
SOME FORMAL GLUING DIAGRAMS FOR CONTINUOUS K-THEORY

Hyungseop Kim

Abstract. We study a construction of diagrams of dualizable presentable stable ∞-categories
associated with certain fiber-cofiber sequences over rigid bases, which are sent by localizing invari-
ants, in particular continuous K-theory, to limit diagrams. We apply this to investigate two closely
related types of diagrams pertinent to the formal gluing situation; we recover Clausen–Scholze’s
gluing of continuous K-theory along punctured tubular neighborhoods via Efimov’s nuclear module
category, and we verify a continuous version of adelic descent statement for localizing invariants on
dualizable categories.
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1 Introduction
In this article, we study certain diagrams of dualizable presentable stable ∞-categories related to the
formal gluing situation, and verify that they are motivic limit diagrams, i.e., any localizing invariants on
dualizable presentable stable ∞-categories, for instance continuous K-theory, map such diagrams to limit
diagrams.

By algebraic K-theory, we refer to the Thomason–Trobaugh nonconnective algebraic K-theory functor
K valued in the ∞-category Sp of spectra; it is an instance of localizing invariants on small (idempotent
complete) stable ∞-categories and exact functors [BGT13], or equivalently on compactly generated stable
∞-categories and compact object preserving left adjoint functors. In the same vein as studying localizing
invariants on compactly generated stable ∞-categories is useful even when one is solely interested in values
of localizing invariants on rings or qcqs schemes, studying values of localizing invariants on non-compactly
generated ∞-categories can be beneficial for understanding values on compactly generated ∞-categories.
In fact, fibers of compact object preserving left adjoint localization functors between compactly generated
stable ∞-categories computed in PrL

st need not be compactly generated; rather, they are only dualizable,
necessitating the consideration of values of localizing invariants on such categories. Through the insights
of Efimov [Efi24], it is now known that localizing invariants indeed have essentially unique extensions to
dualizable presentable stable ∞-categories. Following ibid., we write Kcont to denote an extension of the
algebraic K-theory K to dualizable presentable stable ∞-categories, known as the continuous K-theory.

Categories of sheaves on spaces provide an important source of dualizable categories to which the
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application of continuous K-theory is of interest. For adic spaces, Clausen and Scholze defined the category
of nuclear modules in the context of condensed mathematics as an appropriate notion of the category
of quasicoherent sheaves [Sch]. As an instance of the interaction between continuous K-theory of adic
spaces and algebraic K-theory of schemes, they proved the following statement about Beauville-Laszlo
type gluing along punctured tubular neighborhoods. Let R be a Noetherian commutative ring whose
corresponding affine scheme is denoted by X = Spec R and let I be its ideal whose closed locus in X is
denoted by Z = V (I). Also, write U = X\Z for the complement quasicompact open subscheme of X,
write X∧Z = Spf R∧I for the I-adic formal scheme obtained as a formal completion of X along Z, and
write (X∧Z )η for its adic generic fiber. Then, the natural diagram

K(X) K(U)

Kcont (NucX∧Z ) Kcont
(
Nuc(X∧Z )η

) (1)

is a pullback square of spectra [Clab]. Our aim is to study such type of pullback squares or cubical limit
diagrams from a different perspective.

1.1 Main results

First, let us specify the precise form of our construction:

Theorem 1.1 (Theorem 3.16, Proposition 3.6 when n = 1). Let X be a closed symmetric monoidal
presentable ∞-category which is pointed and satisfies the condition that for any object e of X, the functor
e ⊗ − : X → X preserves fiber-cofiber sequences. Suppose that we are given a diagram of the following
form

Γn · · · Γi+1 Γi · · · Γ1

1 · · · 1 1 · · · 1

Ln · · · Li+1 Li · · · L1

ϵn ϵi+1 ϵi ϵ1

=

ηn

= =

ηi+1

=

ηi η1

in X which satisfies the following two conditions:
(i) Each of the vertical sequences is an idempotent fiber-cofiber sequence, i.e., for each 1 ≤ i ≤ n, the
sequence Γi → 1 → Li is a fiber-cofiber sequence in X and satisfies the condition Li ⊗ Γi ≃ 0, cf.
Definition 3.1.
(ii) Li ⊗ Γi+1 ≃ 0 for 1 ≤ i < n.

Then, there is an n-cubical diagram σ : NP([n]) → Fun(X,X),

∅ 7→ id, (0 ≤ i1 < · · · < ir ≤ n) 7→ ϕi1 ◦ · · · ◦ ϕir ,

which satisfies the following properties:
(1) For each 0 ≤ i ≤ n, the endofunctor ϕi of X appearing in the description of σ takes the form

ϕi = Map(Γi, Γi ⊗ Li+1 ⊗ −) ∈ Fun(X,X).

Here, Map stands for internal mapping objects of X, and we use the convention Γ0 = 1 and Ln+1 = 1.
(2) For any functor E : X → V into a stable ∞-category V which maps fiber-cofiber sequences of X to
fiber-cofiber sequences of V, the image

∅ 7→ E(x), (0 ≤ i1 < · · · < ir ≤ n) 7→ E(ϕi1 · · · ϕir (x))
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of the diagram in X obtained by evaluating the diagram σ at any object x ∈ X by the functor E is a limit
diagram in V. In short, there is an equivalence

E(x) ≃ lim
0≤i1<···<ir≤n

E(ϕi1 · · · ϕir (x))

in V, natural in E and x ∈ X.

We are primarily concerned about the case of the ∞-category X = ModR(PrL
st)dual of dualizable R-

modules in PrL
st, where R is a rigid Sp-algebra, e.g., ModR for an E∞-ring R, and E coming from a

localizing invariant on dualizable presentable stable ∞-categories which does not necessarily commute
with κ-filtered colimits. When n = 1, i.e., when we are given a single idempotent fiber-cofiber sequence,
Theorem 1.1 gives the following:

Corollary 1.2 (Example 3.8 and Proposition 3.13). Let R ∈ CAlg(PrL
st) be rigid and let Γ → 1 → L

be an idempotent fiber-cofiber sequence in ModR(PrL
st)dual. Then, for each C ∈ ModR(PrL

st)dual, there is a
natural square

C L ⊗R C

Mapdual
R

(Γ, Γ ⊗R C) L ⊗R Mapdual
R

(Γ, Γ ⊗R C)

in ModR(PrL
st)dual which is a motivic pullback-pushout square, i.e., any localizing invariants on dualizable

presentable stable ∞-categories map the square to a pullback-pushout square.
Moreover, if Γ is in addition ω1-compact in ModR(PrL

st)dual, then the motivic pullback-pushout square
above takes the form

C L ⊗R C

Mapdual
R

(Γ,C) L ⊗R Mapdual
R

(Γ,C).

Example 1.3 (Remark 3.10). Corollary 1.2 recovers the aforementioned gluing square for continuous K-
theory spectra of Clausen–Scholze. As above, let R be a Noetherian commutative ring and let I be its
ideal. In the case of the idempotent fiber-cofiber sequence ModNil(I)

R → ModR → ModLoc(I)
R , the motivic

pullback-pushout square of Corollary 1.2 takes the following form

ModR ModLoc(I)
R

ÑucR∧I Ñuc
Loc(I)
R∧I ,

where ÑucR∧I stands for Efimov’s modified nuclear module category associated with the adic ring R∧I ; note
that the internal mapping object term in the diagram of Corollary 1.2 recovers the rigidification description
of the modified nuclear module category. Upon applying the continuous K-theory functor, above motivic
pullback-pushout square recovers the pullback square (1) of spectra through Efimov’s identification of two
versions of nuclear module categories as noncommutative motives. This form of motivic pullback-pushout
square exists without requiring R to be static or Noetherian, cf. Example 3.9.

Our construction allows us to handle a more complicated, yet closely related situation where all flags of
ideals of R are considered at once. More precisely, we have the following adelic descent result for localizing
invariants on dualizable presentable stable ∞-categories:

3



Theorem 1.4 (Corollary 3.32). Let R be an E∞-ring such that π0R is Noetherian and of finite Krull
dimension n. Then, for any C ∈ ModModR

(PrL
st)dual and any localizing invariant E on dualizable presentable

stable ∞-categories valued in a stable ∞-category V, there is a natural equivalence

E(C) ≃ lim
0≤i1<···<ir≤n

E

(∏dual
p1∈(Spec π0R)i1

(
· · ·
(∏dual

pr∈(Spec π0R)ir , pr∈V (pr−1)
C∧
pr

)
· · ·
)∧

p1

)

in V.

Here, for each point p of Spec π0R and each dualizable ModR-module C, we write Cp = ModRp ⊗R C

and C∧
p = Mapdual

R

(
ModNil(p)

R ,Cp

)
, cf. Notation 3.21. When Spec π0R has dimension 1, we in particular

deduce the following:

Corollary 1.5 (Corollary 3.33 and Example 3.34). Let R be an E∞-ring such that π0R is Noetherian of
Krull dimension 1.
(1) For each C ∈ ModModR

(PrL
st)dual, there is a natural pullback-pushout square of spectra

Kcont(C)
∏

η∈(Spec π0R)0 Kcont(Cη)

∏
p∈(Spec π0R)1 Kcont(C∧

p )
∏

η∈(Spec π0R)0 Kcont
((∏dual

p∈(Spec π0R)1∩V (η)
C∧
p

)
η

)
.

Moreover, the bottom right object is naturally equivalent to

∏
η∈(Spec π0R)0 colimS∈Pfin((Spec π0R)1∩V (η))

(∏
p∈S

Kcont
(
(C∧

p )Loc(p)
)

×
∏

p∈(Spec π0R)1∩V (η), p/∈S
Kcont(C∧

p )
)

.

(2) In particular, there is a natural pullback-pushout square of spectra

K(R)
∏

η∈(Spec π0R)0 K(Rη)

∏
p∈(Spec π0R)1 Kcont

(
(ModR)∧

p

) ∏
η∈(Spec π0R)0 Kcont

((∏dual
p∈(Spec π0R)1∩V (η)

(ModR)∧
p

)
η

)
,

whose bottom right object is naturally equivalent to

∏
η∈(Spec π0R)0 colimS∈Pfin((Spec π0R)1∩V (η))

(∏
p∈S

Kcont
(
((ModR)∧

p )Loc(p)
)

×
∏

p∈(Spec π0R)1∩V (η), p/∈S
Kcont

(
(ModR)∧

p

))
.

If R is furthermore an animated commutative ring with π0R being Noetherian of Krull dimension 1,
then for each p ∈ (Spec π0R)1, we have Kcont

(
(ModR)∧

p

)
≃ limn K(Rp � pnRp), and the spectrum
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Kcont
(
((ModR)∧

p )Loc(p)
)

fits into the pushout square

K(Rp) K (Spec Rp\V (pRp))

limn K(Rp � pnRp) Kcont
(
((ModR)∧

p )Loc(p)
)

of spectra.

Example 1.6. Suppose that R is a Dedekind ring which is not a field. Then, Corollary 1.5 implies that
we have a natural pullback square of spectra

K(R) K(Frac(R))

∏
p∈(Spec R)1 limn K(Rp/p

nRp) Kcont
(

ModFrac(R) ⊗R

∏dual
p∈(Spec R)1(ModR)∧

p

)
,

whose bottom right object is naturally equivalent to

colimS∈Pfin((Spec R)1)

(∏
p∈S

Kcont
(
((ModR)∧

p )Loc(p)
)

×
∏

p∈(Spec π0R)1, p/∈S
lim

n
K(Rp/p

nRp)
)

.

Also, by Quillen’s devissage, there is a cofiber sequence of spectra of the form

K(κ(p)) → lim
n

K(Rp/p
nRp) → Kcont

(
((ModR)∧

p )Loc(p)
)

for each closed point p of Spec R.

In [Kim23], we investigated a different form of adelic descent statement for localizing invariants; one
formulation of the main theorem is as follows:

Theorem 1.7. ([Kim23, Th. 3.2.1]) Let X be a Noetherian scheme of finite Krull dimension n. Then, for
any localizing invariant E on small stable ∞-categories valued in a stable ∞-category V, there is a natural
equivalence E(PerfX) ≃ lim0≤i1<···<ir≤n E(AX(i0, ..., ir)) in V. Here, AX : NP([n])\∅ → CAlg♡

Γ(OX) is the
cubical diagram of Beilinson-Parshin adele rings associated with X.

While Theorem 1.4 provides, in a sense, a natural motivic resolution for all C in ModModR
(PrL

st)dual,
Theorem loc. cit. provides a motivic resolution for the small stable ∞-category PerfX natural in X,
in a way compatible with Beilinson’s adelic resolution of quasicoherent sheaves. When the input is the
unit C = ModR, the two become comparable. The difference between these two results already become
conspicuous in the case of curves. Let R be a Dedekind ring which is not a field. Then, [Kim23, Th. 3.2.1]
above tells us that there is a pullback-pushout square of algebraic K-theory spectra

K(R) K(Frac(R))

K
(∏

p∈(Spec R)1 R̂p

)
K(A),

where A = Frac(R) ⊗R
∏

p∈(Spec R)1 R̂p is the ring of finite adeles associated with R. Compared to Exam-
ple 1.6, we see that the bottom two terms are replaced by algebraic K-theory of integral and finite adele
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rings. Note that the bottom horizontal maps of these two pullback squares are far from being equivalent to
each other; algebraic K-theory functor restricted to rings does not preserve infinite products and cofiltered
limits. Thus, our Theorem 1.4 can be understood as a continuous refinement of [Kim23, Th. 3.2.1] that
applies to all dualizable presentable stable ∞-categories over the given base.

Let us briefly summarize our approach to the main results. The construction of ’motivic’ limit dia-
grams in the given ∞-category X out of sequences (Γi → 1 → Li) of idempotent fiber-cofiber sequences
illustrated in Theorem 1.1 admits the following geometric intermediate step; we consider the module cat-
egories · · · ↪→ ModLi ↪→ ModLi+1 ↪→ · · · ↪→ X which stratify X, and construct a motivic limit diagram by
considering ’locally closed’ strata Xi and localization functors to each of them. When the given sequence
consists of a single idempotent fiber-cofiber sequence, this amounts to the consideration of the sequence
ModL ↪→ X → coModΓ; while this only acts as an analogue of unstable recollement, its associated gluing
square behaves as a motivic pullback-pushout square. Hence, Theorem 1.1 can be viewed as an adaptation
of [AMR24, Th. A (3)] to an unstable setting of our interest; while the microcosm reconstruction of loc.
cit. requires the presentable ∞-category X to be stable, Theorem 1.1 works in the setting of possibly
non-stable presentable ∞-category X, and such non-stability is indeed crucial due to our purpose, at the
expense of providing a motivic reconstruction. In fact, our proof of Theorem 1.1 and relevant statements
are independent of the results of [AMR24]. For the sake of expositional convenience, we first study the
case of a single idempotent fiber-cofiber sequence and the associated gluing square in 3.1 and proceed to
the general case in 3.2.

Our applications of Theorem 1.1 concern the case of X = ModR(PrL
st)dual, the ∞-category of dual-

izable modules in PrL
st over the rigid base R, and localizing invariants on such ∞-categories. Although

ModR(PrL
st)dual is, as other typical ∞-categories of stable ∞-categories, not stable itself, it satisfies the

conditions required for X in the theorem, and in particular its fiber-cofiber sequences behave reasonably.
In 2.2, after discussing a few useful generalities on PrL

st in 2.1, we recall and verify certain properties re-
lated to dualizable presentable stable ∞-categories over rigid bases that are used in the later part of this
article. We don’t intend to be exhaustive, and we refer readers to the references in the subsection for more
comprehensive treatments. In the second half of 3.1, we specialize to the case of X = ModR(PrL

st)dual and
explain how the pullback square (1) of Clausen–Scholze can be recovered in this setting.

We study the continuous version of adelic descent for localizing invariants on dualizable categories in
3.3. We deduce this as an application of Theorem 1.1 for X = ModModR

(PrL
st)dual and an appropriate

sequence of adelic idempotent fiber-cofiber sequences associated with the given R. In fact, we define the
aforementioned idempotent fiber-cofiber sequences as filtered colimits of ModNil(I)

R → ModR → ModLoc(I)
R

over closed subsets V (I) of certain bounded codimensions in Spec π0R. Then, we proceed to describe the
terms appearing in the motivic limit diagram and verify that they are of the expected form, i.e., given by
successive localizations and completions at each point of Spec π0R in the suitable sense. Our proof involves
the description of internal mapping objects in ModR(PrL

st)dual and its consequences discussed in 2.2 as
essential ingredients. The appearance of these internal mapping objects between dualizable categories, as
dictated by our formulation of Theorem 1.1, is rather subtle. In fact, replacing them with corresponding
internal mapping objects in ModR(PrL

st) would incorrectly render many of the terms as zero. Our approach
to the adelic descent statement is in a sense dual to [BK24], where solid adele rings are constructed within
the stable setting. However, aside from the conceptual similarity, the results and proofs are incomparable
and independent of each other. Also, we do not expect that directly analyzing nuclear module categories
on analytic rings will yield the categories involved in our adelic descent statement. We intend to address
points relevant to this and further description of higher dimensional cases in future works.

Acknowledgements. The author is grateful to Dustin Clausen, Alexander Efimov, Matthew Morrow,
Maxime Ramzi and Vova Sosnilo for helpful discussions related to the subject of this article, and also
to Michael Groechenig for initial discussions when the project was first conceived. The author was sup-
ported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and
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innovation programme (grant agreement No. 101001474).

2 Categorical preliminaries
In this section, we collect and verify some useful properties concerning presentable stable ∞-categories,
especially dualizable presentable stable ∞-categories over rigid bases, which will be relevant in the later
part of this article.

2.1 Module objects in PrL
st

Let us begin by fixing some relevant notations and conventions. The full subcategory PrL
st of PrL, the ∞-

category of presentable ∞-categories and left adjoint functors, spanned by presentable stable ∞-categories
admits a standard symmetric monoidal structure whose tensor product is given by the Lurie tensor product
and having the ∞-category of spectra Sp as a unit. For each T ∈ CAlg(PrL

st), we denote ModT(PrL
st) for

the symmetric monoidal ∞-category of T-module objects in PrL
st.

For the purpose of studying ∞-categories of dualizable modules, the following convention of [HSSS21;
Ram] is useful. Note that PrL

st can be viewed as a symmetric monoidal (∞, 2)-category, which we tem-
porarily denote as PrL

st, whose underlying symmetric monoidal ∞-category obtained by discarding non-
invertible 2-morphisms recovers PrL

st. For each T ∈ CAlg(PrL
st), the symmetric monoidal (∞, 2)-category

ModT(PrL
st) admits ModT(PrL

st) as its underlying symmetric monoidal ∞-category. Following [HSSS21],
for any symmetric monoidal (∞, 2)-category C, the ∞-category Cdual stands for the (non-full-)subcategory
of the underlying ∞-category of C, whose objects are 1-dualizable objects and whose morphisms are the
right adjointable morphisms, also known as internally left adjoint morphisms, of the (∞, 2)-category C.

Lemma 2.1. For a symmetric monoidal (∞, 2)-category C, the ∞-category Cdual of dualizable objects and
right adjointable morphisms admits a symmetric monoidal structure inherited from C.

