Ω

′

1

(1− cos k′t)

k′2

)

cosφ′t−
(

I2Ω
′

1

sink′t

Ω′
3k

′
+ I3Ω

′

2

(1− cos k′t)

k′2

)

sinφ′t

]

(MΩ′,G′

i)

+

[(

I2Ω
′

2 cos k
′t− I3Ω

′

1Ω
′

3

sink′t

k′

)

cosφ′t−
(

I2Ω
′

1 cos k
′t+ I3Ω

′

2Ω
′

3

sin k′t

k′

)

sinφ′t

]

[Ω′,G′

i]3

+ (mi − I3Ω
′

3R
′
i3)(Ω

′

1 cosφ
′t+Ω′

2 sinφ
′t)

}/

[I2(Ω
′

1
2
+Ω′

2
2
)], (30)
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Ri2(t,Ω
′, R′) =

{[(

I2Ω
′

1

sink′t

Ω′
3k

′
+ I3Ω

′

2

(1− cos k′t)

k′2

)

cosφ′t+

(

I2Ω
′

2

sink′t

Ω′
3k

′
− I3Ω

′

1

(1− cos k′t)

k′2

)

sinφ′t

]

(MΩ′,G′

i)

+

[(

I2Ω
′

1 cos k
′t+ I3Ω

′

2Ω
′

3

sink′t

k′

)

cosφ′t+

(

I2Ω
′

2 cos k
′t− I3Ω

′

1Ω
′

3

sin k′t

k′

)

sinφ′t

]

[Ω′,G′

i]3

− (mi − I3Ω
′

3R
′
i3)(−Ω′

1 sinφ
′t+Ω′

2 cosφ
′t)

}/

[−I2(Ω
′

1
2
+Ω′

2
2
)], (31)

where Ω′
1
2
+Ω′

2
2 6= 0.

The case Ω′
1 = Ω′

2 = 0. For the initial data with Ω′
1 = Ω′

2 = 0, Eq. (17) implies Ω(t,Ω′

j) = (0, 0,Ω′
3)

T . Then the
Poisson equations (11) state that the vectors Gi precess around this constant vector. With this, the Poisson equations
are rewritten as

Ṙi1 = Ω′

3Ri2, Ṙi2 = −Ω′

3Ri1, Ṙi3 = 0. (32)

That is a linear differential also written in the form Ġi = Ω′
3T3Gi. That is the same as (15), then the general solution

to Poisson equations (32) is given by

R(t,Ω′

3, R
′

ij) =











R′
11 cosΩ

′
3t+R′

12 sinΩ
′
3t −R′

11 sinΩ
′
3t+R′

12 cosΩ
′
3t R′

13

R′
21 cosΩ

′
3t+R′

22 sinΩ
′
3t −R′

21 sinΩ
′
3t+R′

22 cosΩ
′
3t R′

23

R′
31 cosΩ

′
3t+R′

32 sinΩ
′
3t −R′

31 sinΩ
′
3t+R′

32 cosΩ
′
3t R′

33











. (33)

The equations (17), (25), (30), (31) and (33) configure the general solution to the Euler-Poisson equations for the
case I1 = I2.
General solution to Poisson equations describing a free symmetric rigid body. As we saw previously, the
motion of the rigid body corresponds to the solutions (25), (30) and (31) at the point (t,mγ/Iγ , δαβ). Besides, the final
expression for the rotation matrix acquires a more transparent form if we adjust the orientations of the Laboratory
axes and the vector of conserved angular momentum. Since Ri(0) are the eigenvectors of the inertia tensor I, we
can arbitrarily set IR1(0) = I2R1(0) and IR2(0) = I2R2(0). Then any linear combination of the vectors R1(0) and
R2(0) is an eigenvector of I with eigenvalue I2. Furthermore, since we have Ri(0) = ei, we can freely rotate the
vectors e1, e2 (generating a new orthonormal basis {e′1, e′2, e3}) from the Laboratory basis until the fixed vector m

(written in the old basis ei) belongs to the plane generated by e′2, e3 without breaking the diagonal character of the
inertia tensor I. Then, from the beginning, we can choose this configuration, maintaining I as diagonal and having
m1 = 0. Ultimately, the initial conditions to the Euler-Poisson equations are translated into the constants of the
general solution to the EP equations as R′

ij = δij , Ω
′
1 = 0, Ω′

2 = m2/I2 and Ω′
3 = m3/I3. Substituting these constants

in (17), (30), (31), (25), we get the equations of motion of a free symmetric rigid body given by the angular velocity

Ω1 =
m2

I2
sinφt, Ω2 =

m2

I2
cosφt, Ω3 =

m3

I3
, where φ = (I2 − I3)m3/I2I3, (34)

and the rotational matrix R(t)











cos kt cosφt− m̂3 sinkt sinφt − cos kt sinφt− m̂3 sin kt cosφt m̂2 sinkt

m̂3 sin kt cosφt+ (m̂2
2 + m̂2

3 cos kt) sinφt −m̂3 sin kt sinφt+ (m̂2
2 + m̂2

3 cos kt) cosφt m̂2m̂3(1 − cos kt)

−m̂2 sin kt cosφt+ m̂2m̂3(1− cos kt) sinφt m̂2 sin kt sinφt+ m̂2m̂3(1− cos kt) cosφt m̂2
3 + m̂2

2 cos kt











, (35)

that describes the rotation rotation of the points in the body about the center of mass after replacing this in (1).

