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We initiate the study of the interplay between T-duality and classical stress tensor deformations in
two-dimensional sigma models. We first show that a general Abelian T-duality commutes with the
TT deformation, which can be engineered by a gravitational dressing. Then, by using an auxiliary
field formulation of stress tensor deformations of the principal chiral model (PCM), we prove that
non-Abelian T-duality and arbitrary TT -like flows also commute for theories in this class. We argue
that all such auxiliary field deformations of both the PCM and its T-dual are classically integrable.

INTRODUCTION

Quantum field theory (QFT) is a common language
used in many disciplines of modern theoretical physics,
including high-energy particle physics, condensed matter
theory, and statistical mechanics. Despite the numer-
ous applications of this framework, our present under-
standing of the space of quantum field theories is funda-
mentally incomplete. On the one hand, sometimes two
seemingly-different QFTs describe the same physical sys-
tem; in this case, we say the two are related by a duality.
On the other hand, excluding isolated points in the space
of QFTs, many quantum field theories occur in connected
families whose properties are not fully understood. Such
families are said to be related by deformations

Two-dimensional sigma models offer a fertile play-
ground for investigating these features, as QFTs in this
class both enjoy dual descriptions and possess several in-
teresting deformations. These models feature a long list
of applications ranging from low- to high-energy physics,
and in formal branches of mathematics such as geometry
and topology. In the last few decades, sigma models have
also played a key role in string theory, where target space
duality (T-duality) was first discovered in the context of
toroidal compactifications [1–3]. Since then, T-duality
has spurred the discoverey of deep connections in the
web of string dualities, leading to new non-perturbative
insights, and establishing further relations to mathemat-
ics via the discovery of mirror symmetry [4, 5]. More
recently, the non-Abelian extension of toroidal T-duality
[6–12] has attracted a lot of attention, leading to mani-
festly duality-invariant formulations [13–15], connecting
with certain deformations of sigma models [16–27], al-
lowing for novel examples in supergravity and hologra-
phy [28–39] and leading to various supersymmetric gen-
eralisations in both the Abelian [40–50] and non-Abelian
sector [23–25, 51–62]. See also [63–70] for reviews on the
above topics and further references.
Among deformations of QFTs, those that preserve the

property of integrability are of particular interest, since

one can often solve for the dynamics of integrable field
theories exactly (both at the classical and quantum lev-
els). In recent years, new integrable deformations based
on composite operators constructed out of the stress-
energy tensor have opened a new avenue of research. For
two-dimensional QFTs, the first example was the TT de-
formation of [71–73], but other stress tensor deformations
such as root-TT , introduced in [74–78], have also shown
remarkable features. Both TT and root-TT preserve in-
tegrability, [72, 79] (the latter at least at the classical
level). TT has also been shown to preserve supersym-
metry [80–84] and has played a new role in holography
[85, 86] (see also [87–90]), a topic that has likewise been
explored for root-TT [91, 92]. Stress tensor deformations
have also been studied in higher dimensions [93–101].

A streamlined method for engineering TT in arbitrary
dimensions makes use of an auxiliary metric (vielbein)
[76, 102–108]. This method, which is referred to as
gravitational dressing, remarkably connects the study of
deformations of quantum field theories to 2d (topolog-
ical) gravity [76, 109–115], and the broad literature on
d-dimensional models of massive gravity [103–106].

The use of auxiliary fields is ubiquitous in field the-
ory. Some examples include off-shell supersymmetry
[116–118], chiral (tensor) fields in various dimensions
[100, 119–134], and theories of 4d duality-invariant non-
linear electrodynamics [135–137]. Earlier in 2024, inte-
grable stress tensor deformations of the 2d principal chi-
ral model (PCM) were engineered through new auxiliary
field sigma models (AFSM) [138] – see also [139, 140] for
recent extensions. The PCM is a very natural playground
for exploring aspects of non-Abelian T-duality, as well as
various physically interesting extensions such as WZW
models, (semi-)symmetric spaces, and so forth.

