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Abstract

In this note, we present a topological proof of the generalized Lelong-

Poincaré formula. More precisely, when the zero locus of a section has a

pure codimension equal to the rank of a holomorphic vector bundle, the

top Chern class of the vector bundle corresponds to the cycle class of the

schematic zero locus of the section in complex Bott-Chern cohomology.

In this note, we provide a topological proof of the generalised Lelong-Poincaré
formula ([An07, Theorem 1.1] or [CGL20, Theorem 1.3]). Both proofs require
some geometric measure theory to apply a certain type of support theorem.
In contrast to the proofs in [An07, Theorem 1.1] or [CGL20, Theorem 1.3],
our approach is simpler in that it only relies on Demailly’s support theorem for
normal currents.

The key observation is that the Chern class of a torsion coherent sheaf of
sufficiently low degree is trivial. Recall the following proposition from [Kob87,
Chapter V, (6.14)]: if a coherent sheaf F has support of codimension at least
2, its determinant line bundle det(F) of F is trivial, implying that c1(F) =
c1(det(F)) = 0. The first non-trivial Chern class of a torsion coherent sheaf
appears precisely at the degree corresponding to the codimension of its support,
which represents a cycle class. Using the Koszul complex, we can transfer the
generalized Lelong-Poincaré formula to the non-trivial Chern class of a torsion
sheaf of the lowest degree. When the schematic zero locus of a section is smooth,
the proof becomes a direct application of the Riemann-Roch-Grothendieck for-
mula and can be generalized to integral Bott-Chern cohomology (see Lemma
4).

Grivaux’s construction of Chern classes for torsion sheaves in [Gri10] relies
on the resolution of singularities. In general, it is difficult to provide an explicit
formula for a general torsion sheaf, though an inductive approach based on the
support of the torsion sheaf can be used. In contrast to [An07, Theorem 1.1] and
[CGL20, Theorem 1.3], the topological approach does not describe the Chern
classes of a vector bundle beyond its top-degree class, which corresponds to the
rank of the vector bundle. Nevertheless, it captures the fact that the top Chern
class of a vector bundle is its Euler class. It is also worth noting that the original
proof in [An07] similarly relies on the resolution of singularities.
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1 Preliminaries

1.1 Rational/Complex Bott-Chern cohomology

The complex Bott-Chern cohomology group is defined as the hypercohomology
group

Hp,q
BC(X,C) = Hp+q(X,B•

p,q,C)

of the complex Bott-Chern complex

B•
p,q,C : C

∆−→ O⊕O → Ω1⊕Ω1 → · · · → Ωp−1⊕Ωp−1 → Ωp → · · · → Ωq−1 → 0
(1)

where ∆ is multiplication by 1 for the first component and multiplication by -1
for the second component. This definition coincides with the usual definition
(i.e. d−closed (p, q)−forms modulo i∂∂−exact forms) as shown in [Dem12,
Section 12, Chap. VI].

The integral Bott-Chern cohomology can be defined by replacing the locally
constant sheaf C with Z(p) = (2π

√
−1)pZ (cf. [Sch07]). The natural map from

Z(p) to C induces a corresponding natural map between rational Bott-Chern
cohomology and complex Bott-Chern cohomology.

1.2 Grothendieck group

To start with, we need the following lemma on Grothendieck group which is a
variant of [Gri07, Proposition 7.8 in Arxiv version]. For the convenience of the
readers, we provide the detailed proof.

Lemma 1. Let X be a complex compact manifold and D a reduced subvariety.
The irreducible components of D are denoted by D1, · · · , DN , and Dij = Di∩Dj.
Assume that Di are smooth and intersect transversally. Consider the canonical
map

⊕iGDi
(X) → GD(X)

where GDi
(X) is the Grothendieck group of coherent sheaves on X supported in

Di. Then there exists an exact sequence

⊕ijGDij
(X) → ⊕iGDi

(X) → GD(X) → 0.