Above we have the frequencies φ = (I2−I3)m3/I2I3, k =
√

m2
2 +m2

3/I2 = |m|/I2 and, assuming |m| 6= 0, we denoted
m̂i = mi/|m|. The case Ω′

1 = Ω′
2 = 0 turns out to be

R(t) =





cos m3

I3
t − sin m3

I3
t 0

sin m3

I3
t cos m3

I3
t 0

0 0 1



 . (36)
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.
Motion of the body. With the purpose of an illustrative point of view, suppose R3(t) = (m̂2 sin kt, m̂2m̂3(1 −
cos kt), m̂2

3 + m̂2
2 cos kt)

T being the position vector of a particle. Then, the velocity of this particle is given by

Ṙ3(t) = k(m̂2 cos kt, m̂2m̂3 sin kt, −m̂2
2 sin kt)

T . These two vectors are orthogonal to each other and, besides, realize

that the velocity of the particle is orthogonal to the conserved angular momentum m = (0,m2,m3)
T : (m, Ṙ3(t)) =

km̂2 sin kt(m̂3m2 − m̂2m3) = 0. So, the particle moves in the plane with normal vector in the same direction as m.
Moreover, it has a closed trajectory since the position vector is periodic, that is R3(t) = R3(t + 2π/k). If θ is the
angle between the vector R3(t) and the normal vector from the plane, then

cos θ =
(m,R3(t))

|m| = m̂2
2m̂3(1− cos kt) + m̂3

3 + m̂2
2m̂3 cos kt = m̂3. (37)

This angle does not vary with time, then we can conclude that the particles have a circular trajectory in the plane.
The radius will be given by sin θ = m̂2, since the position vector has unitary length. Besides the rotation has uniform
angular frequency |Ṙ3(t)|/m̂2 = k.
Furthermore, since the inertia axes are always in the same direction as the vectors Ri(t), the third inertia axis

precesses with uniform angular velocity k around the axis in the direction as the conserved angular momentum m

while the others inertia axes are rotating about the variable axis in direction as R3(t) for each instant of time. The
difference between this most general motion and the motion described by (36) (case m1 = m2 = 0) is that the third
inertia axis is fixed in the same direction as the third axis of Laboratory frame. Then the others will rotates about
the third fixed axis with uniform angular velocity m3/I3.

IV. GENERAL SOLUTION TO POISSON EQUATIONS BY DIRECT SUMMATION OF SERIES FOR

ALL Rij

In the previous section the rotational matrix R(t) was obtained by making use of proprieties caused by the integrals
of motion. This path masked the calculation so much that it was not clear to see where we were summing series. So,
to show even more the capacity of the formula (5), in this section we will directly sum the series (14). To this aim,
we will show explicitly how are given the terms ∇nR′

ij . When n = 0, we have the first term R′

ij . When n = 1, the
therm ∇Rij ’ identifies itself with the Poisson equations:

∇R′

ij = −ǫjkmΩ′

kR
′

im = [G′

i,Ω
′]j . (38)

When n = 2, we get the formula:

∇2R′
ij = −Ω′2R′

ij + (Bi)jΩ
′

j , (39)

where Bi are three 3× 3 diagonal matrices given by

Bi = diag
(

(B2Ω
′,G′

i), (B2Ω
′,G′

i), (B3Ω
′,G′

i)
)

, where B2 = diag

(

1, 1, 2− I3
I2

)

and B3 = diag

(

I3
I2

,
I3
I2
, 1

)

. (40)

This equation is obtained by direct computation4:

∇2R′
ij = ∇(ǫjαβR

′
iαΩ

′

β) = ǫjαβ [G
′

i,Ω
′]αΩ

′

β + ǫjαβR
′
iα(I

−1[IΩ′,Ω′])β = [[G′

i,Ω
′],Ω′]j + φ′[G′

i, TΩ
′]j

= (G′

i,Ω
′)Ω′

j −Ω′2R′
ij + [(I2 − I3)/I2][diag(R

′
i3Ω

′

3, R
′
i3Ω

′

3,−(R′
i1Ω

′

1 +R′
i2Ω

′

2))]jΩ
′

j

= −Ω′2R′
ij + (Bi)jΩ

′

j . (41)

With this result, we do not need to directly compute the next terms anymore. Indeed, previously, we saw that Ω′
3

and Ω′
1
2
+ Ω′

2
2
belongs to the kernel of ∇. This implies that Ω′2 = Ω′

iΩ
′

i also belongs to that set. Furthermore, we
can define recursively the even orders of the terms ∇nR′

ij as follows:

4 In this derivation the vector product [G′

i, TΩ
′] was computed explicitly.
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∇0R′

ij = R′

ij , and ∇2(n+1)R′

ij = −Ω′2∇2nR′

ij +∇2n[(Bi)jΩ
′

j ], for n ≥ 0. (42)

The terms of odd orders are given by applying ∇ to both sides of the above equations:

∇R′

ij = −ǫjkmΩ′

kR
′

im, and ∇2(n+1)+1R′

ij = −Ω′2∇2n+1R′

ij +∇2n+1[(Bi)jΩ
′

j ], for n ≥ 0. (43)

The terms ∇n[(Bi)jΩ
′
j ] are computed according to the general Leibniz rule (60). For the convenience of the reader,

below we have explicitly these expressions:

∇2n[(Bi)jΩ
′

j ] =

n
∑

a=0

(

2n

2a

)

