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A NOTE OF CHARACTERISTIC CLASS FOR SINGULAR VARIETIES

ANTONIO M. FERREIRA AND FERNANDO LOURENÇO

Abstract. In this work we study characteristic classes of possibly singular varieties

embedded as a closed subvariety of a nonsingular variety. In special, we express the

Schwartz-MacPherson class in terms of the µ-class and Chern class of the sheaves of

logarithmic and multi-logarithmic differential forms. As an application we show an ex-

pression for Euler characteristic of a complement of a singular variety.
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1. Introduction

Let X be a possibly singular variety in a nonsingular variety M . When X is regular,

there is a well know notion of the characteristic class of X , the Chern class, defined in many

ways under its tangent bundle, see for instance, [16, 18]. For the original definition see [14].

On the other hand, if X is singular one has different ways to generalize this characteristic

class of X .

The first extension of Chern classes for a possibly singular variety is the Schwartz-

MacPherson class, it was done independently by M.-H. Schwartz in 1965, see [12, 26] as

an element on the cohomology group and by R. MacPherson in 1974 in [22] as an element

of the homology group.

Another important class with which we going to work in this paper is the Fulton class,

denoted by cF (X), see [16]. This class is defined over a scheme X that can be embedded in

a nonsingular variety M and it is proved that it is independent of the choice of embedded.

An advantage of this class is that it can be defined over arbitrary fields and in a completely

algebraic fashion. On the other hand, a disadvantage it is does not satisfy at first sight nice

functorial properties.

The Milnor number was initially defined by Milnor in 1968, see [23], to a hypersurface

with isolated singularities. After, independently in 1971 Hamm [17] and Lê in 1974 [21]

extended this index for local complete intersections still with isolated singular points. More

recently, in 1988, see [24], Parusinski extended the notion of Milnor number to nonisolated

singularities. P. Aluffi in 1995, see [6], defined another important class for the singular set

of a hypersurface, the µ−class, which in the case of isolated singularities coincides with the

Minor number.

In [9] Aluffi et al., proved a formula relating the Mather class, Schwartz-MacPherson

class, and the class of the virtual tangent bundle of a hypersurface in a nonsingular variety,

under certain assumptions in the singular locus of a hypersurface X .
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Using the computer, Aluffi in [8] developed an algorithm computing to calculate some

characteristic classes. The program computed the push-forward to P
n of the Schwartz-

MacPherson class, and the Fulton class, and showed as is well known, that the Euler char-

acteristic equals the degree of the 0-dimension component of the Schwartz-MacPherson.

In general, it is very hard to calculate the Chern class to singular variety, and there are

few results in this direction. On the other hand, as suggested by J.-P. Brasselet, P. Aluffi

in [5] (see Theorem 1.1 below) shows an expression to the Schwartz-MacPherson class by

using the sheaf of logarithmic differential forms.

The guiding theme of this paper is to express a way of to calculate the Schwartz-

MacPherson class in terms of the sheaf of logarithmic and multi-logarithmic differential

forms with poles in certain varieties, when this sheaf is not locally free. For this, we use the

comparison between the Schwartz-MacPherson and Fulton classes for hypersurface due P.

Aluffi, see Theorem 2.1. When the variety X is a local complete intersection, the difference

between these classes is called Milnor class, see ([10], Definition 1, p. 46).

Let X be an algebraic variety over an algebraically closed field of characteristic zero.

Assume thatX is embedded as a closed subvariety of a nonsingular varietyM , by i : X → M.

Theorem 1.1 ([5], Theorem 1). Let X be as above. Let π : M̃ → M be a birational map with

M̃ a nonsingular variety, such that X
′

=
(
π−1(X)

)
red

is a divisor with smooth components

and normal crossing in M̃ , and π|M̃−X
′ is an isomorphism. Then

i∗cSM (X) = c(TM) ∩ [M ]− π∗

(
c(Ω1

M̃
(logX

′

)∨) ∩ [M̃ ]
)
∈ A∗M.

Now, follows our main result:

Theorem 1.2. Let i : X −→ M be an embedding of a closed subvariety X in a complex

algebraic nonsingular variety M . Let π : M̃ −→ M be a proper birational map with M̃ a

nonsingular variety, such that (π−1(X))red = X̃ is a hypersurface with its singular scheme

denoted by Ỹ and π|M̃\X̃ is an isomorphism. We assume that codimM̃ (Ỹ ) ≥ 3. Then

(1) i∗cSM (X) = c(TM)∩[M ]−π∗

(
c(Ω1

M̃
(log X̃)∨)∩[M̃ ]

)
+π∗j∗c(L)

dimX̃∩
(
µL(Ỹ )∨⊗M̃L

)
,

where µL(Ỹ ) denotes the µ-class of Ỹ with respect to L = OM̃ (X̃).

