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Abstract

The influence of a random environment on the dynamics of a fluctuating rough surface

is investigated using a field theoretic renormalization group. The environment motion is

modelled by the stochastic Navier–Stokes equation, which includes both a fluid in thermal

equilibrium and a turbulent fluid. The surface is described by the generalized Pavlik’s

stochastic equation. As a result of fulfilling the renormalizability requirement, the model

necessarily involves an infinite number of coupling constants. The one-loop counterterm

is derived in an explicit closed form. The corresponding renormalization group equations

demonstrate the existence of three two-dimensional surfaces of fixed points in the infinite-

dimensional parameter space. If the surfaces contain IR attractive regions, the problem

allows for the large-scale, long-time scaling behaviour. For the first surface (advection is

irrelevant) the critical dimensions of the height field ∆h, the response field ∆h′ and the

frequency ∆ω are non-universal through the dependence on the effective couplings. For the

other two surfaces (advection is relevant) the dimensions are universal and they are found

exactly.
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1 Introduction

Kinetic roughening of randomly growing interfaces is an important example of dynamic non-

equilibrium behaviour both conceptually (because it reveals self-similar long-range spatio-

temporal correlations without any external tuning) and in relation to possible applications.

The wide range of physical systems with random growth includes chemical solutions

where substance deposition creates phase boundary, propagating flames, smoke or solidifica-

tion fronts, vicinal surfaces, populations of cells, crystals undergoing molecular beam epitaxy,

and many others; see, e.g. [1–7] and references therein.

As a rule, various correlation functions for those processes exhibit scaling (self-similar or

self-affine) behaviour in the infrared range (IR, long times, large distances), for example:

Cn(t, r) = 〈[h(t, x) − h(0, 0)]n〉 ≃ rnχFn(t/rz), r = |x|. (1)

Here h = h(t, x) is a relevant field (e.g. a fluctuating part of the surface height), the brackets

denote averaging over the statistical ensemble, χ and z are the widely used notations for the

pair of critical exponents, and Fn(·) are scaling functions.

One of theoretical approaches to the study of kinetic roughening consists of establishing

scaling relations like (1) on the base of certain (usually semi-phenomenological) dynam-

ical models, calculating the critical exponents in a systematic way and investigating their

universality (that is, dependence on the dimension of space d and other parameters of the

model).

One such model is the celebrated Kardar–Parisi–Zhang (KPZ) equation [8] that can

arguably be considered “the Ising model for non-equilibrium phenomena”:

∂th = κ0∂
2h +U(h) + η. (2)

Here h = h(x) is the fluctuating part of the height field, κ0 > 0 is the surface tension coefficient,

U(h) is a certain non-linearity and η = η(x) is the random noise. Here and below, x = {t, x},

x = {x1, . . . , xd}, d is the dimension of space, ∂t = ∂/∂t, ∂i = ∂/∂xi, ∂
2 = ∂i∂i is the Laplace

operator; summation over repeated vector indices is always implied. The noise is Gaussian

with the correlation function1

〈η(x)η(x′)〉η = B0 δ(x − x′) = B0 δ(t − t′) δ(x − x′), B0 > 0. (3)

In the KPZ model, the non-linearity is taken in the form2

U(h) =
λ0

2
(∂h)2 =

λ0

2
(∂ih) (∂ih), (4)

where λ0 can be of either sign and models lateral growth or erosion.

One of the most powerful tools of studying scaling behaviour is the renormalization

group (RG) analysis; see, e.g. the monograph [10] and literature cited there. The RG was

applied to the stochastic problem (2) – (4) in the very first papers [8, 9] in the form of Wilson’s

1The noise η is supposed to have a certain constant component 〈η(x)〉 that guarantees that 〈h(x)〉 = 0, which follows from the

meaning of h as a fluctuating part, but in practical calculations they can simply be simultaneously ignored.
2To be precise, this model was introduced earlier in [9] by Forster, Nelson and Stephen in terms of a potential vector field vi = ∂ih

as a stochastic d-dimensional generalization of the Burgers equation.
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recursion relations. Later, the more advanced field theoretic RG, suitable for higher-order

calculations, was employed; see [11–13] for the references and the discussion.

A large number of models based on the original KPZ equation but with various adjust-

ments and modifications have been proposed: “colored” noise η with finite correlation time

[14, 15], “quenched” h-dependent and time-independent noise [16, 17], vector or matrix

field h [18–20], random coupling constant [21], inclusion of superdiffusion [22], inclusion of

anisotropy [16, 23, 24], conserved field h [25–27], modified non-linearity U(h) [28] and so

on.

The last one on that list was introduced by Pavlik [28] and features non-linear term in (2)

of the form U(h) ≃ ∂2h2/2 = (∂h)2+h∂2h. The first term is the original KPZ non-linearity (4),

while the second one can be viewed as an h-dependent contribution to the surface tension,

which makes it essentially non-linear.

However, the Pavlik’s model with the single non-linearity U(h) ≃ ∂2h2/2 is not self-

sufficient in the following sense. The dimensional analysis along with more sophisticated

renormalization arguments show that an infinite number of non-linear terms ∂2hn with n ≥ 2

must be included into the model because they all are equally relevant [29]. Thus, the model

should be extended to involve infinitely many coupling constants.

It is necessary to note here that the model nearly identical to the extended Pavlik’s model

was proposed earlier and independently by Diaz-Guilera in an attempt to construct a contin-

uous model of self-organized criticality [30]. Later on, its modifications where the random

noise is described by a Gaussian ensemble with finite correlation time was proposed and

studied in [45, 46].

The Pavlik’s model can also be viewed as an isotropic version of Pastor-Satorras–

Rothman model of landscape erosion [31, 32] that requires a similar infinite extension

[33–36]. It also has some similarity with the anisotropic Hwa-Kardar equation [37, 38] where

the non-linearity has the form of a total derivative. This means that both equations turn into

continuity equations in the absence of noise, just like the aforementioned models of landscape

erosion [31, 32].

Although Pavlik’s model and its extended relatives were originally proposed for kinetic

roughening [28, 29] and self-organized criticality [30], they also describe strongly non-linear

diffusion; see, e.g [39–41]. In this regard, it is worth noting that the need to include arbitrarily

high powers of the scalar field in the diffusion equation was suggested as early as 1937 [42].

The extended versions of Pavlik’s model with infinitely many couplings have recently

been used to describe critical activity of brain neurons in [43, 44].

It is well-known that critical behaviour of equilibrium systems is highly sensitive to

various external perturbations such as, for example, environment motion. The same is true

for non-equilibrium dynamical systems where laminar or turbulent flow can “level” scaling

behaviour making it trivial (the mean-field one) or, on the contrary, give rise to new regimes

of it [47–51]. What is more, such motion is difficult to exclude in experimental settings. That

is why it is important to account for its effects when considering models of kinetic roughen-

ing and non-linear diffusion. For the KPZ model, this problem was explored in the series of

works [52–55].

