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UNIVERSAL EXTENSIONS AND EXT-ORTHOGONAL

COMPLEMENTS OF TORSION CLASSES

ENDRE SØRMO RUNDSVEEN

Abstract. We show that torsion pairs in Krull–Schmidt abelian categories
induce an equivalence between the subcategory of torsion-free objects admit-
ting universal extensions to the torsion subcategory, and a quotient of the
ext-orthogonal complement of the torsion subcategory.

This generalize an equivalence described by Bauer–Botnan–Oppermann–
Steen for tilting-torsion pairs and by Buan–Zhou for functorially finite torsion
pairs. The result also provides a more direct proof of the functorially finite
case, not relying on the machinery of two-term silting complexes.

We illustrate our result in the special case of tube categories.

Contents

1. Introduction 1
Acknowledgements 3
2. Preliminaries 3
3. Main result 6
4. When all objects admit universal extensions 9
5. Tame Hereditary Algebras 11
5.1. Torsion pairs in tubes 12
References 16

1. Introduction

Historical Remarks and Motivation. Torsion theories have played a promi-
nent role in algebraic studies from the early ventures into the world of groups and
modules. After the general theory was first axiomatized for abelian categories by
Dickson [Dic66] the theory became an integral component in the study of categories
as well. The underlying idea of the theory is to partition the objects of the category
into subcategories which have a nicely behaved interplay, and from that gaining a
deeper understanding of the category as a whole.

The rise of tilting theory in the years after, showcased the usefulness of torsion
theory. A tilting module T of an algebraA was shown to induce a special torsion pair
that could be carried over to a split torsion pair in the tilted algebra B = End(T )
[BB80, Bon81, HR82]. Thus, relating structure in the algebras to each other. The
theory of tilting was however somewhat limiting when venturing beyond hereditary
algebras, whence Adachi, Iyama and Reiten generalized it to support τ -tilting in
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2 E. S. RUNDSVEEN

[AIR14]. This generalization cemented the link to torsion theories by giving a one-
to-one correspondance between support τ -tilting modules and functorially finite
torsion classes.

In recent years, the authors of [BBOS20] showed that tilting in abelian cate-
gories with enough projectives can be described through cotorsion–torsion triples(C,T ,F), in an effort to reduce the complexity of persistence modules. These triples
were shown to induce an equivalence between the subcategory of torsion-free ob-
jects F and a certain quotient of C. Related work for module categories of artin
algebras by Buan and Zhou [BZ24] extended this equivalence by introducing left

weak cotorsion–torsion triples. These triples are in correspondance with support
τ -tilting modules. Around the same time [APST24] introduced τ-cotorsion–torsion
triples for abelian categories with enough projectives, which in module categories
of artin algebras coincide with left weak cotorsion–torsion triples.

The equivalence of [BBOS20] and most directly [BZ24] can be seen as a result on
functorially finite torsion classes with no mention of (τ -)tilting. That is, let (T , F)
be a functorially finite torsion pair in the module category of an artin algebra A,
then there is an equivalence ([BZ24, Cor. 4.8] and [BBOS20, Thm. 2.13])

(1)
⊥ET

⊥ET ∩ T ≃ T ⊥H = F
where ⊥ET = {M ∈ mod(A) ∣ Ext1A(M,T ) = 0}. The motivating question for this
article is whether we can eliminate the assumption of functorially finiteness while
still obtaining an equivalence.

Our Results. The answer to our question turns out to be closely related to the
existence of universal extensions. A universal extension is a form of subcategory
approximation which were for example essential in Bongartz’ work on completing
partial tilting modules [Bon81], and used by Kerner to study wild hereditary alge-
bras with three non-isomorphic simples [Ker90]. Specifically, a universal extension
from an object Y to a subcategory X is a short exact sequence

X E Y

with X in X , such that every other short exact sequence starting in X and ending
in Y can be realised as a pushout of it.

Our main result is the following.

Theorem A (Theorem 3.5). Let (T , F) be a torsion pair in a Krull–Schmidt

abelian category A, and E the subcategory of objects in F that admit an universal

extension to T . Then there is an equivalence

(2)
⊥ET
[T ] ≃ E .

where [T ] is the ideal of morphisms factoring through T .
When T is functorially finite, every object of F admits a universal extension.

