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TOTALLY ORDERED PSEUDO q-FACTORIZATION GRAPHS

AND PRIME FACTORIZATION

MATHEUS BRITO, ADRIANO MOURA, AND CLAYTON SILVA

Abstract. In an earlier publication, the last two authors showed that a finite-dimensional module
for a quantum affine algebra of type A whose q-factorization graph is totally ordered is prime. In
this paper, we continue the investigation of the role of totally ordered pseudo q-factorization graphs
in the study of the monoidal structure of the underlying abelian category. We introduce the notions
of modules with (prime) snake support and of maximal totally ordered subgraphs decompositions.
Our main result shows that modules with snake support have unique such decomposition and that
it determines the corresponding prime factorization. Along the way, we also prove that prime snake
modules (for type A) can be characterized as the modules for which every pseudo q-factorization
graph is totally ordered.

1. Introduction

A major problem in the realm of finite-dimensional representations of quantum affine algebras
is that of describing the factorizations of a given simple module as a tensor product of prime ones.
Certainly, the most successful theoretical approach so far is the connection with cluster algebras.
Still, given a specific example, it is not such a simple task to find the appropriate answer using
this approach. Also, it might be that, for certain classes of modules, other approaches may lead to
more efficient algorithms for finding such factorizations. This is the spirit of our recent publications,
which is further developed here.

The concept of pseudo q-factorization graphs was recently introduced in [3] as a combinatorial
language which is suited for capturing certain properties of Drinfeld polynomials. Among all pseudo
q-factorization graphs afforded by a given Drinfeld polynomial, there is a maximal (the fundamental
factorization graph) and a minimal (the q-factorization graph). Using certain known representation
theoretic facts about tensor products of Kirillov Reshetikhin modules and qcharacters, combined
with special topological/combinatorial properties of the underlying q-factorization graphs, it was
shown in [3] that, for algebras of typeA, modules associated to totally ordered q-factorization graphs
are prime. This provided a first glimpse into the role of totally ordered pseudo q-factorization
graphs in the study of prime factorizations. We have also used certain totally ordered pseudo
q-factorization graphs to construct strongly real modules in [2].

A connected pseudo q-factorization graph with at most two vertices is totally ordered and the
underlying module is certainly prime. The prime factorization of a module whose q-factorization
graph has 3 vertices was described in [4] and we recall it in Theorem 2.6.1 below. In particular,
there is a complete characterization of prime modules whose q-factorization graphs have 3 vertices,
but are not totally ordered. The guiding line of the present paper is the following question: Can
we describe classes of modules for which the prime factorizations can be found from the (purely
combinatorial) study of chains of maximal totally ordered subgraphs (mtos for short) of a given
pseudo q-factorization graph? Our main result, Theorem 2.5.1, describes such a family: that of
modules with snake support. We also show that Theorem 2.5.1 includes, as a particular case, the
main result of [1] on the prime factorization of modules supported on a single node of the underlying
finite type Dynking diagram. In other words, the study of mtos describes the prime factorizations
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of modules with snake support and, in particular, of any module afforded by monochromatic pseudo
q-factorization graphs.

The concepts of snakes and prime snakes were introduced in [5] for algebras of types A and
B. We review the formal definition for type A in Section 2.4. It is immediate that the original
definition of prime snakes is equivalent to requesting that the associated fundamental factorization
graph is totally ordered. We provide another characterization in Theorem 2.4.1: a simple module
is a prime snake module if and only if all of its pseudo q-factorization graphs are totally ordered.
This characterization could serve as a type independent conceptual definition of prime snakes. We
give a few first steps on the discussion about switching between choices of pseudo q-factorization
graphs in Section 3.2. We keep finding examples where intermediate pseudo q-factorization graphs
are more suited for answering different questions than the two extremal graphs. It is not clear to
us how to answer the question: what is the most convenient graph to work with? We leave further
studies in this direction for the future. The initial discussion we make here provides a proof for
Theorem 2.4.1.

Let us explain the statement of Theorem 2.5.1. Given a Drinfeld polynomial π, let π̄ be the
Drinfeld polynomial having exactly one copy of each fundamental factor of π. We say π has snake
support if π̄ arises from a prime snake. If that is the case, Theorem 2.5.1 says the fundamental
factorization graph Gf (π) of π admits a unique (up to isomorphism) mtos-quochain and, moreover,
if G1, . . . , Gl is the multicut of Gf (π) associated with such a quochain, then

V (π) ∼= V (π1)⊗ · · · ⊗ V (πl)

is the unique prime factorization of the simple module V (π), where πj is the Drinfeld polynomial
associated to Gj . The notion of quochains was introduced in [2] and reviewed in Section 2.3 below,
where we also introduce the notion of isomorphic quochains. In summary, the aforementioned
multicut is obtained as follows: G1 is an mtos of Gf (π), G2 is an mtos in the graph obtained
from Gf (π) by deleting the vertices and arrows related to G1, and so on. For any such choice of
multicut, the corresponding factors V (πj) are isomorphic.

The basic background and notation for the main statements are collected in Sections 2.1 to 2.3.
The main results are stated in Sections 2.4 and 2.5. As mentioned above, Theorem 2.5.1 can be seen
as a generalization of the main result of [1]. Since the terminology used in [1] is different than the
one used here, we also provide a more explicit comparison in Section 2.5. In Section 2.6, we make
some comments about modules for which the prime factorizations do not arise from mtos-quochains.
Further background needed for the proofs and the main proofs are given in Section 3.

2. Basic Notation and The Main Statements

Throughout the paper, let Z denote the set integers. Let also Z≥m,Z<m, etc., denote the obvious
subsets of Z. Given a ring A, the underlying multiplicative group of units is denoted by A×. The
symbol ∼= means “isomorphic to”. We shall use the symbol ⋄ to mark the end of remarks, examples,
and statements of results whose proofs are postponed. The symbol � will mark the end of proofs
as well as of statements whose proofs are omitted.

2.1. Quantum Algebras and Their Finite-Dimensional Modules. Although we use the basic
notation as in [3, 4, 2], for the reader’s convenience, we review it here.

Let g be a simple Lie algebra of type An over C and let I be the set of nodes of its Dynkin
diagram. We let x±i , hi, i ∈ I, denote generators as in Serre’s Theorem and let g = n− ⊕ h ⊕ n+

be the corresponding triangular decomposition. The symbols R,R+, Q,Q+, P, P+ will stand for,
respectively, the sets of roots, positive roots, root lattice, the monoid generated by the positive
roots, the weight lattice, and the set of integral dominant weights. The fundamental weights and
simple roots will be denoted by ωi, αi, i ∈ I. For i ∈ I, let i∗ = w0(i), where w0 is the Dynkin
diagram automorphism induced by the longest element of the Weyl group. For i, j ∈ I, we let [i, j]
denote the connected subgraph having i, j as boundary nodes, while the set of boundary nodes of
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J ⊆ I is denoted by ∂J . We also let d(i, j) = #[i, j] − 1 and d(J,K) = min{d(j, k) : j ∈ J, k ∈ K}
for J,K ⊆ I.

We let Uq(g̃) be the quantum affine (in fact loop) algebra over an algebraically closed field
of characteristic zero F, where q ∈ F× is not a root of unity. The generators are denoted by
x±i,r, k

±1
i , hi,s, i ∈ I, r, s ∈ Z, s 6= 0. The subalgebra generated by xi := x±i,0, k

±1
i , i ∈ I is a Hopf

subalgebra of Uq(g̃) isomorphic to the Drinfeld-Jimbo quantum group Uq(g).

