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Abstract

This study investigates city dynamics employing a nonextensive diffusion equation suited for addressing diffusion within a fractal
medium, where the nonadditive parameter, q, plays a relevant role. The findings demonstrate the efficacy of this approach in
determining the relation between the fractal dimension of the city, the allometric exponent and q, and elucidating the stationary
phase of urban evolution. The dynamic methodology facilitates the correlation of the fractal dimension with both the entropic index
and the urban scaling exponent identified in data analyses. The results reveal that the scaling behaviour observed in cities aligns
with the fractal dimension measured through independent methods. Moreover, the interpretation of these findings underscores the
intimate connection between the fractal dimension and social interactions within the urban context. This research contributes to a
deeper comprehension of the intricate interplay between human behaviour, urban dynamics, and the underlying fractal nature of
cities.

1. Introduction

1.1. The city’s fractal space

In recent decades, our understanding of urban population
dynamics has rapidly advanced. Exploiting precise data made
available by social media platforms and mobile devices, con-
temporary urban issues can now be scrutinized through more
rigorous scientific methodologies. The development of new an-
alytical methods for studying complex systems, previously in-
accessible for the study of urban systems, has facilitated the
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quantitative and qualitative comprehension of various facets of
urban life.

This advancement has brought forth intriguing aspects of
urban organization. Contrary to prior assumptions, cities ex-
hibit some adherence to universal laws, independent of cultural,
ethnic, or socioeconomic nuances of their specific regions [1, 2,
3]. Numerous aspects of urban existence follow simple power
laws with population, manifesting either superlinear or sublin-
ear tendencies, a phenomenon known as urban scaling. So-
cioeconomics displays superlinear trends, while infrastructure-
related aspects demonstrate sublinear behavior, allowing for en-
hanced efficiency with population growth. The associated ex-
ponent remains remarkably consistent across diverse cities, re-
gardless of their unique attributes [4]. Despite robust evidence
supporting the power-law dynamics in urban parameters con-

Preprint submitted to Elsevier July 18, 2024

ar
X

iv
:2

40
7.

12
68

1v
1 

 [
ph

ys
ic

s.
so

c-
ph

] 
 1

7 
Ju

l 2
02

4



cerning population, our understanding of the underlying mech-
anisms driving urban growth remains limited [5, 6].

The various models attempting to elucidate urban scaling
were summarized in Ref. [7], emphasizing their reliance on hu-
man interaction and the availability of infrastructure. These
models diverge in their approaches to deriving scaling expo-
nents, which are invariably obtained by considering allomet-
ric relations between socioeconomic output and infrastructure
cost [8]. The observed universal behaviour results from con-
straints related to the stability of the urban area [9]. A range
of mechanisms have been proposed, such as cross-sectional in-
teraction [9], gravitational model [10] and other preferential
attachment approaches [11] (see also [12]). It is worth men-
tioning that preferential attachment is a known mechanism to
generate networks with power-law behaviour [13]. Fractal di-
mensions, either linked to social behaviour or to infrastructure
distribution, are commonly employed to obtain the appropriate
range for the power-law exponent [8, 9, 14, 15]. Most of the
models describe static properties of the cities, but there is evi-
dence that dynamical effects are relevant [16, 17]. The present
work addresses the dynamical evolution of the cities by con-
sidering how they are modified as the population distribution
changes with time. One of the most important relations is the
so-called fundamental allometry, relating the city area A to the
population size N by

A ∼ Nβ , (1)

with β being the scaling exponent.

1.2. Nonlinear dynamics in fractal space

The dynamics approach to urban life allows for a more com-
prehensive understanding of the organic organization of indi-
viduals and infrastructure. This approach encompasses the city’s
geometry and socioeconomic interactions within a single theo-
retical framework. Some attempts to develop a dynamical the-
ory of the cities were associated with Levy-flights, but they do
not reproduce some important aspects observed in cities around
the world [18]. The results obtained in this work will show that
the non-additive entropy and the associated non-extensive ther-
modynamics [19] offer a better framework for describing urban
life.