Moreover, in that case every morphism from ⊥ET to T factors through ⊥ET ∩ T .
We observe therefore that for functorially finite torsion pairs the equivalence in (2)
specializes back to that in (1), see Corollary 4.1. This provide an alternative proof
of [BZ24, Cor. 4.8] which does not rely on the bigger machinery at play in that
article.
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At the end of the article we take a look at tame hereditary algebras in order to
provide an example of non-functorially finite torsion classes. Utilizing a description
of torsion classes of tubes given in [BBM14] we observe that for a torsion pair(T , F), all but finitely many indecomposable torsion-free objects admit a universal
extension to T . In particular, when (T , F) is non-functorially finite we observe
that within a tube T, either F ∩ T is of infinite type and every module admits a
universal extension to T (see Section 5.1.1) or F ∩ T is of finite type and not all
modules admit a universal sequence to T (see Section 5.1.2). We will illustrate
both cases with explicit examples, showcasing that within the tube the equivalence
behaves almost as in the functorially finite case.

Conventions and notation Every subcategory in the article are assumed to
be additive and closed under both summands and isomorphisms. In an abelian
category A we denote by ExtiA(X,Y ) the Yoneda extension group of i-extensions
from X to Y , and identify them with the derived functors along the natural isomor-
phism whenever they are defined. Given a subcategory X of an abelian categoryA we denote by ⊥HX (⊥EX ) the subcategory given by objects A ∈ A such that

HomA(A,X ) = 0 (Ext1A(A,X ) = 0). The symmetrical notation X ⊥H and X ⊥E de-
note the dual cases. We say that a Krull–Schmidt category is of finite type if it has
finitely many indecomposables up to isomorphism.

Acknowledgements. The author would like to express his sincere gratitude to
his advisor, Steffen Oppermann, whose support have been steadfast. In addition,
Jacob Fjeld Grevstad is owed thanks for entertaining several discussions and for
giving valuable feedback during the preparation of the manuscript.

2. Preliminaries

The question posed in this article is about properties of torsion subcategories
in abelian categories. We therefore take the time to repeat the definition and
basic properties of these. The notion of a torsion pair of an abelian category was
introduced in [Dic66] as a generalization of torsion in abelian groups, and can be
formulated as follows in a general abelian category.

Definition 2.1. Let A be an abelian category and (T , F) a tuple of full subcate-
gories of A. We call (T , F) a torsion pair in A if

● HomΛ(T , F) = 0, and● for any object X ∈ A there exists a short exact sequence

tX X fX

such that tX ∈ T and fX ∈ F .
The respective subcategories T and F of a torsion pair is called a torsion sub-
category and a torsion-free subcategory. Whenever there is no ambiguity of which
torsion pair we consider, an object X will be called torsion if it lie in T and torsion-
free if it lie in F .
Remark 2.2. The short exact sequence is unique for X in the sense that if there is

an exact sequence T X F with T ∈ T and F ∈ F , then it is isomorphic to
the one above. Hence we will be referring to this sequence as the torsion sequence
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of X with respect to (T , F). Consider a morphism f ∈ HomA(X,Y ), then we can
construct the following commutative diagram with exact rows

tX X fX

tY Y fY

tf f ff

where the dashed morphisms are given uniquely through the universality of kernels
and cokernels. Hence, the torsion pair (T , F) give rise to functors t∶A → T and
f∶A → F .

In the study of subcategories of abelian categories the notion of (minimal)
approximations introduced in [AS80] has a fundamental role. A morphism f ∈
HomA(X,Y ) is right minimal if any endomorphism g ∈ EndA(X) such that f ○g = f
is an automorphism, and equivalently it is left minimal if any endomorphism
h ∈ EndA(Y ) such that h ○ f = f is an autmorphism.

Definition 2.3. Let A be an abelian category and X a subcategory of A. Then a
morphism f ∈ HomΛ(X,A) with X ∈ X and A ∈ A is a right X -approximation of A
if

HomA(X ′, X) HomA(X ′, A)f○−

is an epimorphism for all X ′ ∈ X . Equivalently, if any morphism X ′ → A with
X ′ ∈ X factors through f .

X ′

X A
f

If f in addition is right minimal, we call it a right minimal X -approximation of A.
If all objects A ∈ A admits a right X -approximation then X is called contravariantly

finite. The notions of left approximations and covariantly finite subcategories are
dually defined. A subcategory which is both covariantly and contravariantly finite
is called functorially finite.

The torsion sequences for a torsion pair (T , F) provide approximations makingT contravariantly finite in A and F covariantly finite in A. In the module categories
of a finite dimensional k-algebra Λ we have a description of all functorially finite
torsion classes:

Theorem 2.4 ([Sma84, Theorem]). Let (T , F) be a torsion pair in mod(Λ) for a

finite dimensional k-algebra Λ. Then the following are equivalent.

(1) T is functorially finite,

(2) F is functorially finite,

(3) T = Gen(M) for some M ∈mod(Λ),
(4) F = Sub(N) for some N ∈mod(Λ).