For i ∈ I, a ∈ Z, we let ωi,a denote the corresponding fundamental ℓ-weight, which is the
Drinfeld polynomial whose unique non-constant entry is equal to 1− qau ∈ F[u]. We let P+ denote
the multiplicative monoid generated by such elements, with identity element denoted by 1, while
P denotes the corresponding abelian group. We shall say ωi,a occurs in π ∈ P+ if it appears in a
reduced expression for π as a product of fundamental ℓ-weights and set

sup(π) = {i ∈ I : ωi,a occurs in π for some a ∈ Z}.

Let P+
i = {π ∈ P+ : sup(π) = {i}}.

Let C be the full subcategory of that of fintie-dimensional Uq(g̃)-modules whose simple factors
have highest ℓ-weights in P+ and, hence, ℓ-weights in P. Thus, a finite-dimensional Uq(g̃)-module
V is in C iff

V =
⊕

̟∈P

V̟

where V̟ is the ℓ-weight space of V associated to ̟ ∈ P. Set

wtℓ(V ) = {̟ ∈ P : V̟ 6= 0}.

For π ∈ P+, V (π) will denote a simple Uq(g̃)-module whose highest ℓ-weight is π. Since C
is a monoidal category, the notion of prime objects is defined. Moreover, since V (1), the one-
dimensional trivial representation, is the unique invertible object in C, it follows that V ∈ C is
prime iff

V ∼= V1 ⊗ V2 ⇒ Vj
∼= V (1) for some j ∈ {1, 2}.

Every simple object in C admits a decomposition as a tensor product of simple prime modules and
a simple object V is said to be real if V ⊗ V is simple.

For an object V ∈ C, let V ∗ and ∗V be the dual modules to V such that the usual evaluation
maps

V ∗ ⊗ V → F and V ⊗ ∗V → F

are module homomorphisms (cf. [3, Section 2.6]). Then (∗V )∗ ∼= V ∼= ∗(V ∗) and (V1 ⊗ V2)
∗ ∼=

V ∗
2 ⊗ V ∗

1 . The Hopf algebra structure on Uq(g̃) is chosen so that, if V = V (π), then V ∗ ∼= V (π∗),
where π 7→ π∗ is the group automorphism of P determined by

ω∗
i,a = ωi∗,a−ȟ.

Similarly, considering the automorphism determined by ∗ωi,a = ωi∗,a+ȟ, it follows that ∗V (π) ∼=
V (∗π).

Given i ∈ I, a ∈ Z, r ∈ Z≥0, define

ωi,a,r =

r−1
∏

p=0

ωi,a+r−1−2p.

These are the Drinfeld polynomials of the Kirillov-Reshetikhin modules and, hence, we refer to
them as Drinfeld polynomials of KR. The set of all such polynomials will be denoted by KR. Every
π ∈ P+ can be written uniquely as a product of KR type polynomials such that, for every two
factors supported at i, say ωi,a,r and ωi,b,s, the following holds

(2.1.1) a− b /∈ R
r,s
i := {r + s− 2p : 0 ≤ p < min{r, s}}.

Such factorization is said to be the q-factorization of π and the corresponding factors are called the
q-factors of π. By abuse of language, whenever we mention the set of q-factors of π we actually
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mean the associated multiset of q-factors counted with multiplicities in the q-factorization. It is
often convenient to work with factorizations in KR type polynomials which not necessarily satisfy
(2.1.1). Such a factorization will be referred to as a pseudo q-factorization and the associated
factors as the corresponding q-factors of the factorization.

Given (i, r), (j, s) ∈ I × Z>0 and a, b ∈ Z, set

(2.1.2) R
r,s
i,j = {r + s+ d(i, j) − 2p : −d([i, j], ∂I) ≤ p < min{r, s}}.

Note

(2.1.3) R
r,s
i ⊆ R

r,s
i,i .

It is well-known that

(2.1.4) V (ωi,a,r)⊗ V (ωj,b,s) is reducible ⇔ |a− b| ∈ R
r,s
i,j .

Moreover, in that case,

(2.1.5) V (ωi,a,r)⊗ V (ωj,b,s) is highest-ℓ-weight ⇔ a > b.

If r = s = 1, we simplify notation and write Ri,j for R
1,1
i,j .

2.2. Pseudo q-Factorization Graphs. The notion of a pseudo q-factorization graph was intro-
duced in [3]. We now review the rephrased definition given in [2].

Let G = (V,A) be a digraph with vertex set V and arrow set A ⊆ V × V. If a = (v,w) ∈ A, we
set h(a) = w and t(a) = v (the head and the tail of a). A pseudo q-factorization map over G is a
map F : V → KR such that

(2.2.1) F(v) = ωi,a,r and F(w) = ωj,b,s ⇒
[

(v,w) ∈ A ⇔ a− b ∈ R
r,s
i,j

]

.

In particular, if such a map exists, G does not contain loops nor oriented cycles. A pseudo q-
factorization graph is a digraph equipped with a pseudo q-factorization map. We shall say that
a pseudo q-factorization map F over G is fundamental if, for all v ∈ V, F(v) is a fundamental
ℓ-weight. The corresponding pseudo q-factorization graph will then be referred to as a fundamental
factorization graph. Recall (2.1.1) and (2.1.3). We shall say F is a q-factorization map if F(v) is
a q-factor of

(2.2.2) πF :=
∏

v∈V

F(v) ∈ P+.

In that case, the corresponding pseudo q-factorization graph will be referred to as a q-factorization
graph. By abuse of notation, we shall identify v ∈ V with F(v), so we can shorten the above to
πF =

∏

v∈V v. Moreover, we shall abuse of language and simply say “G is a pseudo q-factorization
graph” with no mention to the structure data (V,A,F) and then write πG instead of πF . Despite
the lack of accuracy, this should not cause contextual confusion and should be most often beneficial
for the conciseness of the text. We shall also say G is a pseudo q-factorization graph over π if
πG = π. If H ⊳G. i.e., if H = (U ,A′) is a subgraph of G, we set

(2.2.3) πH = πF|U .

Conversely, given any map F : V → KR defined on a nonempty finite set V, we can construct a
pseudo q-factorization graph having V as vertex set and F as its q-factorization map by defining
A by the requirement:

(v,w) ∈ A ⇔ V (F(v)) ⊗ V (F(w)) is reducible and highest-ℓ-weight.

We denote this graph by G(F). If F is an actual q-factorization map over G(F) and π = πF , we
also use the notation G(π) and call it the q-factorization graph of π. If G(F) is a fundamental
factorization graph, we also use the notation Gf (π) and call it the fundamental (factorization)
graph of π.
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Given pseudo q-factorization graphs G and G′ over π and π′, respectively, we denote by G⊗G′

the unique pseudo q-factorization graph over ππ′ whose vertex set is VG ∪̇ VG′ . Here, VG denotes
the set of vertex of the graph G, and so on.

As commented above, if G affords the structure of a pseudo q-factorization graph, it contains no
loops nor oriented cycles and, hence, the set A induces a partial order on V by transitive extension
of the relation h(a) < t(a) for all a ∈ A. We say G is totally ordered if this order is linear.

Let P be a representation theoretic property, i.e., a property assignable to modules such as being
prime or real. We shall interpret P as a (extrinsic) graphical property as follows. Suppose H is a
subgraph of a pseudo q-factorization graph G. We shall say H satisfies P if V (πH) satisfies P . For
instance, we shall say H is real if V (πH) is real. Suppose G = G1, . . . , Gl is a multicut of G, i.e.,
the family Gk, 1 ≤ k ≤ l, is a family of subgraphs of G with disjoint vertex sets and whose union
is VG. Given a graphical property P , we shall say G has the property P if Gk has property P for
all k (when regarded as subgraphs of G).