Most of the urban scaling studies select cities above some
minimum population size, while some works exhibit that small
cities diverge from the expected pattern [20]. A model for infor-
mation diffusion in fractal networks [21] shows that the scaling
law may fail for small groups. The behaviour of information
spreading with the population size follows the q-exponential
function instead of the power-law function. The q-exponential
function is given by [19]eq(x) =

[
1 − (q − 1)x

] −1
q−1 , x < 1/(q − 1)

eq(x) = 0 , x ≥ 1/(q − 1)
, (2)

where q ∈ R is the entropic index; this work focuses on the
case q > 1. Both the power-law and the q-exponential func-
tions exhibit similar behaviour for large population sizes but
differ for small ones. The q-exponential distribution is typical

of nonextensive statistics [19], which generalizes Boltzmann’s
statistics by allowing a non-additive entropy. The generalized
statistics has found numerous applications in many realms of
knowledge [22, 23]. The relationship between fractals and non-
extensive statistics has been explored in several works [24, 25,
26, 27].

Assuming the validity of the fractal model for urban land-
scapes, a comprehensive exploration of this structure may un-
cover key aspects for predicting cities’ dynamic behaviour. This
approach has the potential to yield vital information about cities’
temporal evolution, thus presenting a valuable opportunity to
devise more effective strategies for urban development.

The relevant time scale for attaining the stationary regime
assumed here is one in which the characteristic exponent of
the distributions can be considered constant. Evidence indi-
cates that for time scales spanning centuries, the exponent may
change, but the present work is focused on the dynamics of
cities in a shorter term. This approach encompasses processes
such as the immigration of representative fractions of the popu-
lation of the city or the relocation of the population due to natu-
ral disasters. These processes can disrupt the natural population
density of the city, triggering a subsequent change through a dy-
namic process that must incorporate the inherent fractal aspects
of the city’s organic evolution.

The dynamics of systems in fractal spaces are rather dif-
ferent from the usual dynamic evolution. The Fokker-Planck
Equation (FPE) is the law one usually has in mind when ad-
dressing the evolution of a complex system, and if f (r,t) is the
probability distribution, which depends on the position r and
time t, then the FPE is given by

∂ f
∂t

(r,t) =
∂

∂xi

[
−γi(r) f (r,t) + B

∂

∂xi
f (r,t)

]
, (3)

where summation over index i is understood. In the FPE, the
parameters γi(r) and B are transport coefficients and charac-
terize the drift of the system in the medium and the diffusive
process through the medium, respectively1.

2. Dynamics in non-homogeneous media

Non-homogeneous media may give rise to a modified pro-
cess that a non-linear Fokker-Planck Equation can describe.
The one-dimensional case where γ(r) = γ1 − γ2r is of par-
ticular interest and has been addressed in Ref. [28] through a
comprehensive study of anomalous diffusion. The parameter
γ1 indicates a constant repulsive force, while the parameter γ2
is associated with an attractive harmonic potential that repre-
sents the overall tendency of the population to live near some
basic facilities offered by urban centres. The harmonic poten-
tial yields an area for the city that increases linearly with the
population size if fractal effects are absent.

1In general, the transport coefficients can assume a tensor form. The as-
sumption that they are scalar, in particular Bi j = B δi j, is appropriate for the
application we intend here concerning an isotropic system. Tensor coefficients
can be relevant for situations where the city growth is constrained by geograph-
ical features.
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The Plastino-Plastino Equation (PPE) [29] is a quite gen-
eral equation for non-linear dynamics and is particularly useful
when a fractal medium is present. This equation is given by

∂ f
∂t

(r,t) =
∂

∂xi

[
−γi(r) f (r,t) + B

∂

∂xi
f (r,t)2−q

]
, (4)

where q is the entropic index of nonextensive statistics [22].
The PPE was proposed in the context of nonextensive statis-
tics [19, 22], therefore it is the appropriate framework to de-
scribe the evolution of a wide class of complex systems, and
its solutions present q-exponential forms of distribution or re-
lated ones [30]. The PPE has been recently derived from a
generalized form of the Boltzmann Equation for systems with
non-local correlations [31]. The dynamics of systems in fractal
space can be related to the PPE and in this case, q can be de-
termined by the fractal dimension of the system [31, 32], high-
lighting the close connections between fractals and nonexten-
sive statistics.