In addition, we may note that any subcategory X ⊆ mod(Λ) of finite type is
functorially finite [AS80, Prop. 4.2]. The result above is extended in [AIR14] to
an equivalence between the set of functorially finite torsion pairs and the set of
support τ -tilting modules of Λ.
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Another concept of interest for subcategories is that of universal extensions. In
the derived category it may in fact be formulated as an approximation of shifted
objects.

Definition 2.5. LetA be an abelian category and X a class of objects in A. A short

exact sequence X E Y with X ∈ addX is a universal extension from Y

to X if it gives an epimorphism of functors ηX ∶ HomA(X,−)∣X Ext1A(Y,−)∣X .

Should the morphism E Y above be right minimal, we call the universal
extension minimal.

Remark 2.6. We may also define a universal extension to X through a push-

out property. That is, a short exact sequence X E Y with X ∈ X is a
universal extension of Y to X if and only if for every other short exact sequence

X ′ E′ Y with X ′ ∈ X , we can find morphisms such that the left hand
square below is a pushout-square

X E Y

X ′ E′ Y

A universal extension, if it exists, need not be unique. However, a minimal
universal extension is unique up to non-unique isomorphisms. Hence, it may be
beneficial to work over an abelian category where arbitrary universal extensions
can be made minimal. It turns out that the Krull–Schmidt property suffices.

Lemma 2.7 ([KS98, Cor. 1.4]). Let A be an abelian Krull–Schmidt category. For

any morphism f ∶X → Y in A there exists a decomposition

f = (f ′ 0) ∶ X =X ′ ⊕X ′′ Y

such that f ′ is right minimal.

Observe that this result characterizes minimal universal extensions to X as uni-
versal extensions without summands on the form X X 0 with X ∈ X .
The connection of universal extensions and approximations can be made more ex-
plicit, as in the following lemma.

Lemma 2.8. Let A be an abelian category with enough projectives, and X be a

covariantly finite subcategory of A. Then every object A in A has a universal

extension to X .
Proof. A has enough projectives, so we construct from an epimorphism P → A of
a projective object P of A to A, the short exact sequence

ΩA P A .

This gives us the epimorphism HomA(ΩA,−) Ext1A(A,−). X is covariantly

finite, so we can find an epimorphism HomA(X, −)∣X HomA(ΩA, −)∣X with

X ∈ X . By composition we now obtain an epimorphism

HomA(X,−)∣X Ext1A(A,−)∣X .
By Yoneda Lemma we thus obtain our wanted extension. �
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Quotient categories. Before moving on from this section we also want to remind
the reader of quotient categories (See e.g. [ASS06, Appendix A.3]). Let B be an
additive category. A class of morphisms I in B is an ideal if it satisfies the following.

● for each X ∈ B, the zero morphism 0X ∈ HomB(X, X) belong to I,● if f, g∶X → Y are both in I, then u ○ (f + g) ○ v ∈ I for all morphisms
u∶Y → Z and v∶W →X .

Given an ideal I we let B/I denote the category with the same objects as B
and Hom-sets given by the quotient groups HomB(X, Y )/I(X, Y ). There is a
canonical functor πI ∶B → B/I, acting as identity on objects and taking morphisms
f ∈ HomB(X, Y ) to their coset in HomB(X, Y )/I(X, Y ). In addition, this functor
enjoy the property that any additive functor F ∶B → X such that F (f) = 0 for all
f ∈ I factors uniquely through πI .

B X

B/I

F

πI
F

If the class I is defined as all morphisms factoring through a class of objects X , we
denote it as [X ].

3. Main result

In this section we will prove Theorem A. We start with a Wakamatsu-type lemma
on universal extensions.

Lemma 3.1. Let X be a full additively closed subcategory of A closed under ex-

tensions. If X E Y
f g

is a minimal universal extension of Y to X , then
E ∈ ⊥EX .

Moreover, g is a right ⊥EX -approximation of Y .

Proof. Pick any ξ∶ X ′ U Y
h ∈ Ext1A(E, X ′)

with X ′ ∈ X . We can then construct the following pullback diagram

X ′ X ′

L U Y

X E Y

g′

h

f

h′

g

where L ∈ X since X is closed under extensions and the dashed arrows exist by the
universality of the lower sequence. The morphism g is right minimal and g = g○h○h′,
so h ○ h′ is an automorphism and consequently ξ splits.

The claim on g being a right ⊥EX -approximation follows from the exact sequence

HomA(−,E)∣⊥EX HomA(−, Y )∣⊥EX Ext1⊥EX (−,X)∣⊥EX = 0−○g

associated to the universal extension. �

For a torsion pair (T , F) and a torsion-free object with a universal extension toT , we therefore can associate to objects in ⊥ET , and as we will see in the following
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simple lemma, objects in ⊥ET are associated to torsion-free objects with universal
extensions.