In this paper, we analyse the extended Pavlik’s model within a field-theoretic RG analysis

taking into account random motion of the environment. The latter is described by a stochastic

differential Navier–Stokes (NS) equation for an incompressible viscous fluid with a special

choice of the external random force that allows one to consider both a medium in thermal
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equilibrium and a strongly turbulent fluid. The original formulation of the model involves two

coupled stochastic differential equations. It can be reformulated as a certain field-theoretic

model that includes an infinite number of coupling constants.

Description of the model and construction of the action functional are given in Section 2.

In Section 3, UV divergences of the model are analysed. It is shown that the model can be

considered as multiplicatively renormalizable in the infinite space of coupling constants. In

the central Section 4, the one-loop counterterm is derived in an explicit closed form. This

allows us to derive the RG equations and to give the explicit expressions for their coefficients:

the anomalous dimensions γ and the β functions; see Section 5.

In Section 6, we establish that the RG equations have three two-dimensional surfaces of

fixed points in the infinite-dimensional parameter space (in contrast with conventional field-

theoretic models with their single fixed points). If these surfaces involve IR attractive regions,

the model demonstrates IR (large-scale, long-time) asymptotic scaling behaviour.

The first surface corresponds to the situation where the influence of the environment is

irrelevant; then the scaling dimensions are non-universal in the sense that they depend on the

specific point on the surface.

For the other two surfaces (that correspond to the fluid in equilibrium and the turbulent

fluid) the dimensions are shown to be universal. Moreover, they are given exactly by the lead-

ing (one-loop) approximation of the corresponding ε expansion. Conclusion and discussion

are given in Section 7.

2 Description of the model and its field theoretic formulation

Extended Pavlik’s model [29, 30] of a fluctuating surface is described by the equations (2),

(3) where the former is taken in the form

∂th = ∂
2V(h) + η, (5)

with function V(h) defined as an infinite series in powers of h:

V(h) =

∞∑

n=1

1

n!
λn0 hn; (6)

in the notation of equation (2), κ0 = λ10.

The advection by turbulent environment is introduced by the “minimal” replacement

∂t → ∇t in the equation (5), where

∇t = ∂t + (v∂) = ∂t + vk∂k, (7)

is the Lagrangian (Galilean covariant) derivative.

The turbulent medium is modelled by the stochastic NS equation for an incompressible

viscous fluid:

∇tvi − ν0∂
2vi + ∂i℘ − fi = 0. (8)

Here v = {vi} is the transverse (due to the incompressibility condition ∂ivi = 0) velocity field,

℘ is the pressure, f = { fi} is the transverse random force per unit mass (all these quantities

depend on x = (t, x)) and ν0 is the kinematic coefficient of viscosity.
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The force f is assumed to be Gaussian with zero mean and a given pair correlation

function:

〈 fi(x) f j(x′)〉 f = δ(t − t′)

∫

k>m

dk

(2π)d
Pi j(k)D f (k) exp{ik(x − x′)}, (9)

where Pi j(k) = δi j − kik j/k
2 is the transverse projector, k ≡ |k| is the wave number and

D f (k) = D0k4−d−y + D′0k2, D0 > 0, D′0 > 0. (10)

Let us list the reasons behind this choice of the correlation function. The power-like

form (10) with D′
0
= 0 is typical for the standard field theoretic approach to the fully devel-

oped turbulence; see, e.g. the monographs [10, 56], the review paper [57] and references

therein. The physical value of the exponent y corresponds to the limit y→ 4, where the func-

tion (10) with D′
0
= 0 and an appropriate choice of the amplitude D0 can be viewed as a

power-like representation of the function δ(k) that describes the energy pumping by a large-

scale stirring. The model becomes logarithmic at y = 0 so that the exponent y plays the role

of the formal expansion parameter in the RG perturbation theory.

However, the model (5), (6) (as well as the KPZ model) becomes logarithmic at d =

2 [29], and its RG analysis should be performed within the expansion in ε = 2 − d. In order

to make the RG analysis of the full model internally consistent, it is necessary to treat y and

ε as small parameters of the same order.

In its turn, the RG analysis of the model (8) – (10) near d = 2 becomes rather delicate [56,

58, 59]. It shows that, in order to ensure renormalizability, a local term must be added into the

correlation function of the random force, namely D′
0
k2 in (10). It is this term that bears the

renormalization constant, while the original non-local term with the amplitude D0 remains

intact.

At D0 = 0, the model (8) – (10) becomes local and describes a fluid in thermal equilib-

rium; it was introduced in [9, 60] in connection to the problem of “long tails” in derivation of

hydrodynamics equations. It is renormalizable in itself and logarithmic at d = 2.

Thus, the general model (10) involves a turbulent fluid as well as a fluid in equilibrium.

The ultraviolet (UV) divergences take on the form of singularities in y, ε and their

combinations, while the coordinates of the fixed points and various critical dimensions are

calculated as expansions in y and ε with the assumption that y ∼ ε. 3

According to the general De Dominicis–Janssen theorem (see, e.g. Chapter 5 in [10] and

references therein), the original stochastic problem (5) – (10) can be represented as the field

theoretic model of an extended set of fields Φ = {h, h′, v, v′} with the action functionalS(Φ) =

Sh(Φ) + Sv(Φ) where

Sh(Φ) =
1

2
h′h′ + h′

[
−∇th + ∂

2V(h)
]
, (11)

Sv(Φ) =
1

2
v′D f v

′ + v′
[
−∇tv + ν0∂

2v
]
. (12)

The function D f is the one in expressions (9), (10).

Here and below, all the needed integrations over the arguments x = {t, x} and summations

over repeated vector indices are implied for all terms such as the ones in equations (11), (12).

3They are not simple double series in two parameters: the expressions like y2/(ε − y) can also appear (see, e.g. equation (67) in

Section 6 below) and should be treated as quantities of order ε ∼ y. See [59] for a more detailed discussion.
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For example,

h′∇th =

∫
dt

∫
dxh′(t, x)∇th(t, x). (13)

The field theoretic formulation allows one to represent various correlation and response

functions of the original stochastic problem as functional averages over the full set of fields

Φ = {h, h′, v, v′} with the weight expS (for more details, see [10]).

Now the field theoretic tools that include Feynman diagrammatic techniques, functional

equations of Schwinger–Dyson type, Ward identities for Galilean symmetry, renormalization

theory and RG can be applied to the study of the field theoretic model (11), (12).

In the diagrammatic technique, the propagators for that model will be denoted by the

following lines:

〈hh′〉0 = , 〈hh〉0 = , (14)

〈viv
′
j〉0 = , 〈viv j〉0 = . (15)

The vertices are shown in the figure 1: the vertices entering h′∂2V(h) have one tail with a

stroke and a number of tails without it. The vertex h′(v∂)h has one wavy tail, a tail with a

stroke and a tail without it. The vertex v′(v∂)v features only wavy tails.