We observe P. Aluffi, in the previous theorem, assumes that X
′

is a normal crossing

divisor. This hypothesis is natural, and it is guaranteed for an embedded resolution of

singularities in characteristic zero. However, it is possible to obtain a normal crossing divisor

with a finite sequence of the blowups. We note that in some cases the amount of blowups

can be very large. In our main result, we changed the normal crossing hypothesis in divisor

by a divisor whose its singular set has codimension greater than or equal to three.

These hypotheses are satisfied at the case listed below, called Nash Construct for folia-

tions. Let F be a holomorphic foliation of dimension k on a n-dimensional manifold M . We

consider, for each x ∈ M the following vector space

F (x) = {v(x); v ∈ Fx},

where Fx denotes the stalk of the sheaf F at x. We note that dimF (x) ≤ k and the equality

is when x ∈ M \ Sing(F). Then, we define a section
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s : M \ Sing(F) −→ G(k, n),

gives by s(x) = F (x), where G(k, n) denotes de Grassmannian bundle of k-planes in TM .

We defineMν as the closure of the Im(s) in G(k, n) and call it of the Nash modification ofM

with respect to F , see [11, 28] for more details. In this context, we have that π : Mν → M is

a proper birational map, which is induced by the projection map of the bundle G(k, n), since

π is an isomorphism from Mν \π−1(Sing(F)) to M \Sing(F). In a special case, Sertoz in [28]

was studied this construction with the hypothesis that Mν is a manifold, that occurs when

the coherent sheaf F is ”nice”, namely, either it is gives by complex actions of reductive

groups or it has locally free tangent sheaf and its singular set is smooth, see ([28], Corollary

1.2 p.230).

Example 1.3. Let M = P
n be a complex projective space and F be an one-dimensional

holomorphic foliation on P
n with isolated singularities. Consider Sing(F) = X. Thus by

([28], Corollary 1.2 p.230) one has Mν ⊂ P
n × P

n−1 is a nonsingular variety of dimension

n. And π−1(Sing(F)) = Sing(F) × P
n−1 = X̃ with Ỹ = Sing(X̃) = ∅. So, applying the

Theorem 1.2, we have:

(2) i∗cSM (X) = c(TP
n) ∩ [Pn]− π∗

(
c(Ω1

Mν (logP
n−1)∨) ∩ [Mν ]

)
.

In particular, taking the degrees, we have

(3) χ(X) = χ(Pn)−

∫
π∗

(
c(Ω1

Mν (log(X̃)∨) ∩ [Mν ]
)

or

χ(Pn \X) =

∫
π∗

(
c(Ω1

Mν (log(X̃)∨) ∩ [Mν ]
)
= χ(Mν \ X̃).

The last equality follows from Corollary 1.2, see ([13] p.491). This result was expected

because π is an isomorphism from Mν \ X̃ to P
n \X.

When the singular set Ỹ of X̃ is supported at a point P , the µ-class of Ỹ is mP [P ], where

mP is the classical Minor number, see ([6], §2). So we get the following.

Corollary 1.4. In conditions of the Theorem 1.1 and under the additional hypothesis that

Ỹ is supported in a set of finitely many points, i.e. Ỹ = {x1, . . . , xr}, then

i∗cSM (X) = c(TM) ∩ [M ]− π∗c(Ω
1
M̃
(log X̃)∨) ∩ [M̃ ] + π∗j∗(−1)dimM̃

r∑

i=1

mi[xi],

where mi is the Milnor number of X̃ at xi.

Proof. Under hypothesis of this corollary one has µL(Ỹ ) =
∑r

i=1 mi[xi]. Now we calculate(
µL(Ỹ )∨ ⊗M̃ L

)
by using the definition on ([7], p. 3996),

c(L)dimX̃ ∩
(
µL(Ỹ )∨ ⊗M̃ L

)
= (−1)dimM̃

r∑

i=1

mi[xi].

�
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As a consequence of the Theorem 1.1, taking the degree in equation (1), we obtain an

expression for the Euler characteristic for the complement M \X , of the variety X in M .