Lemma 3.2. Let (T , F) be a torsion pair in A. The restriction of the torsion-free

functor f∶A → F to ⊥ET has as essential image the subcategory of objects in F that

admit a universal extension to T .
Proof. Let X ∈ ⊥ET be any object. From the torsion sequence of X ,

tX X fX,

we obtain the exact sequence

HomA(tX,−)∣T Ext1A(fX,−)∣T Ext1A(X,−)∣T = 0.
Hence, fX admits a universal extension to T . Conversely, from Lemma 3.1 we
see that for any minimal universal extension to T of an object F ∈ F we have an
object E ∈ ⊥ET such that fE = F , namely the middle term of the minimal universal
extension. This completes the proof. �

The two previous lemmas provide a way to associate objects in ⊥ET to objects inF admitting universal extensions to T , and vice versa. However, only the restric-
tion of the torsion-free functor is functorial in general. Hence, we need to restrict
appropriately for the other to be functorial. For convenience we will be denoting
the full subcategory of torsion-free objects admitting a universal extension to T byE . We also fix a minimal extension for each object X ∈ E and call it the minimal
universal extension of X .

Lemma 3.3. Let (T , F) be a torsion pair in A, and ξ∶ T E F the

minimal universal extension of F ∈ E. The assignment F ↦ E gives a functor

c∶E → ⊥ET /I, where I is the ideal of all morphisms in ⊥ET factoring through

objects in T .
Proof. Let f ∶F → F ′ be a morphism in E . We construct the commutative diagram

T E F

T ′ E′ F ′

cf f

where the rows are minimal universal extensions. The long exact sequence induced
by HomA(E, −) and the lower row guarantees the existence of cf ∶E → E′ making
the right square commutative, since ExtA(E, T ′) = 0 by Lemma 3.1. Finally for
well-definedness, observe that the zero morphism 0∶F → F ′ is sent to a morphism
c0 which factors through T ′. Hence, we obtain a functor c∶E → ⊥ET /I. �

Remark 3.4. We can think of the objects in ⊥ET /I as those in ⊥ET with no

summands in T . Also, a universal extension ǫ ∶ T E F from F ∈ F
to T is minimal if and only if E has no summand in T . One direction is proven
contrapositively. Let

ǫ ∶ T E F

be a universal extension from F to T , and assume that E ≅ E′ ⊕ T ′ with T ′ ∈ T .
Then ǫ is isomorphic to

T ′′ ⊕ T ′ E′ ⊕ T ′ F
(f 0 )
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for some morphism f ∶E′ → F . This contradicts the minimality of ǫ. The other
direction is shown similarly using the decomposition in Lemma 2.7 and the fact
that T is additively closed.

We are now ready to prove Theorem A.

Theorem 3.5 (Theorem A). Let A be a Krull–Schmidt abelian category and let(T , F) be a torsion pair in A. The torsion-free functor f∶A → F induce an equiv-

alence

(3)
⊥ET
I ≃ E

where I is the ideal in ⊥ET of morphisms factoring through T .
Proof. We observe that since f(T ) = 0, we obtain a functor f∶A/[T ] → F making
the following diagram commute.

A F

A/[T ]

f

π[T ]
f

The restriction of π[T ] to
⊥ET has ⊥ET /I as essential image, so by appropriate

restrictions we obtain the following commutative diagram,

⊥ET F
⊥ET /I E

f

πI
f

F

inc

where the factorization of f through E arise from Lemma 3.2. We now claim that
F and c∶E → ⊥ET /I from Lemma 3.3 are quasi-inverse functors.

F ○ c ≅ idE :We start by recalling that for a short exact sequence T E F

with T ∈ T and F ∈ F , we have F ≅ fE. Let now f ∶F → F ′ be a morphism in E ,
then we have as in the proof of Lemma 3.3 a commutative diagram

T E F

T ′ E′ F ′

ι cf f

where the rows are torsion sequences of E and E′ respectively. As f∶A → F sends
morphisms uniquely, we then see that F(cf) = f , and hence F ○ c ≅ idE .

c ○ F ≅ id⊥ET /I: Let X be an object in ⊥ET without summands in T . Lemma 3.2

and Remark 3.4 tells us that the torsion sequence

tX X fX

is a minimal universal extension. It follows from minimal universal extensions
being unique up to (non-unique) isomorphisms, that we may construct the following
commutative diagram

tX X fX

T E fX

≅ ≅εX
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where the lower row is the fixed universal extension of fE, showing that c○F(X) ≅X .
Let now f ∈ Hom⊥ET /I(X,X ′) be any morphism in ⊥ET /I, and g ∈ Hom⊥ET (X,X ′)

in the preimage of f under πI . We then construct the following commutative dia-
gram where the two rows in the middle are torsion sequences and the upper (lower)
row are the minimal universal extension of fX (fX ′) into T :