For sigma models, T-duality can be implemented
through a gauging procedure of a subgroup H⊆G of the
group G of target space isometries [8, 141] (see also [142–
144]). Considering that stress tensor deformations are
expected to preserve symmetries – albeit perhaps in a
modified or “dressed” form, as occurs, e.g., for confor-
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mal symmetry [145–147] – it is natural to argue that T-
duality and TT -like deformations should “commute”. By
using the auxiliary field formulations mentioned above,
in our letter, we explicitly show how this expectation is
realized. As a byproduct of part of our analysis, we show
how stress tensor deformations of the PCM preserve in-
tegrability irrespective of the order in which T-duality
and deformations are performed. Ultimately, our analy-
sis and results have the scope of initiating the systematic
study of T-duality and stress tensor deformations.

ABELIAN T-DUALITY AND TT

GRAVITATIONAL DRESSING

In this section, we discuss Abelian T-duality in TT -
deformed sigma models by using a gravitational dressing.
Consider a sigma model where the fields φI , with I =

1, · · · , D, are a set of local coordinates for a target space
of dimension D. The 2d sigma model action is

S(0)
sm = −

1

2

∫

d2x
{

e gµνΦµν + T
}

, (1)

where

Φµν := GIJ∂µφ
I∂νφ

J , T := εµνBIJ∂µφ
I∂νφ

J . (2)

Here, GIJ = GJI is the target space metric, BIJ = −BJI

is the Kalb-Ramond field, eµ
a is the zweibein of a world-

sheet with metric gµν = eµ
aeν

bηab, and T is a 2d topolog-
ical term. For simplicity, we do not consider a potential
for the scalar fields in (1), though this would not change
the key features of the analysis in this section.
For the sigma model (1), T-duality can be implemented

by gauging and dualising an Abelian isometry of the tar-
get space [8, 141, 148, 149]. We choose the direction of
the Abelian isometry to be parametrised by a local co-
ordinate ϕ in a coordinate system where the isometry
is a shift symmetry. Then we have the splitting of in-
dices I = (Î , ϕ), Î = 1, · · · , D − 1. Without repeating
the derivation of [148, 149], we simply state the resulting
Buscher rules for Abelian T-duality. These are given by

G̃ϕϕ = G−1
ϕϕ , G̃îϕ = G−1

ϕϕBîϕ , B̃îϕ = G−1
ϕϕGîϕ , (3a)

G̃îĵ = Gîĵ −G−1
ϕϕ(GϕîGϕĵ −BϕîBϕĵ) , (3b)

B̃îĵ = Gîĵ −G−1
ϕϕ(GϕîGϕĵ −GϕîBϕĵ) , (3c)

where G̃IJ and B̃IJ are the metric and Kalb-Ramond
fields after T-duality. It is important to stress that eµ

a

is unaffected by T-duality and the dual sigma model is

S̃(0)
sm = −

1

2

∫

d2x
(

egµνG̃IJ + εµνB̃IJ

)

∂µφ
I∂νφ

J . (4)

If we were to consider a consistent quantum sigma model,
it would also be necessary to include a dilaton coupling to
cancel tadpoles. The dilaton would also transform under
T-duality [148, 149]. However, our letter concerns only a
classical analysis, and we ignore the dilaton.

Let us now turn our attention to TT . As mentioned
in the introduction, gravitational dressing refers to engi-
neering TT through a zweibein auxiliary field. By fol-
lowing [103, 105, 106], given a generic matter model with
action S(0)[φ, eµ

a], the TT deformed theory is

S(λ)[φ, eµ
a, fµ

a] = S(0)[φ, eµ
a] + SG[eµ

a, fµ
a, λ] , (5)

with

SG =

∫

d2x
1

2λ
εµνεab(eµ

a − fµ
a)(eν

b − fν
b) . (6)

Here eµ
a is an auxiliary field while fµ

a is the zweibein of
a background geometry, which in our case will always
be 2d Minkowski space-time. Once eµ

a is integrated
out, one obtains the deformed theory S(λ)[φ, fµ

a] =
S(λ)[φ, fµ

a, e∗µ
a], with e∗µ

a = eµ
a(φ, fν

b) being the solu-
tion of the eµ

a equation of motion derived from (5). The
action S(λ)[φ, fµ

a] satisfies

dS(λ)[φ, fµ
a]

dλ
= −

∫

d2x f det[T µ
ν ] , (7)

where T µ
ν is the Hilbert stress-energy tensor defined

through the variation with respect to fµ
a [105, 106].