Fig. 1 From left to right: the vertex h′(v∂)h, vertices h′∂2V(h) (the dotted line stands for the remaining (n − 4) tails

without strokes), the vertex v′(v∂)v.

3 UV divergences and renormalization

3.1 Canonical dimensions

The Green’s functions for the model (11), (12) involve UV divergences, which can be

eliminated by the standard renormalization procedure.

The presence of UV divergences can be established through the canonical dimensions

analysis of fields and parameters; see, e.g. Sections 1.15, 1.16 in [10]. In contrast to static

models that essentially include only one dimensional scale, dynamic ones contain two inde-

pendent scales: spatial scale [L] and temporal scale [T ] (see Sections 1.17 and 5.14 in [10]).

This means that the canonical dimension of any quantity F are specified with two numbers:

the momentum dimension dk
F

and the frequency dimension dω
F

,

[F] ∼ [T ]−dω
F [L]−dk

F .
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Eventually, the dimensions of all quantities are found from the standard normalization

conditions:

dk
k = −dk

x = 1, dωk = dωx = 0, dk
ω = dk

t = 0, dωω = −dωt = 1,

and also from the requirement that all the terms in the action functional be dimensionless with

respect to each scale.

Introducing the total canonical dimension dF = dk
F
+ 2dω

F
is also necessary since it subse-

quently plays the same role as the conventional momentum dimension does in static models.

It is chosen so that the viscosity coefficients ν0 and parameter λ10 appear dimensionless and

∂t ∼ ∂
2, where ∂t, ∂

2 are derivatives entering the free parts of the action functionals (11), (12);

hence the coefficient 2 in dF ; see Section 5.14 in [10].

Since the dimensions of all quantities in the action functionals must be determined unam-

biguously, one should get rid of unnecessary parameters, if any. In equation (5), the amplitude

B0 from expression (3) can be eliminated by an appropriate rescaling of the fields and the

parameters. In other words, one can set B0 = 1 with no loss of generality, which is assumed

in what follows. Such rescaling naturally does not affect critical exponents in expression (1).

Canonical dimensions of the other parameters and the fields are given in the Table 1.

Dimensions of their renormalized counterparts (without the subscript ”0”) and the renor-

malization mass µ (additional parameter of the renormalized theory) are also included

there.

Table 1 Canonical dimensions of the fields and the parameters in the model (11), (12).

F h h′ v v′ m, µ D0 D′
0

λn0

dk
F

1 − ε/2 1 − ε/2 −1 3 − ε 1 y − 6 ε − 6 (1 − ε/2) (1 − n) − 2

dω
F

−1/2 1/2 1 −1 0 3 3 (n + 1) /2

dF −ε/2 2 − ε/2 1 1 − ε 1 y ε ε (n − 1) /2

F λn g′
0

ν0, ν g0 gn0 g g′ gn

dk
F

− (n + 1) ε −2 y ε (n − 1) /2 0 0 0

dω
F

(n + 1) /2 0 1 0 0 0 0 0

dF 0 ε 0 y ε (n − 1) /2 0 0 0

We also introduced charges gn0, g0 and g′
0

and their renormalized counterparts:

λn0 = gn0ν
(n+1)/2

0
, λn = gnν

(n+1)/2µε(n−1)/2 (n > 0), (16)

D0 = g0ν
3
0, D = gν3µy (17)

D′0 = g
′
0ν

3
0, D′ = g′ν3µε. (18)

The charges are chosen so that dωgn0
= dωg0

= dω
g′

0

= 0, while the corresponding renormalized

counterparts are completely dimensionless. The charges g0, g′
0

and gn0, n > 1, serve as expan-

sion parameters in the ordinary perturbation theory for the original unrenormalized model.

We are interested in the expansion in the number of loops, then the relations gn0 ∼ g
(n−1)

20

should be implied for internal consistency. The dimensionless ratio g10 ∼ 1 of two kinematic

coefficients is not an expansion parameter but must be considered alongside the other charges.
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From Table 1, it follows that all interaction vertices become logarithmic when y = 0 and

ε = 0 as the corresponding charges g0, g′
0

and gn0 become dimensionless. That means that

the exponents y and ε measure deviation from logarithmicity and according to the general

ideology of renormalization they should be considered as formal small parameters of the same

order (y ∼ ε).

3.2 UV divergences and counterterms

Superficial UV divergences (which removal requires counterterms) are present in the

1-irreducible Green’s functions for which the formal index of divergence

δ = (d + 2) −
∑

Φ

NΦ dΦ (19)

is a non-negative integer in the logarithmic theory (y = ε = 0). Here NΦ are the numbers

of the fields Φ = {h′, h, v′, v} entering the Green’s function and dΦ are their total canonical

dimensions; see, e.g. [10] (sec. 5.15), [56] (sec. 1.4) and [57].

Additionally, when analysing divergences in the model (11), the following considerations

should be taken into account as well:

(1) For any dynamical model of type (11) and (12), all 1-irreducible functions that do not

include the response fields v′ and h′, contain closed loops of retarded propagators and vanish.

Thus, it suffices to only consider functions with Nv′ + Nh′ > 0.

(2) At the vertex v′(v∂)v, the derivative ∂ can be carried over by integration by parts to the

field v′ (due to the incompressibility condition). Thus, in any 1-irreducible diagram, for each

external field v′ attached to this vertex, the corresponding external momentum is allocated,

and the real divergence index of the diagram decreases by the corresponding number of units:

δ′ = δ−Nv′ . At the same time, the field v′ is required to enter the corresponding counterterms

only under spatial derivative. The same is true for the vertex h′(v∂)h: δ′ = δ − Nh′ .

(3) In the vertices h′∂2hn, the Laplace operator can also be moved onto the field h′ with

integration by parts. Thus, δ′ = δ − 2Nh′ and the field h′ enters the counterterms only under

spatial gradient.

(4) The counterterms h′∂th and v′∂tv are allowed by the formal index δ but they are for-

bidden by the items (2) and (3) because they do not contain a spatial gradient ∂. On the other

hand, the Galilean symmetry of the model requires, in particular, that the covariant deriva-

tives h′∇th and v′∇tv enter the counterterms as a single unit. Thus, counterterms h′(v∂)h and

v′(v∂)v are also forbidden.

Canonical dimensions analysis together with these considerations shows that superficial

UV divergences are present in the following 1-irreducible Green’s functions:

〈vi
′v j〉1−irr with counterterm vi

′∂2v j

(
δ = 2, δ′ = 0

)

〈vi
′v j
′〉1−irr with counterterm vi

′∂2v j
′ (
δ = 2, δ′ = 0

)

〈h′hn〉1−irr with counterterm h′∂2hn (
δ = 2, δ′ = 0

)

with any natural number n.