∇2a(Bi)j∇2n−2aΩ′

j +

n−1
∑

b=0

(

2n

2b+ 1

)

∇2b+1(Bi)j∇2n−(2b+1)Ω′

j , for all n ≥ 1, (44)

∇2n+1[(Bi)jΩ
′

j ] =

n
∑

a=0

(

2n+ 1

2a

)

∇2a(Bi)j∇2n+1−2aΩ′

j +

n
∑

b=0

(

2n+ 1

2b+ 1

)

∇2b+1(Bi)j∇2n−2bΩ′

j , for all n ≥ 0, (45)

where we have∇nΩ′ = (φ′T3)
nΩ = φ′nT n

3 Ω
′, that is∇2kΩ′

j = φ′2k[diag(Ω′
1,Ω

′
2, 0)]j (except by n = 0) and∇2k+1Ω′

j =

φ′2k+1(T3Ω
′)j ; and the terms ∇n(Bi)j are given by the lemma 1.

Furthermore, the equations (42), (43) completely determine the coefficients of the series (14). Next, we will show
how to use them to obtain the component R11 in the matrix (35). We chose this component because its calculation
has relatively the same difficulty as the others Ri1, Ri2 and the calculation to the Ri3 is more simple and does not
show too much the applicability of our computations. To carry out this, firstly we will replace the initial conditions
of a symmetric rigid body in the equations (43)-(45). To facilitate the computation, we considered them in the form:

Ω′

1 = 0, Ω′

2 =
m2

I2
= m̂2k, Ω′

3 =
m3

I3
= φ+ m̂3k, R′

ij = δij , (46)

where φ = (I2 − I3)m3/I2I3, k =
√
m2

2 +m3
2/I2 = |m|/I2 and m̂i = mi/|m|, with |m| 6= 0. When the initial

conditions are substituted, the constants φ′ and k′ become φ and k from the matrix (35), respectively. Then, after
being replaced the conditions (46) in the equations (44) and (45), we get

∇2n[(B2Ω
′,G′

1)Ω
′

1] =

{

0, for n = 0,

−2m̂2
2(−1)n

∑n−1
b=0

2n!
(2b+1)![2n−(2b+1)]!k

2b+2φ2n−2b, for n ≥ 1,
(47)

∇2n+1[(B2Ω
′,G′

1)Ω
′

1] = 0, for n ≥ 0. (48)

So, substituting this and the initial conditions (46) in the functions (42), (43), we obtain the recursive functions

∇0R′

11 = 1, ∇2R′

11 = −(k2 + φ2 + 2m̂3kφ),

∇2(n+1)R′

ij = −(k2 + φ2 + 2m̂3kφ)∇2nR′

ij − 2m̂2
2(−1)n

n−1
∑

b=0

2n!

(2b+ 1)![2n− (2b+ 1)]!
k2b+2φ2n−2b, for n ≥ 1, (49)

and

∇R′

ij = 0, ∇2(n+1)+1R′

ij = −(k2 + φ2 + 2m̂3kφ)∇2n+1R′

ij , for n ≥ 0, (50)

that determines all the coefficients of the series of R11. Then, we will obtain that series by applying the above
formulas: firstly, it is immediate that all the terms in (50) are null. So, the coefficients of the series to R11(t) are
given only by the function (42). Then, the even terms described by (49) are given as follows: the two first terms are
given ∇0R′

11 = 0 and

∇2R′
11 = (k2 + φ2 + 2m̂3kφ) = −2!

(

k2

2!
+

φ2

2!
+ m̂3kφ

)

= −2!

[ 1
∑

k=0

(

1

2k!(2− 2k)!
k2kφ2−2k

)

+ m̂3kφ

]

. (51)
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Then, for n = 1, we have

∇4R′
11 = −(k2 + φ2 + 2m̂3kφ)∇2R′

11 + 4m̂2
2k2φ2 = (k2 + φ2 + 2m̂3kφ)

2 + 4m̂2
2k2φ2

= 4!

[

k4

4!
+

φ4

4!
+

k2

2!

φ2

2!
+ m̂3

(

k3

3!
φ+ k

φ3

3!

)]

= 4!

[ 2
∑

k=0

(

1

2k!(4− 2k)!
k2kφ4−2k

)

+ m̂3

1
∑

k=0

(

1

(2k + 1)![4− (2k + 1)]!
k2k+1φ4−(2k+1)

)]

. (52)

For n = 2:

∇6R′
11 = −6!

[ 3
∑

k=0

(

1

2k!(6− 2k)!
k2kφ6−2k

)

+ m̂3

2
∑

k=0

(

1

(2k + 1)![6− (2k + 1)]!
k2k+1φ6−(2k+1)

)]

, (53)

and so on. So, the even terms obey the following pattern:

∇2nR′
11 = (−1)n2n!