T E fX

tX X fX

tX ′ X ′ fX ′

T ′ E′ fX ′

≅ ≅εX

tg g fg

≅ ≅εX′

The well-definedness of c now tells us that

f ≅ πI(εX ○ g ○ ε−1X′) = cπI(fg) = cFf,
finishing the proof. �

4. When all objects admit universal extensions

The motivation for the article as stated in the introduction, was to generalize
Corollary 4.8 in [BZ24] by removing the assumption on functorially finiteness of the
torsion pairs. We will now verify that our results do in fact specialize back when
the torsion pairs are functorially finite. We therefore show the following corollary
of Theorem 3.5, whose assumptions in particular hold when the torsion pair is
functorially finite and A has enough projectives, see Lemma 2.8.

Corollary 4.1. Let A be a Krull–Schmidt abelian category and let (T , F) be a

torsion pair in A. If all objects in T and F admit a universal extension to T , then
we have an equivalence

(4)
⊥ET

⊥ET ∩ T ≃ F .
Proof. The right hand side of (3) clearly coincide with that of (4) when all objects
in F have universal extensions to T . We are thus only concerned with showing that
the left hand sides also coincide.

Let f ∈ HomA(X,X ′) be a morphism in ⊥ET factoring through T , specifically
we can find morphisms φ ∈ HomA(X,Y ) and ψ ∈ HomA(Y,X ′) for Y ∈ T such that

f = ψ ○ φ. Further, let T E Y
g

be a minimal universal extension of Y toT . From this we construct the following commutative diagram

X

T E Y

φ

g

where the dashed arrow exists since g is a right ⊥ET approximation of Y as observed
in Lemma 3.1. Now, since T is closed under extensions we see that E ∈ ⊥ET ∩ T .
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Hence, every morphism from ⊥ET to T factors through ⊥ET ∩ T , and the proof is
done. �

Example 4.2. Consider the path algebra of .

→

A3∶ ● ● ●
3 2 1 .

Let F be the subcategory of modkA3 additively generated by all the projectives
and the injective at 3, and T the subcategory additively generated by the simple
at 2. In the AR-quiver of kA3 below we have marked the indecomposable in T
by a square, the indecomposables in F as filled circles and the indecomposable in
neither by a non-filled circle.

●
1

◻
2

●
3

● ○
●

We have illustrated the equivalence in (4) as follows. In the left hand side picture
we have shaded the indecomposables in ⊥ET ∖T and in the right hand side picture
we have shaded E = F .

● ◻ ●
● ○
●

● ◻ ●
● ○
●

♣
In the next section we will consider Krull-Schmidt categories without enough

projectives. However, using a similar construction as in the proof of Bongartz’
lemma [Bon81, Lemma 2.1], we can see that since they are Ext-finite (all Ext-
groups have finite dimension), certain torsion classes still satisfy the condition of
Corollary 4.1. The following is a sketch of the construction.

Let A be an abelian k-category, and for an objectX ∈ A let X = add(X). Assume

now that for Y ∈ A we have d = dimExt1A(Y,X) <∞. Let Ei∶ X Ei Y for

1 ≤ i ≤ d be representatives of the basis elements of ExtA(Y,X). We then construct
the following pullback diagram

Xd ⊕d
i=1Ei Y d

Xd E Y

⎡
⎢
⎢
⎢
⎢
⎣

1
1
⋮
1

⎤
⎥
⎥
⎥
⎥
⎦

where the upper row is the direct sum of Ei for 1 ≤ i ≤ d. The lower row can be
shown to be a universal extension from Y to X . Thus we have the following lemma.

Lemma 4.3. Let A be an Ext-finite abelian k-category and X = add(X) a subcat-

egory. Then every object Y ∈ A admit a universal extension to X .
Combining Corollary 4.1 with Lemma 4.3 then gives us the following.
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Corollary 4.4. Let A be an Ext-finite Krull-Schmidt abelian k-category. If (T , F)
is a torsion pair such that T = add(T ) for some object T ∈ T , then we have an

equivalence
⊥ET

⊥ET ∩ T ≃ F .
Remark 4.5. In [BZ24, Def. 0.2] the concept of left-weak cotorsion torsion triples

is introduced as a way to generalize the cotorsion torsion triples used in [BBOS20].
It is shown that these arise in connection with every functorially finite torsion pair
for A = modΛ, with Λ a finite dimensional algebra. This can effortlessly and non-
surprisingly be shown to also hold in a Krull–Schmidt abelian category with enough
projectives. Let us briefly explain why.