Proof. We proceed by induction on the number N of the irreducible components
of D. We recall that we have isomorphisms of Grothendieck groups G(Di) ≃
GDi

(X) induced by taking direct images (cf. e.g. [Wu23, Lemma 1]). In the
following, we will identify the objects via these isomorphisms. Let D′ be the
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reduced variety whose irreducible components are D1, · · · , DN−1. We have a
complex

G(D′ ∩DN ) → G(D′)⊕G(DN )
π−→ G(D) → 0

where the first map is given by α 7→ (α,−α). Let us verify that this complex is
exact. Consider the map

ψ : Z[coh(D)] → G(D′)⊕G(DN )/G(D′ ∩DN )

defined by
ψ(F) = [i∗D′F ] + [ID′F ]

where Z[coh(D)] is the free abelian group generated by coherent sheaves on D,
i∗D′ : D′ → D is the natrual inclusion, and ID′ is the ideal sheaf defined by
D′. The symbol [•] denotes the class to which the element enclosed within the
brackets belongs. Note that ID′ is a sheaf ofODN

−modules, namely the sheaf of
ideals ofD′∩DN in DN extended toD by zero under the transversal intersection
condition. Let us show that ψ can be defined passing to Grothendieck group.

Consider an exact sequence

0 → F → G → H → 0

of coherent sheaves on D. Let us define the sheaf D by the exact sequence

0 → D → i∗D′F → i∗D′G → i∗D′H → 0.

Note that D is a sheaf of OD′−modules with support in D′ ∩DN , and

[i∗D′G]− [i∗D′F ]− [i∗D′H] = −[D]

in the Grothendieck group G(D′). Let us consider the following exact sequence
of complexes:

0 ID′F F i∗D′F 0

0 ID′G G i∗D′G 0

0 ID′H H i∗D′H 0

Let C be the first column of the diagram above, which is a complex ofODN
−modules.

If we denote by Hk(C) for 0 ≤ k ≤ 2, the cohomology sheaves of C, we have the
long exact sequence

0 → H0(C) → 0 → D → H1(C) → 0 → 0 → H2(C) → 0.

Since H1(C) is a sheaf of ODN
− modules, D is also a sheaf of ODN

−modules.
Therefore, D is a sheaf of OD′∩DN

−modules under the transversal intersection
condition. In G(DN ), we have

[ID′F ]− [ID′G] + [ID′H] = [H0(C)]− [H1(C)] + [H2(C)] = −[D].

Thus
ψ(F)− ψ(G) + ψ(H) = ([D],−[D]) = 0

3



in the quotient.
If F belongs to G(D), then [F ] = [i∗D′F ]+ [ID′F ] in G(D). This means that

π ◦ ψ = id. Now consider H in G(D′) and G in G(DN ). Then

ψ(π(H,G)) = ([i∗D′H]+[i∗D′G])⊕([ID′H]+[ID′G]) = ([H]+[i∗D′∩DN
G])⊕[ID′∩DN

G].

Remark that [ID′∩DN
G] = [G]− [i∗D′∩DN

G] in G(DN ). Thus

([H] + [i∗D′∩DN
G])⊕ [ID′∩DN

G] = [H]⊕ [G]

modulo G(D′ ∩DN), so that ψ ◦ π = id. This proves the exactness.
We can now use the induction hypothesis with D′. We obtain the following

diagram, where the columns as well as the first line are exact:

0 0

G(D′ ∩DN ) G(D′)⊕G(DN ) G(D) 0

⊕i<NG(DiN ) ⊕i<NG(Di)⊕G(DN )

⊕i<j<NG(Dij)

r u

q p

t

The map ⊕G(Di)
π−→ G(D) is onto. Let α be an element of ⊕G(Di) such that

π(α) = 0. Then u(p(α)) = 0, so that there exists β such that r(β) = p(α).
There exists γ such that q(γ) = β. Then p(α − s(γ)) = p(α) − r(q(γ)) = 0. So
there exists δ such that α = s(γ) + t(δ). It follows that α is in the image of
⊕i<jG(Dij) under s+ t.

Next, we recall the definition of Chern classes of bounded complexes. By
[St24, Lemma 13.28.2], there is a canonical isomorphism between the Grothendieck
group of coherent sheaves on X denoted by K0(X), and the Grothendieck group
of the derived category of bounded complexes of OX−modules which have co-
herent cohomology. More precisely, the isomorphism is induced by the map

F• ∈ Db
coh(X) →

∑

i

(−1)i[Hi(F•)] ∈ K0(X).