[ n
∑

k=0

(

1

2k!(2n− 2k)!
k2kφ2n−2k

)

+ m̂3

n−1
∑

k=0

(

1

(2k + 1)![2n− (2k + 1)]!
k2k+1φ2n−(2k+1)

)]

. (54)

The above statement is confirmed by induction when substituting it in (49). Replacing that and (50) in (14), we
obtain the series

R11(t) =

∞
∑

n=0

n
∑

k=0

(

(−1)nt2n

2k!(2n− 2k)!
k2kφ2n−2k

)

+ m̂3

∞
∑

n=1

n−1
∑

k=0

(

(−1)nt2n

(2k + 1)![2n− (2k + 1)]!
k2k+1φ2n−(2k+1)

)

. (55)

This series can be represented in elementary functions as follows: consider the sequences

am(t) =
(−1)mk2mt2m

2m!
, bm(t) =

(−1)mφ2mt2m

2m!
, (56)

cm(t) =
(−1)mk2m+1t2m+1

(2m+ 1)!
, dm(t) =

(−1)mφ2m+1tmk+1

(2m+ 1)!
, (57)

and the equation (55) written as a function of them

R11(t) =

∞
∑

n=0

n
∑

k=0

a2kb2n−2k − m̂3

∞
∑

n=1

n−1
∑

k=0

c2k+1d2n−(2k+1). (58)

Since they represent the coefficients in the series of sines and cosines, they converge for any t ∈ R. Besides, by the
assertion of the Cauchy-Kovalevskaya theorem, the series (55) is locally convergent around t = 0. Then, there exists
a result [19, 20] about the product of convergent power series that we are able to use. That says: if the power series
∑

∞

n=0 anx
n,

∑

∞

n=0 bnx
n converges (pointwise), then

∑

∞

n=0

∑n
i=0(aix

i)(bn−ix
n−i) = (

∑

∞

n=0 anx
n)(

∑

∞

n=0 bnx
n) also

converges. Furthermore, applying this result in (58), we can write the function R11(t) as:

R11(t) =

( ∞
∑

n=0

an

)( ∞
∑

n=0

bn

)

− m̂3

( ∞
∑

n=0

cn

)( ∞
∑

n=0

dn

)

=

( ∞
∑

n=0

(−1)nk2nt2n

2n!

)( ∞
∑

m=0

(−1)mφ2mt2m

2m!

)

− m̂3

( ∞
∑

n=0

(−1)nk2n+1t2n+1

(2n+ 1)!

)( ∞
∑

m=0

(−1)mφ2m+1t2m+1

(2m+ 1)!

)

= cos kt cosφt− m̂3 sinkt sinφt. (59)
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The same procedure can be done for the other components in (14). Naturally, after doing this, we get the (35).
Comment: About the functions (42), (43): we could also get the even and odd general terms ∇2nR′

ij , ∇2n+1R′
ij .

For instance, this could be done for the even orders as follows: since ∇2R′
ij = −Ω′2R′

ij + (Bi)jΩ
′

j , then

∇4R′
ij = −Ω′2(−Ω′2R′

ij + (Bi)jΩ
′

j) + ∇2[(Bi)jΩ
′

j ], and so on. Performing mathematical induction, appear

∇2nR′

ij = (−Ω′)nR′

ij +
∑n−1

k=0 (−Ω′)n−1−k∇2k[(Bi)jΩ
′

j ], where n ≥ 1. Applying ∇ in both sides in the latter equa-
tions, is obtained as the general term for the odd-order terms. The problem with this approach is the difficulty of
writing the series Ri1(t,Ω

′, R′) and Ri2(t,Ω
′, R′) through elementary equations. Even if we simplify the series by

substituting the initial conditions, it still not does help much. This same problem happens when trying to use (42)
and (43) to obtain the general solution to the Poisson equations.

V. CONCLUSION

In this article, we explore the dynamics of a free symmetric rigid body by solving the Euler-Poisson equations
using an alternative method, distinct from the conventional use of Euler angles. The main goal was to obtain explicit
solutions for the time evolution of the rotation matrix Rij(t) and the angular velocity components Ωi(t) in terms of
elementary functions. By leveraging the concept of integral lines for autonomous differential equations, we provide a
general framework for solving the equations governing the body’s motion. This approach allows us to calculate the
rotation matrix Rij(t) in a closed form, bypassing the need for parametrization or solving the system of differential
equations. For the case of a free symmetric body, the solution to the Euler-Poisson equations can be derived through
summing power series. The representation through elementary function was possible with the use of the integrals of
motion. The resulting rotation matrix is found to be consistent with previous work, confirming the validity of our
approach.
To demonstrate the method, in Sect. 2, we obtain the known general solution for the angular velocity components

Ωi(t) by summing the corresponding power series, which results in elementary function expressions. With this result,
in Sect. 3 we obtain the general solution to the Poisson equations (even for initial conditions that do not represent
a rigid body) in elementary functions by summing the terms for Rij(t), leveraging the conserved quantities in the
system. Then, we finish this section by obtaining the general solution to EP equations describing the most general
motion of a free symmetric body (a regular precession). Finally, in Sect. 4, we made an alternative method to obtain
this result by summing all components independently.

Acknowledgments

The work has been supported by the Brazilian foundation CAPES (Coordenação de Aperfeiçoamento de Pessoal
de Nı́vel Superior - Brasil).

