STEIN SPACES AND STEIN ALGEBRAS

OLIVIER BENOIST

ABSTRACT. We prove that the category of Stein spaces and holomorphic maps is anti-equivalent to the category of Stein algebras and C-algebra morphisms. This removes a finite dimensionality hypothesis from a theorem of Forster.

INTRODUCTION

Complex spaces are a generalization of complex manifolds allowing singularities, and as such are the basic objects of study in complex-analytic geometry. Formally, they are defined to be C-ringed spaces that are locally isomorphic to model spaces defined by the vanishing of finitely many holomorphic functions in a domain of \mathbb{C}^N for some $N \geq 0$ (see [\[GR84,](#page-5-0) 1, §1.5]). We assume that they are second-countable, but not necessarily reduced or finite-dimensional.

A complex space *S* is said to be *Stein* if $H^k(S, \mathcal{F}) = 0$ for all coherent sheaves $\mathcal F$ on *S* and all $k > 0$ (see [\[GR79\]](#page-5-1)). Stein spaces are the complex-analytic analogues of affine algebraic varieties. For instance, the Stein spaces of finite embedding dimension are exactly those complex spaces that may be realized as closed complex subspaces of \mathbb{C}^N for some $N \geq 0$ (see [\[Nar60,](#page-5-2) Theorem 6]).

If *S* is a complex space, the C-algebra $\mathcal{O}(S)$ of holomorphic functions on *S* carries a canonical Fréchet topology (see [\[GR79,](#page-5-1) V, §6]). A topological C-algebra of the form O(*S*) for some Stein space *S* is called a *Stein algebra*.

In algebraic geometry, the anti-equivalence of categories between affine varieties over C and C-algebras of finite type is a basic tool to study affine algebraic varieties. Our main theorem is a counterpart of this result in complex-analytic geometry.

Theorem 0.1 (Theorem [3.3\)](#page-4-0)**.** *The contravariant functor*

given by $S \mapsto \mathcal{O}(S)$ *is an anti-equivalence of categories.*

Very significant particular cases of Theorem [0.1](#page-0-0) were previously known. First, Forster has shown in [\[For67,](#page-4-1) Satz 1] that Theorem [0.1](#page-0-0) holds if one replaces the right-hand side of [\(3.1\)](#page-4-2) by the category of Stein algebras and continuous C-algebra morphisms. From this point of view, our contribution is an automatic continuity result for morphisms of Stein algebras (see Theorem [3.2](#page-4-3) below).

Second, Forster has proven this automatic continuity result in restriction to finite-dimensional Stein spaces (see [\[For66,](#page-4-4) Theorem 5]). In particular, Theorem [0.1](#page-0-0) was already known in restriction to finite-dimensional Stein spaces and their associated Stein algebras. Forster's theorem was later generalized by Markoe [\[Mar73\]](#page-5-3) and Ephraim [\[Eph78,](#page-4-5) Theorem 2.3] who made weaker finite dimensionality assumptions. Our contribution is to remove these finite dimensionality hypotheses altogether. This problem was raised by Forster in [\[For66,](#page-4-4) Remark p.162].

2 OLIVIER BENOIST

Our strategy to prove Theorem [0.1](#page-0-0) is to reduce to the finite-dimensional case treated by Forster by means of the next theorem.

Theorem 0.2 (Theorem [2.1\)](#page-2-0)**.** *Let S be a Stein space. Then there exists a holomorphic map* $f : S \to \mathbb{C}^2$ *all of whose fibers are finite-dimensional.*

Our proof of Theorem [0.2](#page-1-0) is an application of Oka theory. It uses in a crucial way new examples of Oka manifolds constructed by Forstnerič and Wold [\[FW24\]](#page-5-4) (based on and extending earlier work of Kusakabe [\[Kus21,](#page-5-5) [Kus24\]](#page-5-6)), as well as an extension theorem for holomorphic maps from Stein spaces to Oka manifolds due to Forstnerič [\[For05,](#page-4-6) [For17\]](#page-5-7).

