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SYMMETRY AND PARITY IN FROBENIUS ACTION ON

COHOMOLOGY

JUNECUE SUH

Abstract. We prove that the Newton polygons of Frobenius on the crystalline
cohomology of proper smooth varieties satisfy a symmetry that results, in
the case of projective smooth varieties, from Poincaré duality and the hard
Lefschetz theorem. As a corollary, we deduce that the Betti numbers in odd
degrees of any proper smooth variety over a field are even (a consequence of
Hodge symmetry in characteristic zero), answering an old question of Serre.
Then we give a generalization and a refinement for arbitrary varieties over
finite fields, in response to later questions of Serre and of Katz.

Let X be a projective smooth variety over C. Then the complex manifold asso-
ciated with X is a Kähler manifold, and its cohomology Hr(X,Q) is equipped with
a pure Hodge structure:

Hr(X,Q)⊗Q C =
⊕

p+q=r

Hpq,

where Hpq = Hq(X,Ωp
X) satisfies Hpq = Hqp. In particular, one has the Hodge

symmetry

hpq = hqp, where hpq := dimC Hpq,

which implies that br = dimQ Hr(X,Q) is even when r is odd. This imposes
a nontrivial condition on the topology of projective smooth varieties (or Kähler
manifolds). For instance, it keeps the Hopf manifold (C2 − {0})/Z (which is a
compact complex manifold) from being a projective smooth variety, because it has
b1 = 1.

In [D1, §5], Deligne constructs a pure Hodge structure on the cohomology of
any proper smooth variety over C. Thus the Hodge symmetry and the evenness of
odd-degree Betti numbers extend to the proper smooth case.

Now let X be a projective smooth variety over a finite field k. For either the ℓ-
adic cohomology H∗

ét(X⊗k k̄,Qℓ) for ℓ invertible in k or the crystalline cohomology
H∗

cris(X/W )K (where K denotes the fraction field of W = W (k)), Poincaré duality
([SGA4 1

2 ] and [B1]) and the hard Lefschetz theorem ([D3] and [KM]) endow Hr(X)
with a perfect pairing that is symmetric when r is even and alternating when r is
odd. In particular, the odd-degree cohomology groups are still even-dimensional. In
the case of crystalline cohomology, we also get a symmetry in the Newton polygon
(for every r).

In this article, we first show that these symmetry and parity statements extend
to the proper smooth case (without a perfect pairing), answering an old question of
Serre. In response to later questions of Serre and of Katz, we then prove more gen-
eral and refined statements concerning arbitrary varieties over finite fields. These
may be considered as more concrete, observable consequences of conjectural prop-
erties of odd-weight motives in characteristic p.
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1. Theorems of Katz-Messing and of Gabber

Throughout this section, let k be a finite field with q = pe elements. Recall that
an algebraic integer α is called a qr-Weil integer, or a q-Weil integer of weight r,
if for any embedding σ : Q(α) −→ C, we have

(1) σ(α) · σ(α) = qr.

Any Weil integer generates over Q either a totally real field or a CM field.

Theorem 1.1 ((Deligne)). Let X be a proper smooth variety over k and ℓ a prime
number different from p. Then for any integer r ≥ 0, all the eigenvalues of the
(geometric) Frobenius acting on Hr

ét(X ⊗k k̄,Qℓ) are qr-Weil integers, and the
reversed characteristic polynomial

Pr,ét(T ) := det
(

1− TFrobq : Hr
ét(X ⊗k k̄,Qℓ)

)

has integer coefficients and is independent of the choice of ℓ 6= p.

This is proved in [D2] in the projective case, and follows from a much more
general theorem in [D3] in the proper case. By using results from [D3] (including
the pgcd theorem on Lefschetz pencils), Katz and Messing proved:

Theorem 1.2 ((Katz-Messing, [KM])). Let X be a projective smooth variety over
k. For any r ≥ 0, the polynomial

Pr,cris(T ) := det (1− TFrobq : Hr
cris(X/W )K) ,

where Frobq := F e and F is the crystalline Frobenius, has integer coefficients and
is equal to Pr,ét(T ).

Using similar ideas, Gabber proved:

Theorem 1.3 ((Gabber, [G])). Let X be a projective smooth variety over k. For
all but finitely many primes ℓ 6= p, the Zℓ-cohomology group H∗

ét(X ⊗k k̄,Zℓ) is
torsion-free.