Inclusion of the corresponding counterterms can be reproduced by multiplicative renor-

malization of the fields and the parameters, i.e., the model (11), (12) is multiplicatively
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renormalizable. Furthermore, it appears that renormalization of the fields h, h′, v, v′ is not

required: their renormalized counterparts are given by the fields themselves.

Note that if functional V(h) involves only odd powers of field h, the model acquires addi-

tional symmetry h → −h, h′ → −h′ that forbids counterterms with even powers of h. Thus,

such a model appears to be self-contained or “closed with respect to the renormalization”.

3.3 Renormalized action functionals

The renormalized action functionalSvR for the NS model in d = 2−ε has the following form:

SvR =
1

2
v′

[
gν3µyk2+ε−y + Ziig

′ν3µεk2
]
v′ + v′

[
−∇tv + Ziν∂

2v
]
, (20)

where we denoted

D0 = D = gν3µy, D′0 = D′ = g′ν3µε. (21)

Here the renormalization mass µ is introduced as an additional parameter of the renormalized

theory. These expressions follow from the fact that fields h′, h, v′, v are not renormalized.

The renormalization constants Zi and Zii are chosen to eliminate the UV divergences of

Green’s functions 〈v′v〉 and 〈v′v′〉 respectively. In practical calculations, we will employ the

minimal subtraction (MS) renormalization scheme, where these constants have the forms of

pure poles in y, ε and, in general, their linear combinations.

Renormalized action functional SR = ShR + SvR for the full model has the form

SR(Φ) =
1

2
h′h′ + h′

{
−∇th + ∂

2VR (h)
}
+ SvR(Φ), (22)

where VR(h) is the renormalized counterpart of the infinite series from definition (6):

VR(h) =

∞∑

n=1

1

n!
Znλn hn. (23)

The functional SvR is given by expression (20). The renormalized action functional (22) is

obtained from expression (11) using the following relations:

λn0 = λnZn, ν0 = νZν, g
′
0 = g

′µεZg′ , gn0 = gnµ
(n−1)ε/2Zgn

, (24)

g0 = gµ
yZg, Zh = Zh′ = Zv = Zv′ = 1.

The constants Zn, Zi and Zii are calculated directly from the diagrams for the Green’s

functions, and the rest are found from the relations

Zν = Zi, Zgn
= Zn Z

−(n+1)/2

i
, Zg = Z−3

i , Zg′ = Zii Z−3
i . (25)

All of them follow from the definitions (21) and (24).

The use of renormalization schemes in the study of NS equation near d = 2 is a compli-

cated issue; see the work [59] where the MS scheme and the Speer’s analytical regularization

scheme were compared. In this paper we employ the MS scheme which is unambiguous in

the one-loop approximation.
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4 Calculation of the one-loop counterterm

The one-loop calculation of the renormalization constants Zi and Zii in MS scheme yields the

following expressions; cf. equations (3.115) in [56]:

Zi = 1 −
g

32πy
−
g′

32πε
+ . . . , (26)

Zii = 1 −
g2

32πg′ (2y − ε)
−
g

16πy
−
g′

32πε
+ . . . . (27)

Note that at g = 0 one obtains Zi = Zii. This result is exact to all orders in g′; see [9, 60],

sec. 3.10 in [56] and references therein.

Now let us obtain the one-loop approximations for the constants Zn by explicitly con-

structing a closed form of the one-loop counterterm in the renormalized action (22). To this

end, consider the expansion of the renormalized 1-irreducible Green’s functions generating

functional (p is the number of loops):

ΓR(Φ) =

∞∑

p=0

Γ(p)(Φ), Γ(0)(Φ) = SR(Φ). (28)

The loopless (tree-like) term is just the renormalized action (22), while the one-loop

contribution is given by

Γ(1)(Φ) = −
1

2
Tr

{
ln

W

W0

}
, (29)

where W is a linear operation defined by its kernel

W(x, x′) = −
δ2SR(Φ)

δΦ(x)δΦ(x′)
, (30)

while W0 is its counterpart for the free part of the action, i.e., the matrix W−1
0

contains

propagators for the theory (22). Both W and W0 are 4 × 4 matrices in the full set of fields

Φ = {h′, h, v′, v}.

Let us employ the MS scheme, put Zn = 1 in expression (29) and take Zn in the first non-

trivial order in the couplings g, g′ and gn in the loopless contribution (22). Then the one-loop

approximations for the constants Zn can be found from expression (28), where these constants

cancel the UV divergences.

As the divergent part of expression (29) does not contain the fields v or v′, it is sufficient to

consider the matrix W at v = v′ = 0. Then, the matrix W can be symbolically represented as

W =



−∂2h′ · V ′′ LT −∂h′ 0

L −1 ∂h 0

h′∂ −h∂ 0 MT

0 0 M −D f


(31)

Here, we omitted the vector indices for brevity; we also dropped the Dirac’s function δ(x− x′)

that appears in the process of functional derivation and upon which all operators in the matrix

10



W act (with the exception of the element W(hh) where the dot stands to show how the derivative

works). Notations V ′ and V ′′ stand for the derivatives of the series V (obtained from VR(h) by

assuming Zn = 1) with respect to the field h = h(x) as if V were a function of a single variable

h. The correlation function D f is taken from (9) and (10) while L = ∂t − ∂
2V ′, M = ∂t − ν∂

2

and transposed counterparts are LT = −∂t − V ′∂2, MT = −∂t − ν∂
2.

To obtain explicit form of the constants Zn, only the divergent part of the expression (29)

is required, which has the form

∫
dx∂2h′(x)R(h(x)), (32)

that involves function R(h) similar to V(h). Hence it follows that it is sufficient to know the

expression (29) up to the first order with respect to the elements W(hh), W(hv) and W(vh) of the

matrix (31) that are linear in h′. To extricate that part, one can use functional variations. Let

us decompose the matrix W as follows:

W = W0 + δW, (33)

then the logarithm ln[W/W0] in the expression (29) can be expanded as

Tr

{
ln

W

W0

}
= Tr

{
ln

[
1 +W−1

0 δW
]}

= Tr

{
W−1

0 δW −
1

2
W−1

0 δW W−1
0 δW + . . .

}
. (34)

The divergent part of the needed form is contained in the first two terms of this expansion

and can be expressed as Tr ln[W/W0] ≃ −I1 + 2I2, where

I1 =

∫
dx D(hh) (x, x) V ′′(h(x))∂2h′(x) (35)

and

I2 =

∫
dx

∫
dx′ ∂ih(x)D(h′h) (x, x′) D

(vv)

i j

(
x, x′

)
∂ jh
′(x′). (36)

Here D(ΦΦ) are the corresponding elements of the matrix W−1 for zero values of the fields v,

v′ and h′. By its very meaning, D(hh) is the propagator 〈hh〉0 for the model (22) with Zn = 1

and with ν∂2 substituted by ∂2V ′ in the denominator. Similarly, D(h′h) is the propagator 〈h′h〉0
with the same substitution (the so-called response function in the external field), while D

(vv)

i j

is just the correlation function (9).