In order for a pair (C,T ) of subcategories to be a left-weak cotorsion pair it need
to satisfy the following

(1) Ext1A(C,T ) = 0, and
(2) for every A ∈ A there exists

(a) an exact sequence

T E A
f

with T ∈ T and f a right C-approximation of A, and
(b) an exact sequence

A T ′ X
g

such that g is a left T -approximation of A and X ∈ C. Note, g is not
necessarily a monomorphism.

We have by construction that (⊥ET ,T ) satisfies (1), and (2)(a) follows from Lemma 2.8
and Lemma 3.1. Finally, (2)(b) follows from the covariantly finiteness of T and
Wakamatsu’s Lemma, see e.g. [GT06, Lem. 2.1.13].

5. Tame Hereditary Algebras

Let us now investigate our equivalence for non-functorially finite torsion classes.
In order for these to exist we need to move beyond representation-finite algebras.
The simplest examples are tame hereditary algebras, hence we assume that Λ is a
path algebra of Euclidean type. Unless otherwise specified we assume our torsion
pairs (T , F) to be non-functorially finite from now.

The AR-quivers of such algebras are well understood. They consist of a prepro-
jective component P , a preinjective component Q and a family of regular compo-
nents R. Further, the preprojective component is isomorphic to (−N)Qop and the
preinjective component is isomorphic to NQop. We refer to [ASS06, SS07, Rin84]
for more background on the structure of these components.

In this section, we will focus on the regular component since by the following
lemma both the preprojective and preinjective component behaves the same for all
non-functorially finite torsion pairs. The result is well known, but for the conve-
nience of the reader we write out the proof.

Lemma 5.1. Let Λ be a tame hereditary algebra. If (T , F) is a non-functorially

finite torsion pair, then P ⊆ F and Q ⊆ T
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Proof. We only show the inclusion of the preprojectives in the torsion free sub-
category. Assume with a goal of contradiction that there is some M = τ−tPi ∈P ∖ F . Then by the canonical torsion sequence and the fact that HomΛ(Q, P) =
HomΛ(R, P) = 0, we have that tM ∈ P . Without loss of generality we therefore
assume M ∈ T .

Any module without support at the simple Si is also a module over the corre-
sponding quotient algebra Λ/⟨ei⟩, which is of finite representation type. Hence
there are only finitely many indecomposable modules N in mod(Λ) such that
HomΛ(Pi, N) = 0. Now, for any module X in mod(Λ), we have

HomΛ(M, X) = HomΛ(τ−tPi, X) ≅ HomΛ(Pi, τ
tX).

All these hom-sets vanish if X is torsion-free. We can therefore conclude that F
may only contain finitely many indecomposables, which by [AS80, Prop. 4.2] means
it is functorially finite. This contradiction finishes the proof. �

The regular components R are hom-orthogonal tubes Tλ∈P1(k), each a serial
Krull–Schmidt abelian category. Their AR-quivers are isomorphic to the translation
quiver ZA∞/(τr) where r ≥ 1 is called the rank of Tλ. When r = 1 the tube is
called homogeneous. There are at most three non-homogeneous tubes in R. A
consequence of the tubes being hom-orthogonal is that (T , F) is a non-functorially
finite torsion pair of mod(Λ) only if (T ∩T, F ∩T) is a torsion pair for every tube
T and P ⊆ F , Q ⊆ T .

We have collected a few elementary observations in the following lemma.

Lemma 5.2. Let (T , F) be a non-functorially finite torsion pair in mod(Λ).
(1) For a homogeneous tube T, either T ⊆ T or T ⊆ F ,

Let C be an AR-component.

(2) If C ⊆ F , then there are no non-trivial extensions from C to T . Specifically,
within C we have that both sides of the equivalence (3.5) are equal to C, with
the universal extensions being trivial.

(3) If C ⊆ T , then both sides of the equivalence (3.5) are equal to zero.

In light of this, we may restrict ourselves further to considering torsion pairs(T , F) such that T ∩ T ≠ 0 ≠ F ∩ T for at least one non-homogeneous tube T.
Further since there are no non-trivial maps between tubes and from the preinjective
component to a tube, any universal extension from F ∈ T to T is also a universal
extension to T ∩T. Hence, we may look for universal extension only locally within
tubes.

5.1. Torsion pairs in tubes. Torsion pairs in tubes have been classified in [BBM14]
through a bijection with cotilting modules. In order to utilize their result we need to
establish a bit of theory and terminology; for the details we refer back to [BBM14].
In the following we assume that T is a tube of rank r > 1. From now, unless
specified, a pair (T , F) is a torsion pair with respect to the tube T.