Corollary 1.5. In conditions of Theorem 1.1 with the additional hypothesis that M and M̃

are complete varieties, then

χ(M \X) =

∫

M̃

c
(
Ω1

M̃
(log X̃)∨

)
∩ [M̃ ] + (−1)n+1

∫

M̃

µL(Ỹ ).

Remark 1.6. We observe that if Ỹ is supported in a set of finitely many points, i.e. Ỹ =

{x1, . . . , xr}, then we recover the result in ([13], Corollary 1.2 (I), p.495)

χ(M̃ \ X̃) = (−1)n
∫

M̃

c
(
Ω1

M̃
(log X̃)

)
∩ [M̃ ] + (−1)n+1

r∑

i=1

mi,

since χ(M \X) = χ(M̃ \ X̃) and

∫

M̃

µL(Ỹ ) =

r∑

i=1

mi.

In the second part of this work we use the sheaves of multi-logarithmic differential forms

associated to a complete intersection, see Section 4 and [1, 2] for more details about these

sheaves. We prove the following result involved its characteristic classes:

Theorem 1.7. Let i : X −→ M be an embedding of a closed subvariety X in a complex

algebraic nonsingular variety M and π : M̃ −→ M be a proper birational map with M̃ a

nonsingular variety, such that (π−1(X))red = C = D1 ∩ D2 is a complete intersection of

smooth divisors and π|M̃\C is an isomorphism. We assume that D̃ = D1 ∪D2 is a normal

crossing divisor. Then

i∗cSM (X) = c(TM) ∩ [M ]− π∗

(
c(Ω1

M̃
(logC)∨) ∩ [M̃ ]

)
+ π∗j∗cSM (C)− π∗j∗cSM (D̃),

where Ω1
M̃
(logC) denotes the sheaf of multi-logarithmic differential 1-forms on M̃ .

The paper is organized as follows. First, in order to make this work as self-contained as

possible, we provide some necessary definitions and considerations in Sections 2, 3 and 4.

The proofs of our main results appear in Sections 5, 6 and 7.
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2. Chern Classes of Singular Varieties

Let X be a complex algebraic variety and A be a subvariety of X , we denote by 1A the

characteristic function of A which is constant equal to 1 over A and constant equal to 0

elsewhere. A constructible function on X is an integral linear combination of characteristic

functions of closed subvarieties of X . The constructible functions on X forms a group

denoted by F(X). It can be made a covariant functor in the following way: for a proper

morphism f : X → Y the push-forward f∗ is defined by setting

f∗(1A)(y) = χ
(
f−1(y) ∩ A

)
,

where A is a subvariety of X and extending by linearity.
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It was conjectured by Deligne and Grothendieck in 1969 and proved by R. MacPherson

[22] in 1974, that there exists a natural transformation c∗ from the functor F to homology,

which, on a nonsingular variety V , assigns to the function 1V the Poincaré dual of the total

Chern class of V . That is,

c∗(1V ) = c(TV ) ∩ V.

So it is natural to consider the class c∗(1X) to arbitrary variety X . This class is denoted

by cSM (X) and called of Schwartz-MacPherson class of X . This class is the image, via

Alexander duality isomorphism, of the previously class defined by M.-H. Schwartz in 1965

see [12]. Explicitly, MacPherson has proved that for all constructible functions α, β, and

proper morphism f , the class c∗ satisfy the conditions:

(i) f∗c∗(α) = c∗f∗(α);

(ii) c∗(α+ β) = c∗(α) + c∗(β);

(iii) c∗(1X) = c(TX) ∩ [X ], if X is smooth.

Although MacPherson has initially considered complex algebraic varieties, Kennedy [20]

indicated how MacPherson’s theory can be made completely algebraic, by extending it to

varieties over an arbitrary field k of characteristic zero.

Let X be now a scheme which can be embedded as a closed subscheme of a nonsingular

variety M . Then the Fulton class of X , denoted by cF (X) ∈ A∗(X), was defined by W.

Fulton 1984, see ([16], Example 4.2.6) by setting

cF (X) = c(TM|X) ∩ s(X,M),

where s(X,M) denotes the Segre class of X on M . It is independent of the choice of

embedding.

In particular case, when X is a divisor, the Segre class of X is given by s(X,M) = [X]
1+X

,

where by abuse of notation, we denote by X the first Chern class c1(O(X)). So in this case

(4) cF (X) = c(TM|X) ∩
[X ]

1 +X
.