Proof. For objects x, y ∈ Cdual, their tensor product x ⊗ y remains in Cdual; by symmetric monoidality,
tensor products of evaluation and coevaluation maps for x and y exhibit the tensor product x∨ ⊗y∨ of duals
as a dual of x ⊗ y. Morphisms of Cdual are also closed under tensor products. In fact, it suffices to check
that for a morphism f : x → y of Cdual and an object z ∈ Cdual, their tensor product idz ⊗ f : z ⊗ x → z ⊗ y
is in Cdual. This follows from the fact that z ⊗ − : C → C is an (∞, 2)-functor, and hence preserves data of
adjunctions; in particular, idz ⊗ fR remains to be a right adjoint of idz ⊗ f if fR was a right adjoint of f
in C.

We will predominantly focus on the case of C = ModT(PrL
st); there, rephrasing the definition, a mor-

phism C
f−→ D of ModT(PrL

st) is in ModT(PrL
st)dual precisely when the source and the target objects are

dualizable objects of ModT(PrL
st) and f admits a right adjoint fR which is a T-linear left adjoint functor.

In the rest of the article, for the sake of brevity, we do not distinguish between the symmetric monoidal
(∞, 2)-category ModT(PrL

st) and its underlying symmetric monoidal ∞-category ModT(PrL
st) notationally,

whenever the context is clear. In particular, ModT(PrL
st)dual stands for the symmetric monoidal ∞-category

ModT(PrL
st)dual. When T = Sp, we also write PrL,dual

st = ModSp(PrL
st)dual.

We end this subsection with the following lemma and the subsequent remark, concerning certain filtered
colimits in ModT(PrL

st), which will be used in 3.3.

Lemma 2.2. Let T ∈ CAlg(PrL
st). Let K be a filtered ∞-category, and suppose that we are given a

morphism f = f(−) : C(−) → D(−) in Fun(K, ModT(PrL
st)) such that all of the morphisms fk : Ck → Dk,

Ck → Cℓ, and Dk → Dℓ of the diagrams are right adjointable in ModT(PrL
st). (For instance, f can be taken

as a morphism in Fun
(
K, ModT(PrL

st)dual
)
.)
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Suppose that each fk is fully faithful as a functor for all k ∈ K. Then, the induced morphism colimK fk :
colimK Ck → colimKDk is fully faithful as a functor.

Proof. As K is filtered, there is a cofinal (i.e., right cofinal) functor N(K) → K from the nerve of
a filtered partially ordered set K [Lur09, Prop. 5.3.1.18], and hence we can replace K by the nerve
of K. By right adjointability assumption on the morphisms in the diagram C(−), we have a natu-
ral equivalence colimK Ck ≃ limKop Ck in ModT(PrL

st), where the diagram for the right hand side limit
is given by taking right adjoints of the morphisms of the original diagram, and each of the canonical
maps Ci → colimK Ck is given by a left adjoint of the canonical projection map pi : limKop Ck → Ci in
ModT(PrL

st); let us write pL
i for a left adjoint of pi, and retain the same notations for the case of D(−). Also,

by right adjointability assumption on each of the component morphisms of f(−), we have an adjunction
colimK fk ⊣ limKop fR

k : colimK Dk → colimK Ck with both of the functors being morphisms in ModT(PrL
st).

To prove the fully faithfulness of the left adjoint colimK fk : colimK Ck → colimK Dk, we can equiva-
lently check that the unit map id → (limKop fR

k )◦(colimK fk) is an equivalence in FunL
T(colimK Ck, colimK Ck).

From the coinitiality (i.e., left cofinality) of the diagonal NKop → NKop × NKop and the aforementioned
identification of the colimit as a limit in ModT(PrL

st), we have equivalences FunL
T(colimK Ck, colimK Ck) ≃

FunL
T(colimK Ck, limKop Ck) ≃ limKop limKop FunL

T(Ck,Cℓ) ≃ limKop FunL
T(Ck,Ck). Thus, the morphism

id → (limKop fR
k ) ◦ (colimK fk) is an equivalence in the left hand side ∞-category if and only if pi ◦ pL

i →
pi ◦ (limKop fR

k )◦ (colimK fk)◦pL
i is an equivalence in FunT(Ck,Ck) for all i ∈ K. The right hand side of the

latter morphism is equivalent to fR
i ◦pi ◦pL

i ◦fi; from the fully faithfulness of the morphisms pL
i (associated

with the diagrams C(−) and D(−)) which we explain below, the morphism of question is identified with the
unit map id → fR

i ◦ fi, which in turn is an equivalence due to the fully faithfulness of fi by assumption.
It remains to check that the functor pL

i : Ci → colimK Ck is fully faithful. Equivalently, we check that
the right adjoint functor pR

i of pi : limKop Ck → Ci is fully faithful, i.e., the counit map pi ◦ pR
i → id

is an equivalence. Let us describe pR
i explicitly as follows. For each morphism k → ℓ of K, denote

ık→ℓ : Ck → Cℓ for the morphism comprising the diagram C(−), and write ık→ℓ ⊣ ıRk→ℓ ⊣ ıRR
k→ℓ for the

successive right adjoints of it. Then, the right adjoint pR
i is equivalent to the functor Ci → limKop Ck

determined by (Ci
ıRR
i→k−−−→ Ck)k∈K≥i

, and the fully faithfulness follows from this description. More precisely,
we observe:
(i) (Ci

ıRR
i→k−−−→ Ck)k∈K≥i

is a source for the diagram (C(−))R, i.e., for edges i → ℓ and ℓ → k of K, one has
ıRℓ→k ◦ ıRR

i→k ≃ ıRR
i→ℓ. The latter statement is equivalent to ıRi→k ◦ ıℓ→k ≃ ıRi→ℓ, and this follows from the fully

faithfulness of ıℓ→k; namely, ıRi→k ◦ ıℓ→k ≃ ıRi→ℓ ◦ ıRℓ→k ◦ ıℓ→k ≃ ıRi→ℓ.
(ii) pR

i is a right adjoint functor of the functor pi. For x ∈ limKop Ck and c ∈ Ci, we have natural equivalences

MaplimKop Ck

(
x, pR

i (c)
)

≃ lim
Kop

MapCk

(
pk(x), pk(pR

i (c))
)

≃ lim
Kop

≥i

MapCk

(
pk(x), ıRR

i→k(c)
)

≃ lim
Kop

≥i

MapCi

(
ıRi→k(pk(x)), c

)
≃ MapCi

(
colimK≥i

ıRi→k(pk(x)), c
)

≃ MapCi
(pi(x), c)

by construction, showing the claimed adjunction.
(iii) pi◦pR

i ≃ ıRR
i→i = idCi

by construction. Thus, the counit map pi◦pR
i → id is automatically an equivalence.

This finishes the desired verification of the fully faithfulness of pL
i .

Remark 2.3. Let T and C(−) : K → ModT(PrL
st) be as in Lemma 2.2 above. From this Lemma, we in

particular know:
(1) If all the functors Ck → Cℓ for morphisms k → ℓ in K are fully faithful, then the natural map
Ci → colimK Ck is fully faithful as a functor for each i ∈ K.
(2) If D ∈ ModT(PrL

st) is a sink for the diagram C(−) such that all the functors Ci → D for i ∈ K are fully
faithful, then the induced morphism colimK Ck → D is fully faithful as a functor.
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2.2 Dualizable categories over rigid base

Recall that for any E∞-ring R, the symmetric monoidal ∞-category ModR is compactly generated, and its
compact objects are precisely dualizable objects. In connective spectral algebraic geometry, this property
is captured by perfect stacks, e.g., quasicompact quasiseparated spectral algebraic spaces [Lurs, Prop.
9.6.1.1], for each of which the ∞-category of quasicoherent sheaves is compactly generated and its compact
objects agree with dualizable objects.

In practice, however, not all symmetric monoidal presentable ∞-categories which one might wish to
behave as ∞-categories of quasicoherent sheaves on perfect stacks have enough compact objects. The
notion of rigidity for symmetric monoidal presentable stable ∞-categories, introduced in [Gai15; GR17],
specifies conditions which guarantee that module categories over rigid algebras in CAlg(PrL

st) automatically
enjoy certain desirable finiteness properties which are available for module categories over aforementioned
type of compactly generated categories. In fact, rigidity is designed to generalize such type of compactly
generated categories; an algebra T ∈ CAlg(PrL

st) whose underlying ∞-category is compactly generated is
rigid if and only if compact objects agree with dualizable objects in T. The relative notion of rigidity, i.e.,
that of rigid maps in CAlg(PrL

st), was introduced and studied in [HSSS21], and was subsequently elaborated
upon and explored extensively in [Ram]; while we review and verify some properties related to rigidity that
are pertinent to this article in this subsection, we refer to these works for detailed accounts.

Following [HSSS21; Ram], we call a morphism T
f−→ U of CAlg(PrL

st) rigid if the multiplication map
U ⊗T U

m−→ U is right adjointable in ModU⊗TU(PrL
st) and the morphism T

f−→ U is right adjointable in
ModT(PrL

st); in this case, U is called a rigid T-algebra. An object R ∈ CAlg(PrL
st) is called rigid if the

natural morphism Sp → R in CAlg(PrL
st) is rigid, i.e., it is a rigid Sp-algebra. For each rigid map T → U,

the (∞, 2)-adjunction U ⊗T − ⊣ Res : ModU(PrL
st) → ModT(PrL

st) is symmetric monoidal ambidexterous
[HSSS21, Prop. 2.21], which can be construed as an instance of the finiteness property.

Recall that for any T ∈ CAlg(PrL
st), the main theorem of [Ram] guarantees that the ∞-category

ModT(PrL
st)dual is presentable [Ram, Th. 4.1]; in particular, ModT(PrL

st)dual is closed symmetric monoidal
[Ram, Cor. 4.2]. We write Mapdual

T
to denote internal mapping objects of ModT(PrL

st)dual.

Lemma 2.4. Let T → U be a map in CAlg(PrL
st) which is rigid. Then, there is a symmetric monoidal

adjunction U ⊗T − ⊣ Res : ModU(PrL
st)dual → ModT(PrL

st)dual induced from the adjunction U ⊗T − ⊣ Res :
ModU(PrL

st) → ModT(PrL
st). In particular, we have an equivalence

Mapdual
T

(−, Res(∗)) ≃ Res
(
Mapdual

U
(U ⊗T −, ∗)

)
of Fun((ModT(PrL

st)dual)op × ModT(PrL
st)dual, ModT(PrL

st)dual).
Remark. While the original adjunction U ⊗T − ⊣ Res : ModU(PrL

st) → ModT(PrL
st) is ambidexterous,

the induced adjunction U ⊗T − ⊣ Res : ModU(PrL
st)dual → ModT(PrL

st)dual need not be ambidexter-
ous. This is analogous to the fact that the induced adjunction U ⊗T − ⊣ Res : CAlg

(
ModU(PrL

st)
)

→

CAlg
(
ModT(PrL

st)
)

need not be ambidexterous.

Proof. By [HSSS21, Prop. 2.21 and Prop. 2.12], we know the ambidexterous symmetric monoidal (∞, 2)-
adjunction U ⊗T − ⊣ Res : ModU(PrL

st) → ModT(PrL
st) restricts to the adjunction U ⊗T − ⊣ Res :

ModU(PrL
st)dual → ModT(PrL

st)dual. Since the functor U ⊗T − on dualizable objects is symmetric monoidal,
the induced adjunction is symmetric monoidal. The formula for the internal mapping object follows from
direct computations relating Map(Z, Mapdual

T
(X, Res(Y ))) naturally to Map(Z, Res(Mapdual

U
(U ⊗T X, Y )))

for X, Z ∈ ModT(PrL
st)dual and Y ∈ ModU(PrL

st)dual, using that the adjunction is symmetric monoidal.

Following [Ram], we denote CAlgrig
Sp for the full subcategory of CAlg(PrL

st) spanned by rigid Sp-algebras,
which we simply call as rigid categories. An important finiteness property of rigid categories is that the
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notion of dualizable module categories over a rigid base is equivalent to that of modules over a rigid base
in dualizable categories [Ram, Cor 3.40]:

Remark 2.5. Let R ∈ CAlg(PrL
st) be rigid, so the restriction of scalars functor ModR(PrL

st)dual →
ModSp(PrL

st)dual = PrL,dual
st in particular is well-defined, cf., Lemma 2.4. From the lax-symmetric monoidal-

ity of this functor, we have an induced functor ModR(PrL
st)dual → ModR(PrL,dual

st ) between the module
categories over the unit R of the source and over the image R of the former unit in the target PrL,dual

st
respectively. By [Ram, Cor. 3.40], this functor is an equivalence ModR(PrL

st)dual ≃ ModR(PrL,dual
st ). In fact,

[Ram, Cor. 3.39] shows that such an identification holds precisely when the base category in CAlg(PrL
st) is

rigid. In particular, for any morphism f : C → D of ModR(PrL
st)dual, the right adjoint fR of its underlying

functor is R-linear.

The ∞-category PrL,dual
st acts as a natural source category on which localizing invariants are defined

[Efi24; Hoy]; these are functors which map fiber-cofiber sequences of PrL,dual
st to fiber-cofiber sequences

of the target. Let us briefly recall the following characterizations of fiber-cofiber sequences in PrL
st and

PrL,dual
st , which in this context are also known as Verdier localization sequences.

Remark 2.6. Let T ∈ CAlg(PrL
st), and let (∗) = A

f−→ B
g−→ C be a sequence in ModT(PrL

st).
(1) The sequence (∗) is a fiber-cofiber sequence in ModT(PrL

st) if and only if the image of (∗) in PrL
st is a

fiber-cofiber sequence. This is due to the fact that the forgetful functor ModT(PrL
st) → PrL

st preserves small
limits and small colimits, and reflects equivalences.
(2) Also, the followings are equivalent:

(i) (∗) is a fiber-cofiber sequence.
(ii) (∗) is a cofiber sequence and the underlying functor of A f−→ B is fully faithful.

In fact, these conditions are equivalent to the condition that the underlying functor of B
g−→ A admits

a fully faithful right adjoint, and the underlying functor of f is equivalent to the fully faithful canonical
inclusion functor fib(g) ↪→ B, cf. [Ram, Prop. A.20].

Lemma 2.7. Let R ∈ CAlgrig
Sp , and let (∗) = A

f−→ B
g−→ C be a sequence in ModR(PrL

st)dual. Then,
(1) The followings are equivalent:

(i) (∗) is a fiber-cofiber sequence.
(ii) (∗) is a cofiber sequence and the underlying functor of A f−→ B is fully faithful.

(2) A sequence (∗) in ModR(PrL
st)dual is a fiber-cofiber sequence if and only if the image of (∗) in ModR(PrL

st)
is a fiber-cofiber sequence.

Proof. The case of R = Sp follows from Remark 2.6 and [Ram, Lem. 2.45], which asserts that the functor
PrL,dual

st → PrL
st preserves fiber of our given g, i.e., the underlying object of 0 ×dual

C B in PrL
st is 0 ×C B; see

also the paragraph below loc. cit.. The general case follows from the case of R = Sp; we have a natural
diagram

ModR(PrL
st)dual ModR(PrL,dual

st ) ModR(PrL
st)

PrL,dual
st PrL

st,

∼

where the uppermost bent arrow is the natural inclusion functor, the upper horizontal arrow is the one
as in Remark 2.5 which is an equivalence [Ram, Cor. 3.40], and the right-down diagonal arrow as well as
the vertical arrows are the restriction of scalars functors. As the vertical arrows preserve small limits and
small colimits [Lura, Cor. 4.2.3.3 and Cor. 4.2.3.5] and reflects equivalences [Lura, Cor. 4.2.3.2], we know
the sequence (∗) in ModR(PrL

st)dual ≃ ModR(PrL,dual
st ) is a fiber-cofiber sequence if and only if the image of
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(∗) in PrL,dual
st is a fiber-cofiber sequence, which in turn holds if and only if the image of (∗) in PrL

st (and
equivalently in ModR(PrL

st)) is a fiber-cofiber sequence due to the aforementioned case of R = Sp.

The characterization of fiber-cofiber sequences of dualizable presentable stable categories from Lemma
2.7 has the following consequence, which asserts that fiber-cofiber sequences of dualizable presentable stable
categories over a rigid R are preserved under tensor products with arbitrary objects in ModR(PrL

st)dual:

Lemma 2.8. The followings hold:
(1) Let T ∈ CAlg(PrL

st), and let E ∈ ModT(PrL
st). Suppose that f : A ↪→ B is a right adjointable functor in

ModT(PrL
st) which is fully faithful. Then, idE ⊗ f : E ⊗T A → E ⊗T B is fully faithful.

(2) Let R ∈ CAlgrig
Sp , and let E ∈ ModR(PrL

st)dual. Then, for any fiber-cofiber sequence A → B → C in
ModR(PrL

st)dual, the sequence E ⊗R A → E ⊗R B → E ⊗R C is a fiber-cofiber sequence in ModR(PrL
st)dual.

Proof. We first explain how (2) follows from (1). As in the case of closed symmetric monoidal categories in
general, the functor E ⊗R − is left adjoint and in particular preserves cofiber sequences. By Lemma 2.7, it
remains to check that the functor idE ⊗ f : E ⊗R A → E ⊗R B is fully faithful, where we denote f : A → B

for the first map of the original sequence; this reduces us to the verification of (1). The statement (1)
follows from the fact that the fully faithfulness amounts to the unit map being an equivalence, and that
E⊗T − : ModT(PrL

st) → ModT(PrL
st) is an (∞, 2)-functor for any E ∈ ModT(PrL

st), and hence preserves data
of adjunctions. This finishes the proof of (1).

For convenience, let us spell out what the last statement entails. By assumption, f is right adjointable
in ModT(PrL

st), i.e., admits a 1-morphism fR and 2-morphisms η : id → fRf and ϵ : ffR → id such
that

(
f

fη−→ ffRf
ϵf−→ f

)
≃ id and

(
fR ηfR

−−→ fRffR fRϵ−−→ fR
)

≃ id. The condition that f is fully faithful

precisely amounts to η : id → fRf being an equivalence. Upon tensoring with E, we have 1-morphisms idE⊗
f and idE ⊗ fR and 2-morphisms

(
idE⊗TA

ηE−→ (idE ⊗ fR) ◦ (idE ⊗ f)
)

=
(

idE ⊗ idA
idE⊗η−−−−→ idE ⊗ (fRf)

)
and

(
(idE ⊗ f) ◦ (idE ⊗ fR) ϵE−→ idE⊗TB

)
=
(

idE ⊗ (ffR) idE⊗ϵ−−−→ idE ⊗ idB

)
, which satisfy

(
idE ⊗ f

(idE⊗f)(idE⊗η)−−−−−−−−−−→ idE ⊗ ffRf
(idE⊗ϵ)(idE⊗f)−−−−−−−−−−→ idE ⊗ f

)
≃ id

and (
idE ⊗ fR (idE⊗η)(idE⊗fR)−−−−−−−−−−−→ idE ⊗ fRffR (idE⊗fR)(idE⊗ϵ)−−−−−−−−−−−→ idE ⊗ fR

)
≃ id

from the triangle identity equivalences of the original adjunction. In particular, we know idE ⊗ f is right
adjointable in ModT(PrL

st) with a right adjoint idE ⊗ fR. Since the unit ηE = idE ⊗ η witnessing the
adjunction is an equivalence, we know idE ⊗ f remains to be fully faithful.