Gabber’s theorem extends to the case of an arbitrary field k, by applying base
change theorems in étale cohomology after finding a model over a finitely generated
Z-algebra.

These theorems extend to the proper smooth case. In [ChLS], Chiarellotto and
Le Stum extend Theorem 1.2, by first comparing the crystalline cohomology with
the rigid cohomology, and then combining Poincaré duality with earlier results [Ch]
on the weights appearing in the rigid cohomology of smooth varieties.

It is no doubt well known to the experts, but the extension of Theorem 1.3
does not seem to be recorded in the literature. We give a sketch of proof for both
theorems, based on a simple application of de Jong’s theory of alterations.
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Theorem 1.4. The conclusions of both Theorems 1.2 and 1.3 hold true for any
proper smooth variety X over k.

Proof. We may assume that X is connected, hence integral. By applying Chow’s
lemma [EGA2, Lem 5.6.1] and then [dJ1, Th. 4.1], we get a projective, surjective
and generically finite morphism π : Y −→ X from a projective smooth variety Y
over k; we may also assume that π is generically étale.

By Poincaré duality, the pullback map π∗ : Hi
cris(X/W )K −→ Hi

cris(Y/W )K
defines π∗ : Hi

cris(Y/W )K −→ Hi
cris(X/W )K . Then we have π∗ ◦ π∗ = deg(π).

Indeed, by the projection formula and the compatibility of the cycle class map with
the proper push-forward, we have

π∗π
∗x = π∗([Y ] · π∗x) = π∗([Y ]) · x = deg(π)[X ] · x = deg(π)x,

for any x ∈ Hi
cris(X/W )K . See [GM] for the definition of the cycle class map and

the relevant facts.
This implies that π∗ is an injection, so all the eigenvalues of Frobq onHi

cris(X/W )K
are qi-Weil integers. Using the cohomological interpretation of the zeta function:

(2) Z(X/Fq, T ) =

2 dimX
∏

i=0

Pi,cris(T )
(−1)i+1

,

we recover a given Pi,cris as the weight i part (cf. the footnote in §3.1) of the zeta
function itself, i.e., the eigenvalues of Frobq on Hi

cris(X/W )K for i odd (resp. even)
are precisely the reciprocal zeroes (resp. poles) of the zeta function that are qi-Weil
integers. Because the zeta function lies in Q(T ) and the notion of a qi-Weil integer
is Gal(Q/Q)-invariant, it follows that the Pi,cris have coefficients in Q, hence in
Z since Weil integers are algebraic integers. Either by directly invoking Deligne’s
Theorem 1.1 in the proper smooth case or by applying the same π∗ ◦ π∗ = deg(π)
argument in ℓ-adic cohomology for any ℓ 6= p, we get the same characterization of
the Pi,ét, and we have Pi,cris = Pi,ét.

We also use the map π to extend Gabber’s theorem. For any ring A, put
H(X,A) = H∗

ét(X ⊗k k̄, A) and likewise for H(Y,A). It is enough to show that
the Gysin map π∗ : H(Y,Zℓ) −→ H(X,Zℓ) satisfies π∗ ◦ π∗ = deg(π) for all
ℓ 6= p. For then H(X,Zℓ) will be torsion-free whenever ℓ ∤ p deg(π) and H(Y,Zℓ)
is torsion-free. Using Poincaré duality with Z/ℓn-coefficients and the normali-
sation [SGA4, XVIII, Th 2.9 (Var4)], one defines a projective system of maps
π∗ : H(Y,Z/ℓn) −→ H(X,Z/ℓn) satisfying π∗ ◦ π∗ = deg(π) on H(X,Z/ℓn). One
concludes by taking the limit.

�

Remark 1.5. The same applications to cycles as in [KM, Th. 2] work in the proper
smooth case, see [I, 3.5(a)].

2. Symmetry and parity for proper smooth varieties

After making some definitions about multisets, we state and prove our main
theorem for proper smooth varieties. It turns out that the symmetry in the Newton
polygon follows from Theorem 1.4 and a simple Galois theory argument. To show
that the Betti numbers in odd degrees are even, however, we do need the underlying
F -isocrystal.
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2.1. Multisets. By a multiset (with finite support) S of elements in an ambient
set Σ, we mean a finite subset of Σ with multiplicities. Formally, these multisets
correspond to functions µS : Σ −→ Z≥0 such that µS(σ) = 0 for all but finitely
many σ ∈ Σ.