In an alternative approach, when a system evolves in a frac-
tal medium, the FPE may be modified by substituting the stan-
dard derivative operators with fractal derivatives. The result is
the Fractal Fokker-Planck Equation (FFPE) given by [33]

Dα
′

to f (r,t) = Dα
′′

xi,o

[
−γi(r) f (r,t) + BDα

′′

xi,o
f (r,t)

]
, (5)

where 0 < α′ ≤ 1 and 0 < α′′ ≤ 1 represent the fractal dimen-
sion of the time and coordinate spaces, respectively. It is im-
portant to highlight the distinction between fractal derivatives
and fractional derivatives at this point. The former is associ-
ated with Haussdorff geometry [34], while the latter class of
derivative operators is derived from algebraic considerations of
derivative operators. The connection between these two deriva-
tive classes can be established through the continuous approxi-
mation of the fractal derivative [35].

One of the possible continuous approximations is associ-
ated with q-deformed calculus [36]. This approximation trans-
forms the fractal version of the Fokker-Planck Equation into the
Plastino-Plastino Equation given by Eq. (4) [32]. Exploiting the
properties of the q-calculus derivative, Ref. [32] demonstrated
that the most significant geometrical aspect influencing the dy-
namic process in the fractal space is the fractal dimension gap,
denoted as δd f ≡ d − d f , where d is the smallest integer di-
mension of Euclidean space that embeds the fractal space with
dimension d f .

A consequence of this finding is that the effects of time and
coordinate fractal spaces depend on the joint space (t,r). The
dimension of the joint space is the sum of the time and coordi-
nate spaces, implying that the fractal dimensions α′ and α′′ in
Eq. (5) can be substituted by α = α′ + α′′.

Several works have explored the fractional version of the
PPE [37, 38]. The present work addresses the connections be-
tween the fractal equation and the PPE by adopting the con-
tinuous approximation associated with the q-deformed calcu-
lus. The standard derivative formulas can be recovered by using
such continuous approximations, resulting in the PPE equation.
In the connection between these two equations, the important

quantity ξ was derived as

ξ = 2 − d(q − 1) = 2 − δd f ∈ (0,2] , (6)

establishing the link between fractal geometry, the dynamics in
fractal space and the nonextensive dynamics. The quantity ξ is
defined to be the fractal dimension α of the image space of a
function. For a distribution that is positively defined, α = ξ/2.

Eq. (6) results from considerations on the foundations of
fractal geometry, fractal and q-deformed calculus [32] and non-
linear dynamics. It allows for the calculation of the parameter
q for any fractal space, since

q = 2 − d f /d . (7)

The PPE allows for addressing the dynamic aspect of the cities.

3. Dynamics of cities

The present work assumes that the city growth is isotropic,
that is, the infrastructure expands with the same probability in
any direction concerning the city centre rc(t) so that the proba-
bility distribution will be a function of |r − rc(t)|. This assump-
tion allows for a simplified equation (see Eq. (12), below). The
solution of the PPE (4) corresponding to a Dirac δ-distribution
at t = 0 is given by

f (r,t) =
1

N(t)
eq

[
−

(r − rc(t))2

2σ(t)2

]
, (8)

where 
rc(t) = γ1

γ2
+

(
ro −

γ1
γ2

)
exp[−γ2t]

σ(t) = σ∞
(
1 − exp

[
−ξγ2t

]) 1
ξ

, (9)

with

σ∞ ≡ ℓq κ
1
ξ , κ ≡ (2 − q)(2πχq)

d
2 (q−1) B

γ2ℓ2q
. (10)

The parameter ℓq is the characteristic linear size of the fractal
space, and

χq ≡
1

q − 1

Γ
(

1
q−1 −

d
2

)
Γ
(

1
q−1

) 
2
d

, q > 1 . (11)

The dimension d remains arbitrary because the same method
used here can be applied to other processes with different di-
mensions. The solution in Eq. (8) is a q-Gaussian, with a peak at
r = rc(t) and width σ(t). For t → ∞, the city reaches a new sta-
tionary regime after being disturbed by some event of the kind
mentioned before. Observe that the distribution in Eq. (8) is
dimensionless, as required for the correct usage of the PPE be-
cause all parameters are written in scaling invariant form, such
as σ/ℓq. Below, the dimensional distribution is recovered.

