
ar
X

iv
:2

41
0.

06
34

6v
1 

 [
m

at
h.

R
T

] 
 8

 O
ct

 2
02

4

A REMARK ON THE LANGLANDS CORRESPONDENCE FOR TORI

MARCELO DE MARTINO AND ERIC OPDAM

Abstract. For an algebraic torus defined over a local (or global) field F , a celebrated re-

sult of R.P. Langlands establishes a natural homomorphism from the group of continuous

cohomology classes of the Weil group, valued in the dual torus, onto the space of complex

characters of the rational points of the torus (or automorphic characters in the global

case). We slightly extend this result by showing that, if we topologize the relevant spaces

of continuous homomorphisms and continuous cochains with the compact-open topology,

then Langlands’s homomorphism is continuous and open. Moreover, we demonstrate that,

in both the local and global settings, the subset of unramified characters corresponds to

the identity component of the relevant space of characters when viewed in this topolog-

ical framework. Finally, we compare the group of unramified characters and the Galois

(co)invariants of the dual torus.
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1. Introduction

Let T be an algebraic torus defined over a field F (all fields in this article will either

be a local or a global field) and splitting over a finite Galois extension E/F , with Galois

group ΓE/F . Denote by X = Hom(TE ,Gm) the character lattice, by X̂ = Hom(X,Z) the

cocharacter lattice and by T̂ = Hom(X̂,C∗) the complex dual torus of T . Whenever F is

global, we let AF denote its ring of adèles.

In [La], Langlands described the space of continuous characters T (F )→ C
∗ (local case)

and of automorphic characters T (AF )/T (F )→ C∗ (global case). Let

(1) CE =

{
E∗ if E local,

A∗
E/E

∗ if E global,

and denote by WE/F the relative Weil group, which is defined via the extension

(2) 1 −→ CE −→WE/F
p
−→ ΓE/F −→ 1

of ΓE/F by CE . In what follows, we shall denote the image of the map WE/F
p
−→ ΓE/F by

p(ω) = ω. Langlands showed that there is a finite-to-one map from the groupH1
c (WE/F , T̂ ),

of continuous first-cohomology classes of WE/F with values in T̂ , onto the relevant space

of continuous characters. For F local, the correspondence is one-to-one and for F global

the correspondence is one-to-one, modulo local equivalence ∼l.e. (see Definition 8, below).

The aim of this article is to show that, when suitably topologizing the cohomology groups

and the spaces of characters, Langlands’s canonical map is continuous, open and that the

space of unramified characters, XT (see Definitions 15 and 16), is the identity component

of the relevant space of characters. Our first main result is the following. Given our torus

T defined over F , let

(3) XC(T, F ) =

{
Homc(T (F ),C

∗) if F local,

Homc(T (AF )/T (F ),C
∗) if F global.

In both cases XC(T, F ) is topologized with the compact-open topology, in which case it

becomes a metrizable space [Ar, Section 8].

Theorem 1. For F local or global, XT = XC(T, F )
◦. Furthermore, the identity component

XC(T, F )
◦ is open in XC(T, F ).

The proof of this theorem is given in Corollary 23, below. We now turn our atten-

tion to the cohomological side of Langlands’s correspondence. Using a formalism of C.

Moore [Mo1, Mo2, Mo3, Mo4] we consider the theory of measurable cohomology groups

H∗(WE/F , T̂ ) (see Section 5), which provides useful interaction between topological and

homological algebra features. We then show that H1
c (WE/F , T̂ ) has naturally the structure

of a complete metric space (see Theorem 27) and prove the following result.
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Theorem 2. For F local or global, the identity component H1
c (WE/F , T̂ )

◦ is an open sub-

group of H1
c (WE/F , T̂ ). Furthermore, the canonical surjective homomorphism

H1
c (WE/F , T̂ )→ XC(T, F )

established by Langlands is continuous, open and maps H1
c (WE/F , T̂ )

◦ onto XT .

We shall discuss Langlands’s map in the next section (see Theorem 6) and provide

arguments to prove Theorem 2 in Propositions 22, 31 and Theorem 37, below. We also

prove the following result.