The external fields h(x) and h′(x) in the expressions (35) and (36) stand under derivatives,

which means that the rest of the integrands diverge only nearly logarithmically. Thus, all the

external frequencies and momenta can be set to zero during the calculation of the divergent

parts of these integrals. This is possible because the IR regularization is provided by the cut

off parameter m from the expression (9). Additionally, the factors ∂2h′(x), ∂ih(x), ∂ jh
′(x′) as

well as the field h in the expressions (35) and (36) can be treated as constants.

So the integrals are easily calculated by going over to the Fourier (frequency-momentum)

representation.

11



Fig. 2 Diagrammatic representations for integrals I1 (on the left) and I2 (on the right), see diagrammatic technique

(14) – (15) and Figure 1. No frequencies or momenta flow from the external tails of the diagrams, the only integration

is over momentum and frequency circulating inside the loops. Thus, the heterogeneity of the fields h(x) and h′(x) can

be neglected.

First, let us carry out intermediate calculations of D(hh):

D(hh)(x, x) =

∫

k>m

dk

(2π)d

∫
dω

2π

1

ω2 + [k2 V ′(h)]2
=

=
1

2V ′(h)

∫

k>m

dk

(2π)d

1

k2
=

=
S d

(2π)d

1

2V ′(h)

∫ ∞

m

dk kd−3 =
S d

(2π)d

1

2V ′(h)

1

ε
m−ε, (37)

where it was taken into account that d = 2− ε and where S d = 2πd/2/Γ(d/2) is the area of the

unit sphere in the d-dimensional space. Then for the integral (35), one obtains:

I1 =
S d

2(2π)d

(
µ

m

)ε 1

ε

∫
dx F1 (h(x)) ∂2h′(x), (38)

where function F1 (h(x)) is defined as

F1 (h) = µ−ε
V ′′(h)

V ′(h)
. (39)

For the integral entering (36), one has:

∫
dx′ D(h′h)(x, x′) D

(vv)

i j
(x, x′) =

=
∫

k>m

dk

(2π)d

∫
dω

2π

Pi j D f (k)

iω + k2 V ′(h)
·

1

ω2 + ν2 k4
, (40)
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where the function D f (k) is defined by the expression (10). The integral (40) over the

frequency ω can be calculated straightforwardly:

∫
dx′ D(h′h)(x, x′) D

(vv)

i j
(x, x′) =

1

2

∫

k>m

dk

(2π)d

Pi j D f (k)

νk4(ν + V ′)
=

=
d − 1

2d
δi j

S d

(2π)d

ν2

ν + V ′

{
g

y

(
µ

m

)y
+
g′

ε

(
µ

m

)ε}
. (41)

Thus, we obtain the following expression for the integral (36):

I2 = −
(d − 1)

2d

S d

(2π)d

{
g

y

(
µ

m

)y
+
g′

ε

(
µ

m

)ε}∫
dx F2 (h(x)) ∂2h′(x), (42)

where the function F2(h) can be expressed as follows:

F2 (h) =

∫ h

0

dh̃
ν2

ν + V ′
(
h̃
) . (43)

The lower limit of integration (43) can in fact be chosen arbitrarily; see the explanation below.

Here, we used the integration by parts and the chain rule ∂F2/∂x = (∂F2/∂h)(∂h/∂x) with

∂F2/∂h = ν
2/(ν + V ′).

Then, taking into account the results (38) and (42), we obtain for the divergent part of the

one-loop contribution the following expression:

Γ(1)(Φ) =
a1

ε

(
µ

m

)ε ∫
dx h′(x) ∂2 F1 (h(x))+ (44)

+ a2

{
g

y

(
µ

m

)y
+
g′

ε

(
µ

m

)ε} ∫
dx h′(x) ∂2 F2 (h(x)) ,

where we denoted:

a1 =
S d

4(2π)d
. a2 =

d − 1

2d

S d

(2π)d
; (45)

note that a1 = a2 = 1/(8π) for d = 2.

It would be preferable to continue the renormalization analysis in terms of closed func-

tional representations like (39), (43) and (44). Unfortunately, presently the authors know of

no way to perform it. Hopefully, the functional RG might be better suited for this end (see

more on this in Sec. 8).

Thus, for lack of a better solution, here we expand the functions F1 (h) and F2 (h) in

powers of the field h again and arrive at the series of the form (6) and (23):

F1 (h) =

∞∑

n=0

1

n!
µε(n−1)/2 ν(n+1)/2 rn hn (46)

and

F2 (h) =

∞∑

n=0

1

n!
µε(n−1)/2 ν(n+1)/2 sn hn, (47)

13



with dimensionless coefficients rn and sn. By using the expression (23) with the substitution

Zn = 1, one can express them in terms of the couplings gn for each order in n. We list the

first four of these coefficients below to illustrate their general structure (recall that in the loop

expansion one assumes gn ≃ g
(n−1)

2
):

r1 =
g3

g1

−

(
g2

g1

)2

,

r2 =
g4

g1

− 3
g3 g2

g2
1

+ 2

(
g2

g1

)3

,

r3 =
g5

g1

− 4
g4 g2

g2
1

− 3

(
g3

g1

)2

+ 12
g3 g

2
2

g3
1

− 6

(
g2

g1

)4

,

r4 =
g6

g1

− 5
g5 g2

g2
1

+ 20
g4 g

2
2

g3
1

− 10
g4 g3

g2
1

+

+ 30
g2

3
g2

g3
1

− 60
g3 g

3
2

g4
1

+ 24

(
g2

g1

)5

(48)

and

s1 =
1

(g1 + 1)
, s2 =

−g2

(g1 + 1)2
, s3 =

−g3

(g1 + 1)2
+

2g2
2

(g1 + 1)3
. (49)

The coefficients r0 and s0 are not shown because they do not enter the expression (44) for the

divergent part of the one-loop contribution. For the same reason, the lower limit of integration

in expression (43) responsible for the coefficient s0 can be chosen arbitrarily.

Now using the fact that the poles in y and ε are cancelled in the sum of the first two terms

in expression (28), the explicit expressions for the renormalization constants can be derived.

In the MS scheme, these constants have the forms “Zn = 1+ only pure poles in y and ε,” so

that the factors such as (µ/m)y and (µ/m)ε should be replaced by unity. The final expression

for the renormalization constants are:

Zn = 1 −
1

8πε

rn

gn

− g
1

8πy

sn

gn

− g′
1

8πε

sn

gn

+ . . . (50)

with the coefficients rn, sn from (46), (47) and the factors 1/8π from (45) for d = 2.