Remark 2.9. The proof of Lemma 2.8 shows that the analogous statement of (2) holds for any T ∈
CAlg(PrL

st), E ∈ ModT(PrL
st), and fiber-cofiber sequences in ModT(PrL

st), given that the first map A → B

of the sequence is right adjointable in ModT(PrL
st).

Lemma 2.10. Let R ∈ CAlgrig
Sp . Suppose that E ∈ ModR(PrL

st)dual and that A → B → C is a fiber-
cofiber sequence in ModR(PrL

st)dual. Then, the induced sequence FunL
R(E,A) → FunL

R(E,B) → FunL
R(E,C)

a fiber-cofiber sequence in ModR(PrL
st)dual.

Proof. From the assumption that the object E is dualizable in the closed symmetric monoidal ∞-category
ModR(PrL

st), we have an equivalence FunL
R(E, −) ≃ E∨ ⊗R − of endofunctors of ModR(PrL

st); here, E∨ ≃
FunL

R(E,R), and E∨ is dualizable by dualizability of E. In particular, the functor FunL
R(E, −) preserves

dualizability and right adjointability of morphisms, and hence induces a functor FunL
R(E, −) ≃ E∨ ⊗R
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− : ModR(PrL
st)dual → ModR(PrL

st)dual. By Lemma 2.8, this functor preserves fiber-cofiber sequences of
ModR(PrL

st)dual.

We also observe the following form of ’octahedron axiom’ in ModR(PrL
st)dual:

Lemma 2.11. Let R ∈ CAlgrig
Sp . Suppose that we are given morphisms f : A ↪→ B and g : B ↪→ C

of ModR(PrL
st)dual which are fully faithful as functors. Denote A

f−→ B → B/A, B
g−→ C → C/B and

A
g◦f−−→ C → C/A for the associated fiber-cofiber sequences of ModR(PrL

st)dual. Then, the natural sequence
B/A

g−→ C/A → C/B is a fiber-cofiber sequence of ModR(PrL
st)dual.

Proof. First, the fact that the sequence B/A
g−→ C/A → C/B is a cofiber sequence follows immediately

from the diagram
A B C

0 B/A C/A

0 C/B;

f g

g

since the upper left square and the upper outer rectangle are pushout squares, the upper right square is
a pushout square, and since the right hand side outer rectangle is a pushout square, the lower square is a
pushout square.

By Lemma 2.7, it remains to check that the functor B/A
g−→ C/A is fully faithful. For the sake of

convenience, let us write h = g ◦ f . Consider the diagram

A B B/A ≃ fib(fR)

A C C/A ≃ fib(hR).

f

fR

g g

h

hR

gR
gR

Here, among the double arrows, left or upper arrows are left adjoints. By construction, a right adjoint of
g is equivalent to the morphism gR : fib(hR) → fib(fR) of ModR(PrL

st)dual induced from gR by restrictions.
We have to check that the counit for g ⊣ gR is an equivalence, i.e., equivalently, g ◦ gR ≃ id. This follows
from analyzing the adjunctions involved in the diagram; namely, we compute

g ◦ gR ≃ (g ◦ (B → B/A)) ◦
(
(fib(fR) ↪→ B) ◦ gR

)
≃ ((C → C/B) ◦ g) ◦

(
gR ◦ (fib(hR) ↪→ C)

)
≃ (C → C/B) ◦ (fib(hR) ↪→ C) ≃ id,

verifying the desired fully faithfulness of g.

We continue to explore how certain useful properties and constructions associated with dualizable
presentable stable categories remain valid over any rigid bases. First, we observe the following:

Lemma 2.12. Let R ∈ CAlgrig
Sp and let C ∈ ModR(PrL

st). Let κ and λ be regular cardinals. Suppose that
κ > ω and that both R and C are κ-compactly generated.
(1) Cκ is left-tensored over Rκ, and the left module structure is obtained as a restriction of that of C over
R.
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(2) κ-compact objects of C are precisely the objects x ∈ C such that the functor Map
C/R

(x, −) : C → R

preserves small κ-filtered colimits.
(3) Indλ(Cκ) is left-tensored over Indλ(Rκ); the structure maps are compatible with the Yoneda embeddings
and preserve small λ-filtered colimits separately on each variables. Moreover, when λ = ω, the structure
maps preserve small colimits separately on each variables due to the fact that the structure maps for the
left Rκ-module Cκ structure preserve finite colimits.
Remark. Similarly, Ind(C) is left-tensored over Ind(R); the structure maps are compatible with the Yoneda
embeddings and preserve small filtered colimits separately on each variables. Here, Ind(C) = Indω(C), as
usual, is the full subcategory of Fun(Cop, Ani) generated under small filtered colimits by images of the
Yoneda embedding.

Proof. (1) It suffices to check that the structure maps ⊗ : R × R → R and ⊗ : R × C → C send pairs
of κ-compact objects to κ-compact objects; the case of the former can be viewed as a special case of the
latter, so let us check the latter claim. Denote m : R ⊗ R → R and s : R ⊗ C → C for the morphisms in
PrL

st induced from the left R-module structure maps for C; by rigidity assumption, m is right adjointable in
PrL

st, whose right adjoint is denoted by mR. The morphism s : R ⊗ C → C is also right adjointable in PrL
st,

where the right adjoint takes the form C ≃ Sp ⊗ C → R ⊗ C
mR⊗idC−−−−−→ R ⊗ R ⊗ C

idR⊗s−−−−→ R ⊗ C, cf. [GR17,
Lem. 9.3.2]. Thus, s induces a functor (R ⊗ C)κ → Cκ upon restriction. On the other hand, the functor
Rκ ×Cκ → R×C → R⊗C preserves κ-small colimits separately on each variables, and hence factors through
Rκ ⊗ Cκ. The induced map Rκ ⊗ Cκ → R ⊗ C is in Catrex(κ)

st , so this map further induces a small colimit
preserving functor Indκ(Rκ ⊗ Cκ) → R ⊗ C. Now, by κ-compact generation assumption on R and C, we
can identify the inclusion functors Rκ → R and Cκ → C with the Yoneda embeddings Rκ → Indκ(Rκ) and
Cκ → Indκ(Cκ), and from this we deduce that the functor Indκ(Rκ ⊗ Cκ) → R ⊗ C ≃ Indκ(Rκ) ⊗ Indκ(Cκ)
is an equivalence, from the symmetric monoidal equivalence Indκ : Catrex(κ)

st ≃ PrL
st,κ, cf. [Lur09, Prop.

5.5.7.10] and [Lura, 4.8.1]. In particular, the functor R × C → R ⊗ C induces Rκ × Cκ → (R ⊗ C)κ upon
restriction. Thus, we know the structure map induces Rκ × Cκ → (R ⊗ C)κ → Cκ on κ-compact objects as
desired.
(2) Fix x ∈ C. If Map

C/R
(x, −) preserves small κ-filtered colimits, then from the equivalence MapC(x, −) ≃

MapR(1R, Map
C/R

(x, −)) and κ-compactness of the unit 1R, we know the κ-compactness of x. For the
reverse implication, we need to check that given x ∈ Cκ, the natural map MapR(a, colimI Map

C/R
(x, yi)) →

MapR(a, Map
C/R

(x, colimI yi)) is an equivalence for all a ∈ R and a small κ-filtered diagram (yi)I in C.
Due to the κ-compact generation assumption on R, it suffices to check the case of a ∈ Rκ. Then, one
has a ⊗ x ∈ Cκ from (1), and hence verifies MapR(a, Map

C/R
(x, colimI yi)) ≃ MapC(a ⊗ x, colimI yi) ≃

colimI MapC(a ⊗ x, yi) ≃ colimI MapR(a, Map
C/R

(x, yi)) ≃ MapR(a, colimI Map
C/R

(x, yi)).
(3) The first statement is a consequence of [Lura, Prop. 4.8.1.10]. The second statement can be proved
as in the proof of [Lura, Cor. 4.8.1.14]; for convenience, let us repeat the argument here. Let A = Rκ

and M = Cκ. We check that for A ∈ Ind(A), the functor A ⊗ − : Ind(M) → Ind(M) preserves all small
colimits; the other variable case is proved analogously. The full subcategory D of Ind(A) spanned by A
such that A ⊗ − preserves small colimits is closed under filtered colimits. Thus, it suffices to check D

contains the essential image of the Yoneda embedding ȷA for A to conclude D = Ind(A). We need to
check ȷA(a) ⊗ − preserves small colimits for each a ∈ A, and this statement is equivalent to checking that
ȷA(a) ⊗ − preserves filtered colimits and (ȷA(a) ⊗ −)|(Ind(M))ω ≃ (ȷA(a) ⊗ −) ◦ ȷA preserves finite colimits
[Lur09, Prop. 5.5.1.9]. These conditions follow from the compatibility of the Yoneda embeddings and the
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left module structure maps, which in particular gives the diagram

A M

Ind(A) Ind(M).

a⊗−

ȷA ȷM

ȷA(a)⊗−

Proposition 2.13. Let R ∈ CAlgrig
Sp and let C ∈ ModR(PrL

st). Suppose that κ is a regular cardinal such
that κ ≥ ω1 and that C is κ-compactly generated. Also, write k ⊣ ȷ : C → Ind(Cκ) for the colimit-Yoneda
adjunction, cf. [KNP, Lem. 2.1.35]. Then, Ind(Cκ) admits a natural R-module structure rendering the
functors ȷ : C → Ind(Cκ) and k : Ind(Cκ) → C as R-linear.

Suppose moreover that C ∈ ModR(PrL
st)dual, so there is a further adjunction ȷ̂ ⊣ k ⊣ ȷ : C → Ind(Cκ),

cf. [KNP, Proof of Lem. 2.3.18]. Then, ȷ̂ : C → Ind(Cκ) is also R-linear, and in particular is a morphism
in ModR(PrL

st)dual.
Remark. By arguing as the proof below, one similarly knows that Ind(C) admits a natural R-module
structure rendering the functors ȷ : C → Ind(C) and k : Ind(C) → C, as well as ȷ̂ : C → Ind(C) when C is
dualizable, as R-linear.

Proof. Let ı : Cκ → C be the inclusion functor, which can be identified with the Yoneda embedding
Cκ → Indκ(Cκ). Also, denote ȷω : Cκ → Ind(Cκ) for the Yoneda embedding. By Lemma 2.12, Ind(Cκ)
admits a left Ind(Rκ)-module structure and ȷω is compatible with the left tensor structures of the source
and the target. Also, note that the left R-module structure on C is equivalent to the left Indκ(Rκ)-module
structure on Indκ(Cκ) obtained via Lemma 2.12.

We check that Ind(Cκ) admits a left R-module structure such that the functor ȷ : C → Ind(Cκ) is
R-linear. From the adjunction Ind(ı) ⊣ ı∗ = (−)|(Cκ)op : Ind(C) → Ind(Cκ) and the fully faithfulness of

Ind(ı), we know id ≃ ı∗ ◦ Ind(ı). Also, ȷ is equivalent to the composition C
ȷ̃−→ Ind(C) ı∗

−→ Ind(Cκ), where ȷ̃ is
the temporary notation for the Yoneda embedding for C; from this, we know ȷ ≃ (x 7→ MapC(−, x)|(Cκ)op)
preserves small κ-filtered colimits. Now, from the diagram

Cκ Ind(Cκ)

C Ind(C) Ind(Cκ),

ȷω

ı Ind(ı) id

ȷ̃

ȷ

ı∗

we know ȷ ◦ ı ≃ ȷω. Since ȷω extends uniquely along ı to a κ-filtered colimit preserving functor compatible
with the left tensor structures of the source and the target [Lura, Prop. 4.8.1.10 (4)], we know ȷ : C →
Ind(Cκ) satisfies this compatibility condition. By restriction along the natural functor R → Ind(Rκ), i.e.,
the one equivalent to ȷ for the case of C = R, the left Ind(Rκ)-module structure of the target Ind(Cκ)
restricts to a left R-module structure such that ȷ : C → Ind(Cκ) is R-linear with respect to this left tensor
structure.

The remaining statements can be checked as follows. Since Cκ is essentially small by accessibility of
C [Lur09, Rem. 5.4.2.11], we know Ind(Cκ) ∈ ModModR

(PrL
st)dual. The oplax R-linear structure on the

functor k : Ind(Cκ) → C left adjoint to ȷ is R-linear by (local-)rigidity of R [Ram, Lem. 3.53]. Applying
the same argument once again to the functor ȷ̂ : C → Ind(Cκ) left adjoint to k, when C is dualizable, we
know ȷ̂ is also R-linear.
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Corollary 2.14. Let R ∈ CAlg(PrL
st) be rigid.

(1) Let C ∈ ModR(PrL
st). Then, C is an object of ModR(PrL

st)dual if and only if there is a right adjointable
morphism C

ı
↪−→ C′ in ModR(PrL

st) into a compactly generated C′, whose underlying functor is fully faithful.
(2) Let f : C → D be a morphism in ModR(PrL

st), and suppose C,D ∈ ModR(PrL
st)dual. Then, f is a

morphism of ModR(PrL
st)dual if and only if there is a diagram

C C′

D D′

ı

f f ′

ı′

in ModR(PrL
st) with C′ and D′ being compactly generated, f ′ preserving compact objects, and ı and ı′ are

right adjointable and their underlying functors are fully faithful.
(3) The tensor product ⊗R of the symmetric monoidal structure on ModR(PrL

st)dual, restricted from that of
ModR(PrL

st), satisfies the property that for any C,D,E ∈ ModR(PrL
st)dual, composition with C×D → C⊗RD

defines an equivalence FuniL
R (C⊗R D,E) ≃ Fun′

R(C×D,E); here the right hand side is the full subcategory
of Fun(C × D,E) spanned by functors which are separately R-linear and preserve small colimits on each
variables and send pairs of compact morphisms to compact morphisms.

Proof. For R = Sp, (1) and (2) are [KNP, Lem. 2.12.1], and (3) is [KNP, Prop. 2.12.2]; let us explain the
general case using these facts. By rigidity of R, dualizability of C ∈ ModR(PrL

st) can be checked in PrL
st, and

the if direction of (1) is immediate. The only if direction of (1) follows from Proposition 2.13. Similarly,
the if direction of (2) follows from the case of R = Sp and Remark 2.5, while the only if direction of (2)
follows from Proposition 2.13, by taking f ′ to be the functor Ind(Cω1) → Ind(Dω1) induced from f and the
horizontal arrows to be ȷ̂C and ȷ̂D.

It remains to check (3). First, from the natural equivalence ModR(PrL
st)dual ≃ ModR(PrL,dual

st ) [Ram,
Cor. 3.40] and the case of R = Sp, we know the symmetric monoidal structure on ModR(PrL

st), whose tensor
product is given by the relative tensor product in PrL

st over R, restricts to the symmetric monoidal structure
on ModR(PrL

st)dual. In particular, the tensor product of this symmetric monoidal structure is the relative
tensor product in PrL,dual

st over R. For the universal property of ⊗R, note that for any E ∈ ModR(PrL
st)dual,

composition with C × D → C ⊗R D induces a natural equivalence FunL
R(C ⊗R D,E) ≃ FunbiL

R (C × D,E),
where the right hand side is the full subcategory of Fun(C × D,E) spanned by functors separately R-
linear and preserve small colimits on each variables. The latter equivalence induces a functor FuniL

R (C ⊗R

D,E) → Fun′
R(C × D,E) on full subcategories; in fact, we have a natural equivalence FuniL(C ⊗ D,E) ≃

Fun′
Sp(C × D,E) induced from the composition with C × D → C ⊗ D from the case of R = Sp which in

particular says that C × D → C ⊗ D maps pairs of compact maps to compact maps, while we also know
the natural functor C ⊗ D

c−→ C ⊗R D is right adjointable in PrL
st [GR17, Prop. 8.7.2] by rigidity of R, and

hence in particular sends compact maps to compact maps. It remains to check that the induced functor
FuniL

R (C⊗RD,E) → Fun′
R(C×D,E), which by construction is fully faithful, is essentially surjective. Given

an object C × D → E of the target, we have a corresponding object C ⊗R D
g−→ E of FunL

R(C ⊗R D,E),
whose composition C ⊗ D

g◦c−−→ E with C ⊗ D
c−→ C ⊗R D we know to be in FuniL(C ⊗ D,E) from the

aforementioned equivalence for the case of R = Sp. As c is epi in PrL, i.e., the essential image of the
morphism C ⊗ D → C ⊗R D generates the target under colimits [GR17, Lem. 8.2.6], we equivalently know
its right adjoint C⊗R D

cR
−→ C⊗D reflects equivalences. As cR in addition is a morphism in PrL

st, we know
gR is a morphism in PrL

st from the fact that (g ◦ c)R ≃ cR ◦ gR preserves small colimits. In particular, g is
an object of FuniL

R (C ⊗R D,E) from the equivalence ModR(PrL
st)dual ≃ ModR(PrL,dual

st ) as desired.

Recall that, given a presentable stable ∞-category C and a class S of morphisms in C which satisfies
certain conditions guaranteeing that S behaves as a class of compact morphisms, Clausen’s construction
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[Claa] provides a terminal dualizable presentable stable ∞-category (C, S)dual equipped with a map into
C in PrL

st which sends compact morphisms to S. See also [Ram, Th. 5.34] and [KNP, Th. 2.7.4]; here,
for convenience, we adopt the notion of precompact ideals [KNP, Def. 2.7.1] from the latter to specify the
aforementioned condition on S. Below, we observe that under a relatively mild assumption on S, Clausen’s
construction remains to have the same universal property over any rigid base in place of Sp:

Proposition 2.15. Let R ∈ CAlg(PrL
st) be rigid, and let T be a set of trace-class maps of R such that

sequential colimits along maps of T generate R under colimits, cf. [Ram, Cor. 3.50]. Let C ∈ ModR(PrL
st)

and let S be a precompact ideal of the presentable stable ∞-category C which is closed under desuspensions
and satisfies the following condition:

(∗) For any x → y in T and any c → c′ in S, their tensor product x ⊗ c → y ⊗ c′ through the left
R-module structure map for C is in S.

Then, the left adjoint functor (C, S)dual → C is a morphism in ModR(PrL
st) with the source being in

ModR(PrL
st)dual, and induces an equivalence FuniL

R (D, (C, S)dual) ≃ FunL
R((D, C), (C, S)) via composition for

any D ∈ ModR(PrL
st)dual; here, the left hand side is the ∞-category of right adjointable (i.e., internally left

adjoint) functors in the (∞, 2)-category ModR(PrL
st), and the right hand side denotes the full subcategory

of FunL
R(D,C), the ∞-category of R-linear left adjoint functors, spanned by functors sending compact

morphisms of D to S.

Proof. By assumption on S, there is a regular cardinal κ ≥ ω1 such that C is κ-compactly generated, that
the collection of all S-exhaustible objects of Ind(C), i.e., those of the form colimQ ȷ(xα) where each of the
maps xα → xβ for α < β is in S, is small and is in Ind(Cκ), and that (C, S)dual is realized as the full
subcategory of Ind(Cκ) generated under colimits by S-exhaustible objects equipped with the left adjoint
functor (C, S)dual → C which is the restriction of k : Ind(Cκ) → C.