By applying the gravitational dressing, the TT de-
formed action for the sigma model (1) is given by (6)

with S
(λ)
sm = S

(0)
sm + SG. In this case, it is possible to

explicitly solve the EOM of em
a. The solution is [106]

(e∗±)
a

µ
=

1

2
f a
µ ±

1

2

f a
µ + 2λΦµνf

ν
b η

ba

√

γ−1 det
(

γµν + 2λΦµν

)

, (8)

where γµν := f a
µ f b

ν ηab . Note that the B-field does not
appear in (8) since T is a topological term. Therefore, T
is not affected by the TT deformation.
At this stage, we have two operations that can be

performed. One is T-duality while the other is a TT
deformation. A natural question is: do these two op-
erations commute? In the gravitational dressing, it is
straightforward to see that they do. In fact, the action

SG[eµ
a, fµ

a, λ], and the zweibein eµ
a in S

(λ)
sm are inert

under T-duality while S
(0)
sm simply turns into S̃

(0)
sm by us-

ing the undeformed Buscher rules (3). Remarkably, all
complications of the TT deformation are hidden in SG

and the integration of eµ
a, which leads to a dressing of

the sigma model with an involved dependence of higher-
derivative terms. From this point of view, the target
space geometry and its T-dual are unaffected by TT .
Importantly, note that the previous commutativity ar-

gument works for any TT -like deformation engineered by
gravitational dressing through an action SG[eµ

a, fµ
a, λ]

and equation (5), not just TT . By changing SG, the
deformation would also change the explicit solution (8);
see [105, 106] for examples, including root-TT . There
is, however, a limitation. Though the arguments in this



3

section could be generalised to non-Abelian T-duality,
this would work only for TT -like deformations that ad-

mit a gravitational dressing S
(λ)
sm = S

(0)
sm + SG for some

SG independent of the matter fields φI . By choosing an
alternative auxiliary field approach to TT -like deforma-
tions, we will easily overcome this difficulty, at least for
a subclass of interesting sigma models.

NON-ABELIAN T-DUALITY AND AUXILIARY

FIELD SIGMA MODELS

In this section we extend the T-dualisation procedure
of TT deformed models to the non-Abelian setting, ex-
ploiting the infinite family of integrable deformations in-
troduced in [138]. We start by briefly reviewing the
AFSM construction. These are 2d sigma models on a flat
Lorentzian worldsheet Σ, whose target-space geometry is
a Lie group G with Lie algebra g, which are characterized
by the pullback to Σ of the left-invariant Maurer-Cartan
form j := g

−1dg. The standard PCM action is

SPCM :=

∫

Σ

d2σLPCM with LPCM := −
1

2
tr(j+j−) . (9)

Here σ± := 1
2 (τ±σ) are worldsheet lightcone coordinates,

in terms of which the metric and its inverse reduce to
η+− = η−+ = −2 and η+− = η−+ = − 1

2 while tr is the
trace of the Lie algebra generators in some representa-
tion. The infinite family of deformed models is described
by the Lagrangian

LE
PCM := tr

[

1
2j+j−+v+v−+j+v− + j−v+

]

+E(ν) , (10)

where v is the auxiliary field, a Lie-algebra-valued 1-form,
and E is an arbitrary function of ν := tr(v+v+)tr(v−v−).
The equations of motion (EOM) of the model read

δgL
E
PCM≡0 ↔ ∂+J−+∂−J+=−2([v+, j−]+[v−, j+]) ,

δv±L
E
PCM≡0 ↔ j±=−v±−2E′v∓tr(v±v±) , (11)

with E′ := dE
dν and J± := −(j± + 2v±). For E = 0 one

correctly recovers (9) after solving the second equation
in (11) for v±. In this language, the non-linearities of
the deformation are encoded in the arbitrary interaction
function E. Analogously to the gravitational dressing
of the previous section, the T-dualisation introduced in
[8, 141] as a generalisation of [148, 149], becomes as sim-
ple as in the undeformed case. The description in terms
of the left-invariant Maurer-Cartan form ensures preser-
vation of the standard GL×GR isometry group of the
undeformed PCM (g → g−1