By a morphism from a graph G = (V,A) to a graph G′ = (V ′,A′) we mean a map f : V → V ′

such that
(

f(t(a)), f(h(a))
)

∈ A′ for all a ∈ A.

If G and G′ are pseudo q-factorization graphs, we further require that

(2.2.4) F(v) = F ′(f(v)) for all v ∈ V.

We use the notation f : G → G′ to indicate that f is a morphism from G to G′. If f is a morphism,
it induces a map A → A′, a 7→

(

f(t(a)), f(h(a))
)

, which we also denote by f . We say f is a full
morphism if

f(A) = A′
G′

f(V)
.

If f , as well as the induced map on arrows, are bijective, we say f is an isomorphism. If an
ismorphism exists, we write G ∼= G′.

2.3. Quochain Decompositions. Let us recall the notion of quochains in the sense of [2]. Let
G = G1, . . . , Gl be a multicut of a graph G and set

(2.3.1) Ḡk = Gk+1 ⊗ · · · ⊗Gl for 0 ≤ k ≤ l.

Note

(2.3.2) Gk ⊳ Ḡk−1, Ḡk = Ḡk−1 \Gk for all 0 < k ≤ l,

and the sequence Ḡ0, . . . , Ḡl is a proper descending chain of subgraphs:

(2.3.3) ∅ = Ḡl ⊳ Ḡl−1 ⊳ · · · ⊳ Ḡ1 ⊳ Ḡ0 = G.

We shall refer to this chain as the quochain associated to G. By abuse of language, we shall often
refer to G as a quochain as well.

Suppose P is a “graphical property” (including extrinsic properties), i.e., a property assignable
to subgraphs of a graph, such as being connected, totally ordered, real, prime, etc.. We shall say
the multicut G determines a P -quochain (or that G is a P -quochain by abuse of language) if Gk

has the property P when regarded as a subgraph of Ḡk−1 for all 1 ≤ k ≤ l.

We now introduce two notions which will play a prominent role in this paper, starting with that
of isomorphic quochains. Two quochains G1, . . . , Gl and G′

1, . . . , G
′
l′ will be said to be isomorphic

if l′ = l and there exists σ ∈ Sl such that

G′
k
∼= Gσ(k) for all 1 ≤ k ≤ l.

We shall say G has a unique P -decomposition if G admits a P -quochain and every two P -quochains
in G are isomorphic. For instance, if P is “being a maximal connected subgraph of G”, then
G admits a P -quochain and any P -quochain corresponds to an enumeration of the connected
components of G. Thus, G has a unique P -decomposition.
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We shall be concerned with the case that P is “being a maximal totally ordered subgraph”.
For short, we shall refer to quochains with such property as mtos-quochains and to the associated
decompositions as mtos-decompositions. Evidently, every pseudo q-factorization graph G admits
an mtos-quochain.

2.4. Snake Modules and Totally Ordered Pseudo q-Factorization Graphs. Let us recall
the definition of snake modules for type A. Given (ik, ak) ∈ I × Z, k ∈ {1, 2}, it is said that the
ordered pair ((i1, a1), (i2, a2)) is in snake position if

a2 − a1 ∈ minRi1,i2 + 2Z≥0 = d(i1, i2) + 2Z>0.

If a2 − a1 ∈ Ri1,i2 , then it is said the pair is in prime snake position. More generally, if i =

(i1, . . . , il) ∈ I l and a = (a1, . . . al) ∈ Zl, it is said that (i,a) is a (prime) snake if every pair
((ik, ak), (ik+1, ak+1)), 1 ≤ k < l, is in (prime) snake position. Given (i,a) ∈ I l × Zl, set

ωi,a =

l
∏

k=1

ωik,ak .

If (i,a) is a (prime) snake, the module V (ωi,a) is called a (prime) snake module. The first of our
main results gives an alternate perspective for the definition of prime snake modules.

Theorem 2.4.1. Let π ∈ P+. Then, V (π) is a prime snake module if and only if every pseudo
q-factorization graph over π is totally ordered. ⋄

This theorem will be proved as an application of a result about the concept of fusing vertices of
a pseudo q-factorization graph which we introduce in Section 3.2.

2.5. Snake Support and Prime Factorization. Given π ∈ P+, let F be the pseudo q-factoriza-
tion map associated to G := Gf (π) and consider

(2.5.1) π̄ =
∏

ω∈F(V)

ω.

By definition, π̄ has exactly one copy of each fundamental factor of π. We shall say π has snake
support if V (π̄) is a prime snake module. As usual, by abuse of language, we shall also say G has
snake support. We are ready to state the second of our main results.

Theorem 2.5.1. If π has snake support, then G = Gf (π) has a unique mtos-decomposition.
Moreover, if G = G1, . . . , Gl is an mtos-quochain, then

V (π) ∼= V (πG1)⊗ · · · ⊗ V (πGl
)

is the unique prime factorization of V (π). ⋄

The following lemma will be proved in Section 3.4.

Lemma 2.5.2. If π ∈ P+
i for some i ∈ I, the connected components of Gf (π̄) are totally ordered.

⋄

As a consequence, if π ∈ P+
i for some i ∈ I, the prime factorization of V (π) is given by

Theorem 2.5.1. The prime factorization of such modules was described in [1, Theorem 2] in terms
of the concept of (i, n)-segments. Thus, Theorem 2.5.1 can be seen as a generalization of [1,
Theorem 2]. We now establish the dictionary between the two languages.

Given k = (k1, . . . , kl) ∈ Zl, set

k± = (k±1 , . . . , k
±
l−1) with k±s = ks+1 ± ks.

An (i, n)-segment of length l was defined in [1] as a sequence k = (k1, k2, . . . , kl) ∈ Zl such that

(2.5.2) k−s ∈ Ri,i for all 1 ≤ s < l.
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We shall denote by Si,n,l the set of (i, n)-segments of length l and set

Si,n =
⋃

l∈Z>0

Si,n,l.

Given k ∈ Si,n, we let ℓ(k) denote its length, i.e., ℓ(k) = l if and only if k ∈ Si,n,l.

Given k ∈ Zl, i ∈ I, and a ∈ F×, set

̟i,k,a =

l
∏

s=1

ωi,a+ks ∈ P+
i .

Note that, if k ∈ Si,n and G = Gf (̟i,k,a), then

(ωi,a+ks+1 ,ωi,a+ks) ∈ AG for all 1 ≤ s < ℓ(k).

Thus, the fundamental factorization graph associated to the Drinfeld polynomial of an (i, n)-
segment is totally ordered. In other words, the concept of (i, n)-segments is equivalent to that
of prime snakes supported at a single node of the Dynkin diagram. In particular, it follows from
Theorem 2.4.1 that any pseudo q-factorization graph over ̟i,k,a is totally ordered. In particular,
the corresponding simple Uq(g̃)-module is prime and strongly real in the sense of [2]. Continuing
along the lines of the proof of Theorem 2.4.1, we shall prove the following in Section 3.4.

Theorem 2.5.3. Let π ∈ P+
i for some i ∈ I. The following conditions are equivalent:

(i) π = ̟i,k,a for some k ∈ Si,n, a ∈ Z.
(ii) V (π) is a prime snake module.
(iii) Gf (π) is totally ordered.
(iv) G(π) is totally ordered.
(v) V (π) is prime. ⋄

It follows from the results of this Section 2.5 that, for monochromatic fundamental factorization
graphs, the concept of mtos-quochain is equivalent to that of maximal prime snake quochains or,
equivalently, quochains of maximal (i, n)-segments.

