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Social dynamics are often driven by both pairwise (i.e., dyadic) relationships and higher-order (i.e., polyadic)
group relationships, which one can describe using hypergraphs. To gain insight into the impact of polyadic
relationships on dynamical processes on networks, we formulate and study a polyadic voter process, which we
call the group-driven voter model (GVM), that incorporates the effect of group interactions by nonlinear interac-
tions that are subject to a group (i.e., hyperedge) constraint. By examining the competition between nonlinearity
and group sizes, we show that the GVM achieves consensus faster than standard voter-model dynamics, with
an optimal minimizing exit time. We substantiate this finding by using mean-field theory on annealed uniform
hypergraphs with N nodes, for which the exit time scales as A lnN , where the prefactor A depends both on
the nonlinearity and on group-constraint factors. Our results reveal how competition between group interactions
and nonlinearity shapes GVM dynamics. We thereby highlight the importance of such competing effects in
complex systems with polyadic interactions.

Introduction—Individuals in society interact both in pairs
and through various types of social groups (including families,
clubs, and work colleagues) [1, 2]. Group (i.e., “polyadic”)
interactions often are not merely structural units of a net-
work; they also constitute functional units that drive dynam-
ics through nonlinear effects [3, 4]. Consequently, the tra-
ditional network framework — which employs graphs and
thus encodes group interactions as collections of pairwise (i.e.,
dyadic) interactions [5] — has a fundamental limitation. To
explicitly capture group interactions, one can employ “higher-
order” (i.e., polyadic) network frameworks [5–8]. There has
been much recent work on dynamical processes on polyadic
networks [9–20] on a variety of systems, including opinion
dynamics [21–26]. However, researchers have not obtained a
generic understanding of the impact of group interactions on
dynamical processes.

To gain insight into the impact of group interactions on
opinion dynamics, we formulate and analyze a polyadic voter
model. Voter models (VMs) [27] are both among the sim-
plest models of social dynamics [28] and among the best-
understood theoretical models of collective behavior of com-
plex systems [29, 30]. One can interpret the update rules of a
VM [31] in terms of choosing between binary choices, which
we denote by σ = 0 and σ = 1. We use the terms “opin-
ion” and “state” interchangeably for the variable σ. At each
time step, a uniformly random node adopts the opinion of a
uniformly random neighbor. (Henceforth, we use the term
“random” as a shorthand description for uniformly at ran-
dom.) VMs have been studied for more than half of a cen-
tury [32], and they have been studied actively on traditional
networks (i.e., graphs) for more than two decades [33–39].
VMs have also been extended in a variety of ways [40]. How-

FIG. 1. Schematic illustration of our group-driven voter model
(GVM) on a 4-uniform hypergraph. The central node flips its state
(that is, ◦ → •) with a probability that depends on the GVM update
rule. For example, for the simplicial GVM, its flip probability is 1/2,
as the central node has to select the gray hyperedge to flip its state.
For the GVM with nonlinearity strength q = 2 and duplicate choices
allowed, the central node’s flip probability is instead 13/18. For the
blue hyperedge, it has to select twice among its two black neighbors
out of its three total neighbors.

ever, few existing studies account explicitly for group interac-
tions [25, 26].

The framework of polyadic networks can help fill this gap
by providing explicit structural models, such as hypergraphs
and simplicial complexes [5], to deal with group interactions.
To incorporate group interactions into opinion dynamics, we
use hypergraphs and generalize VM dynamics. To initiate our
generalization, we first reformulate a traditional dyadic VM
update rule by focusing on the role of edges. At each time
step, a random node i chooses one of its edges (i.e., links) at
random, and it flips its state σi to the state σj of the adjacent
node j that is attached to the chosen edge if the node states are
different. In a dyadic network, each of these edges of a node i
is attached to exactly 1 other node.

Group-driven voter model—In a hypergraph, a node i can
be adjacent to more than one other node via a hyperedge. Each
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node in a hyperedge with cardinality (i.e., “size”) s is adjacent
to s − 1 nodes. This multiplicity leads to a broad spectrum
of possibilities for dynamical processes on hypergraphs. To
investigate these possibilities, we study a group-driven voter
model (GVM). At each time step, a random node i consid-
ers adopting an opinion from one of its incident hyperedge
h, which we choose randomly. During the adoption process,
node i makes q observations of states (i.e., opinions) of ran-
dom nodes of hyperedge h. One can either allow [41] or dis-
allow [42] duplicate choices of the same neighbor. If the q ob-
served node states {σj1 , σj2 , . . . , σjq | jp ∈ h\{i}} are unani-
mous and different from its own state σi, then node i flips its
state (see Fig. 1) to match the observed state.

The GVM has two independent parameters: q and s. The
parameter q accounts for nonlinear interactions [43], which
are absent in standard VMs but have been considered in non-
linear variants of voter models [41, 44–47]. The parameter
s accounts for the effect of polyadic interactions. The GVM
incorporates social reinforcement [42, 48–50] via group in-
teractions [12, 51], suggesting an explicit group-based origin
of nonlinearity, which has been introduced in an ad hoc way
in various dyadic variants of VMs [52], including a vacillat-
ing voter model [44], a q-voter model [41], a confident voter
model [45], and a nonlinear voter model [47].

When q = s − 1 and duplicate choices are disallowed, the
GVM captures the strongest group interactions, as it requires
that all of the s − 1 nodes’ states of a selected hyperedge are
unanimous and different from node i’s state for node i to flip
its state. This requirement amounts to a “simplicial rule”,
which was used in Refs. [10, 53] to refer to polyadic inter-
actions that require unanimity of states. We thus refer to this
variant as a “simplicial GVM”. When q = 1 for all values of
s, the GVM essentially reduces to a standard dyadic VM; it no
longer experiences the effects of polyadic interactions. Addi-
tionally, the GVM on dyadic networks (s = 2) reduces to the
standard VM for all values of q. When s = N , where N is the
number of nodes, the GVM reduces to the noiseless q-voter
model [41, 47] on a fully-connected dyadic network. How-
ever, for networks that are not complete, the correspondence
is not exact due to the explicit group constraint.

To clearly observe the effect of groups, we consider the
simplicial GVM. A basic property of voter dynamics is the
exit time, which is the time that it takes to reach consensus
(of either state). The exit time depends on the initial node
states. Let τ denote the exit time from a balanced initial con-
dition, in which the same number of nodes are in each state. In
Fig. 2, we show the exit time τ for the simplicial GVM on “an-
nealed” hypergraphs, in which the nodes of a hyperedge are
determined uniformly at random in each time step [55], with
two different hyperedge-size distributions P (s) — a geomet-
ric distribution P (s) = [(⟨s⟩−2)/(⟨s⟩−1)]s−2/(⟨s⟩−1) for
s ≥ 2 and a power-law distribution P (s) = s−α/

∑∞
ℓ=2 ℓ

−α

for s ≥ 2 — that are inspired by empirical data sets [56–
58]. We compute the exit time τ as a function of the mean
hyperedge size ⟨s⟩ (for the geometric distribution) and the
power-law exponent α (for the power-law distribution) using
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FIG. 2. The exit time τ for the simplicial GVM on annealed hy-
pergraphs with hyperedge sizes that we obtain from (a) a geometric
distribution with different mean hyperedge sizes ⟨s⟩ and (b) a power-
law distribution with different power-law exponents α. The symbols
and shaded areas indicate the means and standard deviations, respec-
tively, of 103 independent Monte-Carlo simulations of the simplicial
GVM with N = 105 nodes, and the curves indicate analytical results
from a recursion relation (solid curves) and a leading-order approxi-
mate solution (dotted curves). (See the Supplemental Material (SM)
for the associated equations [54].) Both situations exhibit a notion
of optimality: With increasing ⟨s⟩ or decreasing α, the exit time τ
first decreases but eventually increases, achieving a minimum in the
middle.