We check that (C, S)dual is a R-linear stable subcategory of Ind(Cκ) and the functor (C, S)dual → C

is R-linear. Here, we are using the R-module structure on Ind(Cκ) from Proposition 2.13. Since S is
closed under desuspensions, the set E of S-exhaustible objects is closed under desuspensions, and the
full subcategory (C, S)dual of Ind(Cκ) generated under colimits by E is a stable subcategory. Condi-
tion (∗) guarantees that (C, S)dual is in addition an R-linear subcategory of Ind(Cκ). Thus, the functor
(C, S)dual → C, being a composition of the R-linear inclusion functor (C, S)dual → Ind(Cκ) with the func-
tor k : Ind(Cκ) → C which is R-linear by Proposition 2.13, is by construction R-linear. By rigidity of
R, we know the object (C, S)dual ∈ PrL,dual

st together with the R-module structure on it is an object of
ModR(PrL

st)dual ≃ ModR(PrL,dual
st ).

It remains to check the universality statement. Fix D ∈ ModR(PrL
st)dual. We have an equivalence

FuniL(D, (C, S)dual) ≃ FunL((D, C), (C, S)) induced by composition with (C, S)dual → C. Here, the left
hand side is the ∞-category of right adjointable functors in PrL

st and the right hand side is the full sub-
category of FunL(D,C) spanned by functors sending compact morphisms of D, denoted by C, to S. As
noted in Remark 2.5, the full subcategory FuniL

R (D, (C, S)dual) of FuniL(D, (C, S)dual) is spanned by R-
linear functors. Now, we observe that an object D

f−→ (C, S)dual of FuniL(D, (C, S)dual) is R-linear if and
only if the composition D

f−→ (C, S)dual → C in FunL((D, C), (C, S)) is R-linear. Due to the R-linearity of
(C, S)dual → C, the only if direction is immediate. Conversely, if the latter composition is R-linear, we can
consider the diagram

Ind(Dκ) Ind(Cκ)

(D, C)dual (C, S)dual

D C

f

∼
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which realizes f as a functor induced via restrictions from the top horizontal R-linear functor Ind(Dκ) →
Ind(Cκ), which is the one induced from the bottom horizontal R-linear composition functor D f−→ (C, S)dual →
C; in particular, f is R-linear. Thus, from the equivalence FuniL(D, (C, S)dual) ≃ FunL((D, C), (C, S)), we
induce the claimed equivalence between the full subcategories of R-linear functors FuniL

R (D, (C, S)dual) ≃
FunL

R((D, C), (C, S)).

Remark 2.16. When the base rigid category R takes a relatively simple form, e.g., ModR for an E∞-ring
R, then the condition (∗) of Proposition 2.15 is redundant; in fact, (C, S)dual is an R-linear subcategory of
Ind(Cκ) for any choice of S. More precisely, we can observe the following:

Lemma 2.17. Suppose that T ∈ CAlg(PrL
st) is generated under colimits by desuspensions of the unit 1.

Also, suppose that C and D are stable ∞-categories admitting small colimits and are left tensored over T,
and that the module structure maps ⊗ : T ×C → C and ⊗ : T ×D → D preserve small colimits on the first
variable T.
(1) Let C′ be a stable subcategory of C which is closed under all small colimits in C. Then, C′ inherits a
left T-module structure from C.
(2) Let g : D → C be either a lax T-linear or an oplax T-linear functor. If g preserves small colimits (and
hence finite limits, in particular desuspensions), then g is T-linear.

Proof. (1) It suffices to check that the T-module structure map T×C
⊗−→ C restricts to C′. Let T′ be the full

subcategory of T spanned by x ∈ T such that x ⊗ d ∈ C′ for all d ∈ C′. Then, we observe that T′ contains
the unit 1, that T′ is closed under small colimits in T, and that T′ is closed under desuspensions in T from
the fact that − ⊗ d : T → C preserves small colimits and desuspensions for all d ∈ C′. Thus, T′ = T and
the claim follows.
(2) The case of oplax T-linear functors is proved exactly in the same way as the lax T-linear functors case,
so let us check the latter case. As above, let T′ be the full subcategory of T spanned by objects x such
that the natural map x ⊗ g(d) → g(x ⊗ d) is an equivalence for all d ∈ D. To have T′ = T, it again suffices
to check that T′ contains 1 and is closed under small colimits and desuspensions. The first condition is
immediate; the closure under small colimits and desuspensions follows from the fact that the functors g,
− ⊗ c : T → C and − ⊗ d : T → D for each c ∈ C and d ∈ D preserve small colimits and desuspensions.

Remark 2.18. The followings, concerning Proposition 2.15, were pointed out to the author by Maxime
Ramzi. The condition (∗) on S cannot be dropped in general for given rigid R and C ∈ ModR(PrL

st)dual. In
practice, however, this would not be much of a restriction. For example, the condition (∗) is satisfied for
the S used in the description of internal mapping objects for any rigid R.

Below, we note that the description of internal mapping objects in the case of R = Sp [Ram, Th. 5.34],
see also [KNP, Lem. 2.12.6], remains the same over rigid bases.

Proposition 2.19. Let R ∈ CAlgrig
Sp and let C,D ∈ ModR(PrL

st)dual. Denote S(C,D) for the class of
morphisms f

τ−→ g of FunL
R(C,D) such that for any compact morphism x → y of C, the composition

f(x) → f(y) τy−→ g(y) is a compact morphism in D. Then,
(
FunL

R(C,D), S(C,D)
)dual

is an internal mapping
object Mapdual

R
(C,D) of C and D in ModR(PrL

st)dual.

Proof. We first check that the precompact ideal SC,D closed under desuspensions in addition satisfies the
condition (∗) of Proposition 2.15. By definition, it suffices to check that for any trace-class morphism
x → y of R and any compact morphism c → d of D, their tensor product x ⊗ c → y ⊗ d remains to be a
compact morphism of D. By rigidity of R, for D ∈ ModR(PrL

st)dual we know R-atomic maps are precisely
compact morphisms [Ram, Cor 3.45 and Cor. 2.79]. Since tensor products of trace-class maps of R and
R-atomic maps of D are R-atomic [Ram, Lem. 2.100], we have the claimed statement. Alternatively, one
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can use the universal property of ⊗ in Corollary 2.14 (3) and [GR17, Lem. 9.3.2] to explain this as well.
Now, let E ∈ ModR(PrL

st)dual, and write C for the set of all compact morphisms of E. By Proposition
2.15, we have a natural equivalence

FuniL
R

(
E,
(
FunL

R(C,D), S(C,D)
)dual

)
≃ FunL

R

(
(E, C),

(
FunL

R(C,D), S(C,D)
))

,

and the right hand side is, by definition, further naturally equivalent to the full subcategory Fun′
R (E × C,D)

of FunbiL
R (E × C,D) spanned by functors which send pairs of compact morphisms to compact morphisms,

via restriction of the equivalence FunbiL
R (E × C,D) ≃ FunL

R

(
E, FunL

R(C,D)
)
. By Corollary 2.14 (3), we

know the right hand side Fun′
R (E × C,D) is further naturally equivalent to FuniL

R (E ⊗R C,D); thus, we
have established a natural equivalence

FuniL
R

(
E,
(
FunL

R(C,D), S(C,D)
)dual

)
≃ FuniL

R (E ⊗R C,D)

as desired.

Corollary 2.20. Let R ∈ CAlgrig
Sp . Also, let C be an object of ModR(PrL

st)dual and let h : D ↪→ E be a
morphism in ModR(PrL

st)dual whose underlying functor is fully faithful.
(1) If FunL

R(C,D) ≃ 0, then Mapdual
R

(C,D) ≃ 0.
(2) If the map h ◦ − : FunL

R(C,D) → FunL
R(C,E) is an equivalence in ModR(PrL

st), then the h-induced map
Mapdual

R
(C,D) → Mapdual

R
(C,E) is an equivalence.

Proof. (1) By Proposition 2.19 and the description of the terminal dualizable category in Proposition 2.15,
the category Mapdual

R
(C,D) embeds fully faithfully into the Ind-completion of FunL

R(C,D); since the latter
category is equivalent to 0, the former category is also equivalent to 0.
(2) The equivalence h ◦ − : FunL

R(C,D) ≃ FunL
R(C,E) induces a bijection between the classes of morphisms

S(C,D) and hS(C,D), with the latter being a subclass of S(C,E) as h preserves compact morphisms. On the other
hand, any object of S(C,E) takes the form of hτ : h ◦ f → h ◦ g for an essentially unique morphism τ : f → g

in FunL
R(C,D) such that for any compact morphism x → y of C, the morphism hf(x) → hf(y) hτy−−→ hg(y)

in E is compact. By fully faithfulness and right adjointability of h in PrL
st, morphisms of D are compact

if and only if their image by h in E are compact; in particular, we have hS(C,D) = S(C,E). By Proposition
2.19, this implies that h ◦ − induces an equivalence Mapdual

R
(C,D) ≃ Mapdual

R
(C,E).

3 Formal gluing diagrams
In this section, we study certain cubical diagrams, which can be construed as motivic limit diagrams, con-
structed out of sequences of idempotent fiber-cofiber sequences; having applications to localizing invariants
in mind, our main interest would be in the case of diagrams of dualizable presentable stable ∞-categories
over rigid bases. In subsection 3.1, we separately treat the case of motivic pullback-pushout squares each of
which is associated with a single idempotent fiber-cofiber sequence; as an archetypal example, we recover
the formal gluing of continuous K-theory along punctured formal neighborhood using Efimov’s nuclear
modules categories. In subsection 3.2, we study the construction of a motivic cubical limit diagram out
of a stratification associated with a sequence of idempotent fiber-cofiber sequences, generalizing the con-
struction of 3.1. As an application of this, we verify an adelic descent statement for localizing invariants
on dualizable presentable stable ∞-categories in 3.3.
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3.1 Idempotent fiber-cofiber sequences and gluing squares

We start with the notion of idempotent fiber-cofiber sequences, which will serve as inputs for our construc-
tion of motivic pullback-pushout squares.
Definition 3.1. Let X be a symmetric monoidal ∞-category which admits finite limits and finite colimits,
is pointed (i.e., has zero objects), and satisfies the condition that for any object e of X, the functor
e ⊗ − : X → X preserves fiber-cofiber sequences (i.e., sequences x → y → z in X each of which is
simultaneously a fiber sequence and a cofiber sequence).

We call a fiber-cofiber sequence Γ ϵ−→ 1 η−→ L in X satisfying the equivalent conditions of Lemma 3.2
below an idempotent fiber-cofiber sequence in X.
Lemma 3.2. Suppose that X is a symmetric monoidal ∞-category satisfying the conditions as in Definition
3.1, and that we are given a fiber-cofiber sequence of the form Γ ϵ−→ 1 η−→ L in X. Then, the following
conditions are equivalent:
(1) ϵ : Γ → 1 is an open idempotent, i.e., Γ ⊗ Γ Γ⊗ϵ−−→ Γ ⊗ 1 ≃ Γ is an equivalence.
(2) η : 1 → L is a closed idempotent, i.e., L ≃ L ⊗ 1 L⊗η−−−→ L ⊗ L is an equivalence.1
(3) Γ ⊗ L ≃ 0.

Proof. By assumption on X, the functors L ⊗ − and Γ ⊗ − preserve fiber-cofiber sequences, and we in
particular have the following two fiber-cofiber sequences L ⊗ Γ L⊗ϵ−−→ L

L⊗η−−−→ L ⊗ L and Γ ⊗ Γ Γ⊗ϵ−−→ Γ Γ⊗η−−→
Γ⊗L. Hence, each of the stated conditions (1) and (2) are equivalent to the statement Γ⊗L ≃ 0, verifying
the claim.

Remark 3.3. Let X = (X, ⊗, 1) be a symmetric monoidal ∞-category.
(1) Suppose that η : 1 → L is a closed idempotent of X. Then, the symmetric monoidal ∞-category
ModL = ModL(X) of L-module objects of X can be described as follows: its underlying ∞-category is a full
subcategory of X spanned by objects x ∈ X such that η ⊗ x : x → L ⊗ x is an equivalence (or equivalently,
x ≃ L ⊗ x in X), its tensor product ⊗L is ⊗, and its unit object is L.
(2) Dually, suppose that ϵ : Γ → 1 is an open idempotent of X. Then, the symmetric monoidal ∞-category
coModΓ = coModΓ(X) of Γ-comodule objects of X can be described as follows: its underlying ∞-category
is a full subcategory of X spanned by objects x ∈ X such that ϵ ⊗ x : Γ ⊗ x → x is an equivalence (or
equivalently, Γ ⊗ x ≃ x in X), its (co)tensor product ⊗Γ is ⊗, and its unit object is Γ.
Proposition 3.4. Let X be a closed symmetric monoidal presentable ∞-category; let us write Map to
denote the internal mapping object. Suppose that η : 1 → L is a closed idempotent of X and that ϵ : Γ → 1
is an open idempotent of X. Then, the followings hold:
(1) There are adjunctions of the following form:

ModL X coModΓ.inc
L⊗−

Map(L,−)

Γ⊗−
inc

Map(Γ,inc(−))

Here, given a pair of adjacent horizontal arrows, the upper one is left adjoint to the lower one; also,
ModL = ModL(X) and coModΓ = coModΓ(X). We use the following standard notations for the above
adjunctions:

ModL X coModΓ,
ı∗=ı!

ı∗

ı!

ȷ∗=ȷ!

ȷ!

ȷ∗

(2)

1The terms open idempotent and closed idempotent are commandeered from [BD06], cf. [Cam21, Def. 2.2.1]. See also the
notations in Proposition 3.4 (1).
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and ηk,⋆ and ϵk,⋆, where k is either ı or ȷ and ⋆ is either ∗ or !, for the unit and the counit of the four
adjunctions.
(2) ModL is closed symmetric monoidal presentable, and ı∗Map

L
(x, y) ≃ Map(ı∗(x), ı∗(y)) naturally for

x, y ∈ ModL (here, Map
L

denotes the internal mapping object of ModL).
(3) coModΓ is closed symmetric monoidal presentable, and ȷ∗MapΓ(x, y) ≃ Map(ȷ∗(x), ȷ∗(y)) naturally for
x, y ∈ coModΓ (here, MapΓ denotes the internal mapping object of coModΓ).

Proof. First, the adjunction L ⊗ − ⊣ inc : ModL → X is the free-forgetful adjunction for the module
category ModL, and the presentability of ModL follows from the assumption that X is closed symmetric
monoidal presentable [Lura, Cor. 4.2.3.7]. Moreover, ModL is closed symmetric monoidal presentable,
as ⊗L = ⊗ : ModL × ModL → ModL preserves small colimits separately in each variables [Lura, Prop.
4.4.2.14]; alternatively, one can deduce this from the facts that the forgetful functor ı∗ : ModL ↪→ X

preserves small colimits [Lura, Cor. 4.2.3.5], and that ı∗ is symmetric monoidal and fully faithful (or
just conservative, which holds in general) in our situation, together with the closed symmetric monoidal
presentability of X. At this point, we know ı∗ is a left adjoint functor between presentable ∞-categories; to
describe its right adjoint ı! : X → ModL, take x, y ∈ X and use the natural equivalences Map(x, ı∗ı!(y)) ≃
Map(ı∗(x), ı!(y)) ≃ Map(ı∗ı∗(x), y) ≃ Map(L ⊗ x, y) ≃ Map(x, Map(L, y)) to conclude ı∗ı! ≃ Map(L, −).

We describe the adjunctions associated with coModΓ on the right side of the diagram. The adjunction
inc ⊣ Γ ⊗ − : X → coModΓ is the forgetful-cofree adjunction for the comodule category coModΓ; in other
words, it is the opposite (inc)op ⊣ (Γ ⊗ −)op : (Xop)op → (ModΓ(Xop))op of the free-forgetful adjunction for
the module category ModΓ(Xop) over the closed idempotent 1Xop → Γ of Xop. For the second adjunction,
take x ∈ X and y ∈ coModΓ, and observe the natural equivalences Map(Γ⊗x, y) ≃ Map(inc(Γ⊗x), inc(y)) ≃
Map(Γ ⊗ x, inc(y)) ≃ Map(x, Map(Γ, inc(y))). In particular, we know both ȷ! = inc and ȷ! = Γ ⊗ − are
left adjoint functors. The presentability of coModΓ now follows from Lemma 3.5, noting that coModΓ is a
retract of X ∈ PrL. Moreover, coModΓ is closed symmetric monoidal presentable; one has to check that for
any x ∈ coModΓ the functor x ⊗ − : coModΓ → coModΓ preserves small colimits, and this follows from the
facts that the left adjoint functor ȷ! = inc : coModL ↪→ X preserves small colimits and that ȷ! is symmetric
monoidal and fully faithful (or just conservative, which again holds in general) in our situation, combined
with the fact that x ⊗ − : X → X preserves small colimits.

The remaining proof of (2) concerning Map
L

and that of (3) concerning MapΓ are analogous to each
other, so let us explain the case of (2) for convenience. For any z ∈ X and x, y ∈ ModL, symmetric
monoidality of ı∗ and fully faithfulness of ı∗ enables us to have natural equivalences Map(z, ı∗Map

L
(x, y)) ≃

Map(ı∗z, Map
L

(x, y)) ≃ Map((ı∗z) ⊗L x, y) ≃ Map((ı∗z) ⊗L ı∗ı∗x, y) ≃ Map(ı∗(z ⊗ ı∗x), y) ≃ Map(z ⊗
ı∗x, ı∗y) ≃ Map(z, Map(ı∗x, ı∗y)).

Lemma 3.5. Let X be a presentable ∞-category and let C be its full subcategory, such that the canonical
fully faithful inclusion ı : C ↪→ X is a left adjoint functor, whose right adjoint ıR : X → C is again a left
adjoint functor. Then, C is presentable.

Proof. Consider the 2-simplex N∆2 → Ĉat∞ determined by the unit of the adjunction ı ⊣ ıR, i.e.,

C

C X.

id

ı

ıR

By [Lur09, Cor. 4.4.5.7], this determines a strong retraction diagram F ∈ Fun(Idem+, Ĉat∞) in Ĉat∞.
Taking restriction along Idem ↪→ Idem+, one obtains an effective idempotent F |Idem : Idem → Ĉat∞ in
Ĉat∞. Since ı ◦ ıR is a left adjoint functor and X is presentable by assumption, F |Idem is an image of an
idempotent F ′ : Idem → PrL in PrL by the natural functor Fun(Idem, PrL) → Fun(Idem, Ĉat∞). Since the
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natural functor PrL → Ĉat∞ preserves small limits [Lur09, Prop. 5.5.3.13], we know C ≃ lim(F |Idem) is an
underlying ∞-category of lim F ′, and hence is presentable.