Appendix 1. Properties of the series e
thk(z

j
0
) ∂

∂zk
0 z

i
0

In this appendix, we exhibit and discuss some properties of the formula (5). In this part of the text we were
widely supported by the literature [14, 16, 19–25]. Firstly, let V be an open subset of Rp. Then, consider p real

analytic functions hk : V → R. We define a linear differential operator hk(zj0)
∂

∂zk
0

acting in sets of analytic functions

f : V → R. Hence, the outcome
(

hk(zj0)
∂

∂zk
0

)

f(zi0) will also be a real analytic function. Since analytic functions are

of class C∞, for any natural number n, we can recursively define the operator
(

ha(zj0)
∂

∂za
0

)n
with source and image in

sets of analytic functions. Besides, performing mathematical induction, we see that it obeys the general Leibniz rule
[24, 26–28]:

(

hk(zj0)
∂

∂zk0

)n

(f(za0 )g(z
b
0)) =

n
∑

i=0

(

n

i

)(

hk′

(z0)
∂

∂zk
′

0

)i

f(za0 )

(

hk′′

(z0)
∂

∂zk
′′

0

)n−i

g(zb0), for all n natural numbers,

(60)
where

(

n
i

)

= n!
i!(n−i)! is the binomial coefficient.

The next proposition clarifies how to appear the formula (5):
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Proposition 1. Suppose V ⊂ R
p is an open subset and let hi : V → R

p analytic functions, where i = 1, ..., p. Then,

the initial value problem

żi = hi(zj), zi(0) = zi0, where (z10 , z
2
0 , ..., z

p
0) ∈ V, (61)

has a unique solution given by the series

zi(t, zj0) = e
thk(zm

0 ) ∂

∂zk
0 zi0, (62)

which converges in some neighborhood of 0 ∈ R.

Proof. By the Cauchy-Kovalevskaya theorem [14], the system (61) has a unique solution z(t) analytic in some open
interval J ⊂ R containing 0. Furthermore, there exists r > 0 such that, for all t ∈ (−r, r), the Taylor series

zi(t) =

∞
∑

n=0

tn

n!

dnzi(t)

dtn

∣

∣

∣

∣

t=0

, (63)

converges absolutely and uniformly. Without loss of generality, we can consider that same interval for each i =
1, 2, ..., p. We will show that the above series can be written in the form (62). Consider the following statement:

dnzi(t)

dtn
=

[(

hk(zj)
∂

∂zk

)n

zi
]∣

∣

∣

∣

z=z(t)

, for all n natural numbers. (64)

This holds by induction: when n = 0, this is reduced to the identity zi(t) = zi|z=z(t). So, for the base case, the
statement is true. We assume, by hypothesis, that this is true for a natural n. Then the induction step follows

dn+1zi(t)

dtn+1
=

d

dt

[(

hk(zj)
∂

∂zk

)n

zi
]∣

∣

∣

∣

z=z(t)

=
d

dt
h′i(zj(t)) =

[

hk(z)
∂h′i(zj)

∂zk

]∣

∣

∣

∣

z=z(t)

=

[(

hk(zj)
∂

∂zk

)n+1

zi
]∣

∣

∣

∣

z=z(t)

,

(65)

where h′i(zj) = (hk(zj) ∂
∂zk )

nzi. Then, since both the base case and induction step are true, by weak induction, the
statement (64) holds true. At t = 0, it gets the form

dnzi(t)

dtn

∣

∣

∣

∣

t=0

=

{[(

hk(zj)
∂

∂zk

)n

zi
]∣

∣

∣

∣

z=z(t)

}∣

∣

∣

∣

t=0

=

[(

hk(zj)
∂

∂zk

)n

zi
]∣

∣

∣

∣

z=z0

=

(

hk(zj0)
∂

∂zk0

)n

zi0. (66)

Substituting this latter equation in the Taylor series (63), we obtain:

zi(t) =

∞
∑

n=0

tn

n!

(

hk(zj0)
∂

∂zk0

)n

zi0 = e
thk(zj

0
) ∂

∂zk
0 zi0 ≡ zi(t, zj0). (67)

Since in (62) we have a p-parametric family of curves solving each differential equation (61), then that formula also
represents the general solution to the system żi = hi(zj). Even more, it is known that the existence and uniqueness of
the solution for autonomous systems can be generalized to non-autonomous systems. So, if we had a non-autonomous
system

żi = hi(t, zj), zi(t0) = zi0, where (z10 , z
2
0 , ..., z

p
0) ∈ V, (68)

the Cauchy-Kovalevskaya theorem also would guarantee the existence and uniqueness of an analytic solution to the
above non-autonomous system. In this case, its solution would be written as

zi(t, t0, z
j
0) = e

t
(

∂
∂t0

+hk(t0,z
j
0
) ∂

∂zk
0

)

zi0. (69)
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In some fields of mathematics and physics, the function (5) is quite used. It typically has two main properties. The

first: zi(0, zj0) = zi0 is immediately identified in the equation (5). The second, also named ”group law”, is translated
in this work by the proposition 2, where we prove the equation (6). To carry out that, we will need the following
results:

Lemma 2. The operator e
thk(z0)

∂

∂zk
0 has the property:

e
thk(zγ

0
) ∂

∂zk
0 (zi0z

j
0) =

(

e
tha(zα

0 ) ∂
∂za

0 zi0
)(

e
thb(zβ

0
) ∂

∂zb
0 zj0

)

= zi(t, zα0 )z
j(t, zβ0 ), where 1 ≤ i, j ≤ p. (70)

Proof. Consider the sequences an(t) =
tn

n!

(

hk(zα0 )
∂

∂zk
0

)n
zi0 and bn(t) =

tn

n!