2.6. Further Comments. Section 2.5 implies that a “having snake support” is a sufficient con-
dition for the prime factorization to arise from mtos-decompositions. Are there other classes of
modules with the same property? Is there π such that G(π̄) is totally ordered but the prime fac-
torization does not arise from studying mtos-decompositions? These are questions we find worth
of further investigation.

Let us end our discussion by making some comments related to these questions according to the
number of vertices in G(π). Evidently, if the number of vertices is at most two, then the prime
factorization arises from mtos-decompositions. In the case of 3 vertices, the prime factorization
follows from the results of [4], which we now recall. IfG(π) has more than one connected component,
then all of them are totally ordered trees and, hence, prime and strongly real. In that case, if
Gk, 1 ≤ k ≤ l with 2 ≤ l ≤ 3 is an enumeration of the connected components of G, then

V (π) ∼=

l
⊗

k=1

V (πGk
)

is the prime factorization. Thus, henceforth assume G is connected. If G is totally ordered, then
G is prime by [3] and there is nothing further to be done. This happens exactly when G is either a
triangle or a tree which is a directed path. If G is not totally ordered, then it must be of the form

(2.6.1)
r1
i1

r

i
r2
i2

m1 m2 or
r1
i1

r

i
r2
i2

m1 m2

The corresponding prime factorization is described by the following theorem. We need to review
further notation for the statement. If J ⊆ I is a connected subdiagram and [i, j] ⊆ J , let R

r,s
i,j,J
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be defined as in (2.1.2) with J in place of I. We also let wJ
0 denote the non trivial diagram

automorphism of J .

Theorem 2.6.1 ([4, Theorem 2.4.6]). Assume g is of type A and let G = G(π) be an alternating
line as above. For j = 1, 2, let also Ij ⊆ I be the minimal connected subdiagram containing [i, ij ]

such that mj ∈ R
r,rj
i,ij ,Ij

and let j′ be such that {j, j′} = {1, 2}. Then, G is not prime if and only if

there exists j ∈ {1, 2} such that

ij′ ∈ Ij, mj′ ∈ R
r,rj′

i,ij′ ,Ij
, mj′ −mj + ȟIj ∈ R

rj ,rj′

w
Ij
0 (ij),ij′ ,Ij

,

and

(2.6.2) mj + rj ≤ mj′ + rj′ + d(i1, i2).

In that case, V (π) ∼= V (ω)⊗ V (πω−1), where ω is the q-factor corresponding to such j. �

Note that Theorem 2.6.1 characterizes the q-factorization graphs afforded by three-vertex al-
ternating lines which are prime. Each such example is an example of a module whose prime
factorization does not arise from studying maximal totally ordered subgraphs. For instance, this is
the case for π = ω1,3 ω2,0 ω3,3.

In the case that i1 = i2 = i in Theorem 2.6.1, Lemma 2.5.2 implies the prime factorization
given in the last line of this theorem must coincide with that described in Theorem 2.5.1. In the
spirit of establishing the dictionary between the results of this paper and the previous literature,
we dedicate the remainder of this section to make this checking explicit.

Let a ∈ Z be such that the middle vertex of G is ωi,a,r, and, without loss of generality, assume
this vertex is a sink. In that case, the other vertices are

ωi,a+mj ,rj j ∈ {1, 2}.

Let also
Gj = Gf (ωi,a,r ωi,a+mj ,rj)

and note

(2.6.3) rj ≤ rj′ ⇒ Gj′ is a maximal totally ordered subgraph of Gf (π).

In that case, Theorem 2.5.1 implies

(2.6.4) V (π) ∼= V (ωi,a,r ωi,a+mj′ ,rj′
)⊗ V (ωωi,+mj,rj

)

is the prime factorization. Note that, if rj = rj′ , both Gj and Gj′ give rise to mtos-decompositions.
Let us check Theorem 2.6.1 agrees with this. Note we have

mj = r + rj − 2pj with − d(i, ∂I) ≤ pj < 0, Ij = [i+ pj, i− pj ], and w
Ij
0 (ij) = i.

The fact that pj < 0 arises from the assumption we are working with the actual q-factorization.

In particular, the condition ij′ ∈ Ij holds for both choices of j and the condition mj′ ∈ R
r,rj′

i,ij′ ,Ij
is

equivalent to Ij′ ⊆ Ij , i.e., pj ≤ pj′ , which certainly holds for at least one choice of j. Thus, choose
such j. The third condition in the theorem can be rephrased as

(2.6.5) rj + rj′ − 2(rj + pj′ − 1) ∈ R
rj ,rj′

i,i,Ij
,

while [4, (4.3.17)] says (2.6.2) is equivalent to rj ≤ rj′ , which implies (2.6.5) in this case. Thus, in
order to check Theorem 2.6.1 agrees with Theorem 2.5.1, it remains to check that the assumption

|mj −mj′| /∈ R
rj ,r

′
j

i,i , together with the above choice of j, implies rj ≤ rj′ .

For doing this, begin by noting that the choice of j by itself implies mj′ −mj /∈ R
rj ,r

′
j

i,i . Indeed,

mj′ −mj = rj + rj′ − 2(pj′ − pj + rj)

and, since pj ≤ pj′ , we have pj′ − pj + rj ≥ rj. Thus, it remains to check

mj −mj′ /∈ R
rj ,r

′
j

i,i ⇒ rj ≤ rj′.
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Begin by noting that
mj −mj′ = rj + rj′ − 2(pj − pj′ + rj′)

and
pj′ − pj = pj′ + |pj | < d(i, ∂I)

since pj′ < 0 and |pj | = −pj ≤ d(i, ∂I). Therefore,

pj − pj′ + rj′ > pj − pj′ > −d(i, ∂I).

Moreover, since pj ≤ pj′ , it follows that

mj −mj′ /∈ R
rj ,r

′
j

i,i ⇔ pj − pj′ + rj′ ≥ rj .

But the latter condition coincides with (2.6.2) since i1 = i2, thus completing the checking.

3. The Proofs

3.1. Collected Technical Results. In this section, for the readers convenience, we collect a few
technical results we shall need from the existing literature.

Lemma 3.1.1 ([3, Lemma 5.1.2]). Let N ∈ Z>0 and (mk, rk, ik) ∈ Z≥0 × Z>0 × I, 1 ≤ k ≤ N .
Suppose

(3.1.1) |mk −mk−1| ∈ R
rk−1,rk
ik−1,ik

for all 1 < k ≤ N.

(a) For all 1 ≤ k, l ≤ N , there exists pl,k ∈ Z such that ml −mk = rl + rk + d(il, ik)− 2pl,k.
(b) If mk > mk−1 for all 1 < k ≤ N , then pN,1 < min{r1, rN}, and

pN,1 < pl,k < min{rk, rl}, for all 1 ≤ k < l ≤ N, with (k, l) 6= (1, N).

Similarly, if mk < mk−1 for all 1 < k ≤ N , then p1,N < min{r1, rN}, and

p1,N < pk,l < min{rk, rl}, for all 1 ≤ k < l ≤ N, with (k, l) 6= (1, N).

�

Lemma 3.1.2 ([3, Lemma 5.1.3]). Assume mk > mk−1 for all 1 < k ≤ N in Lemma 3.1.1.

(a) If pN,1 ≥ −d([ik, il], ∂I) − 1 for some 1 ≤ k < l ≤ N, (l, k) 6= (1, N), then ml −mk ∈ R
rk,rl
ik ,il

. In

particular, this is the case if mN −m1 ∈ R
r1,rN
i1,iN

and d([ik, il], ∂I) ≥ d([i1, iN ], ∂I).