To develop a dynamical model of cities, it is important to
observe that cities usually start and evolve around a fixed ge-
ometric centre, which remains, to a good approximation, the
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centre of mass of the urban area during its evolution. In the fol-
lowing, it will be assumed that the city centre is at rc(t) = 0.
This condition is obtained by considering ro = 0 = γ1. This
means that one can integrate in the angular coordinates, and the
distribution will depend only on r and t, i.e., f (r,t). The PPE
for the isotropic city becomes

∂

∂t
f (r,t) = γ2

(
d + r

∂

∂r

)
f (r,t)

+
B

rd−1

∂

∂r

(
rd−1 ∂

∂r
f (r,t)2−q

)
, (12)

and its solution is given by Eq. (8) with rc(t) = 0. Notice that
the function f (r,t) is the profile of the population density at the
time t, measured from the city centre, r = 0.

While the distribution f (r,t) is dimensionless, the rescaled
distribution

f̄ (r,t) ≡
N(t)
ℓdq

f (r,t) (13)

has dimensions of [Length]−d and it is interpreted as the popu-
lation density. The integral of the density over all space gives
the population size, i.e.,

N(t) =
∫

ddr f̄ (r, t) , (14)

resulting in the total population at time t,

N(t) =
(√

2πχq
σ(t)
ℓq

)d

. (15)

Observe that the stationary distribution has a finite width for
t → ∞, and the population at this stage will be

N∞(q) = (2πχq)d/2κd/ξ , (16)

where the dependence in the parameter q is evidenced. The fi-
nite width at the asymptotic stationary regime is a consequence
of the harmonic potential [28]. The parameters B and γ2 do
not depend on q, so the time dependence of the width is also
independent of q, as can be observed in Eq. (9).

A paradigmatic case is q = 1, when the PPE and FFPE
reduce to the FPE, the solution becomes a Gaussian, and the
whole process is governed by Boltzmann statistics in a Eu-
clidean space, as indicated in Eq. (6). For this case, the sta-
tionary population will be

NBG ≡ N∞(q = 1) = (2π)d/2 κd/2BG . (17)

The crucial point is to find the conditions to have the same
population in a q-Gaussian distribution for any value of q, so
one can study the effects of the different values for the fractal
dimensions and the entropic index on the population density.
From Eq. (10), it results that to keep a constant population, ℓq
must vary with q in such a way that√

2πχq
σ(q)
ℓq
=

√
2πχq κ

1/ξ (18)

remains independent of q. By using Eq. (10) it follows that√
2πχq

σ(q)
ℓq
=
√

2π
(

uqℓo

ℓq

)2/ξ

, (19)

where

uq =

[
(2 − q)(2π)

2−ξ
2 χq

]1/2
, (20)

with ℓo =
√

B/γ2 being a typical length associated with the
dynamic properties of the system, as discussed below.

The population size N(t) is independent of q if the right-
hand side of Eq. (19) is q-independent. In this case, the equality

√
2π

(
uqℓo

ℓq

)2/ξ

=
√

2π
σBG

ℓBG
, (21)

with σBG = σq=1 and ℓBG = ℓq=1, must hold, implying that

uqℓo

ℓq
=

(
σBG

ℓBG

)ξ/2
. (22)

Observe that, for q = 1, it results uq = 1 therefore σBG = ℓo.
Thus, the length ℓo represents the distribution width for the so-
lution of the Fokker-Planck Equation associated with the diffu-
sive process governed by the Boltzmann Statistics.

Establishing the scaling relation

ℓq = uqℓ
1−ξ/2
o ℓ

ξ/2
BG , (23)

ensures that κ2/ξ in Eq. (18) is independent of q. Thereby, σq

scales with q in the same way as ℓq, so σ(q) ∝ ℓξ/2BG . Since, for
the same reason, σBG ∝ ℓBG, it follows that

σ(q) ∝ σξ/2BG , (24)

showing the scaling behaviour of the distribution width. The
population density

ρq(t) = N(t)/ℓdq , (25)

increases as the fractal dimension decreases. The area of the
city is Aq = ℓ

d
q and scales in the same way as the linear length,

i.e., Aq = Aξ/2BG. But ABG ∝ N, therefore

Aq ∝ Nξ/2 . (26)

By comparing the expression above with the fundamental al-
lometry, it results that the infrastructure scaling exponent is
β = ξ/2.