L ggR, j → g−1
R jgR) provided

the auxiliary field transform as v → g−1
R vgR. It is then

straightforward to gauge a subgroup H⊆GL of the left
sector of the isometry group via a minimal coupling

j → jω := g
−1(d + ω)g = j + g

−1ωg . (12)

The connection ω is invariant under global GR transfor-
mations, while ω→h−1ωh+h−1dh under local left action
of h ∈ H ⊆ GL. The gauge invariant Lagrangian is

Lω=tr
[

1
2 j

ω
+j

ω
−+v+v−+jω+v−+jω−v+

]

+E(ν) . (13)

Proceeding with the dualisation requires adding La-
grange multipliers which enforce the flatness of ω:

LΛ = 1
2 tr(ΛFω) =

1
2 tr(XFjω ) with X := g

−1Λg . (14)

In the previous equation we exploited the relation

Fjω = Fj + g
−1Fωg with FA := dA+ 1

2 [A,A] , (15)

and Fj = 0 by construction. For LΛ to respect the
symmetries of Lω , the multipliers should transform as
Λ → h−1Λh under local H and global GR transforma-
tions. Notice that while Λ ∈ h, the above identity leads
to X ∈ g, so that depending on which subgroup H⊆GL

has been gauged,X generically contains, even after gauge
fixing, a mixture of pure Lagrange multipliers Λ and orig-
inal coordinates inherited from g. Upon gauging H=GL

one has the freedom to completely eliminate the initial
coordinates by setting g = 1, such that X ≡ Λ.
In lightcone coordinates, the multiplier term (14) reads

LΛ = 1
2 tr

[

X(∂+j
ω
− − ∂−j

ω
+ + [jω+, j

ω
−])

]

, (16)

and the total Lagrangian, also known as Master La-

grangian, is the sum of (13) and (16), LMaster = Lω+LΛ.
To proceed toward the T-dual model, we perform inte-
gration by parts on the derivative terms in (16) and then
integrate out the gauge fields. Their EOM take the form

(1± adX)jω± = ±(∂±X ∓ 2v±) , (17)

and can readily be solved as

jω± = ±
1

1± adX
(∂±X ∓ 2v±) . (18)

Substituting (18) back into LMaster, and rearranging
terms, one obtains the T-dual model

L̃ = 1
2 tr

[

(∂+X − 2v+)
1

1− adX
(∂−X + 2v−)

]

+ tr(v+v−) + E(ν) .

(19)

DEFORMATION OF T-DUAL MODELS

In the last section, we have obtained (19) by first de-
forming the PCM action (9) as in (10), and successively
T-dualising. Do these operations commute, as with the
gravitational dressing? We will see here that the Abelian
results still hold, up to implementing a field redefinition
of the vector auxiliary fields in (19).
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We start by defining

v± := ∓
1

1∓ adX
(ṽ±) . (20)

It is not hard to realise that (19) becomes

L̃ = 1
2 tr

(

∂+X
1

1− ad2X
∂−X

)

+ 1
2 tr

(

∂+X
adX

1− ad2X
∂−X

)

+ tr
(

ṽ+
1

1− ad2X
∂−X

)

+ tr
(

∂+X
1

1− ad2X
ṽ−

)

+ tr
(

ṽ+
1

1− ad2X
ṽ−

)

+ E(ν̃) , (21)

with

ν̃ := tr
(

ṽ+
1

1− ad2X
ṽ+

)

tr
(

ṽ−
1

1− ad2X
ṽ−

)

. (22)

The Lagrangian (21) has then the precise structure of a
general auxiliary field deformation of

L̃= − 1
2 tr

[

∂−X
1

1−ad2X
∂+X + ∂−X

adX

1−ad2X
∂+X

]

, (23)

which corresponds to the Lagrangian obtained by T-
dualising the standard PCM (9), upon splitting 1

1−adX

into its symmetric and antisymmetric components. One
can indeed first check that, for E = 0, the EOM of the
auxiliary field ṽ± in (21) and v± in (19) both lead to the
undeformed T-dual Lagrangian (23). Secondly, it is not
hard to find that the stress tensor of (23) satisfies