Theorem 3. If F is a number field or an Archimedean local field, then XT is topologically

isomorphic to Lie(T̂ )ΓE/F . If F is a local non-Archimedean field then XT is topologically

isomorphic to T̂ΓE/F
and if F is a function field, then there are finite epimorphisms

(4) (T̂ ΓE/F )◦ → XT → T̂ΓE/F
,

where (T̂ ΓE/F )◦ denotes the identity component of the ΓE/F -invariants of T̂ .

1.1. Notations. Throughout this paper, the symbol T will denote the unit circle in C.

Given two topological groups G,H we shall write G ∼= H to mean that G is (algebraically)

isomorphic to H and G ≈ H to mean that G is topologically (and algebraically) isomorphic

to H . Also, we shall denote by G◦ the identity component of the topological group G.

2. Langlands’s Parametrization

We start by recalling Langlands’s parametrization (see also the work of Labesse [?]). We

retain the notations regarding the extension E/F as above. There is a well-known [Bo,

8.12] equivalence of categories

{
Algebraic tori T/F

that split over E.

}
←→

{
Lattices X with

ΓE/F -action.

}

which is given by sending T 7→ X = Hom(TE ,Gm). Under this correspondence, we have

T (E) = Hom(X,E∗) and T (F ) = HomΓE/F
(X,E∗). Denote by X̂ := Hom(X,Z) and

T̂ := Hom(X̂,C∗). We define an action of the Weil group WE/F on T̂ by means of the map

p :WE/F → ΓE/F ; in particular, CE acts trivially.

We shall write LT := T̂ ⋊ ΓE/F and we say that a homomorphism ϕ : WE/F →
LT is an

L-homomorphism if pr2ϕ = p. We recall [La] that the space of Langlands parameters of T ,

denoted Φ(T ), is defined as the group of all continuous L-homomorphisms ϕ : WE/F →
LT ,

modulo T̂ conjugation.
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Definition 4. For a locally compact group G endowed with a continuous action on T̂ , let

Z1
c (G, T̂ ) denote the (abelian) group of continuous 1-cocycles of G with values in T̂ and let

B1
c (G, T̂ ) denote the subgroup of continuous 1-coboundaries. We topologize these spaces

with the compact-open topology, and we let the quotient H1
c (G, T̂ ) denote the group of

continuous 1-cohomology classes, endowed with the quotient topology.

As is well-known [La, p. 232] we have the following result.

Proposition 5 ([La]). The space Φ(T ) is isomorphic to H1
c (WE/F , T̂ ), as abelian groups.

Theorem 6 ([La]). Let F be local or global. There are canonical homomorphisms

H1
c (WE/F , T̂ )

Λ
→ Homc(HomΓE/F

(X,CE),C
∗)

ρ
→ XC(T, F ),

where Λ is an isomorphism and ρ surjective. If F is local, then ρ is also an isomorphism.

If F is global, then the kernel of ρ is finite and consists of the cohomology classes which

are locally trivial.

We now describe the locally trivial classes. For a local or global field F , let (WF , ϕ, {rE})

be the absolute Weil group of F (see [Ta2]). Here, the index E varies over all finite

extensions of F inside a fixed separable closure F̄ /F , ϕ is a continuous map with dense

image WF → ΓF (where ΓF is the absolute Galois group), and rE : CE → W ab
E is the

reciprocity isomorphism, where for each finite extension E/F we have WE = ϕ−1(ΓE).

When F is global, let Pl(F ) denote the set of places of F . From the local-global relation-

ship [Ta2, (1.6.1)], for each v ∈ Pl(F ), the inclusion iv : F̄ → F̄v induces a unique (up to

inner automorphisms of WF ) continuous map θv : WFv →WF such that ϕθv = ivϕv, where

we also denote by iv : ΓFv → ΓF the induced map between the absolute Galois groups of

Fv and F . We have the following well-known result.

Proposition 7. For F global, there is a bijection Inf : H1
c (WE/F , T̂ ) ∼= H1

c (WF , T̂ ). Fur-

thermore, there is a natural map
∏

v∈Pl(F )

Resv : H
1
c (WF , T̂ )→

∏

v∈Pl(F )

H1
c (WFv , T̂ )

to the product of the cohomology groups of each local absolute Weil group.

Definition 8. We say that a Langlands parameter ϕ ∈ Φ(T ) ∼= H1
c (WE/F , T̂ ) is locally

trivial if its image in
∏

v∈Pl(F )H
1
c (WFv , T̂ ) is trivial.