Our main interest is in the situation that the idempotents constitute an idempotent fiber-cofiber se-
quence Γ → 1 → L, and the notation (2) for the associated adjunctions and their variants will mostly be
used in this situation. In this case, we have ȷ∗ı∗ = ȷ!ı! ≃ 0, as Γ ⊗ L ≃ 0. Moreover, we have the following
’motivic’ analogue of the gluing square associated with a recollement, as evinced by the choice of notation:

Proposition 3.6. Let X be a closed symmetric monoidal presentable ∞-category which is pointed and
satisfies the condition that for any object e of X, the functor e⊗− : X → X preserves fiber-cofiber sequences.
Suppose that Γ → 1 → L is an idempotent fiber-cofiber sequence of X. Then, the square

id ı∗ı∗

ȷ∗ȷ∗ ı∗ı∗ȷ∗ȷ∗

ηı,∗

ηȷ,∗ ı∗ı∗ηȷ,∗

ηı,∗ȷ∗ȷ∗

(3)

in Fun(X,X), which more concretely takes the form

id L ⊗ −

Map(Γ, Γ ⊗ −) L ⊗ Map(Γ, Γ ⊗ −),

satisfies the following property:
For any functor E : X → V into a stable ∞-category V which maps fiber-cofiber sequences of X to

fiber-cofiber sequences of V, the image

E(x) E(ı∗ı∗x)

E(ȷ∗ȷ∗x) E(ı∗ı∗ȷ∗ȷ∗x)

E(ηı,∗)

E(ηȷ,∗) E(ı∗ı∗ηȷ,∗)

E(ηı,∗ȷ∗ȷ∗)

of the square in X obtained by evaluating the diagram (3) at any object x ∈ X by the functor E is a
pullback-pushout square in V. In other words, for each x ∈ X, the natural diagram

E(x) E(L ⊗ x)

E(Map(Γ, Γ ⊗ x)) E(L ⊗ Map(Γ, Γ ⊗ x))

is a pullback-pushout square in V.

Proof. We check the followings.
(i) ȷ!ȷ

! ϵȷ,!−−→ id
ηı,∗−−→ ı∗ı∗ is a fiber-cofiber sequence, i.e., for each x ∈ X, the sequence ȷ!ȷ

!x → x → ı∗ı∗x
is a fiber-cofiber sequence. The sequence is nothing but the sequence Γ ⊗ x → x → L ⊗ x obtained by
applying − ⊗ x to the fiber-cofiber sequence Γ → 1 → L, and such sequence is a fiber-cofiber sequence by
our assumption on X.
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(ii) Consider the diagram

ȷ!ȷ
! id ı∗ı∗

ȷ!ȷ
!ȷ∗ȷ∗ ȷ∗ȷ∗ ı∗ı∗ȷ∗ȷ∗,

ϵȷ,!

ȷ!ȷ
!ηȷ,∗

ηı,∗

ηȷ,∗ ı∗ı∗ηȷ,∗

ϵȷ,!ȷ∗ȷ∗ ηı,∗ȷ∗ȷ∗

where the right hand side square is the square (3). The two horizontal sequences are fiber-cofiber sequences,
as checked in (i) above. To verify the claimed property, it suffices to check that the leftmost vertical arrow

of the diagram is an equivalence. For that, it suffices to check that, before taking ȷ!, the map ȷ! ȷ!ηȷ,∗−−−→ ȷ!ȷ∗ȷ∗

is already an equivalence. Considering the composition

ȷ! ȷ!ηȷ,∗−−−→ ȷ!ȷ∗ȷ∗ ϵȷ,∗ȷ∗
−−−→ ȷ∗

and noting that the second map is an equivalence, as ϵȷ,∗ is an equivalence, and that the composition is
equivalent to idȷ!=ȷ∗ from ȷ∗ ⊣ ȷ∗, we conclude that the first map of the composition is also an equivalence
as desired.

Remark 3.7. In general, the diagram (2) associated with an idempotent fiber-cofiber sequence Γ → 1 → L
in X need not be an unstable recollement in the sense of [Lura, Def. A.8.1], and the associated gluing square
(3) need not be a pullback diagram.

Example 3.8. Let R ∈ CAlgrig
Sp be rigid, and take X = ModR(PrL

st)dual = (ModR(PrL
st)dual, ⊗R,R) with

Map = Mapdual
R

. The assumptions on X in Proposition 3.6 are satisfied by ModR(PrL
st)dual due to Lemma

2.8 and the presentability theorem [Ram, Th. 4.1 and Cor. 4.2]. Since the map Sp → R of CAlg(PrL
st)

is rigid, the restriction of scalars functor ModR(PrL
st) → ModSp(PrL

st) restricts to ModR(PrL
st)dual Res−−→

ModSp(PrL
st)dual by Lemma 2.4, and the latter functor preserves fiber-cofiber sequences, cf. Lemma 2.7.

Now, Proposition 3.6 applied to X = ModR(PrL
st)dual says that for any C ∈ ModR(PrL

st)dual and a localizing
invariant E : PrL,dual

st → V into a stable ∞-category V, the square

E(C) E(ı∗ı∗C)

E(ȷ∗ȷ∗C) E(ı∗ı∗ȷ∗ȷ∗C)

E(ηı,∗)

E(ηȷ,∗) E(ı∗ı∗ηȷ,∗)

E(ηı,∗ȷ∗ȷ∗)

obtained by applying E to the diagram (3) evaluated at C is a pullback-pushout square in V; note that
the composition ModR(PrL

st)dual Res−−→ ModSp(PrL
st)dual E−→ V preserves fiber-cofiber sequences, as each of the

component functors does so. Even more concretely, this pullback-pushout square takes the form

E(C) E(L ⊗R C)

E(Mapdual
R

(Γ, Γ ⊗R C)) E(L ⊗R Mapdual
R

(Γ, Γ ⊗R C)).

Thus, we can say that the square (3) of Proposition 3.6 acts as a ’motivic’ pullback-pushout square in the
context of dualizable presentable stable ∞-categories.
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Example 3.9. Let R be an E∞-ring and let I be a finitely generated ideal of π0R. Consider the fiber-
cofiber sequence ModNil(I)

R → ModR → ModLoc(I)
R in ModModR

(PrL
st)dual; here, following [Lurs, Chapter 7],

ModNil(I)
R stands for the full subcategory of I-nilpotent objects in ModR and ModLoc(I)

R = (ModNil(I)
R )⊥

stands for the full subcategory of I-local objects in ModR. It is moreover idempotent, since ModNil(I)
R ⊗R

ModNil(I)
R ≃ (ModNil(I)

R )Nil(I) = ModNil(I)
R [Lurs, Cor. 7.1.2.11 and its proof]. Applying Proposition 3.6 to

the idempotent fiber-cofiber sequence ModNil(I)
R → ModR → ModLoc(I)

R and the object C = 1 = ModR in
ModModR

(PrL
st)dual, we have a motivic pullback-pushout square

ModR ModLoc(I)
R

Mapdual
R

(ModNil(I)
R , ModR) ModLoc(I)

R ⊗R Mapdual
R

(ModNil(I)
R , ModR)

(4)

in ModModR
(PrL

st)dual. Here, we used Corollary 3.15 below to further compute the lower two terms for the
case of C being the unit object.

Remark 3.10. Let R be a Noetherian commutative ring and let I be an ideal of R. Write Spf(R∧I ) to
denote the I-adic formal scheme associated with the adic ring R∧I , and let Spf(R∧I )η = Spa(R∧I , R∧I )η

be the adic generic fiber of Spf(R∧I ). Also, write NucR∧I for the nuclear solid module category associ-
ated with the analytic ring (R∧I , SolidR∧I ), cf. [Sch]; there are equivalences NucSpf(R∧I ) ≃ NucR∧I and
NucSpf(R∧I )η

≃ NucLoc(I)
R∧I

, interpreting the right hand side objects in ModModR
(PrL

st)dual as categories of
nuclear solid modules on adic spaces. By directly analyzing these nuclear solid module categories, Clausen
and Scholze proved that the natural diagram of spectra

K(R) K(Spec(R)\V (I))

Kcont
(
NucSpf(R∧I )

)
Kcont

(
NucSpf(R∧I )η

) (5)

is a pullback-pushout square [Clab].
Here, we explain how the motivic pullback-pushout square (4) of Example 3.9 recovers the afore-

mentioned result of Clausen–Scholze through Efimov’s theorems relating modified nuclear module cat-
egories to nuclear solid module categories. First, note that through Efimov’s description ÑucR∧I ≃
Mapdual

R
(ModNil(I)

R , ModR), where the left hand side denotes limdual
n ModR/In [Efib], the motivic pullback-

pushout square (4) of Example 3.9 takes the form

ModR ModLoc(I)
R

ÑucR∧I ModLoc(I)
R ⊗R ÑucR∧I .

(6)

Let us write [−]cont
loc : PrL,dual

st → Mloc to denote the universal finitary localizing invariant over Sp. Efi-
mov’s theorems [Efib; Efic], cf. [Cór23, Cor. 3.24.1], assert that the natural morphism NucR∧I →
ÑucR∧I in ModModR

(PrL
st)dual from the nuclear solid module category to the modified nuclear module

category induces equivalences of noncommutative localizing motives [NucR∧I ]cont
loc ≃ [ÑucR∧I ]cont

loc and[
ModLoc(I)

R ⊗R NucR∧I

]cont

loc
≃
[
ModLoc(I)

R ⊗R ÑucR∧I

]cont

loc
. In particular, the morphism NucR∧I → ÑucR∧I
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induces an equivalence of spectra Kcont(NucSpf(R∧I )) ≃ Kcont(ÑucR∧I ); the target is further naturally equiv-
alent to limn K(R/In) by Efimov’s theorem [Efib]. Thus, we know the pullback-pushout square of spectra
obtained by applying the continuous K-theory functor Kcont on the motivic pullback-pushout diagram (6)
via Example 3.8 is equivalent to the square (5), which in particular implies that the latter square is a
pullback-pushout square.

In Example 3.9, we gave a further description of the bottom objects of the motivic pullback-pushout
square in ModModR

(PrL
st)dual through Corollary 3.15. Below, we observe how this, or more generally Propo-

sition 3.13, follows from a specific property of the open idempotent object Γ constituting the idempotent
fiber-cofiber sequence.

Lemma 3.11. Let R ∈ CAlgrig
Sp , and let Γ → 1 → L be an idempotent fiber-cofiber sequence in

ModR(PrL
st)dual. Then, for any C ∈ coModΓ(ModR(PrL

st)dual) and D ∈ ModL(ModR(PrL
st)dual), one has

FunL
R(C,D) ≃ 0.

Proof. Since Γ → 1 is an open idempotent and Γ is dualizable in ModR(PrL
st), we know Γ is self-dual in

ModR(PrL
st), cf. [Cam21, Prop. 2.3.1 (2)]. In particular, the endofunctor Γ ⊗R − of ModR(PrL

st) is right
adjoint to itself. Thus, we have FunL

R(C,D) ≃ FunL
R(Γ ⊗R C, L ⊗R D) ≃ FunL

R(C, Γ ⊗R L ⊗R D) ≃ 0. Note
that Lemma 3.2 applies to ModR(PrL

st)dual and gives Γ ⊗R L ≃ 0 by Lemma 2.8.

For the sake of convenience, let us separately state the following special case of Lemma 3.11:

Lemma 3.12. Let R be an E∞-ring and let I be a finitely generated ideal of π0R. For any C ∈
ModModR

(PrL
st) which is I-local, i.e., C = CLoc(I), we have FunL

R

(
ModNil(I)

R ,C
)

≃ 0.

Proof. This is just a particular case of Lemma 3.11 for R = ModR and the idempotent fiber-cofiber sequence
ModNil(I)

R → ModR → ModLoc(I)
R . Alternatively, any ModR-linear functors between stable ModR-linear

categories preserve I-nilpotent objects, and hence the claim follows. More precisely, f : ModNil(I)
R → C

maps an I-nilpotent module N to f(N) = f(ΓI(N) ⊗R ΓI(R)) ≃ N ⊗R f(ΓI(R)) which is an I-nilpotent
object of C, and by assumption CNil(I) ≃ 0.

Proposition 3.13. Let R ∈ CAlgrig
Sp and let Γ → 1 → L be an idempotent fiber-cofiber sequence of

ModR(PrL
st)dual such that Γ is ω1-compact. Also, let C ∈ ModR(PrL

st)dual. Then, upon taking Mapdual
R

(Γ, −),
the canonical map Γ ⊗R C → C in ModR(PrL

st)dual induces an equivalence

Mapdual
R

(Γ, Γ ⊗R C) ≃ Mapdual
R

(Γ,C).

Proof. Consider the fiber-cofiber sequence Γ ⊗R C → C → L ⊗R C in ModR(PrL
st)dual. Note that Γ ∈

ModR(PrL
st)dual is proper. In fact, as Γ → 1 is an open idempotent and Γ is dualizable in ModR(PrL

st), the
object is self-dual in ModR(PrL

st). The evaluation map, under the self-duality identification, is given by
Γ ⊗R Γ ≃ Γ → 1, and hence it is right adjointable in ModR(PrL

st). Thus, as Γ is proper and ω1-compact
by assumption, we know the functor Mapdual

R
(Γ, −) preserves fiber-cofiber sequences of ModR(PrL

st)dual, cf.
[Efia, Th. 5.1]. In particular, we have a fiber-cofiber sequence

Mapdual
R

(Γ, Γ ⊗R C) → Mapdual
R

(Γ,C) → Mapdual
R

(Γ, L ⊗R C).

To check that the first map of the sequence is an equivalence, it suffices to check that the third term
Mapdual

R
(Γ, L ⊗R C) is equivalent to 0. In fact, we have FunL

R(Γ, L ⊗R C) ≃ 0 by Lemma 3.11. By Corollary
2.20, we conclude that Mapdual

R
(Γ, L ⊗R C) is equivalent to 0.

24



Lemma 3.14. Let R be an E∞-ring and let I be a finitely generated ideal of π0R. Then, ModNil(I)
R

is proper and ω1-compact in ModModR
(PrL

st)dual. In particular, the endofunctor Mapdual
R

(
ModNil(I)

R , −
)

preserves fiber-cofiber sequences in ModModR
(PrL

st)dual.

Proof. First, the properness is checked as in the Proof of Proposition 3.13; let us repeat the arguments
here. As ModNil(I)

R → ModR is an open idempotent and ModNil(I)
R is dualizable in ModModR

(PrL
st), the

object is self-dual in ModModR
(PrL

st). The evaluation map, under the self-duality identification, is given by
ModNil(I)

R ⊗R ModNil(I)
R ≃ ModNil(I)

R ↪→ ModR, and hence it is right adjointable in ModModR
(PrL

st).
For the ω1-compactness, we have to check that viewing ModNil(I)

R as a dualizable object of ModModR
(PrL

st),
its coevaluation map sends the unit to an ω1-compact object. The coevaluation map, again under the self-
duality, takes the form ModR

ΓI−→ ModNil(I)
R ≃ ModNil(I)

R ⊗R ModNil(I)
R . Thus, we are reduced to check

that the object ΓI(R) is in
(
ModNil(I)

R

)ω1 . It suffices to consider the case of I = (x), so assume that is

the case. Considering the fiber sequences fib(xn) → R
xn

−→ R in ModR associated with xn-multiplication
map on R and taking the filtered colimit, where the middle term is the constant ind-object and the third
term is given by R

x−→ R
x−→ R

x−→ · · · , one obtains the fiber sequence colimn fib(xn) → R → R[x−1] in
ModR. In particular, ΓI(R) ≃ colimn(fib(xn)); since each fib(xn) is in Modω

R and also in ModNil(I)
R (i.e.,

fib(xn)[x−1] ≃ 0), one knows the object is compact in ModNil(I)
R , and hence taking ω1-small colimit of

such remains to be an ω1-compact object of ModNil(I)
R . Finally, the last statement follows from [Efia, Th.

5.1].

Corollary 3.15. Let R be an E∞-ring and let I be a finitely generated ideal of π0R. Also, let C ∈
ModModR

(PrL
st)dual. Then, upon taking Mapdual

R

(
ModNil(I)

R , −
)
, the map CNil(I) ↪→ C in ModModR

(PrL
st)dual

induces an equivalence Mapdual
R

(
ModNil(I)

R ,CNil(I)
)

≃ Mapdual
R

(
ModNil(I)

R ,C
)
.

Proof. This is a particular case of Proposition 3.13 for the idempotent fiber-cofiber sequence ModNil(I)
R →

ModR → ModLoc(I)
R in ModModR

(PrL
st)dual; the required ω1-compactness of ModNil(I)

R follows from Lemma
3.14.

3.2 Motivic limit diagram associated with idempotent fiber-cofiber sequences

In this subsection, we study a generalization of Proposition 3.6 which can be applied to the situation when
a finite sequence of idempotent fiber-cofiber sequences satisfying certain compatibility condition is given.
This embraces the case of a single idempotent fiber-cofiber sequence discussed in the previous subsection,
and will be useful in our later application to the adelic descent statement in the next subsection.

Theorem 3.16. Let X be a closed symmetric monoidal presentable ∞-category which is pointed and
satisfies the condition that for any object e of X, the functor e ⊗ − : X → X preserves fiber-cofiber
sequences. Suppose that we are given a sequence · · · → (Γ2 → 1 → L2) → (Γ1 → 1 → L1) → (Γ0 → 1 →
L0) = (1 → 1 → 0) of maps of idempotent fiber-cofiber sequences in X, i.e., a diagram

· · · Γi+1 Γi · · · Γ1 Γ0 1

· · · 1 1 · · · 1 1 1

· · · Li+1 Li · · · L1 L0 0

ϵi+1 ϵi ϵ1 ϵ0 =

= =

ηi+1

=

ηi

= =

η1 η0
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in X such that each of the vertical sequences is an idempotent fiber-cofiber sequence. Suppose furthermore
that the involved idempotent objects satisfy the following condition

Li ⊗ Γi+1 ≃ 0 for all i ≥ 0 (7)

(note that the case of i = 0, i.e., L0 ⊗ Γ1 ≃ 0, is automatic due to L0 = 0 by assumption). Then, the
followings hold:
(1) The condition (7) is equivalent to each of the following conditions:

(i) For each i ≥ 0, we have Γi+1 ∈ coModΓi , i.e., ϵi induces an equivalence Γi+1 ⊗ Γi ≃ Γi+1.
(ii) For each i ≥ 0, we have Li ∈ ModLi+1 , i.e., ηi+1 induces an equivalence Li ≃ Li ⊗ Li+1.

In particular, we have canonical inclusions

0 = ModL0 ↪→ ModL1 ↪→ · · · ↪→ ModLi ↪→ ModLi+1 ↪→ · · · ↪→ X

and maps

X = coModΓ0
Γ1⊗−−−−−→ coModΓ1

Γ2⊗−−−−−→ · · · Γi⊗−−−−→ coModΓi

Γi+1⊗−−−−−−→ coModΓi+1
Γi+2⊗−−−−−−→ · · · ,

where each of the maps Γi+1 ⊗ − : coModΓi → coModΓi+1 is right adjoint to the canonical inclusion
coModΓi+1 ↪→ coModΓi .
(2) For each i ≥ 0, we have canonical fiber-cofiber sequences

Γi+1 → Γi → Γi ⊗ Li+1 and Li+1 ⊗ Γi → Li+1 → Li.

(3) For each i ≥ 0, denote the adjunctions

ModLi X coModΓi

inc

Li⊗−

Map(Li,−)

Γi⊗−
inc

Map(Γi,inc(−))

associated with Γi → 1 → Li from Proposition 3.4 as

Zi−1 X Ui.
(ıi−1)∗=(ıi−1)!

ı∗
i−1

ı!
i−1

ȷ∗
i =ȷ!

i

(ȷi)!