We note that Theorem [0.2](#page-1-0) is optimal in the sense that there may not exist a holomorphic map $f : S \to \mathbb{C}$ with finite-dimensional fibers (see Proposition [2.3\)](#page-3-0). An earlier version of this article, relying on the Oka manifolds constructed by Kusakabe [\[Kus24,](#page-5-6) Theorem 1.6], only produced such a map with values in \mathbb{C}^3 . We are grateful to Franc Forstnerič for drawing our attention to the article [\[FW24\]](#page-5-4), thereby allowing us to prove Theorem [0.2](#page-1-0) in the form stated above.

The results of Oka theory that we need are gathered in Section [1.](#page-1-1) These tools are used to prove Theorem [0.2](#page-1-0) in Section [2.](#page-2-1) In Section [3,](#page-3-1) we deduce Theorem [0.1](#page-0-0) from Theorem [0.2](#page-1-0) and from Forster's works [\[For66,](#page-4-4) [For67\]](#page-4-1).

1. Tools from Oka theory

We recall that a complex manifold *Y* is said to be *Oka* if for all convex compact subsets $K \subset \mathbb{C}^N$ and all open neighborhoods Ω of K in \mathbb{C}^N , any holomorphic map $\Omega \to Y$ can be approximated uniformly on *K* by holomorphic maps $\mathbb{C}^N \to Y$ (see [\[For09,](#page-4-7) Definition 1.2]).

We now introduce the Oka manifolds of interest to us. For $r \in \mathbb{R}$, define

$$
Y_r := \{ (z_1, z_2) \in \mathbb{C}^2 \mid \text{Im}(z_2) < |z_1|^2 + \text{Re}(z_2)^2 + r \}.
$$

The next proposition is a particular case of a theorem of Forstnerič and Wold [\[FW24,](#page-5-4) Corollary 1.5] (pointed out in [\[FW24,](#page-5-4) (1.2)]).

Proposition 1.1. *For* $r \in \mathbb{R}$ *, the complex manifold* Y_r *is Oka.*

The following easy lemma implies in particular that Y_r is contractible.

Lemma 1.2. *Fix* $r \in \mathbb{R}$ *. There is a homotopy* $(h_t)_{t \in [0,1]} : \mathbb{C}^2 \to \mathbb{C}^2$ *inducing strong deformation retractions of both* \mathbb{C}^2 *and* Y_r *onto* $\{(z_1, z_2) \in \mathbb{C}^2 \mid \text{Im}(z_2) \le r - 1\}.$

Proof. The homotopy $(h_t)_{t \in [0,1]}$ defined by

$$
h_t(z_1, z_2) = (z_1, z_2 - it(\text{Im}(z_2) - r + 1)) \quad \text{if } \text{Im}(z_2) \ge r - 1
$$

$$
h_t(z_1, z_2) = (z_1, z_2) \quad \text{if } \text{Im}(z_2) \le r - 1
$$

has the required properties.

We will make use of the Oka property and of the contractibility of *Y^r* through the next extension result, which is an application of theorems of Forstnerič (see [\[For05,](#page-4-6) Theorem 1.1] and the more general [\[For17,](#page-5-7) Theorem 5.4.4]).

Proposition 1.3. *Fix* $r \in \mathbb{R}$ *. Let S be a reduced Stein space and let S*^{*'*} *be a (possibly nonreduced)* closed complex subspace of *S*. Let $f' : S' \to Y_r$ be a holomorphic map. *Then there exists a holomorphic map* $f : S \to Y_r$ *with* $f|_{S'} = f'$.

Proof. Since *S* is Stein, the restriction map $\mathcal{O}(S) \to \mathcal{O}(S')$ is onto. It follows that there exists a holomorphic map $f_1: S \to \mathbb{C}^2$ such that $f_1|_{S'} = f'$.

Define $U := f_1^{-1}(Y_r)$. It is an open neighborhood of S' in S . Let $Z \subset U$ be a closed neighborhood of S' in U . By the Tietze–Urysohn extension theorem, there exists a continuous map $\tau : S \to [0,1]$ which is equal to 0 on *Z* and to 1 on $S \setminus U$.

Define a continuous map $f_2 : S \to Y_r$ by the formula $f_2(s) = h_{\tau(s)}(f_1(s)),$ where $(h_t)_{t \in [0,1]}$ is the homotopy given by Lemma [1.2.](#page-1-2) Since f_2 is equal to f_1 on U , it is holomorphic in a neighborhood of S' and satisfies $f_2|_{S'} = f'$.