Some notions of usual subsets generalize naturally to multisets. We say that
σ ∈ S if µS(σ) > 0, and that two multisets S1 and S2 in Σ are disjoint if we have
µS1

(σ)µS2
(σ) = 0 for all σ ∈ Σ. The cardinality |S| of S is defined as

∑

σ∈Σ µS(σ).
If Σ is an abelian group (such as Q) and r ∈ Σ, we denote by r − S the multiset
{r − s : s ∈ S}, counted with multiplicities; formally, µr−S(σ) = µS(r − σ) and we
say that S is r-autodual if S = r − S. Finally, if a group G acts on the set Σ, we
denote by gS the multiset {gs : s ∈ S}, and we say that S is G-invariant if gS = S
for all g ∈ G.

Let Q ⊆ C be the algebraic closure of Q in C, and let v : Q
× −→ Q be a p-adic

valuation. If S is a multiset in Q
×
, we denote by v(S) the multiset in Q that

is the “image” of S under v, counted with multiplicities. If S is invariant under
Gal(Q/Q), then v(S) = v′(S) for any p-adic valuation v′ such that v(p) = v′(p).

2.2. Main theorem for proper smooth varieties.

Proposition 2.2.1. Let q = pe be a power of a prime p with e ≥ 1, r a nonnegative

integer, v a p-adic valuation on Q
×
normalized by v(q) = 1, and f(T ) ∈ 1+TQ[T ]

a polynomial. Write

f(T ) =
∏

β∈S

(1− βT ) ( or, formally,
∏

β∈Q
×

(1− βT )µS(β) ),

where S is the Gal(Q/Q)-invariant multiset in Q
×
consisting of the reciprocal roots

of f(T ).
Assume that every β ∈ S is a qr-Weil integer. Then v(S) is r-autodual, i.e.,

v(S) = r − v(S).

Proof. By (1), complex conjugation acts as β 7→ qr/β on S. �

Theorem 2.2.2. Let X be a proper smooth variety over a finite field k of char-
acteristic p, and let r ≥ 0 be an integer. Then the multiset of slopes of Frobenius
on Hr

cris(X/W )K is r-autodual, i.e., for any s ∈ [0, r], s and r − s appear with the
same multiplicity. If r is odd, then dimK Hr

cris(X/W )K (= dimQℓ
Hr

ét(X ⊗k k̄,Qℓ)
for any ℓ 6= p) is even.

Proof. The first statement follows from applying Proposition 2.2.1 to the poly-
nomial Pi,cris(T ); Theorem 1.4 verifies the assumption made in the proposition.
For the second statement, note that the multiplicity of r/2 as a slope of the F -
isocrystal Hr

cris(X/W )K is necessarily even, from Dieudonné-Manin classification.
(The key point here is that the “ordp-slopes” of the σ-linear F on an F -isocrystal
over K = W (Fq)[1/p] are equal to the “ordq-slopes” of the eigenvalues of the K-
linear Frobq, and that in any F -isocrystal, the multiplicity of a slope, written in
lowest terms, is always an integral multiple of its denominator.) �

We remark that the use of the underlying F -crystal is essential in our proof: If
q is an even power of a prime and r ≥ 1 is any odd integer, the linear polynomial
f(T ) = 1−√

qrT satisfies the symmetry, but not the parity.
By a standard “spreading out” argument, the parity statement extends to:
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Corollary 2.2.3. Let X be a proper smooth variety over any field k, and let K be
a separably closed extension of k. Then for any odd integer r ≥ 1, the r-th Betti
number

br,ℓ := dimQℓ
Hr(X ⊗k K,Qℓ)

is independent of ℓ 6= char(k) and is even.

This answers the parity question that we learned of from Illusie. He says it was
originally Serre who asked him the question. It also appeared in print on p. 394 of
[D3].

The theorem also extends to crystalline cohomology over more general fields (cf.
[K]):

Corollary 2.2.4. Theorem 2.2.2 is valid for the F -isocrystal underlying the crys-
talline cohomology of a proper smooth variety over any perfect field of characteristic
p > 0.

Even in this proper and smooth case, one interesting question remains unan-
swered by Theorem 2.2.2. When X is projective and smooth and r is odd, the pres-
ence of a Frobenius-equivariant, alternating and nondegenerate pairing on Hr(X)
forces the determinant of Frobenius on it to be qr(dimHr(X))/2. In the proper smooth
case, Theorem 2.2.2 shows this only up to sign. This question of sign will be settled
later in §3.3, see Corollary 3.3.5.