(ȷi)∗

Also, let us write Xi for the full subcategory coModLi+1⊗Γi(ModLi+1) = ModΓi⊗Li+1(coModΓi) of X. Then,
we have adjunctions

Zi−1 = ModLi Zi = ModLi+1 Xi = coModLi+1⊗Γi(ModLi+1)
(ıi−1,i)∗=(ıi−1,i)!=inc

ı∗
i−1,i=Li⊗−

ı!
i−1,i=Map(Li,−)

ȷi
∗=ȷi

!=Li+1⊗Γi⊗−

(ȷi)!=inc

(ȷi)∗=Map(Li+1⊗Γi,inc(−))

and

Xi = ModΓi⊗Li+1(coModΓi) Ui = coModΓi Ui+1 = coModΓi+1 .
(ıi)∗=(ıi)!=inc

ıi
∗=Γi⊗Li+1⊗−

ıi
!=MapΓi

(Γi⊗Li+1,−)

ȷ∗
i,i+1=ȷ!

i,i+1=Γi+1⊗−

(ȷi,i+1)!=inc

(ȷi,i+1)∗=MapΓi
(Γi+1,inc(−))

26



(4) For each i ≥ 0, denote

ϕi = (ȷi)∗(ıi)∗(ıi)∗ȷ∗
i ≃ Map(Γi, Γi ⊗ Li+1 ⊗ −) ∈ Fun(X,X).

These functors naturally define a cubical diagram σ : NP(N) → Fun(X,X),

∅ 7→ id, (0 ≤ i1 < · · · < ir ∈ Z) 7→ ϕi1 ◦ · · · ◦ ϕir (8)

through unit maps for adjunctions, i.e., through maps id
ηȷi,∗−−−→ (ȷi)∗ȷ∗

i

(ȷi)∗ηıi,∗ȷ∗
i−−−−−−−→ (ȷi)∗(ıi)∗(ıi)∗ȷ∗

i = ϕi and
their horizontal compositions with ϕj ’s.

Suppose that the given sequence of idempotent fiber-cofiber sequences is finite of level n, i.e., for some
n ≥ 1, one has · · · =−→ (Γn+2 → 1 → Ln+2) =−→ (Γn+1 → 1 → Ln+1) = (0 → 1 =−→ 1). Then, the n-cubical
diagram σ : NP([n]) → Fun(X,X),

∅ 7→ id, (0 ≤ i1 < · · · < ir ≤ n) 7→ ϕi1 ◦ · · · ◦ ϕir (9)

restricted from the previous diagram σ on NP(N) satisfies the following property:
For any functor E : X → V into a stable ∞-category V which maps fiber-cofiber sequences of X to

fiber-cofiber sequences of V, the image

∅ 7→ E(x), (0 ≤ i1 < · · · < ir ≤ n) 7→ E(ϕi1 · · · ϕir (x)) (10)

of the diagram in X obtained by evaluating the diagram (9) at any object x ∈ X by the functor E is a limit
diagram in V. In other words, there is an equivalence

E(x) ≃ lim
0≤i1<···<ir≤n

E(ϕi1 · · · ϕir (x))

in V, natural in E and x ∈ X.

Proof. (1) As Li ⊗ − and Γi+1 ⊗ − preserve fiber-cofiber sequences, we have fiber-cofiber sequences Li ⊗
Γi+1 → Li → Li ⊗ Li+1 and Γi+1 ⊗ Γi → Γi+1 → Γi+1 ⊗ Li. Thus, we know that the three conditions (i)
Γi+1 ∈ coModΓi , the condition (7): Li ⊗ Γi+1 ≃ 0, and (ii) Li ∈ ModLi+1 are equivalent to each other.
Combining this with the upper right adjunction from Proposition 3.4, the remaining statements follow
immediately.
(2) Using the conditions (i) and (ii) from (1), as well as the preservation of fiber-cofiber sequences under
Γi ⊗ − and Li+1 ⊗ −, we obtain the stated fiber-cofiber sequences from the fiber-cofiber sequences Γi+1 →
1 → Li+1 and Γi → 1 → Li.
(3) Note that coModLi+1⊗Γi(ModLi+1) = ModΓi⊗Li+1(coModΓi); an object x of X satisfies the condition
that x ≃ Li+1 ⊗ x and Li+1 ⊗ Γi ⊗ x ≃ Li+1 ⊗ x canonically if and only if Γi ⊗ x ≃ x and Γi ⊗ x ≃
Γi ⊗ Li+1 ⊗ x canonically. Now, the first set of adjunctions is obtained by applying Proposition 3.4 to
the closed symmetric monoidal presentable ∞-category ModLi+1 and its idempotent fiber-cofiber sequence
Li+1 ⊗ Γi → Li+1 → Li from (2), while the second set of adjunctions is analogously obtained by applying
Proposition 3.4 to the closed symmetric monoidal presentable ∞-category coModΓi and its idempotent
fiber-cofiber sequence Γi+1 → Γi → Γi ⊗ Li+1 from (2).
(4) First, observe the following:

Lemma 3.17. For each 0 ≤ k ∈ Z, write hk for the map id
ηȷk,∗−−−→ (ȷk)∗ȷ∗

k

(ȷk)∗ηık,∗ȷ∗
k−−−−−−−→ (ȷk)∗(ık)∗(ık)∗ȷ∗

k = ϕk

constituting the cubical diagram σ. We have a fiber-cofiber sequence in Fun(X,X) of the form

(ȷk+1)!ȷ
!
k+1 → (ȷk)!ȷ

!
k

(ȷk)!ȷ
!
khk−−−−−→ (ȷk)!ȷ

!
kϕk,
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where the first map of the sequence (ȷk+1)!ȷ
!
k+1 ≃ (ȷk)!(ȷk,k+1)!ȷ

!
k,k+1ȷ!

k → (ȷk)!ȷ
!
k is induced from the counit

map for the adjunction (ȷk,k+1)! ⊣ ȷ!
k,k+1. More concretely, this fiber-cofiber sequence takes the form

Γk+1 ⊗ − → Γk ⊗ − → Γk ⊗ Lk+1 ⊗ −,

which is induced from the first fiber-cofiber sequence of Theorem 3.16 (2).

Proof. We check that the second map of the sequence (ȷk)!ȷ
!
khk is equivalent to (ȷk)!(ηık,∗)ȷ∗

k : (ȷk)!ȷ
!
k →

(ȷk)!(ık)∗ık
∗ȷ∗

k. It suffices to check that there is a diagram

ȷ!
k ȷ!

k(ȷk)∗(ık)∗ık
∗ȷ∗

k (ık)∗ık
∗ȷ∗

k,
(ȷ!

k(ȷk)∗(ηık,∗)ȷ∗
k)◦(ȷ!

k(ηȷk,∗))

(ηık,∗)ȷ∗
k

(ϵȷk,∗)(ık)∗ık
∗ȷ∗

k

∼

as applying (ȷk)! ◦ − to the diagram finds the stated equivalence. Note that ϵȷk,∗ is an equivalence due to
the fully faithfulness of (ȷk)∗, or equivalently that of (ȷk)!. Let us use the notation ⋆ for the horizontal
compositions of 2-morphisms, while using ◦ for the vertical compositions of 2-morphisms as usual. Thus,
we can write the maps involved in the horizontal arrows of the diagram above as (ϵȷk,∗)(ık)∗ık

∗ȷ∗
k = (ϵȷk,∗)⋆

(id(ık)∗ık
∗) ⋆ (idȷ∗

k
), ȷ!

k(ȷk)∗(ηık,∗)ȷ∗
k = (idȷ!

k
(ȷk)∗

) ⋆ (ηık,∗) ⋆ (idȷ∗
k
), and ȷ!

k(ηȷk,∗) = idȷ!
k

⋆ ηȷk,∗. Using the
exchange law for vertical and horizontal compositions, we can compute the upper horizontal composition
of the diagram above as follows. First,

((ϵȷk,∗)(ık)∗ık
∗ȷ∗

k) ◦
(
ȷ!
k(ȷk)∗(ηık,∗)ȷ∗

k

)
=
(
(ϵȷk,∗) ⋆ (id(ık)∗ık

∗) ⋆ (idȷ∗
k
)
)

◦
(
(idȷ!

k
(ȷk)∗

) ⋆ (ηık,∗) ⋆ (idȷ∗
k
)
)

≃
(
ϵȷk,∗ ◦ idȷ!

k
(ȷk)∗

)
⋆
(
(id(ık)∗ık

∗ ⋆ idȷ∗
k
) ◦ (ηık,∗ ⋆ idȷ∗

k
)
)

≃ (ϵȷk,∗) ⋆ (ηık,∗) ⋆ (idȷ∗
k
).

The upper horizontal composition is the composition of above with ȷ!
k(ηȷk,∗); this takes the form(

(ϵȷk,∗) ⋆ (ηık,∗) ⋆ (idȷ∗
k
)
)

◦
(
idȷ!

k
⋆ ηȷk,∗

)
≃ (ϵȷk,∗) ⋆ (ηık,∗) ⋆ (idȷ∗

k
) ⋆ (ηȷk,∗) ≃ (ϵȷk,∗) ⋆ (ηık,∗) ⋆ (ȷ∗

kηȷk,∗).

To further compute this, recall that for 2-morphisms σ : G → G′ and τ : F → F ′, the horizontal composition
takes the form σ ⋆ τ = G′τ ◦ σF ≃ σF ′ ◦ Gτ . Thus, one has

(ϵȷk,∗) ⋆ (ηık,∗) ≃ idUk
(ηık,∗) ◦ (ϵȷk,∗)idUk

= ηık,∗ ◦ ϵȷk,∗,

and hence the composition becomes the horizontal composition of ηık,∗ ◦ ϵȷk,∗ : ȷ!
k(ȷk)∗ → (ık)∗ık

∗ and
ȷ∗
kηȷk,∗ : ȷ∗

k → ȷ∗
k(ȷk)∗ȷ∗

k. Again, by the construction of the horizontal composition, we compute

(ηık,∗ ◦ ϵȷk,∗) ⋆ (ȷ∗
kηȷk,∗) ≃ ((ηık,∗ ◦ ϵȷk,∗)ȷ∗

k(ȷk)∗ȷ∗
k) ◦ ȷ!

k(ȷk)∗ȷ∗
k(ηȷk,∗)

≃ ((ηık,∗ ◦ ϵȷk,∗)ȷ∗
k) ◦ ȷ∗

k(ηȷk,∗)
≃ (ηık,∗)ȷ∗

k ◦ (ϵȷk,∗)ȷ∗
k ◦ ȷ∗

k(ηȷk,∗)
≃ (ηık,∗)ȷ∗

k,

where the second equivalence is induced via the equivalence ϵȷk,∗, and the fourth equivalence is induced
from (ϵȷk,∗)ȷ∗

k ◦ ȷ∗
k(ηȷk,∗) ≃ idȷ∗

k
associated with the adjunction ȷ∗

k ⊣ (ȷk)∗. This finishes the verification of
the equivalence between (ȷk)!ȷ

!
khk and (ȷk)!(ηık,∗)ȷ∗

k.
Now, from the fiber-cofiber sequence (ȷk,k+1)!ȷ

!
k,k+1 → idUk

→ (ık)∗ık
∗ of Fun(Uk,Uk), which is precisely
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the sequence Γk+1 ⊗ − → Γk ⊗ − → Γk ⊗ Lk+1 ⊗ − induced from the idempotent fiber-cofiber sequence
Γk+1 → Γk → Γk ⊗ Lk+1 of Uk = coModΓk

, we have a fiber-cofiber sequence

(ȷk+1)!ȷ
!
k+1 → (ȷk)!ȷ

!
k

(ȷk)!(ηık,∗)ȷ∗
k−−−−−−−−→ (ȷk)!(ık)∗ık

∗ȷ∗
k

in Fun(X,X), whose first map is the one (ȷk+1)!ȷ
!
k+1 ≃ (ȷk)!(ȷk,k+1)!ȷ

!
k,k+1ȷ!

k → (ȷk)!ȷ
!
k induced from the

counit map for the adjunction (ȷk,k+1)! ⊣ ȷ!
k,k+1. Through our identification of (ȷk)!ȷ

!
khk and (ȷk)!(ηık,∗)ȷ∗

k

from the previous paragraph, we have the fiber-cofiber sequence as stated. By construction, this sequence
is precisely the sequence Γk+1 ⊗ − → Γk ⊗ − → Γk ⊗ Lk+1 ⊗ − induced from the fiber-cofiber sequence
Γk+1 → Γk → Γk ⊗ Lk+1 of X.

Let us finish the proof of (4). For each 0 ≤ k ≤ n, denote [n]≥k = {k, k + 1, · · · , n} and consider the
(n − k)-cubical diagram σk := (ȷk)!ȷ

!
kσ|NP([n]≥k) : NP([n]≥k) → Fun(X,X), i.e., the diagram obtained by

pointwisely applying (ȷk)!ȷ
!
k ∈ Fun(X,X) to σ|NP([n]≥k). In particular, σ0 = σ. Being an (n − k)-cubical

diagram, σk = (ȷk)!ȷ
!
kσ|NP([n]≥k) can be identified with a morphism of (n − k − 1)-cubical diagrams

(ȷk)!ȷ
!
k

(
σ|NP([n]≥k+1) → σ|N(P([n]≥k+1)⊔{k})

)
= (ȷk)!ȷ

!
kσ|NP([n]≥k+1)

(ȷk)!ȷ
!
khk−−−−−→ (ȷk)!ȷ

!
kϕkσ|NP([n]≥k+1),

where P([n]≥k+1) ⊔ {k} stands for the set of subsets of [n]≥k each of which contains k as an element. By
Lemma 3.17, this morphism fits into the following fiber-cofiber sequence

(ȷk+1)!ȷ
!
k+1σ|NP([n]≥k+1)

=σk+1

→ (ȷk)!ȷ
!
kσ|NP([n]≥k+1)

(ȷk)!ȷ
!
khk−−−−−→ (ȷk)!ȷ

!
kϕkσ|NP([n]≥k+1) (11)

in Fun(NP([n]≥k+1), Fun(X,X)); in fact, for each (k < i1 < · · · < ir ≤ n) ∈ P([n]≥k+1), we have a
fiber-cofiber sequence

(ȷk+1)!ȷ
!
k+1ϕi1 · · · ϕir → (ȷk)!ȷ

!
kϕi1 · · · ϕir

(ȷk)!ȷ
!
khk−−−−−→ (ȷk)!ȷ

!
kϕkϕi1 · · · ϕir

in Fun(X,X).
Now, evaluating an element x of X and applying the functor E on (11), we have a fiber-cofiber sequence

E(σk+1(x)) → E
(
(ȷk)!ȷ

!
kσ|NP([n]≥k+1)(x)

) E(((ȷk)!ȷ
!
khk)x)

−−−−−−−−−→ E
(
(ȷk)!ȷ

!
kϕkσ|NP([n]≥k+1)(x)

)
(12)

in Fun(NP([n]≥k+1),V); note that the second morphism is nothing but the (n−k)-cubical diagram E(σk(x))
in V. By (12), the (n − k)-cubical diagram E(σk(x)) is a limit diagram in V if and only if the (n − k − 1)-
cubical diagram E(σk+1(x)) is a limit diagram in V [Lura, Lemma 1.2.4.15]. Thus, we know that the
n-cubical diagram E(σ(x)) of question is a limit diagram if and only if the 0-cubical diagram E(σn(x)) is a
limit diagram, i.e., an equivalence as a morphism in V. The latter statement follows from the fact that σn

as a morphism in Fun(X,X) is an equivalence. In fact, from (ın)∗ ≃ idXn=Un ≃ ın
∗, the 0-cubical diagram

σn takes the form (ȷn)!ȷ
!
n

(ȷn)!ȷ
!
nηȷn,∗−−−−−−−→ (ȷn)!ȷ

!
n(ȷn)∗ȷ∗

n; let us repeat the arguments at the end of the proof of
Proposition 3.6 for convenience. To check this morphism is an equivalence, it suffices to check that, before
taking (ȷn)!, the map ȷ!

n

ȷ!
nηȷn,∗−−−−→ ȷ!

n(ȷn)∗ȷ∗
n is already an equivalence. Consider the composition

ȷ!
n

ȷ!
nηȷn,∗−−−−→ ȷ!

n(ȷn)∗ȷ∗
n

ϵȷn,∗ȷ∗
n−−−−→ ȷ∗

n,

which is equivalent to idȷ!
n=ȷ∗

n
from the adjunction ȷ∗ ⊣ ȷ∗. Moreover, the second map induced from ϵȷn,∗

is an equivalence due to the fully faithfulness of (ȷn)!. From this, we conclude that the first map of the
composition is also an equivalence as desired.

Remark 3.18. Proposition 3.6 is a special case of Theorem 3.16. In fact, given an idempotent fiber-cofiber
sequence Γ → 1 → L in X, one considers the finite sequence (0 → 1 → 1) → (Γ → 1 → L) → (1 → 1 → 0)
of level 1, to which Theorem 3.16 is applicable.
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3.3 Adelic descent for localizing invariants on dualizable categories

As an application of Theorem 3.16, we verify an adelic descent statement for localizing invariants on
dualizable presentable stable ∞-categories (Corollary 3.32 and Corollary 3.33). We consider the following
form of idempotent fiber-cofiber sequences as input:

Construction 3.19 (Adelic idempotent fiber-cofiber sequences). Let R be an E∞-ring such that π0R is
Noetherian, and denote X = Spec π0R.
(1) We consider the following idempotent fiber-cofiber sequence Γi → 1 → Li. For each nonnegative integer
i, consider the filtered partially ordered set Si = {Z ⊆ Spec π0R | Z closed with codimX Z ≥ i}, where
the partial order is given by the inclusion of closed subsets of X. In particular, S0 ⊇ S1 ⊇ · · · and S0
consists of all closed subsets of X. For each i, we have a diagram of idempotent fiber-cofiber sequences in
ModModR

(PrL
st)dual over Si; V (I) 7→ (ModNil(I)

R → ModR → ModLoc(I)
R ). More precisely, given V (I) ⊇ V (J)

(i.e., I ⊆
√

J), the morphisms ModNil(J)
R ↪→ ModNil(I)

R and ModLoc(J)
R → ModLoc(I)

R in ModModR
(PrL

st)dual

whose underlying functors are the canonical fully faithful embedding and the localization respectively
constitute the diagram. Taking the filtered colimit, we obtain the fiber-cofiber sequence

colimV (I)∈Si
ModNil(I)

R → ModR → colimV (I)∈Si
ModLoc(I)

R ,

which we denote as Γi
ϵi−→ 1 ηi−→ Li. Note that it remains to be an idempotent fiber-cofiber sequence; one

has (colimV (I)∈Si
ModNil(I)

R ) ⊗R (colimV (I)∈Si
ModLoc(I)

R ) ≃ colim(V (I),V (J))∈Si×Si
ModNil(I)

R ⊗R ModLoc(J)
R ≃

colimV (I)∈Si
ModNil(I)

R ⊗R ModLoc(I)
R ≃ 0.

(2) By definition, we have a sequence · · · → (Γ2 → 1 → L2) → (Γ1 → 1 → L1) → (Γ0 → 1 → L0) = (1 →
1 → 0) of maps of fiber-cofiber sequences in ModModR

(PrL
st)dual; note that Γ0 = ModNil(0)

R = ModR. This
sequence satisfies the condition (7) of Theorem 3.16. By (1)-(i) of loc. cit., we can equivalently check that
Γi → ModR induces an equivalence Γi+1 ⊗R Γi ≃ Γi+1. We have

Γi+1 ⊗ Γi ≃ colim(V (I),V (J))∈Si+1×Si
ModNil(I)

R ⊗R ModNil(J)
R ≃ colim(V (I),V (J))∈Si+1×Si

ModNil(I+J)
R ,

and since ModNil(I+J)
R only depends on the closed subset V (I) ∩ V (J) of X, the right hand side is further

equivalent to colim(V (I),V (J))∈Si+1×Si+1 ModNil(I+J)
R ≃ colimV (I)∈Si+1 ModNil(I+I)

R ≃ Γi+1 as desired.
(3) If π0R has finite Krull dimension dim X, then Si>dim X = ∅, and hence the sequence (0 → 1 → 1) →
(Γdim X → 1 → Ldim X) · · · (Γ1 → 1 → L1) → (1 → 1 → 0) above becomes finite of level dim X.