We denote the simples in T by M i
i for i ∈ Z, such that τM i

i = M i−1
i−1 and

M i+r
i+r = M i

i . The indecomposables are uniquely given through their composition
series since T is serial. An indecomposable of length l and socle M i

i may therefore
unambiguously be denoted M i+l−1

i . With this convention we have the almost split
sequences

M i+l−2
i−1 M i+l−1

i−1 ⊕M i+l−2
i M i+l−1

i
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where M i+l−2
i = 0 if l > 2. The AR-quiver takes the shape

⋱ ⋰
⋱ M r

0 ⋰

M r−1
0 M r

1

⋰ M r−1
1 ⋱

M1
−1 M2

0 ⋰ ⋱ ⋱ M r+1
r−1

M1
0 M2

1 ⋱ M r
r−1

M0
0 M1

1 M2
2 ⋯ M r−1

r−1 M r
r

with the left and right hand sides identified. The tube T as defined here does not
contain any projectives nor any injectives, hence when we consider Ext-projectives
(Ext-injectives) of a subcategory in T and the context is clear, we drop the prefix.

To each simple object M i
i we define the following two additive subcategories:

(1) The ray at i, denoted Ri, is additively generated by the indecomposables
having M i

i as socle. Equivalently,

Ri = add{M i
i , M

i+1
i , ⋯, M i+l−1

i , ⋯}.
(2) The coray at i, denoted Ci, is additively generated by the indecomposables

having M i
i as top. Equivalently,

Ci = add{⋯, M i
i−l+1, ⋯, M i

i−1, M
i
i }.

For 1 ≤ t ≤ r and i ∈ Z we define an additive categoryWj
i called a wing, additively

generated by the subfactors of M j
i . We could also describe it as M b

a being in W
j
i

if i ≤ a ≤ b ≤ j. To make the definitions clearer, observe the following tube of rank
5 with the coray at 1 and the wing W4

2 drawn in.

○
○
○
⋮

○
○
○
⋮

○
○
○
⋮

○
○
○
⋮

○
○
○
⋮

○
○
○
⋮

○
○
○

○
○
○

○
○
○

○
○
○

○
○
○

0 1 2 3 4 5

We are now splitting the rest of our investigation in two cases since we by Corol-
lary 5.5 in [BBM14] know that either

(1) T is of finite type and F of infinite type, or
(2) T is of infinite type and F is of finite type.

5.1.1. Case 1: T finite type. When T is of finite type, we know by Corollary 4.4
that we have

⊥ET
⊥ET ∩ T ≃ F
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since the tubes are Ext-finite categoires. Let us illustrate how this looks explicitly
in the tubes.

When T is of finite type, we know by [BBM14, Prop. 5.12] that torsion pairs
are given by a collection of rays and torsion pairs in wings below the rays. More
explicitly, we can find indices 0 ≤ i0 < i1 < . . . < ik−1 with the convention ik = i0 + r
giving that

F = add(k−1⋃
α=0

(Riα ∪Fα)) and T = add(k−1⋃
α=0

Tα)

where (Tα, Fα) are torsion pairs inW
iα+1−1
iα

such that the Ext-projectives ofWiα+1−1
iα

lie in Fα and the remaining Ext-injectives lie in Tα. That is,
Example 5.3. Consider a tube T of rank 5, with a torsion pair (T , F) such that
the rays R0 and R4 lie in F . In the wing W3

0 we then have M3
1 ,M

3
2 and M3

3 inT . M1
1 ,M

2
1 and M2

2 can lie in either T or F . The remaining indecomposables lie
in neither. In the illustration below we have drawn in the wing W3

0, marked the
torsion-free objects with a filled circle and the torsion objects with a square. The
crossed objects lie in neither and the non-filled circles may lie in either.

● ○ ○ ◻ ● ●
● ○ ◻ × ●

● ● ◻ × × ●
● ● × × ×

× ● ● × × ×
× ● ● × ×

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 1 2 3 4 5 ♣
The wings W

iα+1−1
iα

can be seen as embeddings of the linearly oriented path
algebra of type Aiα+1−iα and thus within them the equivalence is reduced to the
representation-finite case. Let us therefore rather focus on what happens outside

of them. For an object M
iβ+l−1
iβ

∈Riβ with β = α + 1 we have

0→M
iβ−1
iα+1

→M
iβ+l−1
iα+1

→M
iβ+l−1
iβ

→ 0

as universal extension to T . Hence, under the functor c∶E → ⊥ET /I of Lemma 3.3
the ray Riβ is sent to

cRiβ = add{M iβ
iα+1
→M

iβ+1
iα+1

→M
iβ+2
iα+1

→ ⋯} ⊆ τ−Riα+1.

with equality when iβ = iα + 1.
Example 5.4 (Example 5.3 continued). Consider the torsion pair of Example 5.3
where we also have chosen M1

1 , M
2
1 and M2

2 to be torsion-free. Then we see that
the indecomposables of ⊥ET ∖T are given by the nodes in the shaded region of the
left hand side illustration. In the right hand side illustration the shaded nodes are
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those representing indecomposables in E .