5 RG equations and RG functions

For a multiplicatively renormalizable model the RG equations can be derived in a standard

fashion; see, e.g. [10]. For the model (11), (12) one obtains:

Dµ − βg∂g − βg′∂g′ −
∞∑

n=1

βn∂gn
− γνDν + γG

 G(e; . . . ) = 0. (51)
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Here G(·) is a certain renormalized (and hence UV finite) Green’s function of the model (22)

expressed in terms of the full set of renormalized variables e = {g, g′, gn, ν, µ,m}. The ellipsis

denotes other variables such as coordinates (or momenta) and times (or frequencies). Here

and below ∂x = ∂/∂x andDx = x∂x for any variable x.

The coefficients in the RG differential operator (51) are the anomalous dimensions γ and

the β functions defined as

γF = D̃µ ln ZF for any F, βg = D̃µ g, βg′ = D̃µ g
′, βn = D̃µ gn, (52)

where D̃µ is the differential operationDµ at fixed non-renormalized (bare) parameters.

The definitions (52) and relations (24), (25) allow one to express all those RG functions

in terms of the anomalous dimensions γi, γii and γn as follows:

γg = −3γi, γg′ = γii − 3γi, γgn
= γn − (n + 1)γi/2,

γν = γi, γΦ = 0 for all Φ (53)

and

βg = g
[
−y − γg

]
= g

[
−y + 3γi

]
,

βg′ = g
′
[
−ε − γg′

]
= g′

[
−ε + 3γi − γii

]
,

βn = gn

[
−(n − 1)ε/2 − γgn

]
= gn

[
−(n − 1)ε/2 − γn + (n + 1)γi/2

]
. (54)

Here the operation D̃µ acts on the functions that depend only on couplings and takes on the

form:

D̃µ = βg∂g + βg′∂g′ +

∞∑

n=1

βn∂gn
, (55)

which can be reduced with the required accuracy to

D̃µ ≃ −yDg − εDg′ − (ε/2)D, where D =

∞∑

n=1

(n − 1)Dgn
. (56)

The following relations are directly checked:

D rn = (n + 1)rn, D (rn/gn) = 2 (rn/gn) , D (sn/gn) = 0. (57)

They are naturally interpreted as homogeneity relations with the assumption that

gn ∼ g
(n−1)

2
: then rn ∼ g

(n+1)

2
and sn ∼ g

n
2
. Also note that g1 ∼ 1 andDg1

does not contribute to

D in (56).

These relations along with the explicit expressions of the constants Zi, Zii and Zn

in (26), (27) and (50) give the following one-loops result for the corresponding anomalous

dimensions:

γi =
1

32π

(
g + g′

)
+ . . . , (58)
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γii =
1

32πg′
(
g + g′

)2
+ . . . , (59)

γn =
1

8πgn

{
rn + sn(g + g′)

}
+ . . . , (60)

with the coefficients rn and sn from (48) and (49), respectively.

Using the relations (53) and (58), one obtains for the functions βg, βg′ and βgn
in one-loop

approximation:

βg = g

[
−y +

3

32π

(
g + g′

)
+ . . .

]
, (61)

βg′ = g
′

[
−ε +

3

32π

(
g + g′

)
−

1

32πg′
(
g + g′

)2
+ . . .

]
, (62)

βgn
= gn

[
−

(n − 1)ε

2
− γn +

(n + 1)

2

1

32π

(
g + g′

)
+ . . .

]
. (63)

Of course, the expressions (58), (59) and (61), (62) are in agreement (up to notation) with

those presented in section 3.10 in [56] and in [58, 59] for the pure NS model.

6 Attractors of the RG equations, scaling behaviour and

exact critical dimensions

It is well known that the IR asymptotic behaviour of the Green’s functions of a multiplica-

tively renormalizable model is governed by IR attractive fixed points of the corresponding RG

equations. Those points are specified in the parameter space of renormalized couplings and

are determined from the requirement that all the β functions vanish. Since our model (11), (12)

includes an infinite set of couplings g, g′, gn, the corresponding space is infinite-dimensional.

The fixed points are found from the requirement that

βg
(
g∗, g′

∗)
= 0, βg′

(
g∗, g′

∗)
= 0, βgn

(
g∗, g′

∗
, gn
∗) = 0 (n ≥ 1). (64)

The equations (64) for the functions (61), (62) have three possible solutions, which can

be written with one-loop accuracy in the form:

(1) g∗ = 0 , g′∗ = 0, (65)

(2) g∗ = 0 , g′∗ = 16πε + . . . , (66)

(3) g∗ =
32π

9

y (2y − 3ε)

(y − ε)
+ . . . , g′∗ =

32π

9

y2

(y − ε)
+ . . . . (67)

The first point corresponds to the free (non-interacting) theory and is IR attractive for ε < 0,

y < 0. The second point, attractive for ε > 0, y − 3ε/2 < 0, corresponds to a fluid in thermal

equilibrium. The third point, attractive for y > 0, y − 3ε/2 > 0, corresponds to a strongly

turbulent fluid. Note that in the regions of IR stability one has g∗, g′∗ ≥ 0, as required by

physical considerations.
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Of course, these results coincide, up to the notation, with the ones obtained in [58] for the

pure NS equation4; see also section 3.10 in the monograph [56].

Substitution of the solutions (65) – (67) into the remaining β functions gives rise to three

infinite sets of equations βn = 0 for the remaining parameters gn with n ≥ 1. The direct

analysis shows that, for each case, the parameters g∗
1

and g∗
2

can be chosen arbitrarily, while

g∗
3

is determined in a unique way from the equation β1 = 0. Then g∗
4

is determined by the

equation β2 = 0 and so on: sequential substitution of the solutions of βk = 0 with k ≤ n

into the remaining equations β j = 0 with j > n results in expressions for all the parameters

g∗n in terms of two coordinates g∗
1

and g∗
2
. This picture is a consequence of the fact that the

coefficient rn entering the function βn involves coupling constants gk with k running up to

(n + 2) but only gn+2 is not encountered in coefficients of the previous order; see expression

(48). The coefficients sn from (49) do not involve g j with j > n+1 and therefore do not revise

these considerations.

Thus, we conclude that attractors of the RG equation (51) have the form of three two-

dimensional surfaces in the infinite-dimensional space of coupling constants g∗, g′∗ and g∗n.

In general, the character of a fixed point is determined by the eigenvalues of the stability

matrix ∂β/∂g that involves the full set of couplings and β functions: the point is IR attractive

if the real parts of all its eigenvalues are positive; see, e.g. Sec. 1.42 in [10]. However, in

the present model, the stability matrix is semi-infinite so the required analysis appears rather

embarrassing. We only managed to check that the trace of the matrix is positive for certain

areas on the attractors; cf. [40]. Although it is only a necessary condition of IR attractiveness

(and rather weak due to the infinite number of terms), it still leaves the possibility of IR

regions existing on the attractor surfaces open.