3. Generalization and refinement

When he received an earlier draft containing Theorem 2.2.2, Serre raised a gen-
eralized version of his original question, concerning arbitrary varieties over finite
fields, as well as a refinement. We give answers below, in Theorems 3.2.1 and 3.3.1.

Throughout this section, X will be a separated scheme of finite type over a finite
field k = Fq of characteristic p > 0. We denote by Q the algebraic closure of Q

in C, and Qcm the compositum of all CM fields in Q. We fix an embedding of Q
into a chosen algebraic closure of K = W (k)[1/p] and get a p-adic valuation v on

Q, normalized by v(q) = 1. The slope of α ∈ Q
×

will mean v(α). For ℓ 6= p, we
regard Q as a subfield of Qℓ via a fixed embedding.

3.1. Review. For any prime ℓ 6= p, we write Hi
ℓ = Hi

ét,c

(

X ⊗k k̄,Qℓ

)

for the ℓ-adic

cohomology with compact support. By [D3, §3.3], every eigenvalue of Frobenius on
Hi

ℓ is a q-Weil integer of some weight (see [I, 4.3] for integrality). One expects that
the polynomial

Pi,ℓ(T ) = det
(

1− TFrobq : Hi
ℓ

)

lies in 1 + TZ[T ] and is independent of ℓ, but neither the integrality nor the inde-
pendence is known in general.

Write Hi
p = Hi

c,rig(X/K), the rigid cohomology with compact support [B2] of

X/k. By cohomological descent in rigid cohomology [ChTs], [Ts] applied to proper
hypercoverings obtained from alterations [dJ1], one also proves that every eigen-
value of Frobenius on Hi

p is a q-Weil integer; cf. [Ts, §5.2]. Again, one expects,
but does not know in general, that the corresponding polynomial Pi,p(T ) lies in
1 + TZ[T ] and coincides with Pi,ℓ(T ) for any ℓ 6= p.
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For every prime ℓ (including ℓ = p), put P∗,ℓ(T ) :=
∏

i Pi,ℓ(T ), the reversed
characteristic polynomial of Frobq on H∗

ℓ = ⊕iH
i
ℓ, and write

(3.1.1) P∗,ℓ(T ) =
∏

β∈S∗

ℓ

(1− βT ),

where S∗
ℓ is a multiset in (Qcm)×.

For each integer r ≥ 0 and each prime ℓ, the sum, over an algebraic closure of
Qℓ or K, of the generalized eigenspaces in Hi

ℓ (resp. H∗
ℓ ) of Frobq with qr-Weil

integer eigenvalues descends to a subspace H
i,(r)
ℓ of Hi

ℓ (resp. H
∗,(r)
ℓ of H∗

ℓ ). They
are the kernels of polynomials in Frobq with Z-coefficients (depending on r and ℓ),

and H
i,(r)
p and H

∗,(r)
p are sub-F -isocrystals. Let S

i,(r)
ℓ and P

(r)
i,ℓ (resp. S

∗,(r)
ℓ and

P
(r)
∗,ℓ (T )) be the corresponding (as in (3.1.1)) multiset and polynomial, respectively.

The previous expectations lead us to expect that S
i,(r)
ℓ and hence S

∗,(r)
ℓ should be

independent of ℓ.

Denote by µ
(r)
ℓ the multiplicity function (see §2.1) of S

∗,(r)
ℓ . We do not know that

µ
(r)
ℓ is independent of ℓ, nor that µ

(r)
ℓ takes a constant value on any Gal(Qcm/Q)-

orbit, but we do know that µ
(r)
ℓ mod 2 satisfies these properties. This follows from

the cohomological interpretation of the zeta function:
∏

i

Pi,ℓ(T )
(−1)i+1

= Z(X/Fq, T )

(see [SGA4 1
2 ] for ℓ 6= p and [ELS] for ℓ = p), which implies

(3.1.2)
∏

i

P
(r)
i,ℓ (T )

(−1)i+1

= Z(r)(X/Fq, T ),

where the right hand side is the weight r part1 of Z(X/Fq, T ). In particular, the
parity of the cardinality:

∣

∣

∣
S
∗,(r)
ℓ

∣

∣

∣
=

∑

β∈(Qcm)×

µ
(r)
ℓ (β)

is independent of ℓ.