Another important characteristic class, the µ-class, was introduced by P. Aluffi [6] in

1995. Let Y be the singular scheme of a hypersurface X on a smooth variety M, and let

L = O(X) be the line bundle associate to X . The µ-class of Y with respect to L is the class

µL(Y ) := c(T ∗M ⊗ L) ∩ s(Y,M)

in the Chow group A∗(Y ).

In particular, when Y is supported at a point P , then µ(Y ) = mP [P ], where mP is the

Milnor number of X at P see ([6], §2). In the following theorem, P. Aluffi has established

an interesting relationship between these classes.

Theorem 2.1 (Aluffi [7], Theorem I.5). Let X be a hypersurface in a nonsingular variety

M , let Y be its singular scheme, and let L = O(X). Then

(5) cSM (X) = cF (X) + c(L)dimX ∩ (µL(Y )∨ ⊗M L).
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3. The sheaf of logarithmic forms

Let M be a complex manifold of dimension n and X a reduced hypersurface on M . We

consider Ωq
M (X) the sheaf of differential q-forms on M with at most simple poles along X .

We define a logarithmic q-form along X on an open subset U ⊂ M by a meromorphic q-form

ω on U , regular on the complement U −X and such that both forms ω and dω are in the

sheaf Ωq
M (X).

Logarithmic q-forms along X form a coherent sheaf of OM -modules that we will denote

simply by Ωq
M (log X). In this case, for any open subset U ⊂ M we have

Γ(U,Ωq
M (log X)) = {ω ∈ Γ(U,Ωq

M (X)) : dω ∈ Γ(U,Ωq+1
M (X))}.

See for example [3], [15] and [27] for more details about the sheaf of logarithmic q-forms

along X .

Take Ω1
M (log X), the sheaf of logarithmic 1-forms along X . Its dual is the sheaf of

logarithmic vector fields along X , denoted by TM (− log X) or Der(− logX). With this

notations we have the classical short exact sequence (see [15] §2)

0 // TM (− log X) // TM
// JX(X) // 0,

where JX denotes the Jacobian ideal of X which is defined as the Fitting ideal

JX := Fn−1(Ω1
X) ⊂ OX .

Saito in [27] has showed that in general Ω1
M (log X) and TM (− log X) are reflexive

sheaves. When X is an analytic hypersurface with normal crossing singularities, the sheaves

Ω1
M (log X) and TM (− log X) are locally free. Furthermore, the Poincaré residue map (see

[27, Section 2])

Res : Ω1
M(log X) // OX

∼=
⊕N

i=1 OXi

gives us the following exact sequence of sheaves on M :

0 // Ω1
M

// Ω1
M (log X)

Res
//

⊕N

i=1 OXi

// 0,(6)

where Ω1
M is the sheaf of holomorphic 1-forms on M and X1, . . . , XN are the irreducible

components of X .

Finally, if X is such that codimM (Sing(X) ≥ 3, then there exist the following exact

sequence of sheaves on M (see [15]):

0 // Ω1
M

// Ω1
M (log X) // OX

// 0.(7)

4. The sheaf of multi-logarithmic forms

In this section we will give some basic definitions on the theory of multi-logarithmic

differential forms and the results that we will need in this paper. For more details and

properties on this subject see [2] and [25].

Let X = X1 ∪ · · · ∪Xk be a decomposition of the reduced hypersurface X in a complex

manifold M , where each Xi is a hypersurface defined by a holomorphic function hi, for

i = 1, . . . , k, on an open subset U ⊂ M , and C = X1 ∩ · · · ∩ Xk is a reduced complete

intersection.
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We define a multi-logarithmic q-form along the complete intersection C on an open subset

U ⊂ X by a meromorphic q-form ω on U , regular on U −X and such that ω have at most

simple poles along C and

dhi ∧ ω ∈
k∑

i=1

Ωq+1(X̂i) for all i ∈ {1, . . . , k},

where X̂i = X1 ∪ · · · ∪Xi−1 ∪Xi+1 ∪ · · · ∪Xk.

We denote by Ωq
M (logC) the coherent sheaf of germs of multi-logarithmic q-forms along

C. A. G. Aleksandrov [2] has proved the following result that characterizes multi-logarithmic

forms.