Note that, by definition, Hi(F•) is a coherent sheaf on X .
By the axiomatic approach of Grivaux in [Gri10], the rational Bott–Chern

characteristic classes extend to a group morphism between the Grothendieck

group of coherent sheaves onX and H
(=)
BC (X,Q)× (with the multiplication struc-

ture). More precisely, let F• be a bounded complexes of OX−modules which
have coherent cohomology. Define

ch(F•) :=
∑

i

(−1)ich(Hi(F•)).

When
F•

1 → F•
2 → F•

3 → F•
1 [1]
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is a distinguished triangle in the derived category of bounded complex ofOX−modules
which have coherent cohomology, we have that

ch(F•
2 ) = ch(F•

1 ) + ch(F•
3 )

from the (bounded) long exact sequence

· · · → Hj(F•
1 ) → Hj(F•

2 ) → Hj(F•
3 ) → Hj+1(F•

1 ) → · · · .

In particular, we can define the rational Bott–Chern characteristic classes of
any bounded complex of OX−modules which have coherent cohomology.

Let F be a coherent sheaf over a compact complex manifold X . Grivaux’s
approach in [Gri10] defines ch(F) in rational or complex Bott-Chern cohomology
with supported in the support of F . This observation is unnecessary to prove
the main result of this note. However, we expert to prove the generalised Lelong-
Poincaré formula in rational Bott-Chern cohomology combining with a better
understanding of cohomology with support. In this note, aside from this part,
we will focus on the complex Bott-Chern cohomology group.

Let us give the proof of this observation. It is enough to consider the torsion
sheaves.

If the support is smooth, it is direct consequence of the Riemann-Roch-
Grothendieck formula. Denote Z as the support of F .

In the case where the support is smooth and F is general, by devissage, we
may assume that F = i∗G for some coherent sheaf on Z. By the Riemann-
Roch-Grothendieck formula in rational or complex Bott-Chern cohomology (cf.
[BSW23], [Wu23]),

i∗(ch(G)Td(Z)) = ch(F)Td(X).

Thus ch(F) is in rational or complex Bott-Chern cohomology with supported
in the support of F .

If the support is an SNC divisor (more generally when irreducible compo-
nents are smooth with transversal intersection), using the exact sequence

⊕i<jGZi∩Zj
(X) → ⊕GZi

(X) → GZ(X) → 0

where Zi are irreducible components of Z, we can reduce to the smooth sub-
manifold case by Lemma 1.

If the support is singular, using embeded resolution of singularity (cf. e.g.
[Wlo08, Theorem 2.0.2]), the preimage of Z under π : X̃ → X of some cho-
sen modification of X (which can be obtained by a composition of blow-ups
of smooth centers and is isomorphic outside the singular locus of Z) satisfies
that the irreducible components are smooth with transversal intersection. The
natural map

F → Rπ∗Lπ
∗F

in the derived category of bounded complexes of sheaves with coherent coho-
mology induces a distinguished triangle

F → Rπ∗Lπ
∗F → F ′ → F [1]

where F ′ has support of higher codimension than Z. Note that the natural map
is the identity map outside the centers of the blow-up (which can be chosen to
be a proper closed analtyic set of support of F) corresponding to identity in

Hom(F , Rπ∗Lπ∗F) = Hom(Lπ∗F , Lπ∗F).

5



The conclusion follows from induction on the codimension of the support and
the Riemann-Roch-Grothendieck formula

π∗(ch(Lπ
∗F)Td(X̃)) = ch(Rπ∗Lπ

∗F)Td(X).

2 Main results

Using Grivaux’s construction, we have the following result on the representatives
of Chern classes using similar ideas from the previous section.

Proposition 1. Let F be a coherent sheaf over a compact complex manifold X.
In the complex Bott-Chern cohomology, ch(F) is represented by normal currents
with supported in the support of F .

Proof. We proceed by an induction on the dimension of X and the dimension
of the support of the coherent sheaf F . The induction is first on the dimension
of X and then on the dimension of the support of the coherent sheaf F .