3.2. Parity and symmetry for general varieties.

Theorem 3.2.1. Let X be a separated scheme of finite type over Fq and let r ≥ 1
be an odd integer. Then the degree (as a rational function) of the weight r part of

the zeta function Z(r)(X/Fq, T ) is even, and for any ℓ, the cardinality |S∗,(r)
ℓ | (=

the number of qr-Weil integers, counted with multiplicities, occuring as Frobenius
eigenvalues in the total cohomology (ℓ-adic or rigid, according as ℓ 6= p or ℓ = p)
with compact support) is also even.

1Write

Z(X/Fq, T ) =
∏

α∈A

(1− αT )/
∏

β∈B

(1− βT )

with disjoint multisets A and B in (Qcm)×, collect the qr-Weil integers in A and B into A(r) and
B(r), and define

(3.1.3) Z(r)(X/Fq , T ) =
∏

α∈A(r)

(1 − αT )/
∏

β∈B(r)

(1− βT ) ∈ Q(T ).
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Proof. Write (3.1.3) in the reduced form:

(3.2.2) Z(r)(X/Fq, T ) =
f(T )

g(T )
(1−

√
qrT )m0(1 +

√
qrT )m1 ,

where f(T ) and g(T ) are relatively prime polynomials in 1+TZ[T ], of which neither
of ±√

qr is a reciprocal root, and m0,m1 ∈ Z. Here we isolate the cases of ±√
qr,

because these are the fixed points of complex conjugation acting on the set of
qr-Weil integers.

The degrees of both f(T ) and g(T ) are even, because complex conjugation acts
without fixed points on their sets of reciprocal roots, so it remains to prove that
m0 + m1 is even. To see this, note that the multiplicity of r/2 in the slopes of
the reciprocal roots of f(T ) (resp. of g(T )) is necessarily even, again because
complex conjugation acts as β 7→ qr/β without fixed points on the reciprocal roots.
By the classification of Dieudonné-Manin, the multiplicity of r/2 as slope in the

F -isocrystal H
∗,(r)
p is even. These two facts imply, by (3.1.2), that m0 + m1 is

even. �

One can also show that the multiset of Frobenius slopes in H
∗,(r)
p (for any r ≥ 0)

is r-autodual modulo 2, i.e., the multiplicity of a slope s and that of r− s in H
∗,(r)
p

are either both even or both odd.
When X/Fq is smooth, the statement of Theorem 3.2.1 holds with ordinary

cohomology in place of cohomology with compact support, by Poincaré duality.

3.3. Signs.

Theorem 3.3.1. Let X/Fq be a separated scheme of finite type and let r ≥ 1 be an
odd integer. Then the multiplicity of

√
qr as a reciprocal root or pole in Z(X/Fq, T )

is even (hence so is the multiplicity of
√
qr as Frobenius eigenvalue in the total

cohomology with compact support, as in Theorem 3.2.1). The same is true for
−√

qr.

The second statement follows from the first, in view of the proof of Theorem
3.2.1.

For X/Fq and r as above, define m(X/Fq, r) ∈ Z as the order of zero or pole at

T = 1/
√
qr of the zeta function Z(X/Fq, T ), or equivalently that of Z(r)(X/Fq, T ).

So we need to prove that m(X/Fq, r) is even.
First we give some preliminary lemmas.

Lemma 3.3.2. Suppose that X is a separated scheme of finite type over a finite
extension Fqe of Fq, and let X0/Fq be X viewed as an Fq-scheme. Then we have

m(X/Fqe, r) = m(X0/Fq, r).

Proof. By definition of the zeta function of varieties over finite fields, we have

Z(X0/Fq, T ) = Z(X/Fqe, T
e).

Write Z(X/Fqe, T ) = f(T ) · (1−√
qerT )m, where m ∈ Z and f(T ) ∈ Q(

√
qer)(T ) is

defined and takes a nonzero value at T = 1/
√
qer . By definition, m = m(X/Fqe, r).

On the other hand, we get

Z(X0/Fq, T ) = f(T e) ·
(

1− (
√
qrT )e

)m
.
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Since f(T e) is defined and nonzero at T = 1/
√
qr, it follows from the cyclotomic

factorization of the last factor that m = m(X0/Fq, r). �

Lemma 3.3.3. Let U ⊆ X be an open subset with complement F . Then we have

m(X/Fq, r) = m(U/Fq, r) +m(F/Fq, r).

In particular, if two of the three are even, then so is the third.

Proof. It follows from the definition of the zeta function that

Z(X/Fq, T ) = Z(U/Fq, T )Z(F/Fq, T ).