Remark 3.20. Let R be a Noetherian E∞-ring such that π0R is Noetherian. For each nonnegative integer
i, we have the idempotent fiber-cofiber sequence Γi → 1 → Li in ModModR

(PrL
st)dual from Construction

3.19. Note that the first term of the sequence is ω1-compact by Lemma 3.14. Applying Proposition 3.6 to
the unit object ModR and using Proposition 3.13, one obtains the motivic pullback-pushout square

ModR colimV (I)∈Si
ModLoc(I)

R

limdual
V (I)∈Si

Mapdual
R

(
ModNil(I)

R , ModR

) (
colimV (I)∈Si

ModLoc(I)
R

)
⊗R

(
limdual

V (I)∈Si
Mapdual

R

(
ModNil(I)

R , ModR

))
in ModModR

(PrL
st)dual.

Instead of studying this form of square in Remark 3.20 above individually for each i, we investigate
the motivic limit diagram of Theorem 3.16 for the sequence of adelic idempotent fiber-cofiber sequences
of Construction 3.19 by describing each of the objects of ModModR

(PrL
st)dual appearing as vertices of the

diagram. The following notations will be useful for that purpose:
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Notation 3.21. Let R be an E∞-ring and let p ∈ Spec π0R. We denote:
(1) (Spec π0R)i for the set of codimension i points in Spec π0R for each 0 ≤ i ∈ Z,
(2) Rp for the stalk OSpec R,p of the structure sheaf of the nonconnective spectral scheme Spec R at the
point p ∈ | Spec R| = Spec π0R, and
(3) (−)∧

p for the endofunctor
Mapdual

R

(
ModNil(p)

R , ModRp ⊗R −
)

of ModModR
(PrL

st)dual.

Remark 3.22. Let R and p be as in Notation 3.21.
(1) The functor (−)∧

p of Notation 3.21 can also be written as follows; by letting Res : ModModRp
(PrL

st)dual →
ModModR

(PrL
st)dual stand for the right adjoint of ModRp ⊗R −, we can write

(−)∧
p ≃ Mapdual

R

(
ModNil(p)

R , ModRp ⊗R −
)

≃ Res
(
Mapdual

Rp

(
ModNil(pRp)

Rp
, ModRp ⊗R −

))
,

using Lemma 2.4 and that ModRp ⊗R ModNil(p)
R ≃ (ModRp)Nil(p) = ModNil(pRp)

Rp
; here, we are writing

ModNil(pRp)
Rp

:= ModNil(pπ0(Rp))
Rp

= ModNil(pπ0(R)p)
Rp

.
(2) The functor (−)∧

p is lax symmetric monoidal. In fact, the right hand side expression of the equiv-
alences in (1) above expresses the functor as compositions of lax symmetric monoidal functors. Note
that the lax symmetric monoidality of Mapdual

Rp

(
ModNil(pRp)

Rp
, −
)

follows from the symmetric monoidal-

ity of ModNil(pRp)
Rp

⊗Rp −, which is due to the map ModNil(pRp)
Rp

→ ModRp being an open idempotent of
ModModRp

(PrL
st)dual.

Proposition 3.23. Let R be an E∞-ring whose underlying commutative ring π0R is Noetherian. For each
i ≥ 0, there is an equivalence

Map(Γi, Γi ⊗ Li+1 ⊗ −) ≃
∏dual

p∈(Spec π0R)i
(−)∧

p =
∏dual

p∈(Spec π0R)i
Mapdual

R

(
ModNil(p)

R , ModRp ⊗R −
)

of endofunctors of ModModR
(PrL

st)dual.

Notation 3.24. Let R be an E∞-ring such that π0R is Noetherian. For each i ≥ 0, write ϕi for the
endofunctor Mapdual

R
(Γi, Γi ⊗R Li+1 ⊗R −) of ModModR

(PrL
st)dual from Proposition 3.23. Note that this is

consistent with the notation in Theorem 3.16 (4).

Example 3.25. Let R be an E∞-ring with π0R being Noetherian. By Proposition 3.23, one has

ϕ0 = L1 ⊗R − ≃
∏dual

η∈(Spec π0R)0(−)∧
η ≃

∏
η∈(Spec π0R)0 ModRη ⊗R − .

Note that the set (Spec π0R)0 is finite, and that ModNil(ηRη)
Rη

= ModRη for any η ∈ (Spec π0R)0 as Rη has
the unique prime ideal ηRη; the latter implies that (−)∧

η ≃ Res
(
Mapdual

Rη

(
ModNil(ηRη)

Rη
, ModRη ⊗R −

))
≃

Res
(
ModRη ⊗R −

)
.

We observe the following Zariski co-excision property, which will be useful in the proof of the Proposition
3.23 below.

Lemma 3.26. Let R be an E2-ring, and let J and K be finitely generated ideals of π0R. Then, the
diagram

ModNil(J+K)
R ModNil(K)

R

ModNil(J)
R ModNil(JK)

R
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is a pushout diagram in ModModR
(PrL

st). In particular, it is a pushout diagram in ModModR
(PrL

st)dual.
Remark. Note that in the diagram above, the top left object and the bottom right object depend only on
the closed subsets V (J) ∩ V (K) and V (J) ∪ V (K) of Spec π0R respectively.

Proof. From the fiber-cofiber sequence ModNil(I)
R → ModR → ModLoc(I)

R for ideals I involved in the diagram
above, the claim of the given diagram being a pushout diagram in ModModR

(PrL
st) is equivalent to the

diagram

ModLoc(J+K)
R ModLoc(K)

R

ModLoc(J)
R ModLoc(JK)

R

being a pushout diagram in ModModR
(PrL

st), or equivalently a pushout diagram in PrL; here, the arrows
in the diagram above are all given by localizations to local objects. This statement is equivalent to the
diagram

ModLoc(JK)
R ModLoc(J)

R

ModLoc(K)
R ModLoc(J+K)

R

in PrR obtained by taking right adjoints, i.e., natural inclusions, of arrows in the previous diagram being
a pullback square. Since the full subcategories of local objects are closed under equivalences, the right
vertical and bottom horizontal arrows are isofibrations, and in particular are categorical fibrations; thus,
the pullback is computed as simplicial sets, i.e., as the intersection of the full subcategories ModLoc(J)

R and
ModLoc(K)

R in ModLoc(J+K)
R , or equivalently in ModR.

We have reduced the problem to verifying ModLoc(J)
R ∩ ModLoc(K)

R = ModLoc(JK)
R in ModR; the ⊇-

inclusion is immediate by definition of the local objects. For the reverse ⊆-inclusion, we observe that for
any N ∈ ModNil(JK)

R , the natural diagram

ΓJ+K(N) ΓK(N)

ΓJ(N) N

in ModR induced from the counit maps associated with full subcategories of nilpotent objects is a pushout
diagram in ModR. In fact, from ΓJ+K(N) ≃ ΓJ(ΓK(N)), cofiber of the upper horizontal arrow is
LJ(ΓK(N)), while cofiber of the bottom horizontal arrow is LJ(N). Thus, the total cofiber of the diagram
is LJ(LK(N)), the cofiber of the induced map LJ(ΓK(N)) → LJ(N) between these objects. Our claim
LJ(LK(N)) ≃ 0 follows from LK(N) ∈ ModNil(J)

R ; for any x ∈ J , finite generation of K ensures LK as an
endofunctor of ModR preserves small colimits [Lurs, Prop. 7.2.4.9], and hence LK(N)[x−1] ≃ LK(N [x−1]).
Then, as N [x−1] ∈ ModNil(K)

R from the assumption N ∈ ModNil(JK)
R , we conclude LK(N [x−1]) ≃ 0. Finally,

the promised ⊆-inclusion follows from the direct computation, that for any M ∈ ModR which is J-local
and K-local and for any N ∈ ModNil(JK)

R , one has Map
R

(N, M) ≃ 0 from the pushout diagram of nilpotent
objects associated with N and analogous vanishings replacing N by ΓI(N) for I being J, K and J +K.

Proof of Proposition 3.23. Let S=i (resp. Sirr
=i) be the subset of Si consisting of closed subsets of codimen-

sion i (resp. irreducible closed subsets of codimension i) in X. By definition, Si = S=i
∐

Si+1; also, note
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that S=i is cofinal in Si. Thus, the functor of question takes the form

Map(Γi, Γi ⊗ Li+1 ⊗ −) ≃ limdual
V (I)∈Sop

=i
Mapdual

R

(
ModNil(I)

R , Γi ⊗R Li+1 ⊗R −
)

.

To compute the functor term inside the limit, fix C ∈ ModModR
(PrL

st)dual for evaluation for the sake of
convenience. Note that

Γi ⊗R Li+1 ≃ colimV (K)∈S=i

(
colimV (J)∈S=i+1, V (J)⊆V (K)(ModNil(K)

R )Loc(J)
)

,

from the fact that {(V (K), V (J)) ∈ S=i × S=i+1 | V (J) ⊆ V (K)} is cofinal in S=i × S=i+1. Thus, the term
inside the limit, after evaluation of C, takes the form

Mapdual
R

(
ModNil(I)

R , Γi ⊗R Li+1 ⊗R C
)

(13)

≃ Mapdual
R

(
ModNil(I)

R , colimV (K)∈S=i

(
colimV (J)∈S=i+1, V (J)⊆V (K)(ModNil(K)

R )Loc(J)
)

⊗R C
)

.

The remaining further computation of (13) and verification of the formula takes several steps. Below, we
use the abbreviated notation FunL

R := FunL
ModR

.

Lemma 3.27. The object (13) is naturally equivalent to

Mapdual
R

(
ModNil(I)

R , colimV (J)∈S=i+1, V (J)⊆V (I) ModLoc(J)
R ⊗R C

)
. (14)

Proof. First, we note that the object (14) is naturally equivalent to

Mapdual
R

(
ModNil(I)

R , colimV (J)∈S=i+1, V (J)⊆V (I)(ModNil(I)
R )Loc(J) ⊗R C

)
. (15)

In fact, from the natural fiber-cofiber sequence (ModNil(I)
R )Loc(J) → ModLoc(J)

R → (ModLoc(I)
R )Loc(J), we

have a fiber-cofiber sequence

colimV (J)⊆V (I), codim=1(ModNil(I)
R )Loc(J) ⊗R C → colimV (J)⊆V (I), codim=1 ModLoc(J)

R ⊗R C

→ colimV (J)⊆V (I), codim=1(ModLoc(I)
R )Loc(J) ⊗R C

of ModModR
(PrL

st)dual, cf. Lemma 2.8. Note that the third term of this sequence is I-local. By Lemma 3.14,
the sequence obtained by applying Mapdual

R

(
ModNil(I)

R , −
)

to this sequence remains to be a fiber-cofiber
sequence in ModModR

(PrL
st)dual; since the third term is equivalent to 0 by Lemma 3.12 and Corollary 2.20

(1), we have a natural equivalence between (14) and (15).
Thus, we are reduced to verify that the natural map between the objects (13) and (15) is an equivalence.

We first observe that the natural map

colimV (J)⊆V (I), codim=1(ModNil(I)
R )Loc(J) ⊗R C

→ colimV (K)∈S=i

(
colimV (J)⊆V (K), codim=1(ModNil(K)

R )Loc(J) ⊗R C
)

in ModModR
(PrL

st)dual is fully faithful. It suffices to check that for each V (I) ⊆ V (K) ∈ S=i, the functor

colimV (J)⊆V (I), codim=1(ModNil(I)
R )Loc(J) ⊗R C → colimV (J)⊆V (K), codim=1(ModNil(K)

R )Loc(J) ⊗R C

is fully faithful. By Lemma 2.8, one is reduced to the case of C = ModR. Now, Lemma 2.2 implies the
fully faithfulness of the functor; more precisely, Remark 2.3 (1) shows each functor (ModNil(I)

R )Loc(J) ↪→
(ModNil(K)

R )Loc(J) → colimV (J)⊆V (K), codim=1(ModNil(K)
R )Loc(J) is fully faithful, and (2) shows the functor of
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question is fully faithful.
Thus, to prove the claimed natural equivalence between (13) and (15), it suffices by Corollary 2.20 to

check that the induced map

FunL
R

(
ModNil(I)

R , colimV (J)⊆V (I), codim=1(ModNil(I)
R )Loc(J) ⊗R C

)
→ FunL

R

(
ModNil(I)

R , colimV (K)∈S=i

(
colimV (J)⊆V (K), codim=1(ModNil(K)

R )Loc(J) ⊗R C
))

is an equivalence in ModModR
(PrL

st). By writing

DV (K) := colimV (J)⊆V (K), codim=1(ModNil(K)
R )Loc(J) ⊗R C,

the second variable object of the lower functor category can be written as

colimV (K)∈S=i
DV (K) ≃ colimV (K)∈S=i, V (I)⊆V (K) DV (K),

where S=i, ⊇V (I) is the cofinal subset of S=i consisting of closed subsets containing V (I). Note that since
ModNil(I)

R is a dualizable object in ModModR
(PrL

st), the internal mapping object functor FunL
R

(
ModNil(I)

R , −
)

of ModModR
(PrL

st) preserves small colimits. Thus, to check the induced map from FunL
R

(
ModNil(I)

R ,DV (I)
)

to
FunL

R

(
ModNil(I)

R , colimV (K)∈S=i
DV (K)

)
≃ colimV (K)∈S=i, ⊇V (I) FunL

R

(
ModNil(I)

R ,DV (K)
)

is an equivalence, it suffices to check that for all V (K) ∈ S=i, ⊇V (I), the natural map

FunL
R

(
ModNil(I)

R ,DV (I)
)

→ FunL
R

(
ModNil(I)

R ,DV (K)
)

(16)

is an equivalence. To verify (16), consider the natural fiber-cofiber sequence ModNil(I)
R → ModNil(K)

R →
(ModNil(K)

R )Loc(I) in ModModR
(PrL

st)dual; here, we are using that ModNil(I)
R = ModNil(I+K)

R from V (I) ⊆
V (K). From this, we obtain a fiber-cofiber sequence

colimV (J)⊆V (K), codim=1(ModNil(I)
R )Loc(J) ⊗R C → colimV (J)⊆V (K), codim=1(ModNil(K)

R )Loc(J) ⊗R C

→ colimV (J)⊆V (K), codim=1((ModNil(K)
R )Loc(I))Loc(J) ⊗R C

in ModModR
(PrL

st)dual. Note that the third term of the sequence is I-local. Thus, the sequence induced
by taking FunL

R

(
ModNil(I)

R , −
)

to this sequence, which is a fiber-cofiber sequence in ModModR
(PrL

st)dual by
Lemma 2.10, has the third term being equivalent to 0 by Lemma 3.12. In particular, we have a natural
equivalence between

FunL
R

(
ModNil(I)

R , colimV (J)⊆V (K), codim=1(ModNil(I)
R )Loc(J) ⊗R C

)
(17)

and

FunL
R

(
ModNil(I)

R , colimV (J)⊆V (K), codim=1(ModNil(K)
R )Loc(J) ⊗R C

)
= FunL

R

(
ModNil(I)

R ,DV (K)
)

in ModModR
(PrL

st).
It remains to check that the natural map

DV (I) = colimV (J)⊆V (I), codim=1(ModNil(I)
R )Loc(J) ⊗R C → colimV (J)⊆V (K), codim=1(ModNil(I)

R )Loc(J) ⊗R C

(18)
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is an equivalence, hence identifying (17) with FunL
R

(
ModNil(I)

R ,DV (I)
)
. It suffices to check the case

of C = ModR, so let us assume so. Also, by cofinality of the subset S=i+1 in Si+1, one can replace
codim = 1 conditions in the index categories for the colimits by codim ≥ 1. For any V (J) ∈ Si+1 with
V (J) ⊆ V (K), one has (ModNil(I)

R )Loc(J) = (ModNil(I)
R )Loc(I+J), from (ModNil(I)

R )Nil(I+J) = (ModNil(I)
R )Nil(J)

for instance, hence can replace V (J) with V (I) ∩ V (J) which is a closed subset of V (I) of codimen-
sion ≥ 1. Thus, we have a partial order preserving retract V (J) 7→ V (I + J) of the inclusion {V (J) ∈
Si+1 | V (J) ⊆ V (I)} ↪→ {V (J) ∈ Si+1 | V (J) ⊆ V (K)} such that the value of the diagram is in-
variant under the retract, i.e., (ModNil(I)

R )Loc(J) = (ModNil(I)
R )Loc(I+J); this implies that the natural map

colimV (J)⊆V (I), codim=1(ModNil(I)
R )Loc(J) → colimV (J)⊆V (K), codim=1(ModNil(I)

R )Loc(J) between colimits is an
equivalence. More precisely, we have a sink(
(ModNil(I)

R )Loc(J) = (ModNil(I)
R )Loc(I+J) → colimV (J ′)⊆V (I), codim≥1(ModNil(I)

R )Loc(J ′)
)

{V (J)∈Si+1 | V (J)⊆V (K)}
,

and hence a map colimV (J)⊆V (K), codim≥1(ModNil(I)
R )Loc(J) → colimV (J ′)⊆V (I), codim≥1(ModNil(I)

R )Loc(J ′) from
the colimit, which by construction is an inverse equivalence to the map of question.

Lemma 3.28. For V (I) = V (p) ∈ Sirr
=i, i.e., V (I) being irreducible, the object (14) is naturally equivalent

to
C∧
p = Mapdual

R

(
ModNil(p)

R , ModRp ⊗R C
)

.

Proof. The second variable object of the internal mapping object (14) is, by irreducibility assumption,
equivalent to colimV (J)∈Si+1, p⊴J ModLoc(J)

R ⊗R C. Since each V (J) is a codimension 1 subset of V (p) =
Spec(π0R)/p, the latter object is equivalent to colimf∈π0R\p ModLoc((f)+p)

R ⊗R C by Krull principal ideal
theorem.

To further compute the internal mapping object, consider the three fiber-cofiber sequences ModNil(I+J)
R →

ModNil(I)
R → (ModNil(I)

R )Loc(J), ModNil(I)
R → ModR → ModLoc(I)

R , and ModNil(I+J)
R → ModR → ModLoc(I+J)

R ,
where I and J are any finitely generated ideals of π0R. By Lemma 2.11, we know the natural sequence
(ModNil(I)

R )Loc(J) → ModLoc(I+J)
R → ModLoc(I)

R is a fiber-cofiber sequence in ModModR
(PrL

st)dual. By taking
I = (f) and J = p and taking filtered colimits and tensoring with C, we have a fiber-cofiber sequence

colimf∈π0R\p(ModNil(f)
R )Loc(p) ⊗R C → colimf∈π0R\p ModLoc((f)+p)

R ⊗R C → colimf∈π0R\p ModLoc(f)
R ⊗R C

in ModModR
(PrL

st)dual, cf. Lemma 2.8. Since the first object of the sequence is p-local, upon taking
Mapdual

R

(
ModNil(p)

R , −
)

we obtain an equivalence

Mapdual
R

(
ModNil(p)

R , colimf∈π0R\p ModLoc((f)+p)
R ⊗R C

)
≃ Mapdual

R

(
ModNil(p)

R , colimf∈π0R\p ModLoc(f)
R ⊗R C

)
by Lemma 3.14, Lemma 3.12 and Corollary 2.20 (1).