(b) If mN −m1 ∈ R
r1,rN
i1,iN ,[i1,iN ], then ml −mk ∈ R

rk,rl
ik ,il,[ik,il]

for all 1 ≤ k < l ≤ N . �

We now collect a few known facts about tensor products of highest-ℓ-weight modules. The
following are well-known.

Proposition 3.1.3. Let π,̟ ∈ P+. Then, V (π)⊗ V (̟) is simple if and only if V (̟)⊗ V (π) is
simple and, in that case, V (π)⊗ V (̟) ∼= V (π̟) ∼= V (̟)⊗ V (π). �

Proposition 3.1.4. Let π,̟ ∈ P+. Then, V (π)⊗V (̟) is simple if and only if both V (π)⊗V (̟)
and V (̟)⊗ V (π) are highest-ℓ-weight. �

As in [3, 4, 2], the following theorem plays a crucial role in the main proofs of this paper. For
comments on its proof, see [3, Remark 4.1.7].

Theorem 3.1.5. Let S1, · · · , Sm ∈ C be simple and assume Si is real either for all i > 2 or for all
i < m−1. If Si⊗Sj is highest-ℓ-weight for all 1 ≤ i < j ≤ m, then S1⊗· · ·⊗Sm is highest-ℓ-weight.

�

Corollary 3.1.6. Let S1, · · · , Sm ∈ C be simple and assume Si is real either for all i > 2 or for all
i < m − 1. Then, S1 ⊗ · · · ⊗ Sm is simple if, and only if, Si ⊗ Sj is simple for all 1 ≤ i < j ≤ m.

�

The following played a crucial role in the proof of [2, Corollary 3.5.4], which shows prime snake
modules are strongly real. It will also play a relevant role in the proof of Theorem 2.5.1.
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Proposition 3.1.7 ([7, Proposition 4.1.3(ii)]). Suppose V (π) is a prime snake module and that ω
divides π. Then, V (π)⊗ V (ω) is simple. �

Finally, let us collect some results about ℓ-weights, starting with the well-known facts that

(3.1.2) wtℓ V (π1π2) ⊆ wtℓ V (π1)⊗ V (π2) = (wtℓ V (π1))(wtℓ V (π2)).

As usual, given ω ∈ P, i ∈ I, a ∈ Z, we shall say ω±1
i,a occurs in ω if it appears as a factor in a

reduced expression of ω in terms of fundamental ℓ-weights. More generally, given ω,̟ ∈ P, we
shall say ̟ occurs in ω if the reduced expression for ω contains the one for ̟. The following is
also well known:

(3.1.3) ω ∈ wtℓ V (ωi,a) \ {ωi,a} and ω±1
j,b occurs in ω ⇒ a+ 1 ≤ b ≤ a+ h,

and, moreover,
b = a+ h ⇔ ω = (ωi∗,a+h)

−1 = (∗ωi,a)
−1.

Given π1,π2 ∈ P+, let us write π1 ⋗ π2 if

(3.1.4) ωij ,aj occurs in πj, j ∈ {1, 2} ⇒ a1 > a2.

Note that, since fundamental modules are real, an application of (2.1.5) and Theorem 3.1.5 gives:

(3.1.5) π1 ⋗ π2 ⇒ V (π1)⊗ V (π2) is highest-ℓ-weight.

The following lemma follows from an immediate application of (3.1.2) and (3.1.3).

Lemma 3.1.8. Suppose π1,π2 ∈ P+ satisfy π1 ⋗ π2 and let ω ∈ wtℓ V (π1)⊗ V (π2).

(a) If π2 occurs in ω, then ω = π2ω
′ for some ω′ ∈ wtℓ V (π1).

(b) If (∗π1)
−1 occurs in ω, then ω = (∗π1)

−1ω′ for some ω′ ∈ wtℓ V (π2). �

We shall also need the following extract from the main results of [5, 6]. Let (i,a) be a snake and
write i = (i1, · · · , il) and a = (a1, · · · , al). Given 1 ≤ r ≤ s ≤ l, let

ωi,a,r,s =

s
∏

j=r

ωij ,aj .

For convenience, set ωi,a,1,0 = 1 = ωi,a,l+1,l. It follows from [5, Theorem 6.1] that

(3.1.6) ω ∈ wtℓ V (ωi,a,r,s) ⇒ ωi,a,1,r−1ω(
∗ωi,a,s+1,l)

−1 ∈ wtℓ V (ωi,a).

Moreover, by [6, Theorem 4.1],

(3.1.7) l > 1 and (i,a) is a prime snake ⇒ V (ωi,a,1,l−1)⊗ V (ωi,a,2,l) is reducible

and there exists ω ∈ wtℓ V (ωi,a,1,l−1),ω
′ ∈ wtℓ V (ωi,a,2,l) such that

(3.1.8) ωω′ /∈ wtℓ V (ωi,a,1,l−1ωi,a,2,l).

3.2. Vertex Fusion and Linear Order Preservation. In this section, we initiate an analyses
about how a choice of pseudo q-factorization graph may be more convenient than others depending
on the type of result one is trying to prove about the underlying simple module. As an application
of this initial analyses, we prove Theorem 2.4.1.

Let a, b ∈ Z, r, s ∈ Z>0, and i ∈ I. If |a − b| ∈ R
r,s
i , it is said that ωi,a,r and ωi,b,s are in

special position. In that case, it is well-known that there exist unique c, d ∈ Z, k, l ∈ Z≥0 such that
ωi,c,kωi,d,l is the q-factorization of ωi,a,r ωi,b,s and ωi,c,k is divisible by both ωi,a,r and ωi,b,s. Let us
introduce the following terminology: we shall say that ωi,c,k and ωi,d,l arise from (or are the result
of) the fusion of the KR type polynomials ωi,a,r and ωi,b,s. We say the fusion is pure if k = r + s
or, equivalently, if ωi,a,r ωi,b,s ∈ KR.

Suppose G = (V,A,F) is a pseudo q-factorization graph over π ∈ P+ and that v,w ∈ V
are vertices such that F(v) = ωi,a,r and F(w) = ωi,b,s, as in the previous paragraph. We can
then consider the following pseudo q-factorization graph G′ = (V ′,A′,F ′). Recall that, once we
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have defined V ′ and any map F ′ : V ′ → KR, there exists unique A′ turning G′ into a pseudo
q-factorization graph. If the fusion is not pure, we let V ′ = V, and set

F ′(v) = ωi,c,k, F ′(w) = ωi,d,l, and F ′(u) = F(u) for all u ∈ V \ {v,w}.

The roles of v and w are clearly interchangeable above, i.e., the obtained graphs are isomorphic.
In the case the fusion is pure, we let V ′ = V \ {w} and set

F ′(v) = ωi,a,rωi,b,s and F ′(u) = F(u) for all u ∈ V ′ \ {v}.

Again, the roles of v and w are interchangeable. Evidently, πG′ = π. We shall say G′ is obtained
from G by fusing two vertices and we indicate that by the notation G′ ≺ G. If the fusion is pure,
we write G′ < G. Both ≺ and < can be extended by reflexivity and transitivity to equip the set
Graph(π) of pseudo q-factorization graphs over π with two distinct partial orders. Evidently,

(3.2.1) G′ ≤ G ⇒ G′ � G,

but the converse may not be true. Also

(3.2.2) G(π) � G and G ≤ Gf (π) for every G ∈ Graph(π).

In particular, Gf (π) is the maximum for both partial orders.

We now address the following question. Suppose G′ ≤ G and that G is totally ordered. Under
which additional assumptions can we conclude G′ is also totally ordered? To shorten the writing,
we go back to abusing of terminology by saying that ω ∈ KR is a vertex of a given graph, instead
of saying ω = F(v) for some vertex v.