Monte-Carlo (MC) simulations of the simplicial GVM on hy-
pergraphs with N = 105 nodes [59]. In both cases, τ behaves
nonmonotonically (see Fig. 2), so there are optimal values of
τ . As groups of three or more nodes begin to appear (i.e.,
⟨s⟩ ⪆ 2 or 3 ⪅ α < ∞), consensus accelerates (i.e., τ be-
comes smaller). However, when group sizes are too large (i.e.,
⟨s⟩ ≫ 2 or α ⪅ 3), consensus decelerates. Therefore, there
is an “optimal” level of group interactions that leads to the
fastest consensus (i.e., the smallest τ ).

To gain theoretical insight into the origin of this optimality,
we henceforth analyze the GVM with duplicate choices al-
lowed on annealed s-uniform hypergraphs with N nodes. We
use this setting because it allows us to derive a series of con-
crete, informative analytical results. For simplicity, we treat
all nodes as equivalent; at each time step, we select nodes of
a hyperedge uniformly at random with replacement. In an s-
uniform hypergraph, each hyperedge has the same size (i.e.,
the same number of nodes) s. We consider the competition
between our two independent parameters, q and s, in the opin-
ion dynamics. In this case, q ≥ s is also possible because we
allow duplicate selections of the same neighboring node.

Mean-field theory—To theoretically understand the GVM
dynamics, we use mean-field theory [37, 47]. A key variable
is the density ρ(t), which is the fraction of nodes of a hyper-
graph in state 1 at time t. In a time step, ρ(t) can increase
or decrease by δρ = 1/N . One can account for this change
with the transition probability R(ρ) ≡ P (ρ → ρ + δρ) that
the number of nodes in state 1 increases by 1 in a time step
and the transition probability L(ρ) ≡ P (ρ → ρ − δρ) that it
decreases by 1 in a time step. The probability of no change in
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ρ in one time step is 1 − R(ρ) − L(ρ). The rate equation for
ρ(t) is

dρ

dt
= R(ρ)− L(ρ) ≡ v(ρ) , (1)

where v(ρ) is the drift function.
For an annealed s-uniform hypergraph, one can write [54]

R(ρ) = (1− ρ)
s−1∑

n=0

(
s− 1

n

)
ρn(1− ρ)s−1−n

(
n

s− 1

)q

=
(1− ρ)

(s− 1)q

(
d

dr

)q [
(1− ρ+ ρer)s−1

]∣∣∣∣
r=0

,

L(ρ) = ρ

s−1∑

n=0

(
s− 1

n

)
ρn(1− ρ)s−1−n

(
1− n

s− 1

)q

=
ρ

(s− 1)q

(
d

dr

)q [
(ρ+ er − ρer)s−1

]∣∣∣∣
r=0

. (2)

In this mean-field approximation, the probability that a size-
s hyperedge has n nodes in state 1 at time t is

(
s−1
n

)
ρn(1 −

ρ)s−1−n.
The drift function v(ρ) gives many useful insights about

GVM dynamics. When q = 1 (i.e., for the standard VM),
v(ρ) = 0 for all ρ because R(ρ) = L(ρ) = ρ(1− ρ) [37]. In
this case, stochastic fluctuations enable finite-size systems to
reach consensus. For the generic GVM (i.e., when q ≥ 2), the
drift function v(ρ) is no longer identically 0. We show in the
Supplemental Material (SM) [54] that Eq. (1) has three equi-
librium points: ρ = 0, ρ = 1, and ρ = 1/2. The equilibrium
points ρ = 0 and ρ = 1 are stable and correspond to consensus
states with opinions 0 and 1, respectively. Apart from finite-
size fluctuations, the system eventually reaches the ρ = 0 con-
sensus equilibrium whenever ρ < 1/2 because v(ρ) < 0. For
ρ > 1/2, the system eventually reaches the consensus equi-
librium ρ = 1. The unstable equilibrium point ρ = 1/2 has
an equal mixture of the opinions 0 and 1. Drift towards a sta-
ble equilibrium point depends on the values of q and s, which
thereby play crucial roles in the GVM dynamics. The drift
function v(ρ) of the GVM for s = N reduces to that of the
q-voter model on a fully-connected dyadic network [54].

Sigmoidal exit probability—Another key property of voter
dynamics is the exit probability Φ(ρ), which is the probability
to reach the opinion-1 consensus state from the initial den-
sity ρ. From the preceding argument, we expect that the exit
probability for the generic GVM (i.e., for any q ≥ 2) changes
in a sigmoidal manner near ρ = 1/2, with convergence to a
step function in the thermodynamic limit N → ∞, as has also
been observed in numerical simulations of the q-voter model
[41]. To confirm this expectation and elucidate the group ef-
fect, we calculate Φ(ρ) explicitly for large but finite N . Fol-
lowing [37], we set up the recursion relation

Φ(ρ) = R(ρ)Φ(ρ+ δρ) + L(ρ)Φ(ρ− δρ)

+ [1−R(ρ)− L(ρ)] Φ(ρ) (3)
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FIG. 3. The exit probability Φ(ρ) when the nonlinearity strength is
q = 2 and the group size is s = 3. The solid curves are from the
function in Eq. (5), and the markers are means of 104 independent
MC simulations of the GVM on annealed 3-uniform hypergraphs.
As N increases, the sigmoid Φ converges to a step function. In the
inset, we show Φ(ρ) for a fixed system size N and different group
sizes s. Convergence to a step function is slower for s = 3 than for
s = N .

and Taylor-expand it in δρ = 1/N to second order to obtain a
backward Kolmogorov equation

v(ρ)
∂Φ(ρ)

∂ρ
+D(ρ)

∂2Φ(ρ)

∂ρ2
= 0 , (4)

with a diffusion function D(ρ) ≡ [R(ρ) + L(ρ)]/(2N) and
boundary conditions Φ(0) = 0 and Φ(1) = 1. By symmetry,
Φ(1− ρ) = 1− Φ(ρ).

To illustrate the effect of the nonlinearity, we compare the
two simplest cases: q = 1 (i.e., the standard VM) and q = 2
(our GVM). When q = 1, it is known that Φ(ρ) = ρ [37], as
one can view the dynamics as a diffusion process (i.e., v(ρ) =
0). For q = 2, we solve Eq. (4) explicitly to obtain [54]

Φ(ρ) =
1

2
+

erf

(√
2N(s− 2)

s

(
ρ− 1

2

))

2 erf

(√
N(s− 2)

2s

) , (5)

where erf(·) is the error function. In Fig. 3, we plot Φ(ρ)
when q = 2 and s = 3. This expression agrees with the
results of our MC simulations. This explicit closed-form con-
firmation demonstrates that the “width” ∆ of the sigmoidal
change across ρ = 1/2 scales as ∆ ∼ 1/

√
N(s− 2)/s, illus-

trating both the finite-size effects (i.e., the dependence on N )
and the group effect (i.e., the dependence on s). In particular,
we see that convergence to a step function “slows down” for
smaller group sizes s when q = 2. See the inset of Fig. 3.

Logarithmic scaling of the exit time τ with hypergraph size
N—Let T (ρ) denote the exit time for a general initial density
ρ of nodes in state 1. Therefore, τ = T (ρ = 1/2). Following
a similar procedure as in our derivation of Eq. (4) for the exit
probability, we set up a recursion relation for the exit time
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FIG. 4. Logarithmic scaling of the exit time τ(s, q,N) for the GVM
on the hypergraph size N for (a) nonlinearity strength q = 2 and (b)
nonlinearity strength q = 5. The markers are means of 106 (when
N ≤ 104) or 103 (when N ≥ 105) independent MC simulations of
the GVM on annealed s-uniform hypergraphs. We obtain the solid
curves from Eq. (S21) in the SM [54], and we obtain the dashed
curves from the leading-order solutions in Eqs. (8, 9). The dashed
and solid green curves (s = 7) in (a) almost overlap.

T (ρ). This yields the backward Kolmogorov equation [54]

v(ρ)
∂T (ρ)

∂ρ
+D(ρ)

∂2T (ρ)

∂ρ2
= −1 . (6)

For the standard VM (i.e., for q = 1), the drift term vanishes
and we solve Eq. (6) and obtain τ = N ln 2 [37, 54]. How-
ever, for the GVM (i.e., for q ≥ 2), it is typically not possible
to solve Eq. (6) analytically. Nevertheless, one can numeri-
cally solve the recursion relation for T (ρ) that is analogous to
Eq. (3). See Eq. (S21) in the SM [54].