● ● ● ◻ ● ●
● ● ◻ × ●

● ● ◻ × × ●
● ● × × ×

× ● ● × × ×
× ● ● × ×

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 1 2 3 4 5

● ● ● ◻ ● ●
● ● ◻ × ●

● ● ◻ × × ●
● ● × × ×

× ● ● × × ×
× ● ● × ×

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 1 2 3 4 5 ♣
5.1.2. Case 2: T infinite type. When T is infinite, the situation changes quite
drastically. In this setting our torsion pair is built from a collection of corays and
torsion pairs in the wings below these. More precisely, by [BBM14, Prop. 5.12] we
can find indices 0 ≤ i0 < i1 <⋯ < ik−1 with the convention ik = i0 + r such that

T = add(k−1⋃
α=0

(Ciα ∪ Tα)) and F = add(k−1⋃
α=0

Fα)
where (Tα, Fα) are torsion pairs in W

iα+1
iα+1

with the Ext-injectives of Wiα+1
iα+1

in Tα
and the remaining Ext-projecties lie in Fα.

Example 5.5. Consider again the tube T of rank 5, but now with a torsion pair(T , F) such that the coray C0 lie in T . Then in W5
1 we have M1

1 ,M
2
1 , M

3
1 and

M4
1 in F . The indecomposables M2

2 ,M
3
2 , M

4
2 , M

3
3 , M

4
3 and M4

4 can lie in T or F .
The remaining indecomposables lie in neither. We follow the same convention as
above in the illustration; torsion objects are given by squares, torsion-free objects
by filled circles, non-declared objects by non-filled circles and the excluded objects
by crosses.

◻ ● ○ ○ ○ ◻
× ● ○ ○ ◻

× × ● ○ ◻ ×
× × ● ◻ ×

× × × ◻ × ×
× × ◻ × ×

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 1 2 3 4 5

Within the wing W4
2, we observe that all the indecomposables have only the trivial

extension to the corayC0. Hence, we can without obstruction study the equivalence
of Theorem A as if we were in the module category of the path algebra over the
linearly oriented dynkin quiver A3. Which means we have F ∩W4

2 = E ∩W4
2 ≃(⊥ET ∩W4

2)/I.
Observe now that the Ext-projectives of W5

1 all have extensions to all indecom-
posables of C0. In particular they are not ext-orthogonal to T . Further, since the
indecomposables in C0 have arbitrarily large lengths we realise through the push-
out description of universal extensions in Remark 2.6 that the Ext-projectives also
do not admit any universal extensions to T . In summary, we have E = F ∩W4

2 ⊊ F .
From the discussion above, we observe that ⊥ET ⊆W5

2. Now, using that W5
2

is an exact embedding of kA4 and every module over that algebra has a universal
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extension to every subcategory, we conclude as in Corollary 4.1 that the quotient
⊥ET /I is equivalent to ⊥ET /[T ∩ ⊥ET ].

In the tube T we conclude that the equivalence of Theorem A is given by

F ∩W4
2 ≃ ⊥ET /[T ∩ ⊥ET ].

We give an illustration below where we have made a choice in W4
2. In the left

picture we have shaded the indecomposable in ⊥ET ∖T and in the right picture we
have shaded the indecomposable in E .

◻ ● ● ◻ ● ◻
× ● ● × ◻

× × ● ● ◻ ×
× × ● ◻ ×

× × × ◻ × ×
× × ◻ × ×

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 1 2 3 4 5

◻ ● ● ◻ ● ◻
× ● ● × ◻

× × ● ● ◻ ×
× × ● ◻ ×

× × × ◻ × ×
× × ◻ × ×

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 1 2 3 4 5

Note that the torsion pair inW4
2 is exactly that of Example 4.2 under an embedding

of kA3 into W4
2. However, as the Ext-projectives in W4

1 are torsion-free, but not
in E , we observe that the equivalence of (4) does not hold. ♣

The behaviour exhibited in the example above is indicative of the general picture.
That is, we have

E = F ∩ add(k−1⋃
α=0

W
iα+1−1
iα+2

) ,
⊥ET = add(k−1⋃

α=0

⊥ETα) .
and

I = [T ∩ ⊥ET ]
In other words, when describing the equivalence of Theorem A we can restrict
ourselves to a collection of path algebras over linearly oriented Dynkin quivers of
An type.

Remark 5.6. For a tame hereditary algebra we note that for any torsion pair(T , F) all but finitely many torsion-free indecomposables admit a universal exten-
sion to T . This follows from the above discussion and the fact that there are no
non-trivial extension from a preprojective module to a non-preprojective module.
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