The dynamic theory in a fractal space yields consistent beha-
viour in linear scales, as can be observed by comparing Eqs. (23)
and (24). Both ℓq and σ(q) scale according to the same power-
law. Note that this scaling is valid for any time t , 0, indicating
that it is a feature of the fractal space that induces non-local
correlations into the evolution of the system, thereby leading to
non-additive statistics. It is worth understanding the role of the
parameter ℓq in the dynamic process. It was named the charac-
teristic linear size of the fractal space because it represents the
scale of the fractal space with dimensional gap δd f . It imprints
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Figure 1: Typical plots for the determination of the fractal dimension d f . Here, the representative cases are for the Brazilian cities: Manaus (d f = 1.65, nodes
= 28652, Nℓi=6 = 966, ℓi=6 = 597 m). Maceió (d f = 1.67, nodes = 15248, Nℓi=6 = 821, ℓi=6 = 411 m), Rio de Janeiro (d f = 1.70, nodes = 70329, Nℓi=6 = 899,
ℓi=6 = 1107 m) and São Paulo (d f = 1.79, nodes = 113272, Nℓi=6 = 1054, ℓi=6 = 1036 m). The dashed line indicates the region used for the linear fitting, and the
green line is for guiding-eye purposes.

the same power-law trend to the distribution width, therefore
it is through ℓq that the system inherits the scaling properties
observed in the dynamical parameter σ(t).

Using Eqs (6) and (23), it results that the characteristic lin-
ear size of the system varies with q and the fractal dimension
gap as a power-law with exponent

β =
ξ

2
= 1 −

d
2

(q − 1) = 1 −
d − d f

2
, (27)

where β is the scaling exponent of the linear size of the dynamic
distribution, q is the entropic index of the Tsallis Statistics, and
d f being the fractal dimension. By using d = 2, it results from
Eq. (27) that β = d f /2. As we will discuss below, a reasonable
value for the city’s fractal dimension is d f = 1.7, resulting in
β = 0.85. We will see that this value for the scaling exponent is
also in good agreement with empirical findings.

The results obtained above show that starting from the dy-
namics on a fractal space, in a process that evolves diffusively
under harmonic attractive forces, the sub-linear behaviour of
the urban infrastructure is obtained. This is in contrast with
the observed for the FPE solutions, corresponding to the Boltz-
mannian systems, which present a linear relation between urban
area and population size. This behaviour is recovered when the
d f → 2. Thus, the fundamental allometric relation for cities is
reproduced in an approach that considers only the diffusive be-
haviour in a fractal space. The city is self-organized to be more
efficient in the space occupation, sharing more area of the city
than would happen in a process governed by a standard Fokker-
Planck dynamics, in which case the area increases linearly with
the population size.

The central result in the present work is Eq. (27), which
establishes the relations among the entropic index, the fractal
dimension and the scaling exponent. All these quantities can
be determined by independent methods so, at this point, a set
of values for those parameters found in the Literature will be
discussed. A more constrained analysis will be performed later
on.

The value for the parameter q appearing in the PPE can be
calculated from analysis of information diffusion in urban areas
and of epidemiologic analysis [39, 40]. The number of con-
tacts per individual nc was associated with the entropic index
by nc = (q − 1)−1 [39]. Studies about the number of contacts
show that one can consider the range 3 < nc < 10 correspond-
ing to the values 1/10 < q−1 < 1/3. [39, 40, 41]. Studies on the
geographic shape of cities globally [42, 43] provide city dimen-
sions typically within the range of 1.4 < d f < 1.9, which corre-
sponds, according to Eq. (6), to the range 1/20 < q− 1 < 3/10.
A systematic study of cities over all continents concluded that
the scaling exponents lie within the range 2/3 < β < 1 [44],
which corresponds to the range 0 < q − 1 < 1/3. Therefore,
considering all the independent information on the range of the
parameter q, one can estimate that 0 < q − 1 < 1/3.

So far, we have shown that considering the average values
for the fractal dimension and the scaling exponent of the cities
around the world, Eq. (27) works properly. A more restrictive
test is to observe the description of that formula to specific cities
for which both the fractal and the scaling exponent are obtained.

5



Figure 2: Study of the allometric relation for Brazilian cities with a population larger than 105. The left panel shows a log-log plot of the urban area as a function of
the population. The continuous (red) line represents the best fit to the data by using the allometric relation in Eq. (1), resulting in β = 0.80 ± 0.03, and the black line
indicates the linear behaviour (β = 1), for the sake of comparison. The right panel shows a histogram of the fractal dimension for Brazilian cities with population
N ≥ 105, resulting in an average ⟨d f ⟩ = 1.55 ± 0.11. A Gaussian curve was adjusted to the data for comparison.