To proceed further analytically, we approximate Eq. (6)
by neglecting the diffusion term. We can do this because
D(ρ)/v(ρ) ∼ 1/N as N → ∞. We then integrate the re-
sulting equation to obtain the approximate exit time

τ ≈
∫ 1

N

1
2− 1√

N

1

v(ρ′)
dρ′ . (7)

We have shifted the initial density by 1/
√
N from 1/2 to ex-

ploit stochasticity and thereby avoid being trapped at the un-
stable equilibrium point. Under this approximation, we obtain
to leading order in the hypergraph size N that τ(N ; s, q) ∼
A(s, q) lnN , where the prefactor A(s, q) depends on s and q
for general q ≥ 2 and s ≥ 3. (See Eq. (S33) in the SM [54].)
One can attribute the logarithmic scaling of the exit time for
the generic GVM to the fact that v(ρ) = 0 has three simple
roots in [0, 1]. The prefactor A(s, q) diverges for s = 2, as τ
satisfies diffusive scaling τ ∼ O(N) for dyadic networks.

It is insightful to show some explicit approximate expres-
sions for τ as examples. The leading-order expression of τ for
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FIG. 5. (a) The dependence on the nonlinearity strength q of the
exit time τ for the GVM for different values of the group size s for
hypergraphs with N = 104 nodes. The markers are means of 104

independent MC simulations of the GVM on annealed s-uniform hy-
pergraphs, and the analytical curves are from numerical solutions of
the recursion relation (S21) in the SM [54]. When s = N , the exit
time τ grows exponentially quickly with q, making it problematic to
depict it along with other cases. In the inset, we show the curve for
s = N in an extended q range. (b) The heat map for τ(s, q,N) that
we obtain from numerical solutions of the recursion relation (S21).
For a given s, the cell with the red border has the optimal τ .

q = 2 and q = 5 are [54]

τ(N, s; q = 2) ∼ 2(s− 1)

(s− 2)
lnN , (8)

τ(N, s; q = 5) ∼
(s− 1)4

(3s− 4)(s+ 1)

(s2 + 3s− 8)

s(s− 2)(s2 − 2s+ 2)
lnN . (9)

From Fig. 4, we see that the analytically-obtained logarithmic
scaling of τ successfully explains the MC simulation results.
Figure 4 also reveals that the group effect can manifest dis-
tinctively for different nonlinearity strengths q. When q = 2,
reaching consensus takes the longest time for the smallest
group size s = 3 [see Fig. 4(a)]. By contrast, when q = 5,
the longest consensus time occurs for the largest group size
s = N [see Fig. 4(b)].

Optimality in the exit time τ—To further examine the in-
terplay between the nonlinearity and group effects on the exit
time τ , we investigate how varying the nonlinearity strength
q affects the GVM dynamics for specified values of the group
size s and hypergraph size N . In the absence of the group
constraint (i.e., s = N ), the leading-order expression of the
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exit time τ is

τ(q;N, s = N) ∼
(
1 +

2q−2

q − 1

)
lnN . (10)

This expression also applies to the q-voter model on a com-
plete dyadic graph. Because τ increases with q, a stronger
nonlinearity decelerates consensus. [See Fig. 5(a) and its in-
set.] By contrast, with the most-constraining groups (i.e.,
s = 3), the exit time τ decreases monotonically with q. To
leading order, τ(q;N, s = 3) ∼ 2q

2q−1−1 lnN . A stonger
nonlinearity accelerates consensus. [See the red curve in
Fig. 5(a).]

There is a nontrivial tradeoff between these extreme situa-
tions. As we can see in Fig. 5(a), for a given hyperedge size
s, there is an optimal nonlinearity strength q∗ with the min-
imum exit time τ . We systematically investigate the tradeoff
for many values of s and q [see Fig. 5(b)]. These computations
reveal the global landscape and optimality of GVM dynamics.

We now explain why we observe optimality. From the inset
of Fig. 5(a), we see that considering the opinions of exactly
2 neighbors is the most efficient way to achieve consensus.
Increasing q in Eq. (10) with s = N reduces the probability
that neighbors have unanimous opinions, which in turn de-
creases the drift function v(ρ) and decelerates the approach
to consensus. Because q grows logarithmically with N [i.e.,
q ∼ O(lnN)], the logarithmic scaling of τ in Eq. (10) eventu-
ally becomes a linear scaling τ ∼ O(N), which is comparable
to the diffusive scaling for q = 1. However, the probability
that a node consults the same neighbor twice (instead of con-
sulting 2 different neighbors) for q = 2 is 1/(s− 1), which is
not negligible for small s. In this situation, a node only con-
sults the opinion of 1 neighbor, so it again effectively follows
diffusive dynamics. More generally, the probability of diffu-
sive dynamics from consulting just 1 neighbor increases with
decreasing q. Therefore, there is a “sweet spot” q∗ that min-
imizes τ between the two diffusive-dynamics maxima. That
is, 2 < q∗ < O(lnN). The case s = 3 is a notable exception.
When s = 3, the maximum number of different neighbors is
2, so τ decreases indefinitely (although slowly) as q increases.

When q is fixed, increasing s towards N reduces the prob-
ability of unanimity, as the number of distinct neighbors that
are chosen increases, and decreasing s towards 2 increases
the probability of consulting just 1 neighbor. Both situations
lead to an increase in the exit time τ . Therefore, there exists
an optimal τ . An equivalent explanation of the presence of
optimality in the simplicial GVM (with q = s − 1 and dupli-
cate choices disallowed) in Fig. 2 is as a competition between
diffusive dynamics from dyadic edges (which dominates as
⟨s⟩ ↓ 2 and α → ∞) and the small probability of unanim-
ity in large hyperedges (which dominates as ⟨s⟩ → ∞ and
α ↓ 2). The exit time τ increases as one approaches either of
these limits, so there is an optimal τ .

Conclusions—We formulated and analyzed a group-
driven voter model (GVM) that accounts for the effects of
both polyadic interactions and nonlinear interactions within
groups. A larger nonlinearity strength q leads to faster con-

sensus in the GVM than in conventional VMs, which exhibit
diffusive dynamics. This acceleration of consensus formation
depends on the interplay between the nonlinearity strength q
and the group size s of hypergraphs. Through mean-field cal-
culations and Monte-Carlo simulations, we demonstrated that
the exit time scales logarithmically with system size and that
there is an optimal value q∗ of the nonlinearity strength q that
minimizes the exit time. This optimality emerges from a com-
petition between diffusive dynamics when both q and s are
small and a slow drift when both q and s are large. This emer-
gent group effect cannot arise in dyadic networks.

We also apply our analytical approach to several variants of
our GVM (see the SM [54]): a simplicial GVM, a GVM with-
out allowing duplicate choices, and a GVM with edge-update
dynamics in which we simultaneously update the opinions of
all nodes that are attached to a hyperedge. In all of these cases,
the exit time scales logarithmically with system size, illustrat-
ing the robustness of our main theoretical results [54]. To fur-
ther examine the robustness of our results, it is also important
to consider additional phenomena. For example, our analysis
did not account for heterogeneities in the degree distribution
(where the degree of a node is the number of hyperedges it is
in). Our preliminary Monte-Carlo calculations [54] illustrate
that the degree distribution can influence the exit time. There-
fore, it will be useful to generalize our mean-field framework
to a degree-based mean-field theory [35, 37, 38] to study their
effects analytically. It will also be useful to extend our GVM
to encompass more realistic aspects (see, e.g., [40]) of opin-
ion dynamics. There have been studies of optimal group and
team sizes in social psychology [60, 61], and further studies
of our GVM and its generalizations may yield interesting in-
sights about these phenomena.
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and L. Hébert-Dufresne, Comm. Phys. 5, 25 (2022).

[14] G. F. de Arruda, G. Petri, P. M. Rodriguez, and Y. Moreno, Nat.
Commun. 14, 1375 (2023).

[15] T. Carletti, L. Giambagli, and G. Bianconi, Phys. Rev. Lett.
130, 187401 (2023).