TαβTαβ=tr
(

∂+X
1

1−ad2X
∂+X

)

tr
(

∂−X
1

1−ad2X
∂−X

)

(24)

corresponding, as expected, to the structure observed in
the variable ν̃ in (22), on which the function E depends
in (21). Finally, one can compute the stress tensor for
(21) and construct the two independent invariants

Tα
α=2(E−2ν̃E′) ,

TαβTαβ=2(E−2ν̃E′) +
ν̃

2

(

1− 4ν̃(E′)2
)

.
(25)

These are the same as the ones found in [138] for (10) and
lead to the same ordinary differential equations for the
interaction functions. This confirms the commutativity
up to auxiliary fields redefinitions, as illustrated in the
diagram below.

SPCM STD-PCM

(STD-PCM)
(E)

S
(E)
PCM

(

S
(E)
PCM

)

TD

T-dualize

Auxiliaries

Auxiliaries

T-dualize
Field

Redefinition

INTEGRABILITY

In this section, we discuss the integrable structure un-
derlying (10) and (19). We start by recalling results and
notation from [138]. For the model (10) with any E(ν),
the first EOM in (11) represents a true dynamical condi-
tion on g, while the second one is a constraint imposed
by the auxiliary field. The symbol

•

= is used to denote
equality upon satisfaction of the latter condition. For the
inital model (10) one has [v−, j+]

•

= −[v+, j−], which im-
plies that the EOM for g is not the conservation of j, as
for the PCM, but rather J := −(j + 2v) is conserved.
Conversely, the flatness of j is unaffected by v. The aux-
iliary field EOM also implies that [J+, j−]

•

= [j+, J−]
and [J+, J−]

•

= [j+, j−], which, in turn, imply that flat-
ness of j and conservation of J arise from the flatness
∂+L− − ∂−L+ + [L+,L−] = 0 of the Lax connection

L± :=
j± ± zJ±
1− z2

. (26)

The Lax connection ensures the existence of an infinite
set of conserved quantities. For the models (10), one can
further prove that the charges are Poisson-commuting by
showing that the Poisson bracket {Lσ,1(σ, z),Lσ,2(σ

′, z′)}
takes the non-ultralocal Maillet form [138].
We now show how T-duality preserves the integrable

structure of (10) by exchanging the role of the EOM and
Maurer-Cartan equation in the T-dual model (19) (see
also [150], where this interchange is interpreted as giving
a dual description related to the Drinfeld double). We
start by computing the EOM for the T-dual fundamental
field X , which take the form of a flatness condition

δX L̃ ≡ 0 ↔ ∂+j̃− − ∂−j̃+ + [j̃+, j̃−] = 0 , (27)

after defining j̃± := jω±, given in (17). It follows that,

as in the undeformed setting, j̃ satisfies by construction
the gauge field EOM (17), which can be used to study
its conservation. Indeed, from (17) one obtains

∂± j̃∓ = [(1 ± adX)j̃±, j̃∓] + 2[v±, j̃∓]

± [X, ∂±j̃∓]∓ ∂+∂−X − 2∂±v∓ , (28)

and summing up the two contributions above leads to

∂+j̃−+∂−j̃+=−2
(

∂+v−+∂−v++[j̃+, v−]+[j̃−, v+]
)

+
[

j̃+, [X, j̃−]
]

−
[

j̃−, [X, j̃+]
]

+
[

X, ∂+j̃−−∂−j̃+
]

. (29)

Using the T-dual EOM (27) and Jacobi identity for
(X, j̃+, j̃−), equation (29) becomes the conservation

∂+J̃− + ∂−J̃+ = 0 with J̃± := −(j̃± + 2v±) . (30)