3. Remarks on the compact-open topology

In this paper we will deal a lot with the compact-open topology on the space of contin-

uous functions between two topological spaces, so we gather in this section some relevant

information about this topology, for convenience of the reader.
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Let A,B be topological spaces. Given any K ⊂ A compact and W ⊂ B open, we let

V (K,W ) = {f : A → B continuous | f(K) ⊂ W}. The compact-open topology on the

space C (A,B) of continuous functions between A and B is the topology generated by the

sub-basis {V (K,W ) | K ⊂ A compact and W ⊂ B open}.

Furthermore, recall that a topological space A is called hemicompact if there is a sequence

K1, K2, . . . of compact subsets of A such that A = ∪∞n=1Kn and any compact subset K of

A is contained in a finite union Kn1
∪ · · · ∪ Knp of compacts sets in that sequence. The

multiplicative groups CF (with F local or global) and finite extensions of them are examples

of hemicompact topological spaces.

Proposition 9. The compact-open topology on C (A,B) satisfy the following properties.

(a) If B is a metric space, then a sequence (fn)n∈Z≥0
in C (A,B) converges in the compact-

open topology to a continuous function f if, and only if, fn converges uniformly to

f ∈ C (A,B) on any compact subset K of A.

(b) If B is a metric space, then C (A,B) is metrizable if and only if A is hemicompact.

(c) If B is a metric space and A is hemicompact, then the compact-open topology is entirely

determined by uniform convergence on compact sets.

(d) If A,B are topological groups with A hemicompact and B a metric space, then the space

of continuous homomorphisms Homc(A,B) is a closed subspace of C (A,B).

(e) If A,B1, B2 are topological groups with A hemicompact and B1, B2 metric spaces, then

Homc(A,B1 × B2) ≈ Homc(A,B1)× Homc(A,B2).

(f) If A1, A2, B are topological groups with A1, A2 hemicompact and B an abelian group

with a metric topology, then

Homc(A1 × A2, B) ≈ Homc(A1, B)× Homc(A2, B).

Proof. Items (a), (b) are proved in [Ar] and (c) is a consequence of (b). Item (d)

follows, as the homomorphism property is a closed condition. For (e), arguing

with sequences (or otherwise) it is straightforward to check that the topological

isomorphism is realized by Φ : Homc(A,B1×B2)→ Homc(A,B1)×Homc(A,B2)

defined by

Φ(f) = (π1f, π2f),

(where π1, π2 denote the projection on the relevant factor) whose continuous in-

verse is given by Φ−1(g, h)(a) = (g(a), h(a)) for all a ∈ A. For (f) one checks that

the topological isomorphism is realized by Ψ : Homc(A1×A2, B)→ Homc(A1, B)×

Homc(A2, B) with

Ψ(f) = (fι1, f ι2)
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(where ι1 denote the inclusion a 7→ (a, e) and similarly for ι2) whose continuous

inverse is given by Ψ−1(g, h)(a1, a2) = g(a1)h(a2), for all (a1, a2) ∈ A1 ×A2. �

4. Unramified characters

In this section we will recall the definitions of unramified characters of a torus and

establish some facts about them. We start by recalling the relevant absolute values in the

groups we are interested in.

4.1. Absolute values. Suppose first that F is a local field endowed with a normalized

absolute value | · |F : F → R≥0 with respect to which F is a complete topological field

(and locally compact). When F is non-Archimedean, we let κF denote its residue field,

qF = #κF and let vF : F → Z denote its discrete valuation. If F is Archimedean (i.e. F

is either R or C) let |α| denote the usual absolute value in these fields. In each case, the

normalized absolute value satisfies

(5) |α|F =





|α|, if F = R,

|α|2, if F = C,

q
−vF (α)
F , if F is non-Archimedean.

In the case when F is a global field with ring of adèles AF , for each v ∈ Pl(F ) we let

| · |v be the normalized absolute value of the local completion Fv of F , as in (5). Here,

any subscript referring to a local field Fv will be only denoted by v. If α = (av)v ∈ AF ,

let |α|F =
∏

v |av|v denote the adelic absolute value, which restricts to a homomorphism

| · |F : A∗
F → R+ and induces a homomorphism CF → R+.