[16] G. Cencetti, D. A. Contreras, M. Mancastroppa, and A. Barrat,
Phys. Rev. Lett. 130, 247401 (2023).

[17] J. Kim, D.-S. Lee, and K.-I. Goh, Phys. Rev. E 108, 034313
(2023).
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A. Simplicial GVM on annealed hypergraphs

In Fig. 2 of the main manuscript, we showed results of MC simulations of the simplicial GVM on annealed hypergraphs
with N nodes and hyperedge-size distribution P (s). In an annealed hypergraph, the elements of a hyperedge are not fixed (i.e.,
“quenched”); instead, one determines them randomly at each time step. Additionally, we assume that all nodes are equivalent.
Each MC step has the following three stages:

(i) We select a node v uniformly at random with probability 1/N .

(ii) We draw a random number s from the probability distribution sP (s)/⟨s⟩, where ⟨s⟩ =∑∞
s=2 sP (s) is the mean hyperedge

size. The probability that a randomly selected hyperedge of node v has size s is proportional to sP (s). We select s − 1
distinct nodes uniformly at random from the N − 1 other nodes (i.e., excluding v itself) of the hypergraph to form a
hyperedge h.

(iii) The node v flips its state σv if and only if the states of all s − 1 other nodes in the selected hyperedge h are unanimous
and different from σv .

B. GVM on annealed s-uniform hypergraphs

In Figs. 3–5 of the main manuscript, we showed results of MC simulations of the GVM on annealed s-uniform hypergraphs
with N nodes. An s-uniform hypergraph is a hypergraph in which every hyperedge has the same cardinality (i.e., size) s. We
again assume that all nodes are equivalent. Each MC step has the following three stages:

(i) We select a node v uniformly at random with probability 1/N .

(ii) We select s− 1 distinct nodes uniformly at random from the other N − 1 nodes (i.e., excluding v itself) of the hypergraph
to form a hyperedge h.

(iii) We select a node other than v from the hyperedge h uniformly at random from the s− 1 remaining nodes, and we record
the state σ of this node. We repeat this process q− 1 times for a total of q independent instances of this process. The node
v flips its state σv if and only if the q states are unanimous and different from σv .

In stage (iii), one can either allow or disallow duplicate selections of the same neighboring node. The GVM in the main
manuscript does allow duplicate selections. In Sec. S3 E, we consider a variant GVM in which we do not allow duplicate
selections.

S2. DETAILED DERIVATIONS OF OUR MAIN ANALYTICAL RESULTS

In this section, we give detailed derivations of our main analytical results for the GVM in the main manuscript. In this GVM,
a node consults q neighboring opinions with duplicate selections allowed.

A. Transition probabilities for general P (s)

To track the time evolution of the fraction ρ(t) of nodes in state 1 at time t in a hypergraph, we consider the transition
probabilities R(ρ) ≡ P (ρ → ρ + 1/N) (i.e., the “raising operator”) and L(ρ) ≡ P (ρ → ρ − 1/N) (i.e., the “lowering
operator”) [S1]. The probability that a selected hyperedge in stage (ii) has size s is proportional to sP (s), so the mean-field
expression for the raising operator R(ρ) is

R(ρ) =
(1− ρ)∑
s sP (s)

∑

s

sP (s)
s−1∑

n=1

(s− 1)!

n!(s− 1− n)!
ρn(1− ρ)s−1−n

(
n

s− 1

)q

=
ρ(1− ρ)∑

s sP (s)

∑

s

sP (s)Rs(ρ) , (S1)

where

Rs(ρ) =

s−1∑

n=1

(s− 2)!

(n− 1)!(s− 1− n)!
ρn−1(1− ρ)s−1−n

(
n

s− 1

)q−1

. (S2)
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For an annealed s-uniform hypergraph, Eq. (S1) reduces to R(ρ) of Eq. (2) of the main manuscript. We express Eq. (S2) in
terms of ρ, s, and q using the relation

nq−1 = 1 +

q−1∑

r=1

Ar,q

r∏

l=1

(n− l) , (S3)

with positive integers

Ar,q ≡
[
(r + 1)q−1 − rq + r − 1

r!
+ 1r≥3

r−1∑

l=2

(r − l + 1)q−1 − 1

l!(r − l)!
(−1)l

]
, (S4)

where the indicator symbol 1r≥3 has the value 1 when r ≥ 3 and has the value 0 otherwise. Note that Ar,q = 0 for r ≥ q and
that Aq−1,q = 1. Inserting Eq. (S3) into Eq. (S2) yields

Rs(ρ) =
1

(s− 1)q−1

[
1 +

s−1∑

n=1

q−1∑

r=1

(s− 2)!

(n− 1)!(s− 1− n)!
ρn−1(1− ρ)s−1−nAr,q

r∏

l=1

(n− l)

]

=
1

(s− 1)q−1
+

1

(s− 1)q−1

s−1∑

n=2

A1,q
ρ(s− 2)(s− 3)!

(n− 2)!(s− 1− n)!
ρn−2(1− ρ)s−1−n

+
1

(s− 1)q−1

s−1∑

n=3

A2,q
ρ2(s− 2)(s− 3)(s− 4)!

(n− 3)!(s− 1− n)!
ρn−3(1− ρ)s−1−n + · · ·

+
1

(s− 1)q−1

s−1∑

n=q

Aq−1,q
ρq−1(s− q − 1)!

∏q−1
l=1 (s− 1− l)

(n− q)!(s− 1− n)!
ρn−q(1− ρ)s−1−n

=
1

(s− 1)q−1

[
1 +A1,qρ(s− 2) +A2,qρ

2(s− 2)(s− 3) + · · ·+Aq−1,qρ
q−1

q−1∏

l=1

(s− 1− l)

]

=
1

(s− 1)q−1

[
1 +

q−1∑

r=1

Ar,qρ
r

r∏

l=1

(s− 1− l)

]
. (S5)

Therefore,

R(ρ) =
ρ(1− ρ)∑

s sP (s)

∑

s

sP (s)

(s− 1)q−1

[
1 +

q−1∑

r=1

Ar,qρ
r

r∏

l=1

(s− 1− l)

]
. (S6)

When q ≥ s, the leading term in the square brackets of Eq. (S6) is As−2,qρ
s−2(s − 2)!. The lowering operator L(ρ) satisfies

L(ρ) = R(1− ρ), so

L(ρ) =
ρ(1− ρ)∑

s sP (s)

∑

s

sP (s)

(s− 1)q−1

[
1 +

q−1∑

r=1

Ar,q(1− ρ)r
r∏

l=1

(s− 1− l)

]
. (S7)

For s-uniform hypergraphs, we give explicit formulas for R(ρ) for a few specific parameter choices using Eq. (S6). These
formulas are

R(ρ) = ρ(1− ρ) for either q = 1 or s = 2 ,

R(ρ) =
ρ(1− ρ)

(s− 1)
[1 + (s− 2)ρ] for q = 2 ,

R(ρ) =
ρ(1− ρ)

(s− 1)2
[
1 + 3(s− 2)ρ+ (s− 2)(s− 3)ρ2

]
for q = 3 ,

R(ρ) =
ρ(1− ρ)

(s− 1)3
[
1 + 7(s− 2)ρ+ 6(s− 2)(s− 3)ρ2 + (s− 2)(s− 3)(s− 4)ρ3

]
for q = 4 , and

R(ρ) =
ρ(1− ρ)

(s− 1)q−1

[
1 +

s−2∑

r=1

Ar,qρ
r

r∏

l=1

(s− 1− l)

]
for q → ∞ . (S8)
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FIG. S1. The drift function v(ρ) = R(ρ) − L(ρ) for different values of q when (a) s = 7 and (b) s = N → ∞. The curves for q = 2 and
q = 3 in (b) completely overlap.