Theorem 4.1 (A. G. Aleksandrov, [2]). Let ω ∈ Ωq
M (X), then ω is multi-logarithmic along

C if and only if there is a holomorphic function g ∈ OM which is not identically zero

on every irreducible component of the C, a holomorphic differential form ξ ∈ Ωq−k
M and a

meromorphic q-form η ∈
∑k

i=i Ω
q
M (X̂i) such that there exists the following representation

gω =
dh1 ∧ · · · ∧ dhk

h1 · · ·hk

∧ ξ + η.

For q < k we have the equality (see [25], Remark 2.6):

Ωq
M (logC) =

k∑

i=i

Ωq
M (X̂i).

Observe that if q = 1 and k = 2 we have

(8) Ω1
M (logC) = Ω1

M (X1) + Ω1
M (X2).

Proposition 4.2 (see [13]). Let X = X1 ∪ X2 be a reduced hypersurface on M , where Xi

is a reduced hypersurface, for i = 1, 2, and C = X1 ∩X2 is a reduced complete intersection.

Then

Ω1
M (logX) = Ω1

M (logX1) + Ω1
M (logX2).

Lemma 4.3. Let D̃ = D1 ∪ D2 be a normal crossing divisor, where D1, D2 be smooth

hypersurfaces in a complex manifold M̃ , such that C = D1 ∩D2 is a complete intersection.

Then

c(Ω1
M̃
(logC)) = c(Ω1

M̃
(log D̃)).

Proof. In fact, by the following exact sequence

0 −→ Ω1
X −→ Ω1

X(D1)⊕ Ω1
M̃
(D2) −→ Ω1

M̃
(D1) + Ω1

X(D2) −→ 0

one has by Chern class properties,

c
(
Ω1

X(D1)⊕ Ω1
X(D2)

)
= c

(
Ω1

X(D1

)
c
(
Ω1

X(D2)
)
= c

(
Ω1

X(D1) + Ω1
X(D2)

)
c(Ω1

X).

Let us consider the exact sequence

0 −→ Ω1
X −→ Ω1

X(Di) −→ ODi
−→ 0.
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then, one has c(Ω1
X(Di)) = c(Ω1

X)c(ODi
), where cj(ODi

) = c1([Di])
j .

Then c
(
Ω1

X(D1)+Ω1
X(D2)

)
= c(OD1

)c(OD2
)c(Ω1

X). Since Ω1
X(logC) = ΩX(D1)+ΩX(D2),

we get

c(Ω1
X(logC)) = c(OD1

)c(OD2
)c(ΩX).

On the other hand, since D̃ = D1 ∪D2 is a normal crossing divisor, we have the following

exact sequence, see sequence (6),

0 −→ Ω1
M̃

−→ Ω1
M̃
(log(D1 ∪D2)) −→ OD1

⊕OD2
−→ 0.

It is follows that c(Ω1
M̃
(log(D1∪D2))) = c(OD1

)c(OD2
)c(ΩX) and we finish the prove. �

5. Proof of Theorem 1.1

Proof. Let us consider the exact sequence (7) of reflexive sheaves on M̃

0 −→ Ω1
M̃

−→ Ω1
M̃
(log X̃) −→ OX̃ −→ 0

So we have

(9) c(Ω1
M̃
(log X̃)) = c(Ω1

M̃
)c(OX̃)

Now let us recall the exact sequence, see ([19], p.84).

0 −→ O(−X̃) −→ OM̃ −→ OX̃ −→ 0

So

(10) c(OX̃) =
1

c(O(−X̃))

Then from (9 ) and (10)

c(Ω1
M̃
(log X̃)) =

c(Ω1
M̃
)

c(O(−X̃))

We take the dual in previous expression

c(Ω1
M̃
(log X̃)∨) =

c(TM̃)

c(O(X̃))
=

c(TM̃)

1 + c1(O(X̃))
=

c(TM̃)

1 + X̃

Let us consider the following calculation

c(TM̃)
(
1−

1

1 + X̃

)
∩ [M̃ ] = c(TM̃)

( X̃

1 + X̃

)
∩ [M̃ ]

= j∗c(TM̃) ∩
( [X̃]

1 + X̃

)

= j∗cF (X̃),

where j : X̃ −→ M̃ is the inclusion morphism.
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On the other hand,

(11)

j∗cF (X̃) = c(TM̃)
(
1−

1

1 + X̃

)
∩ [M̃ ] = c(TM̃) ∩ [M̃ ]−

c(TM̃)

1 + X̃
∩ [M̃ ]

= c(TM̃) ∩ [M̃ ]− c(Ω1
M̃
(log X̃)∨) ∩ [M̃ ].