This result shows that the exchange in the role of EOM
and Maurer-Cartan equation, which takes place in the
undeformed case, is slightly modified in the presence of
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the auxiliary field. Though it might seem surprising, this
is, in fact, perfectly in line with the analysis of [138] for
the deformed initial model (10). There, it was shown that
v prevents j from being conserved on-shell and forces the
definition of a new conserved quantity J := −(j + 2v).
One may now hope to proceed in constructing the T-

dual Lax connection by simply replacing j with j̃ in the
Lax connection (26). While in the undeformed case this
procedure automatically ensures that flatness and con-
servation of j̃ follow from the flatness of the dual Lax
connection, in the deformed models one needs to pay
a little extra care. In the initial deformed model, the
flatness of the Lax connection implies flatness of j and
conservation of J only after making use of the auxiliary
field EOM. For this reason, one should expect that the
T-dual Lax connection obtained by replacing j with j̃ in
(26) should imply flatness of j̃ and conservation of J̃ only
after using the EOM for v. This expectation is readily
verified by noting that the auxiliary field EOM take the
exact same structure as in the initial model, namely

δv±L̃ ≡ 0 ⇐⇒ j̃±+v±+2E′(ν)tr(v±v±)v∓ = 0 . (31)

This allows us to verify the relations [v−, j̃+]
•

= −[v+, j̃−],
[J̃+, j̃−]

•

= [j̃+, J̃−], and [J̃+, J̃−]
•

= [j̃+, j̃−] in the T-dual
model, and to show that the Lax connection

L̃± :=
j̃± ± zJ̃±
1− z2

(32)

has a curvature

∂+L̃− − ∂−L̃+ + [L̃+, L̃−] (33)

=
1

1− z2

(

∂+j̃− − ∂−j̃+ + [j̃+, j̃−]− z(∂+J̃− + ∂−J̃+)
)

,

which vanishes if (27) is satisfied and J̃ is conserved. This
establishes a Lax representation for the T-dual model.
To argue for integrability – focusing, for simplicity, on

the gauging of H=GL such that X = Λ – one can con-
struct a canonical transformation between (10) and its
T-dual (19). When E = 0, and the auxiliaries have been
eliminated, it is well-known [142, 144] that the PCM and
T-dual PCM are related by a canonical transformation
with type-1 generating function

F [Λ, φ] = −

∫

Σ

tr (Λjσ) , (34)

where φ denotes a set of local coordinates on the Lie
group G. One can show that the same generating func-
tion (34) induces a symplectomorphism that relates the
Hamiltonians of the deformed models (10) and (19). Re-
markably, this holds for any interaction function E. Since
such a symplectomorphism preserves all Poisson brack-
ets, and since the AFSM is known [138] to possess an in-
finite collection of Poisson-commuting conserved charges,
there also exist infinitely many charges in involution for
the deformed T-dual PCM. This establishes classical in-
tegrability of the deformed T-dual models.

CONCLUSION AND OUTLOOK

In this work, we have presented a case study of the
interplay between dualities and deformations in quan-
tum field theory, focusing on the connection between T-
duality and stress tensor deformations in 2d sigma mod-
els. This example is especially interesting because the
structure and properties of our deformations take almost
exactly the same form on both sides of the duality.

Our analysis exploits the fact that stress tensor defor-
mations are universal and intrinsically defined. Univer-
sality means that they exist in any translation-invariant
field theory, since every such theory admits a conserved
stress tensor. By “intrinsically defined” we mean that the
deformation is built via an abstract procedure that does
not depend on the details of the theory being deformed,
except through the initial condition; one may always de-
fine the Hilbert stress tensor Tαβ by coupling a theory
to gravity, and then deform by a function of Tαβ . This
is the fundamental reason why our deformations behave
identically for the PCM and its T-dual, as the coupling
to gravity works in the same way for both duality frames.

The take-away lesson of our work is that one can learn
more about dual descriptions of QFTs by studying intrin-
sically defined deformations on both sides of the duality.
Several future directions promise to build on this insight
and further expand our understanding of dualities and
deformations. One avenue is to develop our auxiliary
field formalism for other sigma models, such as those on
symmetric spaces. Another direction is to study the in-
terplay of these deformations with other dualities, such
as S-duality for 4d gauge theories, which can also be un-
derstood as a canonical transformation [151]. A third line
of inquiry is to apply auxiliary field techniques to defor-
mations of holographic dualities, such as the AdS3/CFT2

correspondence. More generally, it will be important to
extend our analysis to the quantum level.

We believe that further progress in any of these direc-
tions will help to illuminate more features of the space
of field theories, and may eventually help point the way
toward a radical rethinking of what a QFT really is.
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