It suffices to address the question in the case that G′ is obtained from G by fusing only one pair
of vertices. Let ω and ̟ be the fused vertices and assume (ω,̟) ∈ A. In particular,

(3.2.3) ω̟ ∈ KR

is a vertex in G′. All the remaining vertices of G remain vertices in G′. Thus, given µ ∈ V \{ω,̟},
we need to understand under which conditions µ is comparable to ω̟ with respect to the partial
order of V ′. Without loss of generality, we may assume µ is adjacent to either ω or ̟.

Write ω = ωi,a,r and ̟ = ωj,b,s. Then, the assumption (ω,̟) ∈ A together with (3.2.3) implies

(3.2.4) a = b+ r + s and ω̟ = ωi,a−s,r+s.

Let also µ = ωj,c,t. Let us check

(µ,ω) ∈ A ⇒ (µ,ω̟) ∈ A′.

Indeed, the assumption (µ,ω) ∈ A means

c− a = r + t+ d(i, j) − 2p with − d([i, j], ∂I) ≤ p < min{r, t},

and, therefore,

c− (a− s) = (r + s) + t+ d(i, j) − 2p and − d([i, j], ∂I) ≤ p < min{r + s, t}.

Similarly, one checks
(̟,µ) ∈ A ⇒ (ω̟,µ) ∈ A′.

Thus, G′ may fail to be totally ordered only if

(3.2.5) ∃ µ ∈ V such that ̟ < µ < ω.

Here, < is the partial order on V induced by A. Up to arrow duality, we may assume µ is adjacent
to ω, so (ω,µ) ∈ A and, hence,

(3.2.6) a− c = r + t+ d(i, j) − 2p with − d([i, j], ∂I) ≤ p < min{r, t}.

On the other hand, Lemma 3.1.1(b) implies

(3.2.7) c− b = s+ t+ d(i, j) − 2k for some k < min{s, t}.

Using (3.2.4) and (3.2.6), we also have

c− b = c− (a− r − s) = (c− a) + r + s = s− t− d(i, j) + 2p,
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and, hence,

(3.2.8) t+ d(i, j) = k + p.

The upper bounds on (3.2.6) and (3.2.7) then imply

t+ d(i, j) − k < t and t+ d(i, j) − p < t,

or, equivalently,

(3.2.9) d(i, j) < min{p, k}.

If min{r, s} = 1, it follows that min{p, k} ≤ 0 and, hence, (3.2.9) is not satisfied, i.e., there is no µ

as in (3.2.5). This proves:

Proposition 3.2.1. Let G be a totally ordered pseudo q-factorization graph. If G′ is obtained
from G by a sequence of pure fusions such that in every step at least one of the vertices being fused
is fundamental, then G′ is also totally ordered. �

Corollary 3.2.2. Let G be a fundamental factorization graph. If G is totally ordered, then any
pseudo q-factorization graph over πG is totally ordered. �

Let us turn to the proof of Theorem 2.4.1. Given (i,a) ∈ I l × Zl, it is well-known and easily
checked that the element obtained by removing (ik, ak) for some 1 ≤ k ≤ l is also a snake. This
implies

(3.2.10) (i,a) is a snake and ω divides ωi,a ⇒ V (ω) is a snake module.

The following is easily checked directly from the definitions of snakes and factorization graphs.

Lemma 3.2.3. If (i,a) is a snake, the following are equivalent.

(i) (i,a) is a prime snake.
(ii) Gf (ωi,a) is connected.
(iii) Gf (ωi,a) is totally ordered. �

Proof of Theorem 2.4.1. If V (π) is a prime snake module, Lemma 3.2.3 implies Gf (π) is totally
ordered while Corollary 3.2.2 implies every pseudo q-factorization graph over π is totally ordered.
Conversely, in particular G = Gf (π) is totally ordered. In light of Lemma 3.2.3, we need to show
π = ωi,a for some snake (i,a). Let ωik,ak , 1 ≤ k ≤ l, be the fundamental factors of π (with possible
repetitions) labeled so that a1 ≤ a2 ≤ · · · ≤ al. It remains to check

(3.2.11) ak+1 − ak ∈ Rik,ik+1
for all 1 ≤ k < l.

Let ≤ denote the partial order on V induced from the arrows of G. Since Ri,j ⊆ Z>0, we have

ωik,ak � ωik+1,ak+1
for all 1 ≤ k < l.

Thus, since G is totally ordered, the ak must be all distinct and ωi1,a1 < ωi2,a2 < · · · < ωil,al . In
particular, the only possible ordered path from ωik,ak to ωik+1,ak+1

must have a single arrow having
ωik,ak and ωik+1,ak+1

as head and tail, thus proving (3.2.11). �

Let us also record the following lemma.

Lemma 3.2.4. Let G be a pseudo q-factorization graph such that V (πG) is a prime snake module.
If H is a connected subgraph of G, then V (πH) is also a prime snake module.

Proof. It follows from (3.2.10) that V (πH) is a snake module, while Lemma 3.2.3 implies it is prime
if and only if Gf (πH) is connected. Since H is a pseudo q-factorization graph over πH and, hence,
it can be obtained from Gf (πH) by a sequence of pure fusions such that in every step at least one
of the vertices being fused is fundamental, if Gf (πH) were disconnected, so would H be, yielding
a contradiction. �
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3.3. Proof of Theorem 2.5.1. We start by remarking that, if Gf (π̄) is not a singleton, then
Gf (π) is connected. Indeed, let v,w be vertices in G and denote by F̄ the pseudo q-factorization
map of Ḡ = Gf (π̄). Then, there are vertices v̄, w̄ in Ḡ such that

F(v) = F̄(v̄) and F(w) = F̄(w̄).

Since Ḡ is totally ordered, there is a directed path linking v̄ to w̄, say v̄1 = v̄, v̄2, . . . , v̄l = w̄. By
definition of π̄, there exist vertices vk in G such that

(3.3.1) F(vk) = F̄(v̄k) for all 1 ≤ k ≤ l,

from where we conclude v1, . . . , vl is a path in G. Since this conclusion is independent of the choice
of vk, we can choose v1 = v and vl = w.

Henceforth, if H is a maximal totally ordered subgraph of G, we shall simply say H is an mtos.
The first key step is:

Lemma 3.3.1. Suppose π has snake support and H ⊳G = Gf (π). Then, H is an mtos if and only
if πH = π̄.

Proof. Let v̄1, . . . , v̄l be the vertices of Ḡ = Gf (π̄) numbered so that v̄1 < v̄2 < · · · < v̄l. If l = 1,
there is nothing to do. Thus, assume henceforth l > 1, so G is connected.

Let v1, . . . , vl be vertices in G satisfying (3.3.1) and let H be the subgraph such that VH =
{vk : 1 ≤ k ≤ l}. By definition, π = π̄ and H is totally ordered. If it were not maximal, there
would exist v ∈ VG such that the subgraph H ′ whose vertex set is VH ∪ {v} is totally ordered. By
definition of π̄, we must have F(v) = F(vk) for some k. But vertices having the same image under
F are not linked by a directed path. Hence, they are not comparable in the partial order of VG,
i.e., H ′ is not totally ordered, yielding a contradiction. This proves that if πH = π̄, then H is an
mtos.

Conversely, if H is an mtos, let v1, . . . , vm be an enumeration of its vertices so that v1 < v2 <
· · · < vm. The above argument shows we must have F(vk) 6= F(vj) for all 1 ≤ j < k ≤ m. It then
suffices to show m = l. Evidently, m ≤ l. If m < l, we split the argument in two cases:

(i) F̄(v̄k) = F(vk) for all 1 ≤ k ≤ m;
(ii) there exists 1 ≤ k ≤ m such that F̄(v̄k) 6= F(vk).