(

hk(zβ0 )
∂

∂zk
0

)n
zj0. The series

∑

∞

n=0 an(t) and
∑

∞

n=0 bn(t) converges according to the proposition 1. Then, a result about the product of convergent series provides
us with the relationship

(
∑

∞

n=0 an(t)
)(

∑

∞

n=0 bn(t)
)

=
∑

∞

n=0

∑n
k=0 ak(t)bn−k(t), see the final of section IV. Writing

explicitly, we have

(

e
tha(zα

0 ) ∂
∂za

0 zi0
)(

e
thb(zβ

0
) ∂

∂zb
0 zj0

)

=

( ∞
∑

n=0

an(t)

)( ∞
∑

n=0

bn(t)

)

=

∞
∑

n=0

n
∑

k=0

ak(t)bn−k(t)

=

∞
∑

n=0

n
∑

k=0

tn

k!(n− k)!

(

ha(zα0 )
∂

∂za0

)k

zi0

(

hb(zβ0 )
∂

∂zb0

)n−k

zj0

=

∞
∑

n=0

tn

n!

(

hk(zγ0 )
∂

∂zk0

)n

(zi0z
j
0) = e

thk(zγ
0
) ∂

∂zk
0 (zi0z

j
0), (71)

where in the last equality was used the general Leibniz rule (60).

The above lemma is generalized as follows:

Lemma 3 (Generalization of the Lemma 2). Consider a product of the variables zi0: z
i1
0 ...zin0 , where 1 ≤ i1, ..., in ≤ p.

So, the application of the operator e
thk(z0)

∂

∂zk
0 in this product obeys

e
thk(zj

0
) ∂

∂zk
0 (zi10 ...zin0 ) =

(

e
thk(z

j1
0

) ∂

∂zk
0 zi10

)

...
(

e
thk(zjn

0
) ∂

∂zk
0 zin0

)

= zi1(t, zj10 )...zin(t, zjn0 ). (72)

Proof. We will prove this statement by induction. The base case (for n = 1) is true by the equation (5). The case
n = 2 was proven by the previous lemma. Furthermore, suppose, by hypothesis, that it is true for some natural n,
i.e.:

zi1(t, zj10 )zi2(t, zj20 )...zin(t, zjn0 ) = e
thk(zj

0
) ∂

∂zk
0 (zi10 zi20 ...zin0 ). (73)

Multiplying both sides by zin+1 = e
thk(z

jn+1

0
) ∂

∂zk
0 z

in+1

0 , with 1 ≤ in+1 ≤ p, we get

zi1(t, zj10 )zi2(t, z0)...z
in(t, z0)z

in+1(t, z0) = e
thk(zj

0
) ∂

∂zk
0 (zi10 zi20 ...zin0 )e

thk(z
jn+1

0
) ∂

∂zk
0 z

in+1

0 . (74)

Next, consider the sequences an(t) = tn

n!

(

ha(zj0)
∂

∂za
0

)n
(zi10 zi20 ...zin0 ) and bn(t) = tn

n!

(

hk(z
jn+1

0 ) ∂
∂zk

0

)n
z
in+1

0 . The series

with these general terms are convergent by the hypothesis of induction5, then we can use the same theorem as before
and get

5 Since statement (73) is true by hypothesis and all zi(t, zj0) are convergent series, we know from the theory of power series that

a finite product of convergent power series is also a convergent power series. Then e
thk(z

j
0
) ∂

∂zk
0 (zi10 z

i2
0 ...z

in
0 ) =

∑

∞

n=0 an(t) =
∑

∞

n=0
tn

n!

(

ha(zj0)
∂

∂za
0

)n
(zi10 z

i2
0 ...z

in
0 ) is convergent.
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zi1(t, zj10 )zi2(t, zj20 )...zin(t, zjn0 )zin+1(t, z
jn+1

0 ) = e
thk(zj

0
) ∂

∂zk
0 (zi10 zi20 ...zin0 )e

thk(z
jn+1

0
) ∂

∂zk
0 z

in+1

0

=

( ∞
∑

n=0

an(t)

)( ∞
∑

n=0

bn(t)

)

=

∞
∑

n=0

n
∑

k=0

ak(t)bn−k(t)

=

∞
∑

n=0

n
∑

k=0

tn

k!(n− k)!

(

ha(zj0)
∂

∂za0

)k

(zi10 zi20 ...zin0 )

(

hb(z
jn+1

0 )
∂

∂zb0

)n−k

z
in+1

0

=

∞
∑

n=0

tn

n!

(

hk(zj0)
∂

∂zk0

)n

(zi10 zi20 ...zin0 z
in+1

0 )

= e
thk(zj

0
) ∂

∂zk
0 (zi10 zi20 ...zin0 z

in+1

0 ), (75)

where the general Leibniz rule (60) was used. By the above relationship, we can conclude that the statement (73) is
true for n+ 1. Then, by weak induction, it is true for every natural.

Now, we can move on to the proof of the propriety (6):

Proposition 2. Consider an analytic function f : V → R. Then we have:

e
thk(zj

0
) ∂

∂zk
0 f(zi0) = f(e

thk(zj
0
) ∂

∂zk
0 zi0) = f(zi(t, zj0)). (76)

Proof. Without loss of generality, consider 0 ∈ V . Since function f is analytic in V , then there is r > 0 such that for
all (z10 , z

2
0 , ..., z

p
0) ∈ Br(0) (open ball with radius r centered in 0 ∈ R

p), the Taylor series of f about 0 is given by6

f(z0) = c0 +

p
∑

i=1

ciz
i
0 +

p
∑

i,j=1

ci,jz
i
0z

j
0 +

p
∑

i,j,k=1

ci,j,kz
i
0z

j
0z

k
0 + ... , (77)

converges absolutely and uniformly. The numbers c0, ci, ci,j . . . are the coefficients of the Taylor series. Applying

the operator e
thk(zj

0
) ∂

∂zk
0 in both sides and using the previous lemma, we get

e
thk(z0)

∂

∂zk
0 f(z0) = c0 +

p
∑

i=1

ciz
i(t, z0) +

p
∑

i,j=1

ci,jz
i(t, z0)z

j(t, z0) +

p
∑

i,j,k=1

ci,j,kz
i(t, z0)z

j(t, z0)z
k(t, z0) + ... = f(z(t, z0)).