If F is torsion-free, by [Ros68, Theorem 3.5], there exists a modification
π : X̃ → X such that π∗F/Tors is locally free, where Tors denotes the torsion
part of the corresponding coherent sheaf. As above, the natural map

F → Rπ∗Lπ
∗F

is generically isomorphic. Take smooth metrics on the tangent bundle of X̃ and
X such that the Todd class can be represented by Chern-Weil forms associated
with Chern connections of the corresponding metrics. Take smooth metrics on
π∗F/Tors such that the Chern class of π∗F/Tors can be represented by Chern-
Weil forms associated with Chern connection of the corresponding metric. The
conclusion follows from induction on dimension of support and

π∗(ch(Lπ
∗F)Td(X̃)) = ch(Rπ∗Lπ

∗F)Td(X).

If F is not a torsion sheaf, consider the exact sequence

0 → Tors → F → F/Tors → 0.

Without loss of generality and by the previous arguments, we may assume that
F is a torsion sheaf.

Let Z be the support of F . By applying the embeded resolution of sin-
gularity, the preimage of Z under π : X̃ → X satisfies that the irreducible
components are smooth with transversal intersection. As above, the natural
map

F → Rπ∗Lπ
∗F

is generically isomorphic outside a closed analytic subset of codimension strictly
greater than the codimension of Z. By induction on the dimension of Z, the
fact that the push-forward perserves normal currents, and the Riemann-Roch-
Grothendieck formula, without loss of generality, we may assume that the irre-
ducible components of Z are smooth with transversal intersection.

By devissage, we may assume that F = i∗G for some coherent sheaf on a
smooth submanifold Z. By the Riemann-Roch-Grothendieck formula,

i∗(ch(G)Td(Z)) = ch(F)Td(X).
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Take smooth metrics on the tangent bundle of Z and X such that the Todd class
can be represented by Chern-Weil forms associated with Chern connections
of the corresponding metrics. By induction of the dimension of X , ch(G) is
represented by normal currents supported in the support of G. Thus, ch(F) is
represented by normal currents supported in the support of F .

We will need the following vanishing result as a consequence of the support
theorem of normal current.

Lemma 2. Let F be a torsion sheaf over a connected compact complex manifold
X. Assume that the support of F is of codimension at least r + 1 in X. Then
for any i ≤ r,

ci(F) = 0 ∈ Hi,i
BC(X,C).

Proof. By Proposition 1, ci(F) is represented by normal currents of bidegree
(i, i) supported in the support of F . These currents are trivial for i ≤ r by the
support theorem of normal currents (cf. [Dem12, Chap. III, (2.11)]).

Note that the support theorem (cf. [Dem12, Chap. III, (2.14)]) implies that
cr+1(F) is a cycle class where r + 1 is the codimension of the support of F if
the support is equidimensional.

Lemma 3. Let F be a torsion-free coherent sheaf over a closed irreducible
subvariety Z in a connected compact complex manifold X. Assume that Z is of
codimension s in X and F is of rank r. Let iZ be the inclusion. Then we have

cs(iZ∗F) = r{[Z]} ∈ Hs,s
BC(X,C).

Proof. Apply the embeded resolution of singularity with strict transform Z̃ of
Z. Let p : Z̃ → Z be the restriction of the resolution. Then the natural map
F → p∗(p

∗F) is generically isomorphic and Rip∗(p
∗F) (for i ≥ 1) are torsion

sheaves. By Lemma 2,

cs(iZ∗p∗(p
∗F)) = cs(iZ∗F).

Apply the Riemann-Roch-Grothendieck formula to iZ ◦p. At the lowest degree,
we have

cs(iZ∗p∗(p
∗F)) = iZ∗p∗(r)

which is equal to r{[Z]}.

To indicate the proof of the generalised Lelong-Poincaré formula, let us start
with a special case. Assume that the schematic zero locus Z of some section
of a vector bundle E (of rank r) is smooth with inclusion i : Z → X . By
the Riemann-Roch-Grothendieck formula in rational or complex Bott-Chern
cohomology (cf. [BSW23], [Wu23]),

i∗(Td(Z)) = ch(i∗OZ)Td(X)

whose lowest degree gives

i∗(1) = cr(OX/IZ).
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However, i∗(1) is the cycle class in rational or complex Bott-Chern cohomology
supported on Z. By the Koszul resolution of OX/IZ under the assumption that
Z is smooth, we have

cr(E) = cr(OX/IZ)
which gives the generalised Lelong-Poincaré formula combining with the previ-
ous equality.