4. A case study: Brazilian cities

As a case study, the verification of the theoretical relations
derived here is done by studying the observed data of Brazilian
cities. For a set of cities with a population larger than three
hundred thousand, the allometric exponent β was obtained by
using information on the population size and the urban area.
In addition, for the same cities, the fractal dimension of the
urban area, d f , is obtained by a process that considers the spatial
distribution of crossing of roads in the city.

The data used here for the evaluation of the allometric ex-
ponent is obtained from Refs. [45, 46]. The data used to an-
alyze the urban boundaries of the cities is taken from [47].
Before calculating the fractal dimension, the data is processed
by extracting the road intersections using the Python package
[48]. For calculating the fractal dimensions, the box-counting
method is applied to the road intersections by defining a lattice.
This method initially defines a L×L square with L ∼

√
A, where

A is the urban area of the city. The square is centred at the ge-
ometric centre of the road intersections of the city and encloses
all the city’s road intersections.

The fractal dimension is obtained by counting those boxes
with side ℓ that contain at least one road intersection inside, Nℓ.
The process is repeated iteratively for boxes with size

ℓi =
L
2i , (28)

with i ∈ [2,8], a range that was found suitable for the set of
cities considered here. The fractal dimension d f is obtained by
using the formula

d f =
log(Nℓi )
log(ℓi)

. (29)

Typical plots of N(ℓ) vs ℓ are shown in Fig. 1. In the determi-
nation of d f , only the linear region of each plot was considered,
following the recommendations in Ref. [8].

As reported in the left panel of Fig. 2, the allometric re-
lation analysis gives β = 0.80 ± 0.03, which lies within that
range observed for cities around the world. The distribution of
the fractal dimension is reported in the histogram shown in the
right-hand panel of Fig. 2, where one can see an approximately
normal distribution with the average at ⟨d f ⟩ = 1.55 ± 0.11,
which falls in the range observed for cities worldwide. Eq. (27)
represents the central result of the present work. It gives that
⟨d f ⟩/(2β) = 0.97 ± 0.07, in agreement with the expected value
and confirming that the theoretical approach can correctly pre-
dict the relation between the allometric exponent and the city’s
fractal dimension.

A more detailed analysis can be performed by considering
the fractal dimension results for each of the cities in the present
study. The left panel in Fig. 3 displays the fractal dimension as a
function of the rescaled inverse population size. The rescaling
is done by using the critical exponent, z = 0.305, that maxi-
mizes R2 in the linear fitting as can be seen in the right panel of
this figure. The continuous line is a linear fitting, which indi-
cates a weak dependence of the fractal on the population size.
Observe that for N → ∞ (thermodynamical limit), the fractal
dimension results to be d f = 1.89 ± 0.03, showing that even
for extremely large populations, the urban area remains a frac-
tal structure. Interestingly, the asymptotic value of d f agrees
with the fractal dimension of a percolation cluster in a two-
dimensional space, which is 91/48 [49, 50, 51, 52].

The left panel in Fig. 4 displays the ratio d fi/(2β), where
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Figure 3: Study of the fractal dimension for Brazilian cities with a population larger than 105. The panel at the left represents the individual cities’ fractal
dimensions as a function of the rescaled inverse population size. The rescaling exponent was chosen to maximize the value for R2 in the linear fit, as described in
the right panel, where R2 is plotted against the rescaling exponent z.

the fractal dimension of ith city is used instead of the average
value. From the theory, it is expected that all data points spread
around the unit. Observe that the weak dependence of the ratio
d fi/(2β) with the population N is similar to that of d f with the
population size. It corroborates that the fractal dimension is not
a truly universal aspect of the cities but shows a weak depen-
dence on the population size [2]. According to Eq. (27), also
β should present a dependence on the city’s population, but in
the present analysis, a constant value was adopted. Such weak
dependence of d f could be the cause of the slightly asymmetric
distribution in Fig. 2, but the present analysis is not intended to
give a definite answer in this regard.

It must be emphasized that the present approach to the cities’
allometric relation is rather different from the existing models,
although leading to similar results. It is completely based on the
diffusion process in fractal spaces, avoiding assumptions about
individual behaviour. On the contrary, Bettencourt’s [9] and
Ribeiro et al. [53] models are strongly based on the assumption
of efficiency determining the approximate allometric exponent
but need the introduction of a fractal dimension. The Loaf-
Barthelemmy model [54] is based on traffic and commutation
time.