(78)

The last equality in the above equation needs some explanation. The series zi(t, zj0) are analytics functions (thus
continuous) defined in a neighborhood of 0 ∈ R represented by an interval (−r′, r′), with r′ > 0. Then, the image

of z(t, zj0) by (−r′, r′): z((−r′, r′), zj0)) is a convex subset of Rp. As (z10 , z
2
0 , ..., z

p
0) is an interior point in Br(0), then

the intersection z((−r′, r′), zj0)) ∩ Br(0) is a non-empty subset of Rp. Furthermore, the last equality is valid and it

happens for any t such that z(t, zj0) ∈ z((−r′, r′, zj0)) ∩Br(0).

The latter result has an interesting application. By definition, the function hi(zj0) =
(

hk(zj0)
∂

∂zk
0

)

zi0 is analytic in

V . The operator e
thk(zj

0
) ∂

∂zk
0 acting in that function results in:

e
thk(zj

0
) ∂

∂zk
0 hi(zj0) = hi(z(t, zj0)) = ż(t, zj0), (79)

6 In this formula and the next we denote f(zi0) = f(z0).
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since zi(t, zj0) is the general solution to the differential equation żi = hi(zj).
We recall that the function F (z1, z2, . . . , zp) is an integral of motion of the system (4), if for any solution zi(t) we

have

d

dt
F (zi(t)) = 0. (80)

There is a relationship among the integrals of motion and the kernel of the operator hk(zj0)
∂

∂zk
0

.

Proposition 3. The following two conditions turn out to be equivalent:

1. F (zi) is an integral of motion.

2. F (zi0) lies in the kernel of the operator hk(zj0)
∂

∂zk
0

, that is hk(zj0)
∂

∂zk
0

F (zi0) = 0.

Proof. The condition 1 implies the condition 2. Indeed, being F (zi) an integral of motion, then

0 = Ḟ (zi(t, zj0)) = żk(t, zj0)
∂F (zi)

∂zk

∣

∣

∣

∣

z=z(t,z0)

=

(

hk(zj)
∂F (zi)

∂zk

)∣

∣

∣

∣

z=z(t,z0)

, (81)

for any t. So, we have hk(zj)∂F (zi)
∂zk = 0, concluding that F (zj) belongs to the kernel of hk(zj) ∂

∂zk .

The condition 2 implies the condition 1. Indeed, consider a function F (zi0) such that hk(zj0)
∂

∂zk
0

F (zi0) = 0. By direct

application and with the proposition 2, we have

F (zi(t, zj0)) = e
thk(zj

0
) ∂

∂zk
0 F (zi0) = F (zi0). (82)

The derivative relative to t of the above equation provides us with Ḟ (zi(t, zj0)) =
d
dtF (zi0) = 0. So, it is an integral of

motion.

In particular, if F (zi) is an integral motion, given a differentiable function G : R → R and a solution zi(t), we have

d

dt
G(F (zi(t))) =

dG(α)

dα

∣

∣

∣

∣

α=F (zi(t))

dF (zi(t))

dt
= 0. (83)

So, the above lemma results in hk(zj0)
∂

∂zk
0

G(F (zi0)) = 0.

[1] L. Euler, Formulae generales pro translatione quacunque corporum rigidorum, Novi Commentarii academiae scientiarum
Petropolitanae 20 189-207, (1776).

[2] V. I. Arnold, Mathematical methods of classical mechanics (2nd ed.), Graduate Texts in Mathematics 60, (Springer Science
& Business Media, 1989).

[3] A. A. Deriglazov, Lagrangian and Hamiltonian formulations of asymmetric rigid body, considered as a constrained system,
European Journal of Physics 44, (2023) 065001, DOI=10.1088/1361-6404/ace80d.

[4] H. Goldstein, Classical mechanics (2nd ed.), (Addison-Wesley, 1980).
[5] L. D. Landau, and E. M. Lifshitz, Mechanics (3nd ed.), Course of Theoretical PhysicsVolume 1, (Butterworth-Heinemann,

1976).
[6] B. Palais, R. Palais, and S. Rodi, A disorienting look at Euler’s theorem on the axis of a rotation, The American Mathe-

matical Monthly 116 10 892-909, (Taylor & Francis, 2009).
[7] A. A. Deriglazov, An asymmetrical body: example of analytical solution for the rotation matrix in elementary functions

and Dzhanibekov effect, Communications in Nonlinear Science and Numerical Simulation 118 108257, (Elsevier, 2024).
[8] A. A. Deriglazov, Has the problem of the motion of a heavy symmetric top been solved in quadratures?, Foundations of

Physics 54 41, (Elsevier, 2024).
[9] A. A. Deriglazov, General solution to the Euler-Poisson equations of a free Lagrange top directly for the rotation matrix