�

Lemma 3.3.4. Suppose that X/Fq is connected, projective and smooth and that G
is a finite group of automorphisms acting Fq-linearly on X. Denote by Y = X/G the
quotient scheme. Then for any odd integer r ≥ 1, both m(X/Fq, r) and m(Y/Fq, r)
are even.

Proof. Choose an auxiliary prime ℓ 6= p, and an ample line bundle L on X . By
replacing L with its G-norm (= ⊗g∈Gg

∗L) if necessary, we may assume that the
cohomology class of L is fixed by G. By the hard Lefschetz theorem and Poincaré
duality, Hr(X) = Hr(X ⊗Fq

Fq,Qℓ) has an alternating nondegenerate pairing
〈·, ·〉L : Hr(X)×Hr(X) −→ Qℓ(−r) that is G-invariant and Frobenius-equivariant.
Moreover, we have

Hi(Y ⊗Fq
Fq,Qℓ) = Hi(X ⊗Fq

Fq,Qℓ)
G for any i ≥ 0.

The G-invariance of 〈·, ·〉L implies that it restricts to a nondegenerate alternating
pairing on Hr(Y ), and Frobenius-equivariance implies that the multiplicity of

√
qr

(in each of Hr(X) and Hr(Y )) as an eigenvalue of Frobenius is even. �

Now let X/Fq be separated of finite type and r ≥ 1 an odd integer. By a repeated
use of Lemma 3.3.3, we may assume that X is integral, normal and projective over
Fq.

The ring Γ := Γ(X,OX) is a finite field extension of Fq. By Lemma 3.3.2,
we may replace Fq by Γ and assume that X/Fq is geometrically connected (hence
geometrically integral, given that normality over a perfect field implies geometric
normality [EGA4, Prop. 6.7.4]).

We proceed by induction on dimension, and assume that we know m(Z/Fq, r) is
even for every Z of dimension strictly less than dimX . By the induction hypothesis
and Lemma 3.3.3, it suffices to find a nonempty open U ⊆ X for which m(U/Fq, r)
is even.

By [dJ2, Th. 5.13] (applied to S = Spec(Fq) with G = {1} in the notation of loc.
cit.), there exist (A) a connected, projective and smooth scheme X ′ over Fq with
an action of a finite group G and (B) a proper, surjective, generically finite and G-
invariant morphism π : X ′ −→ X such that the field extension Fq(X) ⊆ (Fq(X

′))G

is purely inseparable.
Let X ′′ = X ′/G be the quotient scheme with the induced map π′′ : X ′′ −→ X .

There exists a nonempty open subset U ⊆ X such that the restriction of π′′ to
U ′′ := (π′′)−1(U) is finite and flat. By the condition on the function field extension
in (B) above, we may assume that the restriction π′′|U ′′ : U ′′ −→ U is a universal
homeomorphism. Since U ′′ is a dense open subset of X ′′, Lemmas 3.3.4 and 3.3.3
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plus the induction hypothesis show that m(U/Fq, r) = m(U ′′/Fq, r) is even. This
completes the proof of Theorem 3.3.1.

Corollary 3.3.5. Let X be a proper smooth variety over Fq, and let r ≥ 1 be
an odd integer. Then the determinant of Frobq on the r-th cohomology (either ℓ-

adic or crystalline) is equal to qrbr/2, where br = br(X/Fq) is the dimension of the
cohomology.

This answers the question at the end of §2.2, raised independently by Serre and
Katz.

We note that, as Serre kindly pointed out to us, a more straightforward proof
of Theorem 3.3.1 follows from the resolution of singularities in characteristic p > 0
(which isn’t available yet): We could express the zeta function of any variety in
terms of those of projective smooth varieties directly, without the complications
that had to be dealt with in our proof using equivariant alterations.
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[B2] Berthelot, P., Finitude et pureté cohomologique en cohomologie rigide, with an appendix
by de Jong, A. J., Invent. Math. 128 (1997), no. 2, 329–377.

[Ch] Chiarellotto, B., Weights in rigid cohomology. Applications to unipotent F -isocrystals,

Ann. Sci. ENS (4) 31 (1998), no. 5, 683–715.
[ChLS] Chiarellotto, B. and Le Stum, B., Sur la pureté de la cohomologie cristalline, C. R.
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[SGA4] Théorie des topos et cohomologie étale des schemas, Séminaire de Géométrie Algébrique
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