When s = N and N → ∞, the raising operator R(ρ) in Eq. (S8) becomes

R(ρ) = (1− ρ)ρq . (S9)

In Fig. S1(a), we show the drift function v(ρ) ≡ R(ρ) − L(ρ) = R(ρ) − R(1 − ρ) for s = 7 from Eq. (S8). In Fig. S1(b), we
show the drift function for s = N → ∞. When s = N → ∞, the drift function is

v(ρ) = (1− ρ)ρq − ρ(1− ρ)q , (S10)

which corresponds to Eq. (10) of Ref. [S2]. From Eq. (S8), we see that when either q = 1 (i.e., no nonlinearity) or s = 2 (i.e.,
no group interactions), R(ρ) = L(ρ) = ρ(1− ρ), which implies that the drift function v(ρ) = 0. The dynamics becomes purely
diffusive, as in Ref. [S1]. We are interested in the competition between group interactions and nonlinearity, so we focus our
analysis on situations with q ≥ 2 and s ≥ 3 unless we note otherwise.

B. Derivation of the exit probability Φ(ρ)

The exit probability Φ(ρ) satisfies the recursion relation

Φ(ρ) = R(ρ)Φ(ρ+ δρ) + L(ρ)Φ(ρ− δρ) + [1−R(ρ)− L(ρ)]Φ(ρ) , (S11)

which is Eq. (3) of the main manuscript. We Taylor-expand Φ(ρ± δρ) in δρ up to second order and write

Φ(ρ± δρ) ≈ Φ(ρ)± ∂Φ(ρ)

∂ρ
δρ+

1

2

∂2Φ(ρ)

∂ρ2
(δρ)2 . (S12)

We then substitute Eq. (S12) into Eq. (S11) to obtain the backward Kolmogorov equation

v(ρ)
∂Φ(ρ)

∂ρ
+D(ρ)

∂2Φ(ρ)

∂ρ2
= 0 , (S13)

where v(ρ) = R(ρ) − L(ρ) is the drift function (which we defined in Sec. S2 A) and D(ρ) ≡ [R(ρ) + L(ρ)]/(2N) is the
diffusion function. From Eqs. (S6) and (S7), the coefficient of the drift term is

v(ρ) =
ρ(1− ρ)∑

s sP (s)

∑

s

sP (s)

(s− 1)q−1

q−1∑

r=1

Ar,q [ρ
r − (1− ρ)r]

r∏

l=1

(s− 1− l) (S14)

and the coefficient of the diffusion term is

D(ρ) =
1

2N

ρ(1− ρ)∑
s sP (s)

∑

s

sP (s)

(s− 1)q−1

{
2 +

q−1∑

r=1

Ar,q [ρ
r + (1− ρ)r]

r∏

l=1

(s− 1− l)

}
. (S15)



5

We now obtain an explicit expression for Φ(ρ) for the GVM with q = 2 on an annealed s-uniform hypergraph. In this case,
the raising and lowering operators are

R(ρ) =
ρ(1− ρ)

(s− 1)
[1 + (s− 2)ρ] ,

L(ρ) =
ρ(1− ρ)

(s− 1)
[1 + (s− 2)(1− ρ)] , (S16)

which implies that

v(ρ) =
(s− 2)

(s− 1)
ρ(1− ρ)(2ρ− 1) ,

D(ρ) =
1

2N

s

(s− 1)
ρ(1− ρ) . (S17)

We write the derivative of Φ(ρ) with respect to ρ as exp[−f(ρ)], where

f(ρ) =

∫
v(ρ)

D(ρ)
dρ

=

∫
2N(s− 2)(2ρ− 1)

s
dρ

=
N(s− 2)

2s
− 2N(s− 2)(ρ− 1/2)2

s
. (S18)

Using the boundary conditions Φ(0) = 0 and Φ(1) = 1, we obtain

Φ(ρ) =

∫ ρ

0

exp

[−2N(s− 2)(ρ′ − 1/2)2

s

]
dρ′

∫ 1

0

exp

[−2N(s− 2)(ρ′ − 1/2)2

s

]
dρ′

=

∫ N(s−2)(ρ−1/2)
2s

−N(s−2)
2s

exp
[
−y2

]
dy

∫ N(s−2)
2s

−N(s−2)
2s

exp
[
−y2

]
dy

, (S19)

where y =
√
2N(s− 2)/s(ρ− 1/2). This yields Eq. (5) of the main manuscript:

Φ(ρ) =
1

2
+

erf

(√
2N(s− 2)

s

(
ρ− 1

2

))

2 erf

(√
N(s− 2)

2s

) , (S20)

where erf(x) = 2
∫ x

0
exp[−z2]dz/

√
π is the error function.

C. Derivations of the exit times T (ρ) and τ ≡ T (ρ = 1/2)

The exit time T (ρ) satisfies the recursion relation

T (ρ) = R(ρ)T (ρ+ δρ) + L(ρ)T (ρ− δρ) + [1−R(ρ)− L(ρ)]T (ρ) + δt , (S21)

with δt = 1/N . We Taylor-expand T (ρ± δρ) in δρ up to second order and write

T (ρ± δρ) ≈ T (ρ)± ∂T (ρ)

∂ρ
δρ+

1

2

∂2T (ρ)

∂ρ2
(δρ)2 , (S22)

which we insert into Eq. (S21) to obtain the backward Kolmogorov equation

v(ρ)
∂T (ρ)

∂ρ
+D(ρ)

∂2T (ρ)

∂ρ2
= −1 , (S23)

which is Eq. (6) of the main manuscript.
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1. Numerical solution of the recursion relation (S21)

It is challenging to obtain an exact analytical solution of Eq. (S23), so we compute T (ρ) by numerically solving Eq. (S21).
This numerical computation yields the plots in Figs. 2, 4 and 5 of the main manuscript. We use discretized variables Xm ≡
X(ρ = m/N), where m ∈ {0, 1, . . . , N}. Equation (S21) then becomes

− 1

N
= RmZm − LmZm−1 , (S24)

where Zm ≡ Tm+1 − Tm. With the boundary conditions Tm = TN−m and T0 = TN = 0, we obtain ZN
2 −1 = 1

2NRN
2

and

Z0 = T1. We use Eq. (S24) to determine Zm for the other values of m. We obtain Tm by calculating

Tm =

m−1∑

l=0

Zl . (S25)

2. Derivation of the logarithmic scalings of T (ρ) and τ

The numerical computation of T (ρ) in Sec. S2 C 1 is useful, but it does not provide sufficient intuition about T (ρ). To
obtain such intuition, we perform an approximate analytical calculation by neglecting the second-order (i.e., diffusion) term in
Eq. (S23). The rationale behind neglecting the diffusion term is that the diffusion function D(ρ), which includes the factor 1/N ,
is much smaller than the drift function v(ρ). We thus expect to extract the correct leading-order scaling for T (ρ) under this
approximation. With the boundary conditions T (ρ = 0) = T (ρ = 1) = 0, the solution of the approximation of Eq. (S23)
satisfies

T (ρ) ≈
∫ ρ

1
N

−1

v(ρ′)
dρ′ , (S26)

where we set the lower limit of the integral to 1/N to keep track of the N -dependence of T (ρ). The drift function v(ρ) is given
by Eq. (S14). For an s-uniform hypergraph, Eq. (S14) is

v(ρ) =
ρ(1− ρ)

(s− 1)q−1

q−1∑

r=1

Ar,q [ρ
r − (1− ρ)r]

r∏

l=1

(s− 1− l) . (S27)

The factor ρr − (1− ρ)r in Eqs. (S14, S27) becomes 0 only when ρ = 1/2 because the function ρr is a bijection. Furthermore,

ρr − (1− ρ)r

(2ρ− 1)

∣∣∣∣
ρ= 1

2

= r

(
1

2

)r−1

,

so ρ = 1/2 is a simple root. We thus write the drift function v(ρ) as

v(ρ) = ρ(1− ρ)(2ρ− 1)f(ρ, s, q) , (S28)

where f(ρ, s, q) does not contain real zeros of ρ. Performing a partial-fraction expansion of Eq. (S28) yields

1

v(ρ)
=

C1(s, q)

ρ
+

C2(s, q)

(1− ρ)
+

C3(s, q)

(2ρ− 1)
+

g(ρ, s, q)

f(ρ, s, q)
, (S29)

which we insert into Eq. (S26) to obtain the approximate exit time. We first compute the exit time τ ≡ T (ρ = 1/2) for the
balanced initial condition (which has the same number of nodes in each state). We obtain

τ(s, q,N) = T (ρ = 1/2) ≈
∫ 1

N

1
2− 1√

N

1

v(ρ′)
dρ′ ∼

(
−C1(s, q) +

C3(s, q)

4

)
lnN ≡ A(s, q) lnN , (S30)

where we offset the initial density by 1/
√
N from 1/2 both to avoid getting trapped at the equilibrium point ρ = 1/2 and to

account for stochasticity. The notation ∼ signifies leading-order scaling in lnN . The expression for C1(s, q) is

C1(s, q) ≡
ρ

v(ρ)

∣∣∣∣
ρ=0

=
(s− 1)q−1

−
q−1∑
r=1

Ar,q

∏r
l=1(s− 1− l)

=
(s− 1)q−1

1− (s− 1)q−1
, (S31)
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where the last equality follows from
q−1∑
r=1

Ar,q

∏r
l=1(s − 1 − l) = (s−1)q−1R(ρ)

ρ(1−ρ)

∣∣∣
ρ=1

− 1 = (s − 1)q−1 − 1 by using Eq. (S3).