In case (i), choose vm+1 such that F(vm+1) = F̄(v̄m+1) and let H ′ be the subgraph whose vertices
are vk, 1 ≤ k ≤ m+1. ThenH ′ is totally ordered and properly contains H, yielding a contradiction.
In case (ii), let k be the minimal value with the given property and chose v ∈ VH such that
F(v) = F̄(v̄k). If k = 1, chose a directed path w1, . . . , wr in G with w1 = v and wr = vk and let
H ′ be the subgraph whose vertex-set is {ws : 1 ≤ s ≤ r} ∪ VH . Then, H ′ is totally ordered and
contains H properly, yielding a contradiction. Finally, if k > 1, choose a directed path w1, . . . , wr

in G such that w1 = vk−1, wr = vk, and w1 < w2 < · · · < wr. Let w̄k ∈ VḠ be such that

F(ws) = F̄(w̄s) for all 1 ≤ s ≤ r.

Since w1, . . . , wr is a directed path, then so is w̄1, . . . , w̄r and, hence,

w̄s = v̄k+s−2 for all 1 ≤ s ≤ r.

If it were r = 2, we would get a contradiction with (ii). But if r > 2, the subgraph H ′ whose
vertex-set is VH ∪ {ws : 1 ≤ s ≤ r} is a totally ordered graph properly containing H, yielding the
usual contradiction. �

It follows from Lemma 3.3.1 that, if H and H ′ are mtos of G, then H ∼= H ′. Moreover, we also
have

(3.3.2) G \H ∼= G \H ′.

Lemma 3.3.2. If H is an mtos of G, then every connected component of G\H has snake support.
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Proof. Let C be a connected component of G\H. Then, π̄C divides π̄G and (3.2.10) implies V (π̄C)
is a snake module, which is prime by Lemma 3.2.3. �

Fix an mtos of G, say G1. A recursive application of Lemmas 3.3.1 and 3.3.2 produces a multicut
G = G1, . . . , Gl of G which is an mtos-quochain. If G′ = G′

1, . . . , G
′
m is another mtos-quochain, up

to reordering, we can assume G′
2 arises from a connected component of G\G′

1 which isomorphic to
the connected component which gave rise to G2 in G \G1. Hence, G2

∼= G′
2. An obvious inductive

argument completes the proof that G has a unique mtos-decomposition.

It remains to prove the “moreover” part of Theorem 2.5.1. To shorten notation, set

πk = πGk
for 1 ≤ k ≤ l.

Since V (πk) is a prime snake module, it is prime. Let us proceed by induction on l to prove that

(3.3.3) V (π) ∼= V (π1)⊗ · · · ⊗ V (πl),

which clearly starts if l = 1. Thus, assume l > 1 and let π′ = ππ−1
l . Evidently,

π̄′ = π̄ = π1

and, hence, G′ = Gf (π
′) has snake support. Moreover, G′ = G1, . . . , Gl−1 is an mtos-quochain for

G′ and it follows from the induction assumption that

(3.3.4) V (π′) ∼= V (π1)⊗ · · · ⊗ V (πl−1).

Since snake modules are real, in light of Corollary 3.1.6, it remains to show

(3.3.5) V (πk)⊗ V (πl) is simple for all 1 ≤ k < l.

Lemma 3.3.3. For each 1 ≤ k < l, one of the following holds:

(i) πl divides πk;
(ii) Gk and Gl are connected components of Gk ⊗Gl.

Proof. If l = 2, then (i) holds since πs divides π1 for all 1 ≤ s ≤ l. Assume (i) fails and let us prove
(ii) holds. In particular, k 6= 1. By definition of mtos-quochain, Gk is an mtos of Gk ⊗ · · · ⊗Gl.

Let C1, . . . , Cm be an enumeration of the connected components ofGk⊗· · ·⊗Gl. The construction
of the mtos-quochains described above implies that, for each 1 < s ≤ l, there exists 1 ≤ r ≤ m
such that Gs ⊳ Cr. Assume Gk ⊳ C1. It follows that, if Gs ⊳ C1 for some k < s ≤ l, then πs divides
πk. Hence, since (i) fails, Gl cannot be a subgraph of C1, which implies (ii) holds. �

If k is such that Lemma 3.3.3(ii) holds, then (3.3.5) is immediate. Otherwise, it follows from
Proposition 3.1.7.

It remains to prove uniqueness part of the prime decomposition in Theorem 2.5.1. Thus, assume

V (π) ∼= V (̟1)⊗ · · · ⊗ V (̟m) and V (̟k) is prime for all 1 ≤ k ≤ m.

In particular, G′
k := Gf (̟k) is connected and, hence, so is Gf ( ¯̟ k). Since ¯̟ k divides π̄ for all

1 ≤ k ≤ m, it then follows that G′
k has snake support. Using that V (̟k) is prime once again

together with (3.3.3) (with ̟k in place of π), we conclude V (̟k) is a prime snake module. Using
the first part of Theorem 2.5.1, i.e., the uniqueness of mtos-decomposition for G, the uniqueness of
the prime decomposition for V (π) follows if we show that, up to reordering if necessary, G′

1, . . . , G
′
m

is an mtos-quochain. This follows from the following lemma.

Lemma 3.3.4. Let G = G1, . . . , Gl be a sequence of fundamental factorization graphs such πGk

is a prime snake module for all 1 ≤ k ≤ l and let G = G1 ⊗ · · · ⊗ Gk. If no reordering of G is an
mtos-quochain of G, there exists 1 ≤ k < m ≤ l such that V (πGk

)⊗ V (πGm) is reducible.

Proof. Up to reordering, assume G1 is maximal in the set {Gs : 1 ≤ s ≤ l} which can be regarded
as a subset of the set of subgraphs of G. Let us proceed by induction on l ≥ 2. Suppose we have
shown for l = 2 and assume l > 2.
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Suppose first that Gk is an mtos ofG for some k. By our assumption on G1, we may assume k = 1.
Consider G′ = G2, . . . , Gl. Then, G′ satisfies all the assumptions and the inductive assumption
completes the proof. Otherwise, there exists m > 1, such that Gm contains a vertex v such that
the subgraph with vertex-set VG1 ∪ {v} is totally ordered and properly contains G1. For simplicity
of notation, reorder so that m = 2. It now suffices to show

(3.3.6) V (πG1)⊗ V (πG2) is reducible.

Note this also proves that induction starts when l = 2. We shall actually prove

(3.3.7) wtℓ V (πG1)⊗ V (πG2) 6= wtℓ V (πG1πG2),

which clearly implies (3.3.6).

For proving (3.3.7), let π = πG1πG2 and let (i,a) ∈ Ir × Zr be such that

π̄ = ωi,a =

r
∏

s=1

ωis,as and a1 < · · · < ar.

For j ∈ {1, 2} define wj ∈ {0, 1}r by requiring that wj(s) = 1 iff ωis,as ∈ VGj
. Our assumption on

G1 and G2 implies that there exists 1 ≤ s1 < s2 ≤ r such that

(w1 − w2)(s1) = ±1 and (w1 − w2)(s2) = ∓1.

By choosing s1 and s2 such that s2 − s1 is minimal, we have

(w1 − w2)(s) = 0 for all s1 < s < s2.

Given j ∈ {1, 2}, set

π<
j =

∏

s<s1,
wj(s)=1

ωis,as , π>
j =

∏

s>s2,
wj(s)=1

ωis,as , πj =
∏

s1≤s≤s2,
wj(s)=1

ωis,as .