The proof of the general case is as follows.

Proposition 2. Let E be a holomorphic vector bundle of rank r over a connected
compact complex manifold X of dimension n and s : X → E be a section
such that Z := s−1(0) (with the reduced complex space structure) is of pure
complex codimension r. Consider the analytic current [s−1(0)] as the sum of
the irreducible components of s−1(0), each multiplied with its Samuel multiplicity
(cf. [Bar75]). Then we have the equality in the complex Bott-Chern cohomology

cr(E) = {[s−1(0)]}.

Proof. Consider the canonical Koszul complex K(s) = (∧•E∗) of the coherent
sheaf OX/Is−1(0). Here Is−1(0) is the ideal sheaf defined by the schematic zero
locus of s. Note that the quotient sheafOX/Is−1(0) may have nilpotent elements.
In general, the Koszul complex is not exact at every point. However, the Koszul
complex is exact at the point where the (not necessarily reduced) complex space
defined by Is−1(0) is Cohen-Macaulay. By [GPR94, Theorem 11.12, Page 75],
it is exact outside a proper closed analytic subset of Z. By Lemma 2, we have
that

cr(E) = cr(OX/Is−1(0)).

Let Zi be the irreducible components of Z with multiplicity mi. Recall that
mi is the rank of OX/Is−1(0) (over OZi

) at a general point of Zi such that
it is a smooth point of Zi disjoint with any other irreducible components and
OX/Is−1(0) is locally free near this point. They are the coefficients of Zi under
the natural map from the Douady space of OX/Is−1(0) to the Barlet space.
(For more information on the natural map from the Douady space to the Barlet
space, we refer to [Bar75, Chaptre V].)

By Lemma 2, we have that

cr(OX/Is−1(0)) =
∑

i,j≥0

cr(Ij
Zi
/(Is−1(0)Ij

Zi
+ Ij+1

Zi
)).

Note that the sum is finite by the assumption that X is compact. On the other
hand, Ij

Zi
/(Is−1(0)Ij

Zi
+Ij+1

Zi
) can be viewed as the direct image of some coherent

sheaf on Zi. In other words, they are OZi
−coherent sheaves. By Lemma 2 and

3, we have

cr(OX/Is−1(0)) =
∑

i,j≥0

rank(Ij
Zi
/(Is−1(0)Ij

Zi
+ Ij+1

Zi
)){[Zi]}.

However for fixed i,
∑

j≥0

rank(Ij
Zi
/(Is−1(0)Ij

Zi
+ Ij+1

Zi
))

is the rank of OX/Is−1(0) as a OX/IZi
−module at a general point of Zi, which

is equal to mi.
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The generalised Lelong-Poincaré formula holds for integral Bott-Chern co-
homology if the schematic zero locus is smooth. The following is a variant of
[Ful98, Lemma 3.2].

Lemma 4. Let E be a holomorphic vector bundle of rank r over a compact
complex manifold X. Assume that there exists a non trivial s ∈ H0(X,E) such
that the (schematic) zero locus Z(s) is smooth. Then cr(E) is the cycle class
associated to the zero locus in the integral Bott-Chern cohomology.

Proof. The line bundle case is a consequence of [Wu20, Lemma 6.47].
Consider the general case. Let f : Y → X be the splitting construction

given on [Ful98, Page 52] such that we have a filtration

E0 = 0 ⊂ Er−1 ⊂ · · · ⊂ f∗E = Er

with Ei/Ei−1 = Li line bundle quotients for any i ≥ 1.
Let p : P(E) → X be the projection. By the projection formula, we have in

the integral Bott-Chern cohomology,

cr(E)p∗(c1(O(1))r−1) = p∗(p
∗(cr(E))c1(O(1))r−1).

However, the natural map

H0,0
BC(X,Z) = Z → H0,0

BC(X,C) = C

in injective. Thus the fact that p∗(c1(O(1))r−1) = 1 ∈ H0,0
BC(X,C) (by inte-

gration of the Chern curvature of any smooth metric on O(1)) impiles that
p∗(c1(O(1))r−1) = 1 ∈ H0,0

BC(X,Z). In other words,

cr(E) = p∗(p
∗(cr(E))c1(O(1))r−1).