(2023), arXiv:2303.02431, URL https://doi.org/10.48550/arXiv.2303.02431
[10] A. A. Deriglazov, Euler–Poisson equations of a dancing spinning top, integrability and examples of analytical solutions,

Communications in Nonlinear Science and Numerical Simulation 127 107579, (Elsevier, 2023).
[11] A. A. Deriglazov, Rotation Matrix of a Charged Symmetrical Body: One-Parameter Family of Solutions in Elementary

Functions, Universe 10 2218-1997, DOI=10.3390/universe10060250 (MDPI AG, 2024).

http://arxiv.org/abs/2303.02431


15

[12] A. A. Deriglazov, Classical Mechanics: Hamiltonian and Lagrangian Formalism (2nd ed.) (Springer, 2016).
[13] T. Gantumur, Math 580 lecture notes 2: The cauchy-kovalevskaya theorem, (2011).
[14] Shane Kepley and Tianhao Zhang, A constructive proof of the Cauchy-Kovalevskaya theorem for ordinary differential

equations, Journal of Fixed Point Theory and Applications 23 7, (Springer, 2021).
[15] R. J. Thelwell, P. G. Warne and D. A. Warne, Cauchy-Kowalevski and polynomial ordinary differential equations, Electronic

Journal of Differential Equations 2012 11 1-8, (2012).
[16] Gerald B. Folland, Introduction to partial differential equations, Mathematical Notes 17, (Princeton university press, 2020).
[17] L. C. Evans, Partial differential equations, Graduate Studies in Mathematics 19, (American Mathematical Society, 2020).
[18] A. A. Deriglazov, Dynamics on a submanifold: intermediate formalism versus Hamiltonian reduction of Dirac bracket, and

integrability, The European Physical Journal C 84 311, (Springer, 2024).
[19] T. J. I’a. Bromwich, An introduction to the theory of infinite series, (American Mathematical Soc., 2024).
[20] S. Abbott, Stephen et al., Understanding analysis, Volume 2, (Springer, 2001).
[21] W. K. Tung, Group Theory in Physics: An Introduction to Symmetry Principles, Group Representations, and Special

Functions in Classical and Quantum Physics, (1985).
[22] J. J. Rotman, An introduction to the theory of groups, Graduate Texts in Mathematics 148, (Springer Science & Business

Media, 2012).
[23] D. Bump, et. al., Lie groups, Graduate Texts in Mathematics 225, (Springer Science & Business Media, 2004).
[24] M. Spivak, Calculus (3rd ed.), (Cambridge University Press, 2006).
[25] J. J. Duistermaat and Johan A.C. Kolk, Lie groups, Universitext (Springer, 1999).
[26] J. Stewart, Calculus: early transcendentals (8th ed.), (Cengage Learning, 2012).
[27] J. P. Olver, Applications of Lie groups to differential equations, Graduate Texts in Mathematics 107, (Springer Science &

Business Media, 1993).
[28] b P. Fitzpatrick, Advanced calculus (2nd ed.), (American Mathematical Soc., 2009).
[29] TS A, AH E, HF E-K. A novel approach to solving Euler’s nonlinear equations for a 3DOF dynamical motion of a rigid

body under gyrostatic and constant torques. Journal of Low Frequency Noise, Vibration and Active Control. 2024;0(0).
doi:10.1177/14613484241293859

[30] Amer T, El-Kafly H, Elneklawy A, Amer W. Modeling analysis on the influence of the gyrostatic moment on the motion
of a charged rigid body subjected to constant axial torque. Journal of Low Frequency Noise, Vibration and Active Control.
2024;43(4):1593-1610. doi:10.1177/14613484241276381

[31] Amer, T.S., El-Kafly, H.F., Elneklawy, A.H. et al. Analyzing the dynamics of a charged rotating rigid body under constant
torques. Sci Rep 14, 9839 (2024). https://doi.org/10.1038/s41598-024-59857-z

[32] Amer, T.S., El-Kafly, H.F., Elneklawy, A.H. et al. Analyzing the spatial motion of a rigid body subjected to constant
body-fixed torques and gyrostatic moment. Sci Rep 14, 5390 (2024). https://doi.org/10.1038/s41598-024-55964-z

[33] Galal, A.A., Amer, T.S., Elneklawy, A.H. et al. Studying the influence of a gyrostatic moment on the mo-
tion of a charged rigid body containing a viscous incompressible liquid. Eur. Phys. J. Plus 138, 959 (2023).
https://doi.org/10.1140/epjp/s13360-023-04581-2

[34] Farag, A.M., Amer, T.S. & Abady, I.M. Modeling and Analyzing the Dynamical Motion of a Rigid Body with a Spherical
Cavity. J. Vib. Eng. Technol. 10, 1637–1645 (2022). https://doi.org/10.1007/s42417-022-00470-7

[35] A.M. Farag, T.S. Amer, W.S. Amer, The periodic solutions of a symmetric charged gyrostat for a slightly relo-
cated center of mass, Alexandria Engineering Journal, Volume 61, Issue 9, 2022, Pages 7155-7170, ISSN 1110-0168,
https://doi.org/10.1016/j.aej.2021.12.059.


	Introduction
	Notation and basic equations of the problem
	General solution to Poisson equations by making use of integrals of motion
	General solution to Poisson equations by direct summation of series for all Rij
	Conclusion
	Acknowledgments
	Appendix 1. Properties of the series ethk(z0j)z0kz0i
	References