In particular, πGj
= π<

j πj π
>
j . The following argument extends the one used in [1, Section 2.5] to

the present context.

Let l′ = s2 − s1 + 1 > 1 and (i′,a′) ∈ I l
′

× Zl′ be such that

ωi
′,a′ =

s2
∏

s=s1

ωis,as .

In particular, in the notation of (3.1.7), there exists j, j′ such that {j, j′} = {1, 2},

πj = ωi′,a′,1,l′−1, and πj′ = ωi′,a′,2,l′ ,

and, hence, V (π1) ⊗ V (π2) is reducible. Moreover, it follows from (3.1.8) that there exists ωj ∈
wtℓ V (πj) such that

(3.3.8) ω1ω2 /∈ wtℓ V (π1π2).

Note (3.1.6), applied to πGj
in place of ωi,a, implies

π<
j ωj(

∗π>
j )

−1 ∈ V (πGj
)

and, therefore,
ω := π<

1 π<
2 ω1 ω2 (

∗π>
1

∗π>
2 )

−1 ∈ wtℓ V (πG1)⊗ V (πG2).

Thus, in order to complete the proof, it suffices to check

ω /∈ wtℓ V (πG1πG2).

Indeed, by definition, we have π<
1 π

<
2 ⋖ π1π2 ⋖ π>

1 π
>
2 and, therefore, an application of (3.1.5)

implies we have an epimorphism

V (π>
1 π

>
2 )⊗ V (π1π2)⊗ V (π<

1 π
<
2 ) → V (πG1πG2).

Hence, it suffices to show

(3.3.9) ω /∈ wtℓ V (π>
1 π

>
2 )⊗ V (π1π2)⊗ V (π<

1 π
<
2 ).
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Note (3.1.3) implies (∗π>
1

∗π>
2 )

−1 and π<
1 π

<
2 occur in ω. Then, if (3.3.9) were false, an application

of Lemma 3.1.8 would imply ω1ω2 ∈ wtℓ V (π1π2), yielding a contradiction with (3.3.8). �

3.4. The Case of Monochromatic Graphs. We now prove Theorem 2.5.3, starting with:

Proof of Lemma 2.5.2. Assume G = Gf (π̄) is connected and let S = {ωk : 1 ≤ k ≤ l} be the set
of fundamental factors of π. Then, ωk = ωi,ak for some ak ∈ Z. We assume the enumeration is
chosen so that a1 < a2 < · · · < al. In particular

r < s ⇒ (ωi,ar ,ωi,as) /∈ AG.

Then, the connectedness of G implies that, for each 1 ≤ r < l, there exists r < s ≤ l such that
(ωi,as ,ωi,ar) ∈ AG. It follows from Lemma 3.1.2(a) that

(ωi,ak ,ωi,am) ∈ AG for all r ≤ m ≤ k ≤ s,

which completes the proof. �

The comments before the statement of Theorem 2.5.3 shows we have already proved (i) ⇔ (ii)
⇔ (iii), while Corollary 3.2.2 shows (iii) ⇒ (iv) and the main result of [3] (Theorem 3.5.5) shows
(iv) ⇒ (v). On the other hand, (v) implies Gf (π) is connected and then, Lemma 2.5.2 implies it
has snake support which, in light of Theorem 2.5.1, shows that (v) ⇒ (ii). Thus, it suffices to show
that, for monochromatic graphs, (iv) ⇒ (iii) (this is easily seen to be false in general).

Let π ∈ P+ and assume G(π) is connected and sup(π) = {i}. In particular, there exists
a ∈ Z, l ∈ Z>0, kj ∈ Z,mj ∈ Z>0, 1 ≤ j ≤ l, such that

π =

l
∏

j=1

(ωi,a+kj)
mj and kj < kj′ if j < j′.

Moreover, any other such expression differs by replacing a by a− k for some k, which replaces kj
by kj + k and does not change l or mj. Thus, fix a and let k(π) be the sequence (k1, . . . , kl). The
proof of (iv) ⇒ (iii) is clearly completed with the following lemma.

Lemma 3.4.1. If G(π) is totally ordered, then mj = 1 for all 1 ≤ j ≤ l and k(π) ∈ Si,n. ⋄

We need some preparation to prove this lemma. Given ω,̟ ∈ P+, we will write ω|̟ to mean
that ω divides ̟. If ω,̟ ∈ KR, and ω|̟, there exist i ∈ I, a,m ∈ Z, r, s ∈ Z>0, s ≤ r, such that

̟ = ωi,a,r, ω = ωi,a+m,s

and,

(3.4.1) m = r + s− 2p for some s ≤ p ≤ r.

Given π ∈ P+, recall that we denote by 4 the partial order on the vertex set of G(π) induced by
the arrow structure.

Lemma 3.4.2. Let π ∈ P+. If there exist q-factors of π, say ω and ̟, such that ω|̟, then ω

and ̟ are not related by 4.

Proof. Fix the notation leading to (3.4.1). If it were ω 4 ̟, there would exist vertices v1 =
ω, v2, . . . , vk = ̟ such that (vj+1, vj) are arrows for 1 ≤ j < k. In other words, we would have

vj = ωi,aj ,rj with aj+1 − aj = mj, mj ∈ R
rj ,rj+1

i,i .

In particular,

m = −
k−1
∑

j=1

mj.

Writing mj = rj + rj+1 − 2pj and d = d(i, ∂I), the condition mj ∈ R
rj ,rj+1

i,i is equivalent to

−d ≤ pj < min{rj , rj+1}.
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Hence,

m = s+ r − 2p with p = r + s−
k−1
∑

j=1

pj +

k−1
∑

j=2

rj.

Thus,

p = r + (s− p1) +

k−1
∑

j=2

(rj − pj) > p1 > r

yielding a contradiction with (3.4.1).

Similarly, if it were ̟ 4 ω, by repeating the above argument with v1 = ̟ and vk = ω, we
would conclude

m =
k−1
∑

j=1

mj = s+ r − 2p with p =
k−1
∑

j=1

pj −
k−1
∑

j=2

rj.

Thus,

p = p1 +

k−1
∑

j=2

(pj − rj) < p1 < s,

yielding a contradiction with (3.4.1) again. �

We will also need:

Lemma 3.4.3. Let i ∈ I, r, s ∈ Z>0 and assume ωi,a,r and ωi,a+m,s are the q-factors of π =
ωi,a,r ωi,a+m,s. If m ∈ R

r,s
i,i , then m− s+ 1− (r − 1) ∈ Ri,i or, equivalently,

(1− r, 3− r, . . . , r − 1,m− s+ 1,m− s+ 3, . . . ,m+ s− 1) ∈ Si,n,r+s.

Proof. Write m = r + s− 2p with −d(i, ∂I) ≤ p < min{r, s}. Therefore,

m− s+ 1− (r − 1) = −2(p− 1) ∈ {2j : 1−min{r, s} ≤ j ≤ d(i, ∂I) + 1}

and we need to show we must have j ≥ 1. If it were j < 1 or, equivalently, p > 0, the union of
the q-strings (1− r, 3− r, . . . , r− 1) and (m− s+ 1,m− s+3, . . . ,m+ s− 1) would form a longer
q-string, contradicting the assumption that ωi,a,r and ωi,a+m,s are the q-factors of π. �

Finally, we can give the:

Proof of Lemma 3.4.1. If it could be mj > 1 for some j, it would follow that π has two q-factors
with a common root. The fact that they are q-factors implies the assumptions of Lemma 3.4.2
are satisfied, yielding a contradiction with the assumption that G(π) is totally ordered. Thus, it
remains to show k(π) ∈ Si,n, which follows from Lemma 3.4.3. �
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