Finally, we further compute the second variable of the right hand side internal mapping object of the
equivalence. We have equivalences

colimf∈π0R\p ModLoc(f)
R ≃ colimf∈π0R\p ModR[f−1] ≃ Modcolimf∈π0R\p R[f−1] ≃ ModRp

in ModModR
(PrL

st)dual, where the second equivalence follows from [Lura, Cor. 4.8.5.13].

Lemma 3.29. In general, for V (I) = V (p1) ∪ · · · ∪ V (pr), where V (pi) ∈ Sirr
=i for i = 1, ..., r, the object

(14) is naturally equivalent to∏dual
i=1,...,r

C∧
pi

=
∏dual

i=1,...,r
Mapdual

R

(
ModNil(pi)

R , ModRpi
⊗R C

)
. (19)
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Proof. We proceed by induction on the number r of irreducible components of V (I). The case of r = 1 is
Lemma 3.28, so let r > 1. Write V (I) = V (p1) ∪ V (I ′), with I ′ = p2 · · · pr. Also, write L to denote either
of the ideals p1 or I ′ in the computations below; in particular, V (L) ⊆ V (I). Observe that:

(1) We have natural equivalences

[(14) for V (L)] ≃ Mapdual
R

(
ModNil(L)

R , colimV (J)∈S=i+1, V (J)⊆V (L)(ModNil(L)
R )Loc(J) ⊗R C

)
≃ Mapdual

R

(
ModNil(L)

R , colimV (J)∈S=i+1, V (J)⊆V (I)(ModNil(L)
R )Loc(J) ⊗R C

)
≃ Mapdual

R

(
ModNil(L)

R , colimV (J)∈S=i+1, V (J)⊆V (I) ModLoc(J)
R ⊗R C

)
.

This was proved in the course of the proof of Lemma 3.27. The first equivalence amounts to the equivalence
between (14) and (15), while the second equivalence follows from the fact that the natural map (18) is
an equivalence. The third equivalence follows exactly as in the proof of the equivalence between (14) and
(15); one considers the fiber-cofiber sequence obtained by taking filtered colimits and tensoring C to the
natural fiber-cofiber sequence (ModNil(L)

R )Loc(J) → ModLoc(J)
R → (ModLoc(L)

R )Loc(J) and applies Lemma 3.12
and Corollary 2.20 (1).

(2) We have

Mapdual
R

(
ModNil(p1+I′)

R , colimV (J)∈S=i+1, V (J)⊆V (I) ModLoc(J)
R ⊗R C

)
≃ 0.

It suffices to check FunL
R

(
ModNil(p1+I′)

R , colimV (J)∈S=i+1, V (J)⊆V (I) ModLoc(J)
R ⊗R C

)
≃ 0 by Corollary 2.20

(1). By dualizability of ModNil(I)
R in ModModR

(PrL
st), the internal mapping object functor FunL

R

(
ModNil(I)

R , −
)

of ModModR
(PrL

st) preserves small colimits, and hence the left hand side object is equivalent to

colimV (J)∈S=i+1, V (J)⊆V (I) FunL
R

(
ModNil(p1+I′)

R , ModLoc(J)
R ⊗R C

)
.

Thus, we are reduced to check that the colimit above is equivalent to 0. Note that we can replace the index
partially ordered set by its cofinal subset consisting of V (J) ∈ Si+1 such that V (p1)∩V (I ′) ⊆ V (J) ⊆ V (I).
For such V (J), we know ModLoc(J)

R ⊗R C ≃ CLoc(J) is contained in CLoc(p1+I′), and in particular is (p1 + I ′)-
local. Thus, by Lemma 3.12, we have FunL

R

(
ModNil(p1+I′)

R , ModLoc(J)
R ⊗R C

)
≃ 0, and conclude that the

colimit is equivalent to 0.
Using (1) and (2) above, we can proceed with the proof. For notational convenience, denote DV (I) :=

colimV (J)∈S=i+1, V (J)⊆V (I) ModLoc(J)
R ⊗R C. We have to compute the object Mapdual

R

(
ModNil(I)

R ,DV (I)
)
; by

Lemma 3.26, we know the object is equivalent to

Mapdual
R

(
ModNil(p1)

R ,DV (I)
)

×
Mapdual

R

(
ModNil(p1+I′)

R ,DV (I)

) Mapdual
R

(
ModNil(I′)

R ,DV (I)
)

.

By (1) and (2) above, we can rewrite the pullback as a product, and have an equivalence

Mapdual
R

(
ModNil(I)

R ,DV (I)
)

≃ Mapdual
R

(
ModNil(p1)

R ,DV (p1)
)

× Mapdual
R

(
ModNil(I′)

R ,DV (I′)
)

.

By induction hypothesis, we can describe each of the two components in the right hand side product.
Together, they give the desired expression of the left hand side object, finishing the proof.

Finally, our formula follows from Lemma 3.27 and Lemma 3.29, and the identification of S=i with the
partially ordered set of finite subsets of Sirr

=i = (Spec π0R)i:

Map(Γi, Γi ⊗ Li+1 ⊗ C) ≃ limdual
V (I)∈Sop

=i
Mapdual

R

(
ModNil(I)

R , Γi ⊗R Li+1 ⊗R C
)

≃ limdual
V (I)∈Sop

=i

∏dual
p∈V (I), ht(p)=i

C∧
pi

≃
∏dual

p∈(Spec π0R)i
C∧
p .
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We would like to describe certain compositions of the endofunctors from Proposition 3.23, which will
describe terms in the motivic limit diagram.

Lemma 3.30. Let R be an E∞-ring such that π0R is Noetherian. For each i ≥ 0 and q ∈ (Spec π0R)i,
the natural map (∏dual

p∈(Spec π0R)i+1 C
∧
p

)∧

q
→
(∏dual

p∈(Spec π0R)i+1, V (p)⊆V (q)
C∧
p

)∧

q

for C ∈ ModModR
(PrL

st)dual is an equivalence, i.e., the natural map of endofunctors of ModModR
(PrL

st)dual

from
Mapdual

R

(
ModNil(q)

R , ModRq ⊗R

∏dual
p∈(Spec π0R)i+1 Mapdual

R

(
ModNil(p)

R , −
))

to
Mapdual

R

(
ModNil(q)

R , ModRq ⊗R

∏dual
p∈(Spec π0R)i+1, V (p)⊆V (q)

Mapdual
R

(
ModNil(p)

R , −
))

is an equivalence.

Proof. Let C ∈ ModModR
(PrL

st)dual. From∏dual
p∈(Spec π0R)i+1 C

∧
p ≃

∏dual
p∈(Spec π0R)i+1, V (p)⊆V (q)

C∧
p ×

∏dual
p∈(Spec π0R)i+1, V (p) ̸⊆V (q)

C∧
p

and from the fact that Mapdual
R

(
ModNil(q)

R , ModRq ⊗R −
)

preserves finite products, we know that to verify
the natural map of question is an equivalence, it suffices to check(∏dual

p∈(Spec π0R)i+1, V (p)̸⊆V (q)
C∧
p

)∧

q
= Mapdual

R

(
ModNil(q)

R , ModRq ⊗R

∏dual
p∈(Spec π0R)i+1, V (p) ̸⊆V (q)

C∧
p

)
≃ 0.

In order to check the vanishing above, it suffices to check the case of C = ModR, i.e.,

Mapdual
R

(
ModNil(q)

R , ModRq ⊗R

∏dual
p∈(Spec π0R)i+1, V (p)̸⊆V (q)

(ModR)∧
p

)
≃ 0. (20)

In fact, as each (−)∧
p is lax symmetric monoidal by Remark 3.22, the object

∏dual
p∈(Spec π0R)i+1, V (p) ̸⊆V (q)

C∧
p

is a module over the algebra
∏dual

p∈(Spec π0R)i+1, V (p)̸⊆V (q)
(ModR)∧

p , and as (−)∧
q is again lax symmetric

monoidal, we know in turn the object
(∏dual

p∈(Spec π0R)i+1, V (p)̸⊆V (q)
C∧
p

)∧

q
is a module over the algebra(∏dual

p∈(Spec π0R)i+1, V (p)̸⊆V (q)
(ModR)∧

p

)∧

q
.

Now, the vanishing (20) follows from Corollary 2.20 combined with the observation that the object in
the second argument of the internal mapping object is a module over ModLoc(q)

R , and hence gives

FunL
R

(
ModNil(q)

R , ModRq ⊗R

∏dual
p∈(Spec π0R)i+1, V (p)̸⊆V (q)

(ModR)∧
p

)
≃ 0.

To check this observation that ModRq ⊗R

∏dual
p∈(Spec π0R)i+1, V (p)̸⊆V (q)

(ModR)∧
p is a module over the closed

idempotent algebra ModLoc(q)
R , it suffices to check that the object

∏dual
p∈(Spec π0R)i+1, V (p)̸⊆V (q)

(ModR)∧
p is

a module over ModLoc(q)
R ; for the latter, it again suffices to check that each (ModR)∧

p is a module over
ModLoc(q)

R , cf. [Lura, Cor. 4.2.3.3].
From the idempotent fiber-cofiber sequence ModNil(q)

R → ModR → ModLoc(q)
R , we can equivalently check
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ModNil(q)
R ⊗R (ModR)∧

p ≃ 0. Note that (ModR)∧
p ≃ Res

(
Mapdual

Rp

(
ModNil(pπ0Rp)

Rp
, ModRp

))
is a module over

the closed idempotent algebra ModRp of ModModR
(PrL

st)dual; thus, in order to check the stated vanishing,
we are reduced to check ModNil(q)

R ⊗R ModRp ≃ 0. This vanishing can be directly verified as follows. One
has ModNil(q)

R ⊗R ModRp ≃ colimp∈D(f)(ModR[f−1])Nil(q) ≃ colimp∈D(f)⊆(Spec π0R)\V (q)(ModR[f−1])Nil(q) by
the assumption V (p) ̸⊆ V (q), and any f ∈ π0R giving D(f) of the index category of the latter colimit, i.e.,
f ∈ q\p, by definition satisfies (ModR[f−1])Nil(q) ≃ 0.

Finally, we can describe the objects of ModModR
(PrL

st)dual appearing as individual terms in the motivic
limit diagram associated with the adelic idempotent fiber-cofiber sequences:

Proposition 3.31. Let R be an E∞-ring such that π0R is Noetherian. Then, for each 0 ≤ i1 < · · · < ir ∈ Z,
we have a natural equivalence

ϕi1 ◦ · · · ◦ ϕir (C)

≃
∏dual

p1∈(Spec π0R)i1

(
· · ·

∏dual
pr−1∈(Spec π0R)ir−1 , pr−1∈V (pr−2)

(∏dual
pr∈(Spec π0R)ir , pr∈V (pr−1)

C∧
pr

)∧

pr−1

· · ·
)∧

p1

for C ∈ ModModR
(PrL

st)dual.

Proof. The case of r = 1 is Proposition 3.23. In general, successive applications of Proposition 3.23 provides
an expression without restrictions pi ∈ V (pi+1) on the indexes for the products, and Lemma 3.30 further
reduces the expression to the claimed formula above.

Now, we have the following adelic descent statement for localizing invariants on dualizable presentable
stable ∞-categories:

Corollary 3.32. Let R be an E∞-ring such that π0R is Noetherian and of finite Krull dimension n. Then,
for any localizing invariant E : PrL,dual

st → V into a stable ∞-category V and any C ∈ ModModR
(PrL

st)dual,
there is a natural equivalence

E(C) ≃ lim
0≤i1<···<ir≤n

E

(∏dual
p1∈(Spec π0R)i1

(
· · ·
(∏dual

pr∈(Spec π0R)ir , pr∈V (pr−1)
C∧
pr

)
· · ·
)∧

p1

)

in V.

Proof. By Example 3.8, we can apply Theorem 3.16 to X = ModModR
(PrL

st)dual, its sequence of adelic
idempotent fiber-cofiber sequences of Construction 3.19, and the restriction of E to ModModR

(PrL
st)dual.

By Proposition 3.31, each of the terms E(ϕi1 · · · ϕir (C)) takes the form as stated above on the right hand
side of the equivalence.

When the underlying commutative ring of R has Krull dimension 1, we can compute the terms in the
limit diagram in a more precise way in the case of continuous K-theory:

Corollary 3.33. Let R be an E∞-ring such that π0R is Noetherian of Krull dimension 1. Then, for each
C ∈ ModModR

(PrL
st)dual, there is a natural pullback-pushout square of spectra

Kcont(C)
∏

η∈(Spec π0R)0 Kcont(ModRη ⊗R C)

∏
p∈(Spec π0R)1 Kcont(C∧

p )
∏

η∈(Spec π0R)0 Kcont
(

ModRη ⊗R

∏dual
p∈(Spec π0R)1∩V (η)

C∧
p

)
.
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Moreover, the bottom right object is naturally equivalent to

∏
η∈(Spec π0R)0 colimS∈Pfin((Spec π0R)1∩V (η))

(∏
p∈S

Kcont
(
(C∧

p )Loc(p)
)

×
∏

p∈(Spec π0R)1∩V (η), p/∈S
Kcont(C∧

p )
)

.

Example 3.34. Let R be an E∞-ring such that π0R is Noetherian of Krull dimension 1. By taking
C = 1 = ModR, Corollary 3.33 says that there is a natural pullback-pushout square of spectra

K(R)
∏

η∈(Spec π0R)0 K(Rη)

∏
p∈(Spec π0R)1 Kcont

(
(ModR)∧

p

) ∏
η∈(Spec π0R)0 Kcont

(
ModRη ⊗R

∏dual
p∈(Spec π0R)1∩V (η)

(ModR)∧
p

)
,

and the bottom right object is furthermore naturally equivalent to

∏
η∈(Spec π0R)0 colimS∈Pfin((Spec π0R)1∩V (η))

(∏
p∈S

Kcont
(
((ModR)∧

p )Loc(p)
)

×
∏

p∈(Spec π0R)1∩V (η), p/∈S
Kcont

(
(ModR)∧

p

))
.

If R is an underlying E∞-ring of an animated commutative ring with π0R being Noetherian of Krull
dimension 1, then for each p ∈ (Spec π0R)1 we have (ModR)∧

p ≃ Ñuc
R̂p

and hence a natural equivalence

Kcont
(
(ModR)∧

p

)
≃ limn K(Rp � pnRp) by Efimov’s result [Efib]; here, the quotient is taken as animated

commutative rings. On the other hand, the spectrum Kcont
(
((ModR)∧

p )Loc(p)
)

= Kcont
(

Ñuc
Loc(p)
R̂p

)
, which

in the case of static R recovers Kcont
(
NucSpf(R̂p)η

)
, cf. Remark 3.10, fits into the pushout square

K(Rp) K (Spec Rp\V (pRp))

limn K(Rp � pnRp) Kcont
(

Ñuc
Loc(p)
R̂p

)

of spectra via Example 3.9 and the equivalence Kcont
(
ModLoc(p)

Rp

)
≃ K (Spec Rp\V (pRp)).

Proof of Corollary 3.33. By Corollary 3.32, we have a square

C
∏

η∈(Spec π0R)0 ModRη ⊗R C

∏dual
p∈(Spec π0R)1 C

∧
p

∏
η∈(Spec π0R)0 ModRη ⊗R

∏dual
p∈(Spec π0R)1∩V (η)

C∧
p

which maps to a pullback-pushout square through any localizing invariants; here, we used Example 3.25
for the right side objects. Since Kcont : PrL,dual

st → Sp preserves small products [Efi24, Th. 4.29], we in
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particular have the following pullback-pushout square

Kcont(C)
∏

η∈(Spec π0R)0 Kcont(ModRη ⊗R C)

∏
p∈(Spec π0R)1 Kcont(C∧

p )
∏

η∈(Spec π0R)0 Kcont
(

ModRη ⊗R

∏dual
p∈(Spec π0R)1∩V (η)

C∧
p

)
of spectra. To further compute the bottom right spectrum, note that for each η ∈ (Spec π0R)0, one has

ModRη ≃ colimη∈D(f) ModLoc(V (f))
R ≃ colimS∈Pfin((Spec π0R)1∩V (η)) Mod

Loc
(

V (S)∪
⋃

η′∈(Spec π0R)0\η
V (η′)

)
R . For

each finite subset S of (Spec π0R)1 ∩ V (η), us write ZS := V (S) ∪
⋃

η′∈(Spec π0R)0\η V (η′) for convenience.
Now, observe that we have:
(1) ModLoc(ZS)

R ⊗R C∧
p ≃ C∧

p for p /∈ S, p ∈ (Spec π0R)1 ∩ V (η). In particular, each C∧
p is a ModLoc(ZS)

R -
module object in ModModR

(PrL
st)dual, and so is their product. Since ModRp ⊗RC∧

p ≃ C∧
p over ModR, i.e., C∧

p

is a ModRp-module object, it suffices to check the equivalence after replacing C∧
p by ModRp . Since ModRp

is equivalent to a filtered colimit in ModModR
(PrL

st)dual of ModLoc(Spec π0R\U)
R over open neighborhoods

U of the point p in (Spec π0R)\ZS , and since ModLoc(ZS)
R ⊗R ModLoc(Spec π0R\U)

R ≃ ModLoc(Spec π0R\U)
R as

ZS ⊆ (Spec π0R)\U , we have ModLoc(ZS)
R ⊗R ModRp ≃ ModRp as desired.

(2) ModLoc(ZS)
R ⊗R C∧

p ≃ (C∧
p )Loc(p) for p ∈ S. For convenience, write Z ′ =

⋃
η′∈(Spec π0R)0\η V (η′), so

ZS = V (S) ∪ Z ′ for instance. From the pushout square of Lemma 3.26, we have a pushout square

ModLoc(∅)
R ⊗R C∧

p ModLoc(V (S\{p})∪Z′)
R ⊗R C∧

p

ModLoc(p)
R ⊗R C∧

p ModLoc(ZS)
R ⊗R C∧

p

in ModModR
(PrL

st)dual. From (1), the upper right object is equivalent to C∧
p and the upper horizontal arrow

is an equivalence. Thus, the lower horizontal arrow is an equivalence, and we have ModLoc(ZS)
R ⊗R C∧

p ≃
(C∧

p )Loc(p) as claimed.
From the above (1) and (2), we know ModRη ⊗R

∏dual
p∈(Spec π0R)1∩V (η)

C∧
p is equivalent to a filtered colimit

over S ∈ Pfin((Spec π0R)1 ∩ V (η)) of the objects of the form
∏

p∈S
(C∧

p )Loc(p) ×
∏dual

p∈(Spec π0R)1∩V (η), p/∈S
C∧
p

in ModModR
(PrL

st)dual. Since ModModR
(PrL

st)dual → PrL,dual
st preserves small filtered colimits and Kcont is

finitary, we obtain the stated expression of the bottom right spectrum of the diagram.
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