As *Y^r* is Oka by Proposition [1.1,](#page-1-3) it now follows from the jet interpolation part of [\[For17,](#page-5-7) Theorem 5.4.4] (applied with π equal to be the first projection map $S \times Y \to S$ and with *S* equal to the ideal sheaf of *S*^{\prime} in *S*) that f_2 is homotopic to a holomorphic map $f : S \to Y_r$ with $f|_{S'} = f_2|_{S'}$, and hence $f|_{S'} = f'$. This completes the proof of the proposition.

2. Holomorphic maps with finite-dimensional fibers

The next theorem is the key to our main results.

Theorem 2.1. *Let S be a Stein space. Then there exists a holomorphic map* $f: S \to \mathbb{C}^2$ *all of whose fibers are finite-dimensional.*

Proof. Let S^{red} be the reduction of *S*. Since *S* is Stein, the restriction map $\mathcal{O}(S) \to \mathcal{O}(S^{\text{red}})$ is onto, and we may assume that *S* is reduced.

Let $(S_k)_{0 \leq k \leq n}$ with $n \in \mathbb{N} \cup \{+\infty\}$ be the irreducible components of *S*, viewed as reduced closed complex subspaces of *S*. Let Θ be the collection of all reduced and irreducible closed complex subspaces of *S* that may be obtained as irreducible components of an intersection of finitely many of the S_k . The set Θ is at most countable, and any compact subset of *S* meets at most finitely many elements of Θ.

For $d \geq 0$, we let $\Theta_d \subset \Theta$ be the set of all *d*-dimensional elements of Θ . Let $(Z_{d,j})_{0\leq j\leq m(d)}$ with $m(d) \in \mathbb{N} \cup \{+\infty\}$ be an enumeration of the elements of Θ_d . We henceforth identify Θ with the set of all pairs (d, j) with $d \geq 0$ and $0 \leq j \leq m(d)$ and endow it with the lexicographical order. It is a well-ordered set. For all $(d, j) \in \Theta$, we view $W_{d,j} := \bigcup_{(d',j') \leq (d,j)} Z_{d',j'}$ and $W'_{d,j} := \bigcup_{(d',j') < (d,j)} Z_{d',j'}$ as reduced closed complex subspaces of *S*. Finally, for $(d, j) \in \Theta$, we let $r(d, j)$ be the biggest integer $k \geq 1$ such that $Z_{d,j} \subset S_k$.

We will now construct holomorphic functions $f_{d,j}: W_{d,j} \to \mathbb{C}^2$ for all $(d,j) \in \Theta$ with the property that $f_{d,j}|_{W_{d',j'}} = f_{d',j'}$ and $f_{d,j}(Z_{d',j'}) \subset Y_{r(d',j')}$ whenever $(d', j') \leq (d, j)$. The construction is by induction on the pair $(d, j) \in \Theta$ (which is legitimate since Θ is well-ordered).

Assume that the $f_{d',j'}$ for $(d',j') < (d,j)$ have been constructed. Since these maps are compatible, they glue to give rise to a holomorphic map $f'_{d,j}: W'_{d,j} \to \mathbb{C}^2$. Now $W_{d,j} = W'_{d,j} \cup Z_{d,j}$. Define $V_{d,j} := W'_{d,j} \cap Z_{d,j}$. It is a possibly nonreduced closed complex subspace of *S*. Note that $V_{d,j}$ is set-theoretically a union of some of the $Z_{d',j'}$ with $(d',j') < (d,j)$. If $Z_{d',j'} \subset V_{d,j}$ is one of them, then $Z_{d',j'} \subset Z_{d,j}$ and hence $r(d', j') \ge r(d, j)$. Since $f_{d', j'}(Z_{d', j'}) \subset Y_{r(d', j')} \subset Y_{r(d, j)}$, we deduce that $f'_{d,j}(V_{d,j}) \subset Y_{r(d,j)}$. Proposition [1.3](#page-1-4) now implies that the holomorphic map $f'_{d,j}|_{V_{d,j}}: V_{d,j} \to Y_{r(d,j)}$ extends to a holomorphic map $f''_{d,j}: Z_{d,j} \to Y_{r(d,j)}$. Since $f'_{d,j}$ and $f''_{d,j}$ coincide on $V_{d,j} = W'_{d,j} \cap Z_{d,j}$, they glue (by Lemma [2.2](#page-3-2) below) to give rise to a holomorphic map $f_{d,j}: W_{d,j} \to \mathbb{C}^2$ with the required properties.