The expression for C3(s, q) is

C3(s, q) ≡
(2ρ− 1)

v(ρ)

∣∣∣∣
ρ= 1

2

=
4(s− 1)q−1

q−1∑
r=1

r
(
1
2

)r−1
Ar,q

∏r
l=1(s− 1− l)

. (S32)

Therefore, the leading-order behavior of τ(s, q,N) as N → ∞ is

τ(s, q,N) ∼




(s− 1)q−1

(s− 1)q−1 − 1
+

(s− 1)q−1

q−1∑
r=1

r
(
1
2

)r−1
Ar,q

∏r
l=1(s− 1− l)


 lnN , (S33)

which is one of the main theoretical results of our paper. It indicates the logarithmic scaling of τ with N for our generic GVM
for q ≥ 2 and s ≥ 3 on s-uniform hypergraphs.

3. Explicit derivation of the formulas for the exit time τ in the main manuscript

We now obtain the explicit leading-order formulas for τ in the main manuscript from the general formula in Eq. (S33). When
q = 2, Eq. (S33) becomes

τ(s, q = 2, N) ∼
[
(s− 1)

(s− 2)
+

(s− 1)

A1,2(s− 2)

]
lnN

=
2(s− 1)

(s− 2)
lnN , (S34)

which is Eq. (8) of the main manuscript. When q = 5, Eq. (S33) becomes

τ(s, q = 5, N) ∼




(s− 1)4

(s− 1)4 − 1
+

(s− 1)4

4∑
r=1

r
(
1
2

)r−1
Ar,5

∏r
l=1(s− 1− l)


 lnN

=

{
(s− 1)4

(s− 1)4 − 1
+

(s− 1)4

(s− 2)
[
A1,5 + (s− 3)A2,5 +

3
4 (s− 3)(s− 4)A3,5 +

1
2 (s− 3)(s− 4)(s− 5)A4,5

]
}
lnN

=
(s− 1)4(3s− 4)(s+ 1)

s(s− 2)(s2 + 3s− 8)(s2 − 2s+ 2)
lnN , (S35)

which is Eq. (9) of the main manuscript. The exit time τ diverges for s = 2 in Eq. (S33), so it also diverges in Eqs. (S34) and
(S35). For s = N with N ≫ 1, the denominator of C3 is dominated by the order-(q − 1) term. That is,

q−1∑

r=1

r

(
1

2

)r−1

Ar,q

r∏

l=1

(s− 1− l) ≈ (q − 1)

2q−2
(s− 1)q−1 .

Therefore, for s = N , Eq. (S33) becomes

τ(q,N) ∼
[
1 +

2q−2

(q − 1)

]
lnN , (S36)

which is Eq. (10) of the main manuscript. Equation (S36) also applies to the q-voter model on complete (i.e., fully-connected)
dyadic networks, and it agrees with the results for q = 2 and q = 3 in Ref. [S2]. When s is finite, it is convenient to replace the

upper limit r = q − 1 of the sum
q−1∑
r=1

r
(
1
2

)r−1
Ar,q

∏r
l=1(s − 1 − l) by r = s − 2. For example, when we do this, Eq. (S33)
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becomes

τ(s = 3, q,N) ∼
(

2q−1

2q−1 − 1
+

2q−1

A1,q

)
lnN

=

(
2q

2q−1 − 1

)
lnN (S37)

for s = 3 and

τ(s = 5, q,N) ∼
[

4q−1

4q−1 − 1
+

4q−1

∑3
r=1 r

(
1
2

)r−1
Ar,q

∏r
l=1(4− l)

]
lnN

=

[
4q−1

4q−1 − 1
+

4q

3(4q−1 + 3q−1 − 2q−1 − 1)

]
lnN

=
4q−1

4q−1 − 1

[ 7
3 (4

q−1 − 1) + 3q−1 − 2q−1

4q−1 − 1 + 3q−1 − 2q−1

]
lnN (S38)

for s = 5.

4. Dependence of the exit time T (ρ0) on the initial density ρ0

We now compute the initial density-dependent exit time T (ρ0) under the approximation of Eq. (S26). From Eqs. (S26)
and (S29), the leading-order expression for T (ρ0) for the initial density ρ0 away from ρ0 = 1/2 takes the form T (ρ0) ∼
−C1 lnN + T0(ρ0). That is, it scales as lnN with a ρ0-independent amplitude −C1 and ρ0-dependent integration constant
T0(ρ0). We elaborate on the derivation of T (ρ0) for several values of q. For q = 2 and q = 3, the drift function is

v(ρ) =
(s− 1)q−1 − 1

(s− 1)q−1
ρ(1− ρ)(2ρ− 1) , (S39)

from which we obtain

T (ρ0, s, q) ≈
∫ 1

N

ρ0

(s− 1)q−1

[(s− 1)q−1 − 1] ρ′(1− ρ′)(2ρ′ − 1)
dρ′

=
(s− 1)q−1

[(s− 1)q−1 − 1]
ln

[
(1− 2

N )2ρ0(1− ρ0)

(1− 2ρ0)2
1
N (1− 1

N )

]

∼ (s− 1)q−1

[(s− 1)q−1 − 1]
ln

[
Nρ0(1− ρ0)

(1− 2ρ0)2

]
, (S40)

where the last step uses the fact that N ≫ 1. Equation (S40) with s → ∞ is equivalent to Eq. (17) of Ref. [S2]. For q = 4 and
q = 5, the drift function is

v(ρ) = ρ(1− ρ)(2ρ− 1)
[
a(s, q)ρ2 − a(s, q)ρ+ b(s, q)

]
, (S41)

where a(s, q = 4) = (s−2)(s−3)(s−4)
(s−1)3 , a(s, q = 5) = 2s(s−2)(s−3)(s−4)

(s−1)4 , and b(s, q) = (s−1)q−1−1
(s−1)q−1 . The exit time T (ρ0 > 1/2)

is

T (ρ0, s, q) ≈
∫ 1

N

1−ρ0

dρ′

ρ′(1− ρ′)(2ρ′ − 1) [a(s, q)ρ′2 − a(s, q)ρ′ + b(s, q)]

=

∫ 1
N

1−ρ0

1

b(s, q)

[
1

(1− ρ′)
− 1

ρ′

]
+

4[
b(s, q)− a(s,q)

4

]
(2ρ′ − 1)

+


 1

b(s, q)[1− 4b(s,q)
a(s,q) ]


 2ρ′ − 1

ρ′2 − ρ′ + b(s,q)
a(s,q)

dρ′

=
1

b(s, q)
ln

[
(1− ρ0)ρ0(
1− 1

N

)
1
N

]
+

2[
b(s, q)− a(s,q)

4

] ln
(

1− 2
N

2ρ0 − 1

)
+

1

b(s, q)[1− 4b(s,q)
a(s,q) ]

ln




1
N2 − 1

N + b(s,q)
a(s,q)

ρ20 − ρ0 +
b(s,q)
a(s,q)




∼ 1

b(s, q)
ln[Nρ0(1− ρ0)]−

2[
b(s, q)− a(s,q)

4

] ln(2ρ0 − 1) +
1

b(s, q)[1− 4b(s,q)
a(s,q) ]

ln




b(s,q)
a(s,q)

ρ20 − ρ0 +
b(s,q)
a(s,q)


 (S42)

when N ≫ 1. We confirm Eqs. (S40) and (S42) using MC simulations (see Fig. S2).
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FIG. S2. The exit time T (ρ0) of the GVM on annealed 7-uniform hypergraphs for different initial densities ρ0 when (a) q = 2 and (b)
q = 5. The symbols give the means of 106 (when N ≤ 104) or 103 (when N ≥ 105) independent MC simulations of the GVM on N -node
hypergraphs. The solid lines are theoretical results from (a) Eq. (S40) and (b) Eq. (S42). We obtain the dashed lines from (a) Eq. (S34) and (b)
Eq. (S35).