If such regions indeed exist, the Green’s functions of the model will exhibit scaling

behaviour of the type (1) with certain critical dimensions. The critical dimensions of any

quantity (a field or parameter) in dynamical models are determined by (see, e.g. Sections 5.16

and 6.7 in [10])

∆F = dk
F + ∆ωdωF + γ

∗
F ∆ω = 2 − γ∗ν. (68)

For the first surface, the models (11) and (12) decouple and can be studied separately. The

model (11) was studied in [29]. It was shown that the critical dimensions are non-universal in

the sense that they depend on the specific choice of a point on the only surface of fixed points.

However, they obey the exact relations ∆h′ = d − ∆h, 2∆h = d − ∆ω [29].

In its turn, the model (12) becomes effectively Gaussian and one easily obtains exact

expressions ∆v = 1, ∆v′ = (d − 1) and ∆ω = 2. Thus, the dimensions ∆ω for the fields h and

v appear in general different, the phenomenon sometimes referred to as “weak scaling,” see,

e.g. [61].

The situation becomes much more interesting for the two surfaces originated from the

fixed points (66) and (67). From the definitions (52), relations (54) and equations βg = βg′ = 0,

one obtains the exact expressions for the values γ∗ν on the attractors: γ∗ν = ε/2 for the second

surface and γ∗ν = y/3 for the third one.

Using the canonical dimensions from Table 1 and taking into account that γΦ = 0, one

obtains resulting expressions of critical dimensions for each surface, presented in Table 2. All

these expressions are universal in the sense that they do not depend on the choice of the point

4See the paragraph between equations (19) and (20) in [58] but note that the authors omitted strokes after a and g in the last

expressions for a∗ and g∗ . The eigenvalues that characterize stability of the points can also be found in [58]; see expression (21) and

the paragraph above it.
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Table 2 Critical dimensions for the model (11), (12).

Attractors ∆ω ∆h′ ∆h ∆v′ ∆v

2nd Surface 2 − ε/2 2 − 3ε/4 −ε/4 1 − ε/2 1 − ε/2

3rd Surface 2 − y/3 2 − (y + 3ε)/6 (y − 3ε)/6 1 − ε + y/3 1 − y/3

on the attractor surface: they depend only on the spatial dimension d for the second surface

and on d and the exponent y for the third one. What is more, although the RG functions

are derived only in the one-loop approximation, these expressions are exact: they have no

higher-order corrections in ε and y. This is probably the most interesting result of the present

study.

It remains to note that in the traditional notation z = ∆ω and χ = −∆h in the scaling

expressions like (1).

7 Conclusion and discussion

We studied the extended Pavlik’s model (3), (5), (6) of kinetic roughening using the field

theoretic RG and taking into account random motion of the environment. The latter was mod-

elled by the stochastic differential Navier–Stokes equation (8) with the correlation function of

the random force (9) containing two terms (10) that allow to consider both a fluid in thermal

equilibrium and a turbulent fluid.

We established multiplicative renormalizability of the corresponding field theoretic

model (11), (12) in the infinite space of coupling constants and constructed the renormalized

action functional (22). Then we found the one-loop counterterm in an explicit closed form

(44) and the full set of the RG functions (54), (58) – (60) in the one-loop approximation.

Analysis of attractors of the RG equation (51) revealed three two-dimensional surfaces of

fixed points (65) – (67).

The first surface (65) corresponds to the situation when the dynamics of the height field

h and the velocity field v decouple (in the leading order of the IR asymptotic behaviour).

Thus, according to the results derived in [29] for the pure extended Pavlik’s model, the critical

dimensions are non-universal in the sense that they depend on the choice of the point on the

surface. However, they satisfy the exact expressions ∆h′ = d − ∆h, 2∆h = d − ∆ω; see [29].

The surfaces (66) and (67) correspond to regimes where both the kinetic roughening and

the random environment motion are relevant at the same time. The first case corresponds to

a fluid in thermal equilibrium, while the second one deals with a turbulent fluid. For the both

cases, the critical dimensions are found exactly and they are universal; see Table 2.

In quantum field theory, the models that require infinitely many counterterms traditionally

faced sceptical attitudes for being non-renormalizable and therefore for having no predic-

tive power. However, now the common opinion is changing, although a generally accepted

interpretation is still not achieved, in particular, because of a wide variety and diversification

of such models in comparison with usual renormalizable ones.5 For a recent discussion see,

e.g. [62] and references therein.

In our model, it was possible to obtain exact results because the only non-trivial term

entering expressions for the critical dimensions is γ∗ν which is known exactly for both attrac-

tors (66) and (67). The expressions for the critical dimensions in Table 2 are universal in two

5All happy families are alike; each unhappy family is unhappy in its own way (“Anna Karenina” by Leo Tolstoy).
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respects: firstly, they are the same for any fixed point on the corresponding surface and sec-

ondly, they are determined solely by the spatial dimension d for surface (66) and by d and the

exponent y for (67).

Let us conclude with a brief discussion of a certain interesting ramification of our model.

The NS equation with only the local term k2 in the correlation function (10) has the form

of a stochastic continuity equation. Then, the probability distribution of its equal-time corre-

lations reduces to the well-known Maxwell’s distribution with the action ∼ v2; see, e.g. [9, 60]

and Sec. 3.10 in [56].

The extended Pavlik’s model acquires the form of a continuity equation in the absence

of noise or, in its stochastic version, if the correlation function of the noise η involves the

additional factor ∂2 ∼ k2 in comparison to (3); the case referred to as “internal noise” in

the formulation of [30]. Now, the full model can be interpreted as a critical dynamics for

the equilibrium static model with the polynomial action functional ∼
(∑

n=2 hn + v2
)

with no

derivatives (coefficients omitted).6 It is directly checked that such model is logarithmic in

d = 0, so that its critical behaviour for any d > 0 is described by the corresponding free model

with the critical dimensions equal to the canonical ones.
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[27] Škultety, V., Honkonen, J.: Fixed d Renormalization Group Analysis of Conserved

Surface Roughening. Phys. Rev. E 104, 024104 (2021)

[28] Pavlik, S. I.: Scaling for a growing phase boundary with nonlinear diffusion. JETP 79,

303 (1994) [Translated from the Russian: ZhETF 106, 553 (1994)]

[29] Antonov, N. V., Vasil’ev, A. N.: The quantum-field renormalization group in the prob-

lem of a growing phase boundary. JETP 81, 485 (1995) [Translated from the Russian:

ZhETF 108, 885 (1995)]

[30] Diaz-Guilera, A.: Noise and dynamics of self-organized critical phenomena. Phys. Rev.

A 45, 8551 (1992).