4 OLIVIER BENOIST

As the $(f_{d,j})_{(d,j)\in\Theta}$ are compatible, they induce a holomorphic map $f: S \to \mathbb{C}^2$. Let us verify that this map has the required property. One has $f(S_k) \subset Y_k$ for all $0 \leq k < n$ (as S_k is one of the $Z_{d,j}$). Since the $(Y_k)_{k>0}$ form a decreasing family of subsets of \mathbb{C}^2 with empty intersection, we deduce that any point of \mathbb{C}^2 belongs to at most finitely many of the $f(S_k)$. In other words, any fiber of f intersects at most finitely many of the S_k . It follows that all the fibers of f are finite-dimensional. \Box

Lemma 2.2. *Let S be a complex space. Let S*¹ *and S*² *be closed complex subspaces of S. Set* $T := S_1 \cap S_2$ *. The following diagram of sheaves on S is exact:*

$$
(2.1) \t\t \t\t \mathcal{O}_S \xrightarrow{f \mapsto (f|_{S_1}, f|_{S_2})} \mathcal{O}_{S_1} \oplus \mathcal{O}_{S_2} \xrightarrow{(g,h) \mapsto g|_T - h|_T} \mathcal{O}_T \to 0.
$$

If moreover S is reduced and $S = S_1 \cup S_2$ *, then the left arrow of [\(2.1\)](#page-3-3) is injective.*

Proof. Fix $s \in S$. Write $A = \mathcal{O}_{S,s}$ and let I_1 (resp. I_2) be the ideal of *A* consisting of germs of functions vanishing on S_1 (resp. S_2). Then the exactness of [\(2.1\)](#page-3-3) at *s* results from the exactness of $A \to A/I_1 \oplus A/I_2 \to A/\langle I_1, I_2 \rangle \to 0$, which is valid for any two ideals I_1 and I_2 of a commutative ring A .

If $S = S_1 \cup S_2$, then a holomorphic function in the kernel of the left arrow of [\(2.1\)](#page-3-3) vanishes at all points and hence vanishes if S is reduced. \square

The next proposition shows the optimality of Theorem [2.1.](#page-2-0)

Proposition 2.3. *There exists a Stein space S such that all holomorphic maps* $f : S \to \mathbb{C}$ *admit an infinite-dimensional fiber.*

Proof. For $n \ge 1$, set $S_n := \mathbb{C}^n$. Define $T_n := \{(z_1, \ldots, z_n) \in S_n \mid z_n = 0\}$ and $T'_n := \{(z_1, \ldots, z_{n+1}) \in S_{n+1} \mid z_n = 0 \text{ and } z_{n+1} = 1\}.$ Let $\varphi_n : T_n \longrightarrow T'_n$ be the isomorphism given by $\varphi_n(z_1, \ldots, z_{n-1}, 0) = (z_1, \ldots, z_{n-1}, 0, 1)$. Let *S* be the complex space obtained from $\sqcup_{n\geq 1} S_n$ by gluing S_n and S_{n+1} transversally along T_n and T'_n by means of φ_n (for all $n \geq 1$). The complex space *S* is Stein because so is its normalization $\sqcup_{n>1} S_n$ (see [\[Nar62,](#page-5-8) Theorem 1]).

Let $f: S \to \mathbb{C}$ be a holomorphic map. Assume first that $f|_{S_n}$ is constant for all $n \gg 0$. As the subset $S_n \cap S_{n+1}$ of *S* is nonempty, the value taken by $f|_{S_n}$ does not depend on $n \gg 0$. It follows that f has a (single) infinite-dimensional fiber.