If p∗(cr(E)) is the cycle class corresponding to p−1(Z(s)), cr(E) is the cycle
class corresponding to Z(s). The reason is as follows. By assumption and the
projecton formula,

p∗(p
∗(cr(E))c1(O(1))r−1) = p∗ip−1(Z(s))∗(c1(i

∗
p−1(Z(s))O(1))r−1)

where ip−1(Z(s)) is the inclusion. On the other hand, i∗
p−1(Z(s))O(1) = OP(E|Z(s))(1)

from which we have

cr(E) = iZ(s)∗p|p−1(Z(s))∗(c1(OP(E|Z(s))(1))
r−1)

= iZ(s)∗(1) = {Z(s)}.
Since the splitting construction is given by successive projectivization of

some holomorphic vector bundle, by induction, it is enough to show that f∗(cr(E))
is the cycle class corresponding to f−1(Z(s)).

The below proof follows the construction of [Ful98, Lemma 3.2]. Note that
f∗s ∈ H0(Y, f∗E), which defines a section sr in H0(Y, Lr). By the assumption
that Z(s) is smooth, local calculation shows that the divisor Dr defined by
sr is smooth. Let iDr

be the inclusion map. Then s also induces a global
section in i∗Dr

(Er−1) whose (schematic) zero locus is isomorphic to f−1(Z(s)).
This global section defines a section sr−1 in H0(Dr, Lr−1|Dr

). Let Dr−1 be the

9



corresponding divisor in Dr, which is smooth. We can continue this procedure
to define smooth cyclesDi(1 ≤ i ≤ r) of codimension r−i+1 with corresponding
sections si(1 ≤ i ≤ r) (defined on Di+1). By construction, the zero locus of s1
is isomorphic to f−1(Z(s)) (i.e. D1 = f−1(Z(s))).

By the Whitney property, we have that

cr(f
∗E) =

r∏

i=1

c1(Li).

Thus in Hr,r
BC(Y,Z), using the line bundle case,

cr(f
∗E) =

r−1∏

i=1

c1(Li) · {[Dr]} = iDr∗(
r−1∏

i=1

c1(i
∗
Dr
Li)).

By induction, we have that

cr(f
∗E) = iDr∗ ◦ · · · ◦ iD1∗(1) = {[f−1(Z(s))]}.

This finishes the proof of the lemma.

Remark 1. Using the natural map from the complex Bott-Chern cohomology to
complex Deligne cohomology, the generalised Lelong-Poincaré formula holds in
complex Deligne cohomology. However, since complex Deligne cohomology can
be represented by hypercocycles instead of smooth forms of non-pure type (i.e.
not bidegree (r, r) for some r), and there exists no support theorem for currents
of non-pure type, our proof cannot apply directly to show the formula in complex
Deligne cohomology.

Our proof cannot apply directly to show the formula in integral or rational
Bott-Chern cohomology for the same difficulty.

Remark 2. The generalised Lelong-Poincaré formula easily implies the follow-
ing corollary of Demailly on Monge-Ampère operator (cf. [Dem12, Theorem
(4.5), Chap. III]).

Let D1, · · · , Dq be effective divisors on a compact complex manifold X. Let
OX(Di) be the corresponding line bundles. The currents [D1] ∧ · · · ∧ [Dq] are
well defined as a closed positive current on X as soon as

codimC(Dj1 ∩ · · · ∩Djm) ≥ m

for all choices of indices j1 < · · · < jm in {1, · · · , q}. As a corollary, the class
c1(OX(D1)) · · · c1(OX(Dq)) contains a positive (q, q)−current as a representa-
tive under this assumption.

Define E = ⊕q
i=1OX(Di). The corollary of Demailly follows from

cq(E) = c1(OX(D1)) · · · c1(OX(Dq))

by applying the generalised Lelong-Poincaré formula.

Remark 3. The codimension assumption is essential for the generalized Lelong-
Poincaré formula, as demonstrated in Remark 2. Take X to be the blow-up of P2

with exceptional divisor D. Consider the vector bundle E = OX(D) ⊕OX(D).
Since

c2(E) = c1(OX(D))2 = −1,

the generalized Lelong-Poincaré formula does not hold in this case.
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