Bettencourt’s, Ribeiro et al.’s, and Loaf-Barthelemmy’s mod-
els give the same formula relating the allometric exponent and
the fractal dimension, namely,

β =
d f

d f + 1
. (30)

Comparing with Eq. (27) for d = 2, giving β = d f /2, and
considering the expected value for the fractal dimension, 1.4 <
d f < 1.9, it results that the present model will always give an

exponent larger than that given by the other models discussed
here.

In the left panel of Fig. 4, the accuracy of the prediction
given by Eq. (30) is compared with that for the present ap-
proach, given by Eq. (27). It is observed a significant deviation
from the expected unit value for the case of Eq. (30), showing
that the fractal approach is more accurate for the cities used in
the present study. The right panel in Fig; 4 displays the be-
haviour of the relevant ratios for the different models as a func-
tion of the population size.

5. City’s attraction potential

There is another aspect of the dynamics approach that de-
serves further consideration. The relation between the occupied
area and the population size involves, beyond the fractal aspects
of the city, socioeconomic factors that depend on the attractive-
ness of the city, which motivates the population to move near to
its centre. In the dynamical approach employed in the present
work, this is controlled by the potential associated with the pa-
rameter γ2. Hence, this work considers the general case of a
power-law attractive force of the form γ2rω replacing the har-
monic potential. The stationary distribution has a q-exponential
form, being given by

fq(r) =
1

N(t)
eq

−1
2

(
r
σ∞,ω

)2α , (31)

where
α =

1 + ω
2
. (32)
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Figure 4: Comparison between the results obtained with the fractal diffusion approach presented here (blue), and the result obtained by using Eq. (30) (black). The
left panel shows the histogram of the normalized relation between β and d f by each model. For a successful prediction, the results should be around the unit. The
right panel shows the behaviour of the ratios with the population size. A weak dependence on the population is observed.

The stationary width is given by

σ∞,ω ≡ ℓq,ω κ
1/(αν) , κ ≡ α(2 − q)(2πχq,ω)

d
2 (q−1) B

γ2ℓ
2α
q,ω
, (33)

with

χq,ω ≡
1
2

(
2

q − 1

) 1
α

Γ
(
1 + d

2α

)
Γ
(
1 + d

2

) Γ
(

1
q−1 −

d
2α

)
Γ
(

1
q−1

) 
2
d

, (34)

and
ν ≡ 2 −

d
α

(q − 1) . (35)

The population size results in

N∞,ω =
(√

2πχq,ω
σ∞,ω

ℓq,ω

)d

. (36)

Following the same reasoning used above for the case ω =
1, it is found that the population size will be independent of q if

ℓq,ω ∝ ℓ
ν/2
BG , (37)

where ℓBG ≡ ℓq=1,ω=1 corresponds to the case where the city
area is proportional to the population size. This scaling property
leads to Aq,ω = ℓ

d
q,ω = Aν/2BG, therefore

Aq,ω ∝ Nν/2 . (38)

For a given scaling exponent and fractal dimension, the power-
law exponent α can be easily obtained from Eq. (38), resulting

α =
d − d f

2(1 − β)
. (39)

The parameter α can be useful to understand the few cases
where β ≲ 2/3, corresponding to q − 1 ≳ 1/3.

The value for α was verified for the set of Brazilian cities
used in the case study presented here. The result, as observed
in the left panel in Fig. 5 shows that ⟨α⟩ = 1.1 ± 0.3 is a value
that agrees with the harmonic potential adopted in the previ-
ous sections. However, for a constant value β, the parameter α
varies with the population size. In the right panel of Fig. 5, the
value of the parameter α is plotted against the rescaled inverse
population size. The rescaling exponent is obtained in the same
way as indicated previously, and because α has a linear depen-
dence on d f , the critical exponent for the rescaling is the same,
z = 0.305. Observe that for N → ∞, α → 0.28 ± 0.06, indicat-
ing that even in the thermodynamical limit the city’s attractive
potential remains a power-law function of the distance to the
centre of the urban area.

The plots for this study are presented in the Supplementary
Material.