S3. SPECIAL CASES AND VARIANTS OF OUR GVM

In this section, we discuss several special cases and variants of our GVM.

A. GVM with nonlinearity strength q = 1

On an s-uniform hypergraph, the GVM with q = 1 is equivalent to a VM on a dyadic network for all hyperedge sizes s.
We now verify this statement. From Eq. (S8), when q = 1, we have R(ρ) = L(ρ) = ρ(1 − ρ) for all s. That is, the raising
and lowering operators are the same as those for a VM on a dyadic network [S1]. Therefore, we obtain the same backward
Kolmogorov equation,

ρ(1− ρ)

N

∂2T (ρ)

∂ρ2
= −1 , (S43)

for T (ρ). We thus also obtain the same solution

T (ρ) = N

[
ρ ln

1

ρ
+ (1− ρ) ln

(
1

1− ρ

)]
∝ N . (S44)

We thereby obtain the exit time τ = T (ρ = 1/2) = N ln 2, as in Ref. [S1].

B. GVM with geometric P (s)

We examine the GVM on annealed hypergraphs with a geometric hyperedge-size distribution P (s). The formula for the

distribution is P (s) = 1
⟨s⟩−1

(
⟨s⟩−2
⟨s⟩−1

)s−2

, where ⟨s⟩ is the mean hyperedge size, which we also use for the simplicial GVM and
Fig. 2(a) in the main manuscript. In Fig. S3, we show the exit time τ from MC simulations and the recursion relation (S21) for
several values of the group size ⟨s⟩. As in Fig. 5(a) of the main manuscript, the exit time τ exhibits optimality.
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FIG. S3. The dependence on the nonlinearity strength q of the exit time τ for the GVM on hypergraphs with N = 104 nodes with a geometric
P (s) for several values of the mean group size ⟨s⟩. The markers are means of 104 independent MC simulations of the GVM on annealed
hypergraphs, and the analytical curves are from numerical solutions of the recursion relation (S21).

C. GVM with power law P (k)

We examine the GVM with a power-law degree distribution P (k) on annealed s-uniform hypergraphs by performing MC
simulations. (The degree k of a node is the number of hyperedges it is in.) The degree distribution is P (k) = k−γ/

∑N
ℓ=1 ℓ

−γ ,
where k ∈ {1, 2, . . . , N}. The degree of each node is a quenched (i.e., fixed) random variable that follows the distribution P (k).
To account for the degree distribution P (k), we modify stage (ii) of the MC step in Sec. S1 B to the following:

(ii) We select s− 1 distinct nodes, each with a probability that is proportional to its degree, to form a hyperedge h.

In Fig. S4, we show the results of our MC simulations. In these simulations, we take s = 5 and q = 2. As in Fig. 4 of the main
manuscript, the exit time τ scales with lnN . However, the prefactor of lnN decreases as γ ↓ 2. In a VM on a dyadic network,
degree heterogeneity affects the exit time τ significantly [S1]. Accordingly, in future work, it is worthwhile to analytically
investigate the impact of degree heterogeneities on exit time.

D. Simplicial GVM

In the simplicial GVM, a node flips its state in stage (iii) if the states of all of its s − 1 neighbors are different from its state.
Therefore, the raising and the lowering operators are

R(ρ) =

∑
s sP (s)(1− ρ)ρs−1

∑
s sP (s)

,

L(ρ) =

∑
s sP (s)ρ(1− ρ)s−1

∑
s sP (s)

. (S45)

One can insert the transition probabilities R(ρ) and L(ρ) into Eq. (S21) to obtain a recursion relation for the exit time T (ρ). To
obtain a leading-order approximation of the exit time τ , we write the drift function v(ρ) as

v(ρ) =
ρ(1− ρ)∑

s sP (s)

∑

s

sP (s)
[
ρs−2 − (1− ρ)s−2

]
, (S46)
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FIG. S4. The dependence on the hypergraph size N of the exit time τ for the GVM with power law P (k) for several values of the power-law
exponent γ. The markers are means of 103 independent MC simulations of the GVM with nonlinearity strength q = 2 on annealed 5-uniform
hypergraphs. We draw curves between these points as visual guides. The “regular” case corresponds to γ → ∞ and reduces to the GVM that
we studied in the main manuscript. We use semilogarithmic coordinates, and we observe that the exit time τ scales logarithmically in N .

from which we obtain

τ ∼
[
− ρ

v(ρ)

∣∣∣∣
ρ=0

+
2ρ− 1

4v(ρ)

∣∣∣∣
ρ= 1

2

]
lnN

=




1

1− 2P (2)

⟨s⟩

+
⟨s⟩

N∑
s=3

s(s− 2)

(
1

2

)s−3

P (s)


 lnN . (S47)

As we can see in Eq. (S47), the exit time again scales logarithmically with the system size N . For an s-uniform hypergraph with
s ≥ 3, we obtain

τ ∼
[
1 +

2s−3

(s− 2)

]
lnN . (S48)

Equation (S36) with q = s − 1 reduces to Eq. (S48). That is, for N → ∞, the exit time τ is the same for the simplicial GVM
on annealed s-uniform hypergraphs and the GVM with duplicate selection allowed and q = s − 1 on N -uniform hypergraphs.
In Fig. 2 of the main manuscript, we showed the results of MC simulations of the simplicial GVM on annealed hypergraphs
with two different hyperedge-size distributions P (s). We now compare these simulation results with analytical results. First, we

consider the geometric hyperedge-size distribution P (s) = 1
⟨s⟩−1

(
⟨s⟩−2
⟨s⟩−1

)s−2

for s ≥ 2 with mean hyperedge size ⟨s⟩. For this
distribution, Eq. (S47) becomes

τ ∼
( ⟨s⟩
⟨s⟩ − 2

)[ ⟨s⟩ − 1

⟨s⟩+ 1
+

⟨s⟩3
4(5⟨s⟩ − 4)

]
lnN , (S49)

which predicts that the exit time τ exhibits optimality with a minimum value at ⟨s⟩∗ ≈ 3.58. Second, we consider the power-law
hyperedge-size distribution with exponent α. This distribution has the formula P (s) = s−α

ζ(α)−1 for s ≥ 2 and mean hyperedge

size ζ(α−1)−1
ζ(α)−1 , where ζ(z) is the Riemann zeta function. For this distribution, Eq. (S47) becomes

τ ∼
(

N∑

s=2

s1−α

)[
1

∑N
s=3 s

1−α
+

1
∑N

s=3
(s−2)s1−α

2s−3

]
lnN

≈ [ζ(α− 1)− 1]

[
1

ζ(α− 1)− 1− 21−α
+

1

8Liα−2

(
1
2

)
− 16Liα−1

(
1
2

)
+ 4

]
lnN , (S50)
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where Lis(z) is the polylogarithm function and the last step follows by taking the upper limit of the sums to ∞. Equation (S50)
predicts that the exit time τ exhibits optimality with a minimum value at α∗ ≈ 2.87. As we showed in Fig. 2 of the main
manuscript, our theoretical approximation is in good agreement with the results of MC simulations. The numerical solution of the
recursion relation (S21) (solid curves) agrees very well with the results of MC simulations, and the leading-order approximations
(S49, S50) (dotted curves) successfully account for the optimality in τ . The expression Eq. (S47) for τ for the simplicial GVM
diverges when ⟨s⟩ ↓ 2 because the network reduces to a dyadic network and τ crosses over to the diffusive behavior O(N) in
this limit. The divergence of the exit time τ occurs in the ⟨s⟩ ↓ 2 limit of Eq. (S49) and in the α → ∞ limit of Eq. (S50).