Assume now that the set $\Sigma := \{n \in \mathbb{N}_{\geq 1} \mid f|_{S_n} \text{ is not constant}\}\$ is infinite. For all $n \in \Sigma$, the map $f|_{S_n} : S_n \to \mathbb{C}$ omits at most one value, by Picard's little theorem. We deduce that at most one complex number is not the image of $f|_{S_n}$ for all but finitely many $n \in \Sigma$. Consequently, all complex numbers except possibly one are in the image of infinitely of the $f|_{S_n}$. As the nonempty fibers of $f|_{S_n}$ have dimension $\geq n-1$, we deduce that all the fibers of f except possibly one are infinite-dimensional. $\hfill \Box$

3. Morphisms of Stein algebras

Theorem 3.1. *Let S be a Stein space. Let* $\chi : \mathcal{O}(S) \to \mathbb{C}$ *be a* \mathbb{C} *-algebra morphism. Then* χ *is continuous and there exists* $s \in S$ *such that* $\chi(f) = f(s)$ *for all* $f \in \mathcal{O}(S)$ *.*

Proof. Let $f: S \to \mathbb{C}^2$ be as in Theorem [2.1.](#page-2-0) Let $(f_i)_{1 \leq i \leq 2}$ be the components of *f*. Set $\lambda_i := \chi(f_i) \in \mathbb{C}$. Let $T \subset S$ be the closed complex subspace defined by the equations $\{f_i = \lambda_i\}_{1 \leq i \leq 2}$. Let $r_{S,T} : \mathcal{O}(S) \to \mathcal{O}(T)$ be the restriction map, which is continuous by $|GR79, V, §6.4$ Theorem 6. By [\[Eph78,](#page-4-5) Lemma 1.7], there exists a morphism of C-algebras $\chi_T : \mathcal{O}(T) \to \mathbb{C}$ such that $\chi = \chi_T \circ r_{S,T}$.

Our choice of *f* implies that *T* is a finite-dimensional Stein space. It therefore follows from Forster's theorem [For 66, Theorem 5] that χ_T is continuous and hence that so is χ . Another theorem of Forster [\[For67,](#page-4-1) Satz 1] then implies that there exists $s \in S$ such that $\chi(f) = f(s)$ for all $f \in \mathcal{O}(S)$.

Theorem 3.2. *Any* C*-algebra morphism between Stein algebras is continuous.*

Proof. Let *S* and *S'* be two Stein spaces, and let ξ : $\mathcal{O}(S') \to \mathcal{O}(S)$ be a C-algebra morphism. Fix a finitely generated maximal ideal $\mathfrak{m} \subset \mathcal{O}(S)$. There exists $s \in S$ such that $\mathfrak{m} = \{f \in \mathcal{O}(S) \mid f(s) = 0\}$ (see e.g. [\[GR79,](#page-5-1) V, §7.1, statement above Theorem 1]). Evaluation at *s* therefore induces an isomorphism $\mathcal{O}(S)/\mathfrak{m} \longrightarrow \mathbb{C}$. We let $\chi : \mathcal{O}(S) \to \mathbb{C}$ be the induced map.

Apply Theorem [3.3](#page-4-0) to the C-algebra morphism $\chi \circ \xi : \mathcal{O}(S') \to \mathbb{C}$. We deduce the existence of $s' \in S'$ such that $\chi \circ \xi(f) = f(s')$ for all $f \in \mathcal{O}(S')$. It then follows that $\xi^{-1}(\mathfrak{m}) = \{f \in \mathcal{O}(S') \mid f(s') = 0\}.$ This maximal ideal is closed (by continuity of the evaluation map $f \mapsto f(s')$, and hence finitely generated by [\[For67,](#page-4-1) Theorem 2].

Since $\mathfrak m$ was arbitrary, the continuity of ξ is now an application of the criterion given in [\[For67,](#page-4-1) Theorem 3]. \square

Theorem 3.3. *The contravariant functor*

(3.1)
$$
\begin{Bmatrix}Stein spaces \\ and holomorphic maps \end{Bmatrix} \rightarrow \begin{Bmatrix}Stein algebras \\ and C-algebra morphisms \end{Bmatrix}
$$

given by $S \mapsto \mathcal{O}(S)$ *is an anti-equivalence of categories.*

Proof. Since C-algebra morphisms of Stein algebras are automatically continuous by Theorem [3.2,](#page-4-3) the theorem is equivalent to [\[For67,](#page-4-1) Satz 1].