6. Conclusions

In summary, the dynamical approach used to characterize
urban scaling underscores the significance of the Plastino-Plasti-
no Equation in addressing the anomalous diffusion linked to the
intricacies of urban life and the fractal geometry of cities. The
connections between this nonlinear equation, fractal and frac-
tional calculus, and nonextensive statistics yield Eq. (6). This
equation establishes a relationship between the fractal dimen-
sion of the city, the entropic index, and the scaling exponent.
While the fractal dimension elucidates the complex geometry
of the urban space [32], the entropic index can be linked to the

8



Figure 5: Results for α, as calculated by Eq. (39). The histogram of the individual city’s results is displayed in the left panel. The right panel shows the values of α
as a function of the rescaled population size.

social activities of individuals [21], providing a comprehensive
understanding of the correlations between infrastructure and so-
cioeconomic behaviour that shape urban life, aligning with pre-
vious works [18, 55].

The dynamics in fractal spaces provide only two parame-
ters for describing the system behaviour, namely, the entropic
index and the attractive potential exponent. The latter repre-
sents the attractiveness of the city. The interplay between these
two parameters can precisely account for the scaling exponent
observed in any city, highlighting the intricate relationships be-
tween infrastructure-related issues and social interactions. The
results indicate that a weak dependence of both fractal dimen-
sion and allometric exponents with the population size is nec-
essary. Overall, the dynamical approach gives fair prediction to
the population stationary distribution of cities.

For the set of Brazilian cities used in the study of the case
presented in this work as a test for the prediction of the frac-
tal diffusion approach, the results obtained are better than the
best-known models in the Literature [9, 54]. However, in all
cases, the fundamental origin of the fractal space remains ob-
scure but the present theoretical approach evidences that the
relation between the fractal dimension and the allometric expo-
nent is associated with basic geometric and diffusion aspects.
The present model also allows for studying the temporal evo-
lution of the population distribution in the urban area, offering
new methods for testing the predictions given by the theoretical
approach.

This work opens up the possibility of addressing the dynam-
ical aspects of cities and offers new perspectives for understand-
ing the origins of fractality in urban life. Systematic analyses
of the two parameters provided by the theory can elucidate the
complex connections between social behaviour and the city’s

design. The methods presented here can be of help in the de-
sign of growing infrastructure in cities [56], and the promotion
of economic growth [57, 58]. Future research may examine
the relationship between the number of contacts and the shared
area of the city associated with the scaling exponent. Investi-
gating the determining features of the human mind that underlie
the emergence of fractal behaviour remains an intriguing area
for scientific development. The Science of Cities is necessarily
interdisciplinary, encompassing physical, mathematical, socio-
logical and philosophical aspects. In the latter areas, progress
has been made in understanding the implications of a complex
approach to social behaviour in modern society [59, 60].
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8. Supplementary Material (will not appear in the main
text

The correlations in the city’s structure imply the use of PPE
instead of the FPE. The solutions for the former equation are
q-Gaussians, in contrast with the solutions for the latter one,
which are Gaussian distributions. Fig. 6 shows the q-Gaussian
distributions for different values of q and width σ in the sta-
tionary regime that is obtained by using Eq. (24) for a fixed
population size, N. The case q = 1 corresponds to the stan-
dard FPE solution, which is a Gaussian distribution, and it is
compared with the PPE solutions for two different values of q.
The plots show that in the central region around r = 0 the q-
Gaussian present a more pronounced peak, which results from
the narrower distribution width due to fractal effects in the city
dynamics. However, the q-Gaussians are fat-tailed, resulting in
larger populations at the borders of the city. It means that the
area occupied by the population in the city is smaller than it
would be the case if the population was randomly distributed
around the centre. In terms of the entropic index, the result ev-
idences the non-additivity of the city configurations. The value
q , 1 explains why, upon adding a group of individuals to an
existing city, the area of the new city will not be the simple sum
of the area initially occupied by each group.

Fig. 7 shows a sample of the 319 plots to obtain the Brazil-
ian cities’ dimensions that were used for the study case.
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Figure 6: Plots of the population distribution function profiles for different values of q = 1, 1.1, 1.4 in the PPE. They correspond, respectively, to the fractal gap
d f = 2, 1.45, 1.30. The horizontal axis gives the distance r to the city centre in arbitrary units, and the vertical axis gives the distribution function, in arbitrary units.
The left panel shows a linear-linear plot, while the right plot shows a log-linear plot.
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Figure 7: Sample of the fittings for the determination of the cities’ fractal dimension. The traced line indicates the best linear fit and the region considered for the
fittings.
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