Using the expression in Theorem 2.1 to cF (X̃) and applying the homomorphism j∗, one

has

j∗cF (X̃) = j∗cSM (X̃)− j∗c(L)
dimX̃ ∩

(
µL(Ỹ )∨ ⊗M̃ L

)
.

Now, we use the above expression in equation (11)

j∗cSM (X̃)− j∗c(L)
dimX̃ ∩

(
µL(Y )∨ ⊗M̃ L

)
= c(TM̃) ∩ [M̃ ]− c(Ω1

M̃
(log X̃)∨) ∩ [M̃ ].

c(Ω1
M̃
(log X̃)∨) ∩ [M̃ ]− j∗c(L)

dimX̃ ∩
(
µL(Ỹ )∨ ⊗M̃ L

)
= cSM (M̃)− j∗cSM (X̃)

(12) c(Ω1
M̃
(log X̃)∨) ∩ [M̃ ]− j∗c(L)

dimX̃ ∩
(
µL(Ỹ )∨ ⊗M̃ L

)
= c∗(1M̃\X̃).

Using Schwartz-MacPherson class properties one has,

π∗c∗(1M̃\X̃) = c∗π∗(1M̃\X̃) = c∗(1M\X) = c(TM) ∩ [M ]− i∗cSM (X).

So, applying π∗ in the equation (12), we have

i∗cSM (X) = c(TM) ∩ [M ]− π∗c(Ω
1
M̃
(log X̃)∨) ∩ [M̃ ] + π∗j∗c(L)

dimX̃ ∩
(
µL(Ỹ )∨ ⊗M̃ L

)
.

�

6. Proof of Corollary 1.5

Proof. We note by Schwartz-MacPherson class properties one has

π∗cSM (M̃ \ X̃) = cSM (M \X).

So, by using the degree properties (see [16], p. 13) we have

∫

M̃

cSM (M̃ \ X̃) =

∫

M

π∗cSM (M̃ \ X̃) =

∫

M

cSM (M \X) = χ(M \X).

Taking the degrees in equation (12)

χ(M \X) =

∫

M̃

c(Ω1
M̃
(log X̃)∨) ∩ [M̃ ]−

∫

M̃

j∗c(L)
dimX̃ ∩

(
µL(Ỹ )∨ ⊗ L

)

=

∫

M̃

c(Ω1
M̃
(log X̃)∨) ∩ [M̃ ] + (−1)n+1

∫

M̃

µL(Ỹ ).

The last simplification follows from Aluffi (see [7], §4). �
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7. Proof of Theorem 1.7

Proof. How D̃ = D1 ∪D2 is a normal crossing divisor, we have the short exact sequence (6)

0 −→ Ω1
M̃

−→ Ω1
M̃
(log(D1 ∪D2)) −→ D1 ⊕D2 −→ 0

Following the proof of Theorem 1 in ([5], p.621) we have

j∗cSM (D̃) = c(TM̃) ∩ [M̃ ]− c(Ω1
M̃
(log D̃)∨) ∩ [M̃ ].

Now, adding the factor (−j∗cSM (C)) in both sides and applying the morphism π∗

j∗cSM (D̃)− j∗cSM (C) = c(TM̃) ∩ [M̃ ]− c(Ω1
M̃
(log D̃)∨) ∩ [M̃ ]− j∗cSM (C)

j∗cSM (D̃)− j∗cSM (C) = c∗(1M̃\ C)− c(Ω1
M̃
(log D̃)∨) ∩ [M̃ ]

π∗j∗cSM (D̃)− π∗j∗cSM (C) = c∗(1M\ X)− π∗c(Ω
1
M̃
(log D̃)∨) ∩ [M̃ ].

To finish the proof we use the Lemma 4.3

π∗j∗cSM (D̃)− π∗j∗cSM (C) = c∗(1M\ X)− π∗c(Ω
1
M̃
(logC)∨) ∩ [M̃ ].

Rearranging it

i∗cSM (X) = c(TM) ∩ [M ]− π∗

(
c(Ω1

M̃
(logC)∨) ∩ [M̃ ]

)
+ π∗j∗cSM (C)− π∗j∗cSM (D̃),

�
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