We finally record the following consequence of Theorem [3.3](#page-4-0) for later use in [\[Ben\]](#page-4-8). If *S* is a Stein space, we let $\lambda_S : S \to \text{Spec}(\mathcal{O}(S))$ be the unique morphism of locally ringed spaces such that $\lambda_S^* : \mathcal{O}(S) \to \mathcal{O}(S)$ is the identity (see [\[SP,](#page-5-9) Lemma 01I1]).

Proposition 3.4. *Let X be a complex space and let S be a Stein space. The map*

(3.2) { holomorphic maps
$$
\rightarrow
$$
 \rightarrow \rightarrow \rightarrow *morphisms of C-locally ringed spaces* \rightarrow *X* \rightarrow Spec($\mathcal{O}(S)$)

given by $f \mapsto \lambda_S \circ f$ *is a bijection.*

Proof. As the statement is local on *X*, we may assume that *X* is Stein. In this case, the proposition follows from Theorem [3.3](#page-4-0) since the global sections functor induces a bijection between the set of morphisms of C-locally ringed spaces $X \to \text{Spec}(\mathcal{O}(S))$ and the set of C-algebra morphisms $\mathcal{O}(S) \to \mathcal{O}(X)$ (see [\[SP,](#page-5-9) Lemma 0111]).

REFERENCES

- [Ben] O. Benoist, *On the field of meromorphic functions on a Stein surface*, in preparation.
- [Eph78] R. Ephraim, *Multiplicative linear functionals of Stein algebras*, Pacific J. Math. **78** (1978), no. 1, 89–93.
- [For66] O. Forster, *Uniqueness of topology in Stein algebras*, Function Algebras (Proc. Internat. Sympos. on Function Algebras, Tulane Univ., 1965), Scott-Foresman, Chicago, Ill., 1966, pp. 157–163.
- [For67] , *Zur Theorie der Steinschen Algebren und Moduln*, Math. Z. **97** (1967), 376–405.
- [For05] F. Forstnerič, *Extending holomorphic mappings from subvarieties in Stein manifolds*, Ann. Inst. Fourier **55** (2005), no. 3, 733–751.
- [For09] , *Oka manifolds*, C. R. Math. Acad. Sci. Paris **347** (2009), no. 17-18, 1017–1020.

6 OLIVIER BENOIST

- [For17] , *Stein manifolds and holomorphic mappings*, second ed., Ergeb. Math. Grenzgeb. (3), vol. 56, Springer, Cham, 2017.
- [FW24] F. Forstnerič and E. F. Wold, *Oka domains in Euclidean spaces*, IMRN (2024), no. 3, 1801–1824.
- [GR79] H. Grauert and R. Remmert, *Theory of Stein spaces*, Grundlehren der Mathematischen Wissenschaften, vol. 236, Springer-Verlag, Berlin-New York, 1979.
- [GR84] , *Coherent analytic sheaves*, Grundlehren der Mathematischen Wissenschaften, vol. 265, Springer-Verlag, Berlin, 1984.
- [Kus21] Y. Kusakabe, *Elliptic characterization and localization of Oka manifolds*, Indiana Univ. Math. J. **70** (2021), no. 3, 1039–1054.
- [Kus24] , *Oka properties of complements of holomorphically convex sets*, Ann. of Math. (2) **199** (2024), no. 2, 899–917.
- [Mar73] A. Markoe, *Maximal ideals of Stein algebras*, Conference on Complex Analysis, State University of New York at Buffalo, 1973, pp. 25–39.
- [Nar60] R. Narasimhan, *Imbedding of holomorphically complete complex spaces*, Amer. J. Math. **82** (1960), 917–934.
- [Nar62] \ldots , *A note on Stein spaces and their normalisations*, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) **16** (1962), 327–333.
- [SP] A. J. de Jong et al., *The Stacks Project*, <https://stacks.math.columbia.edu>.

Département de mathématiques et applications, École normale supérieure, CNRS, 45 rue d'Ulm, 75230 Paris Cedex 05, France

Email address: olivier.benoist@ens.fr