E. GVM without duplicate selections

Our analysis also applies if we disallow duplicate selections in the neighbor-selection stage (iii) of the GVM (see Sec. S1 B).
In this case, the raising operator R(ρ) and lowering operator L(ρ) are

R(ρ) =
(1− ρ)∑
s sP (s)

∑

s

sP (s)

s−1∑

n=q

(s− 1)!

n!(s− 1− n)!
ρn(1− ρ)s−1−n

n!

q!(n− q)!

(s− 1)!

q!(s− 1− q)!

=
(1− ρ)∑
s sP (s)

∑

s

sP (s)
s−1∑

n=q

(s− 1− q)!

(n− q)!(s− 1− n)!
ρn(1− ρ)s−1−n

=
(1− ρ)∑
s sP (s)

∞∑

s=q+1

sP (s)ρq , (S51)

L(ρ) =
ρ∑

s sP (s)

∞∑

s=q+1

sP (s)(1− ρ)q . (S52)

For s-uniform hypergraphs, Eq. (S51) becomes

R(ρ) =

{
(1− ρ)ρq , s ≥ q + 1
0 , s ≤ q .

(S53)

The model is meaningful only for s ≥ q + 1. In this case, R(ρ) is the same as in Eq. (S9), which is for the GVM with duplicate
selections allowed on annealed N -uniform hypergraphs. Therefore, we obtain the same exit time τ as in Eq. (S36). This exit
time is

τ(q,N) ∼
[
1 +

2q−2

(q − 1)

]
lnN . (S54)

In Fig. S5, we show results for q = 2, which has the exit time τ ∼ 2 lnN .

F. GVM with edge-update dynamics

One can frame standard VM dynamics in terms of edge-update rules, rather than the node-update rules that we discussed in
the main manuscript. For edge-update dynamics on a dyadic network, in each step of an MC simulation, one (i) chooses an edge
uniformly at random and (ii) updates the states of both of its attached edges to the same uniformly-randomly-chosen state when
they have different states [S4]. An equivalent way to implement (ii) is to select a uniformly random node that is attached to
the edge and copy its state to the other node. We generalize edge-update dynamics to hypergraphs by considering the following
GVM with edge-update dynamics. At each time step, an MC simulation has the following stages:

(i) We select a size-s hyperedge h uniformly at random.

(ii-a) We select q distinct nodes uniformly at random from the s nodes in the hyperedge h.

(ii-b) If all of the q nodes that we select in (ii-a) have the same state, we copy this state to every node in the hyperedge h.

In stage (ii-b), the nodes with a state that is different from that of the q nodes flip their state. In general, a time step can include
more than one such node, which is a crucial distinction from the node-update GVM in the main manuscript. Additionally, in (ii-
a), we disallow duplicate selections of nodes. We make this choice for technical convenience; one obtains qualitatively similar
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FIG. S5. Dependence of the exit time τ on the system size N for a GVM without duplicate selections for nonlinearity strength q = 2 and
hyperedge sizes s = 3, s = 7, and s = N . The markers indicate the means of 106 (when N ≤ 104) or 103 (when N ≥ 105) independent MC
simulations of this GVM on annealed s-uniform hypergraphs. The lines are solutions of the recursion relation (S21) (solid) and the leading-
order solution (S54) (dotted).

results if one allows duplicate selections. From the model definition, we can readily write the transition probabilities for our
edge-update GVM. The raising operator Rs,n(ρ) ≡ P (ρ → ρ + δρ+s,n), with δρ+s,n ≡ (s − n)/N , is the transition probability
that a hypergraph has s− n more nodes in state 1 after a time step. The raising operator is given by

Rs,n(ρ) = P (s)
s!

n!(s− n)!
ρn(1− ρ)s−n

n!

q!(n− q)!
s!

q!(s− q)!

= P (s)
(s− q)!

(s− n)!(n− q)!
ρn(1− ρ)s−n . (S55)

The lowering operator Ls,n(ρ) ≡ P (ρ → ρ − δρ−s,n), with δρ−s,n ≡ n/N , is the transition probability that a hypergraph has n
more nodes in state 0 after a time step. The lowering operator is given by

Ls,n(ρ) = P (s)
s!

n!(s− n)!
ρn(1− ρ)s−n

(s− n)!

q!(s− n− q)!
s!

q!(s− q)!

= P (s)
(s− q)!

(s− n− q)!n!
ρn(1− ρ)s−n . (S56)

The recursion relation for the exit time T (ρ) is

T (ρ) =
∑

s,n

[
Rs,n(ρ)T (ρ+ δρ+s,n) + Ls,n(ρ)T (ρ− δρ−s,n)

]
+

[
1−

∑

s,n

Rs,n(ρ) + Ls,n(ρ)

]
T (ρ) + δt , (S57)

which yields the backward Kolmogorov equation

−1 =

[∑

s

P (s)(s− q){(1− ρ)ρq − ρ(1− ρ)q}
]
∂T (ρ)

∂ρ

+

[∑

s

P (s)
(s− q)

2N
{(s− q − 1)ρq(1− ρ)2 + ρq(1− ρ) + (s− q − 1)(1− ρ)qρ2 + (1− ρ)qρ}

]
∂2T (ρ)

∂ρ2

≡ vh(ρ)
∂T (ρ)

∂ρ
+Dh(ρ)

∂2T (ρ)

∂ρ2
. (S58)
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FIG. S6. The dependence of τ(s, q,N) on the hypergraph size N . The markers indicate means of 103 independent MC simulations of the
GVM with edge-update dynamics on annealed s-uniform hypergraphs. In (a), we give results for the nonlinearity strength q = 1. The lines are

solutions of τ(s, q = 1, N) =
2 ln 2

s(s− 1)
N from Eq. (S62) for different values of the hyperedge size s. In (b), we give results for nonlinearity

strengths q ≥ 2 and hyperedge size s = 5. We obtain the lines from Eq. (S63).

In our derivation of Eq. (S58) from Eq. (S57), we use the Taylor expansion

T (ρ± δρ±s,n) ≈ T (ρ)± ∂T (ρ)

∂ρ±s,n
δρ±s,n +

1

2

∂2T (ρ)

∂ρ2
(δρ±s,n)

2 , (S59)

which we truncate after the second-order term. When q = 1, the drift function vh(ρ) = 0, so Eq. (S58) reduces to

−1 =
(⟨s2⟩ − ⟨s⟩)ρ(1− ρ)

2N

∂2T (ρ)

∂ρ2
, (S60)

where ⟨sr⟩ ≡∑s s
rP (s). The solution of Eq. (S60) is

T (ρ) =
2N

(⟨s2⟩ − ⟨s⟩)

[
ρ ln

1

ρ
+ (1− ρ) ln

(
1

1− ρ

)]
. (S61)

The exit time τ is

τ = T (ρ = 1/2) =
2 ln 2

⟨s2⟩ − ⟨s⟩N ∝ N . (S62)

In Fig. S6(a), we confirm Eq. (S62). When s = 2, the exit time Eq. (S62) reduces to the exit time for VM dynamics on a dyadic
network. When q ≥ 2, Eq. (S58) is not analytically solvable. Therefore, we apply the same approximation procedure as in
Sec. S2 C and obtain an approximate expression for τ by substituting vh(ρ) into Eq. (S30) and keeping the leading-order terms.
The exit time τ is then

τ(q ≥ 2) ∼ 1∑
s≥q+1 P (s)(s− q)

[
1 +

2q−2

(q − 1)

]
lnN , (S63)

which again scales logarithmically in N . In Fig. S6(b), we compare this analytical prediction with the results of MC simulations
on annealed s-uniform hypergraphs. We obtain reasonable agreement.
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