[31] Pastor-Satorras, R., Rothman, D. H.: Stochastic equation for the erosion of inclined

topography. Phys. Rev. Lett. 80, 4349 (1998)

[32] Pastor-Satorras, R., Rothman, D. H.: Scaling of a slope: The erosion of tilted landscapes.

J. Stat. Phys. 93, 477 (1998)

[33] Antonov, N.V., Kakin, P.I.: Scaling in landscape erosion: renormalization group analysis

of a model with infinitely many couplings. Theor. Math. Phys. 190(2), 193–203 (2017)

[34] Antonov, N.V., Kakin, P.I.: Scaling in erosion of landscapes: renormalization group

analysis of a model with turbulent mixing. J. Phys. A 50, 085002 (2017)

[35] Antonov, N.V., Kakin, P.I., Lebedev, N.M.: Static approach to renormalization group

analysis of stochastic models with spatially quenched disorder. J. Stat. Phys. 178(2) 392

21



(2020).

[36] Duclut, C., Delamotte, B.: Nonuniversality in the erosion of tilted landscapes. Phys.

Rev. E 96, 012149 (2017)

[37] Hwa, T., Kardar, M.: Dissipative transport in open systems: an investigation of self-

organized criticality. Phys. Rev. Lett. 62(16), 1813–1816 (1989)

[38] Hwa, T., Kardar, M.: Avalanches, hydrodynamics, and discharge events in models of

sandpiles. Phys. Rev. A 45, 7002–7023 (1992)

[39] Antonov, N.V.: The renormalization group in the problem of turbulent convection of a

passive scalar impurity with nonlinear diffusion. JETP 85, 898–906 (1997) [Translated

from the Russian: ZhETF 112, 1649 (1997)]

[40] Antonov, N.V., Babakin, A.A., Kakin, P.I.: Strongly Nonlinear Diffusion in Turbulent

Environment: A Problem with Infinitely Many Couplings. Universe 8, 121 (2022)

[41] Antonov, N.V., Gulitskiy, N.M., Kakin, P.I., Lebedev, N.M., Tumakova, M.M.: Field-

Theoretic Renormalization Group in Models of Growth Processes, Surface Roughening

and Non-Linear Diffusion in Random Environment: Mobilis in Mobili. Symmetry 15,

1556 (2023)

[42] Muskat, M.: The Flow of Fluids Through Porous Media. Journal of Applied Physics 8,

274 (1937).
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[44] Tiberi, L., Stapmanns, J., Kühn, T., Luu, T., Dahmen, D., Helias, M.: Gell-Mann–Low

Criticality in Neural Networks. Phys. Rev. Lett. 128, 168301 (2022)

[45] Volchenkov, D., Blanchard, Ph., Cessac, B.: Quantum field theory renormalization

group approach to self- organized critical models: The case of random boundaries. Int.

J. Mod. Phys. B 16(08), 1171-1204 (2002)

[46] Volchenkov, D.: Multiplicative Renormalization of Stochastic Differential Equations for

the Abelian Sandpile Model. Dynamics 4, 40–56 (2024).

[47] Imaeda, T., Onuki, A., Kawasaki, K.: Anisotropic spinodal decomposition under shear

flow. Progr. Theor. Phys. 71, 16 (1984)

[48] Aronowitz, A., Nelson, D. R.: Turbulence in phase-separating binary mixtures. Phys.

Rev. A 29, 2012 (1984)

[49] Satten, G., Ronis, D.: Critical phenomena in randomly stirred fluids: Correlation

functions, equation of motion, and crossover behavior. Phys. Rev. A 33, 3415 (1986)

22



[50] Nandy, M. K., Bhattacharjee, J. K.: Renormalization-group analysis for the infrared

properties of a randomly stirred binary fluid. J. Phys. A: Math. Gen., 31, 2621–2637

(1998)

[51] Antonov, N. V., Hnatich, M., Honkonen, J.: Effects of mixing and stirring on the critical

behaviour. J. Phys. A: Math. Gen., 39, 7867 (2006)

[52] Antonov, N. V., Kakin, P. I.: Random interface growth in random environment: Renor-

malization group analysis of a simple model. Theor. Math. Phys. 185(1), 1391-1407

(2015)

[53] Antonov, N. V., Kakin, P. I., Lebedev, N. M.: The Kardar–Parisi–Zhang model of a

random kinetic growth: effects of a randomly moving medium. J. Phys. A: Math. Theor.

52 (50), 505002 (2019)

[54] Antonov, N. V., Gulitskiy, N. M., Kakin, P. I., Kostenko, M. M.: Effects of turbulent

environment on the surface roughening: The Kardar–Parisi–Zhang model coupled to the

stochastic Navier-Stokes equation. Phys. Scr. 95, 084009 (2020)

[55] Kakin, P. I., Reiter, M. A., Tumakova, M. M., Gulitskiy, N. M., Antonov, N. V.: Stirred

Kardar–Parisi–Zhang equation with quenched random noise: Emergence of induced

nonlinearity. Universe 8(2), 72 (2022)

[56] Adzhemyan, L. Ts, Antonov, N. V., Vasiliev, A. N.: The Field Theoretic Renormaliza-

tion Group in Fully Developed Turbulence. Gordon and Breach, London (1999)

[57] Adzhemyan, L. Ts., Antonov, N. V., Vasil’ev, A. N.: Quantum field renormaliza-

tion group in the theory of fully developed turbulence. Phys.-Usp. 39, 1193 (1996)

[Translated from the Russian: Usp. Fiz. Nauk 166, 1257 (1996)]

[58] Honkonen, J., Nalimov, M. Yu.: Two-parameter expansion in the renormalization-group

analysis of turbulence. Z. Phys. B 99, 297–303 (1996)

[59] Adzhemyan, L. Ts., Honkonen, J., Kompaniets, M. V., Vasil’ev, A. N.: Improved

ε expansion for three-dimensional turbulence: Two-loop renormalization near two

dimensions. Phys. Rev. E 71, 036305 (2005)

[60] Forster, D., Nelson, D. R., Stephen, M. J.: Long-Time Tails and the Large-Eddy

Behavior of a Randomly Stirred Fluid. Phys. Rev. Lett. 36, 867 (1976)

[61] Dudka, M., Folk, R., Moser, G.: Gauge dependence of the critical dynamics at the

superconducting phase transition. Condens. Matter Phys. 10(2), 189–200 (2007)

[62] Kazakov, D.I. Non-renormalizable interactions: A self-consistency manifesto. ArXiv

2020, ArXiv:2007.00948.

23


	Introduction
	Description of the model and its field theoretic formulation
	UV divergences and renormalization
	Canonical dimensions
	UV divergences and counterterms
	Renormalized action functionals

	Calculation of the one-loop counterterm
	RG equations and RG functions
	Attractors of the RG equations, scaling behaviour and exact critical dimensions
	Conclusion and discussion
	Acknowledgements