Definition 10. For F both local or global, the absolute value homomorphism1 is denoted

by | · |F : CF → R+. We define C1
F and VF to be the kernel and the image of | · |F .

We now summarize the properties of these topological groups.

Proposition 11. The following assertions hold true.

(a) CF is isomorphic to VF × C
1
F both topologically and algebraically.

(b) C1
F is a compact subgroup of CF .

(c) When F is a number field or a local Archimedean field, we have VF = R+.

(d) When F is a global function field or a local non-Archimedean field, we have VF = qZF ,

where qF is the cardinality of the residue field in the local case and qF is the cardinality

of the field of constants in the global case.

1The notation | · |F for the adelic absolute value in the global case is not usual, but it is convenient

given the unified notation for the multiplicative groups CF .



A REMARK ON THE LANGLANDS CORRESPONDENCE FOR TORI 7

Proof. This is rather well-known. We refer to [Ta1, (1.4.6)] for the algebraic

part of (a). In the global case, the continuous section splitting the sequence

topologically is canonically defined in the number field case [We, Corollary 2,

p. 75] and not canonical in the function field case. We refer to [RV, Theorem

5-15] for (b) and [RV, Theorem 5-14] for (c) and (d) (see also [NSW, Capter VII,

§2]). �

Remark 12. We note that under the finite Galois extension E/F , the norm | · |E is ΓE/F -

invariant. The (topological and algebraic) splitting CE = C1
E × VE of Proposition 11(a) is

not, in general, a splitting as ΓE/F -modules. For example, in the local non-Archimedean

case, a ΓE/F -splitting exists if and only if E/F is an unramified extension.

Finally, if F is a local or global, recall (see [Ta2]) that the absolute Weil group WF

comes equipped with an absolute value extending the normalized absolute value | · |F on

CF
∼= W ab

F = WF/W
c
F (here, W c

F means the closure of the subgroup generated by all

commutators in WF ). Since for any extension E/F we have W c
E ⊆ W c

F , the absolute value

on WF descends to an absolute value on WE/F
∼= WF/W

c
E, denoted | · |E/F . We let W 1

E/F

denote the kernel. Clearly, the image of | · |E/F is VF , the same as the image of | · |F .

4.2. Unramified characters of multiplicative groups. Given a field F , local or global,

we say F is of Z- or R-type if, respectively, we have VF ∼= Z or VF ∼= R.

Definition 13. An unramified character of CF is a continuous homomorphism CF → C∗

which is trivial on C1
F .

Proposition 14 ([Ta1]). Any unramified character of CF is of the type χ : α 7→ |α|sF for

some s ∈ C. If F is of R-type, then s is uniquely defined from χ. If F is of Z-type, s is

uniquely defined modulo 2πi/ log(qF ).

We now recall how to extend this notion of unramified characters of the multiplicative

groups CF to any torus.

4.3. Unramifed characters: local setting. In this section, F is a local field and T is

a torus defined over F . If X = Hom(TE ,Gm) is the character lattice of T and E/F is a

Galois extension splitting T , recall (e.g., from [Bo, Section 8.11]) that XΓE/F is the lattice

of rational characters of T . Note that each χ ∈ XΓE/F defines a continuous homomorphism

|χ|F : T (F )→ VF ⊆ R+ via |χ|F : t 7→ |χ(t)|F . Let T (F )
1 = ∩χ ker(|χ|F ), with χ ∈ X

ΓE/F .

Definition 15. A continuous homomorphism T (F )→ C∗ is called an unramified character

if it is trivial on T (F )1. Denote by XT,F the group of all unramified characters of T . We

will omit the reference to F and write only XT if there is no risk of confusion.
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The group T (F )1 plays a crucial role in this theory, and it is important to further

characterize it. As we will see below, this group is the maximal compact subgroup of T (F ).

However, we will delay its study until after we describe the space of complex characters of

the group HomΓE/F
(X,CE), as this latter group can be treated in a more unified manner

for both local and global fields.

4.4. Unramifed characters: global setting. In the global case, given a torus T defined

over a global field F and splitting over a finite Galois extension E/F , any element χ ∈

XΓE/F defines, for each v ∈ Pl(F ), an algebraic homomorphism χv : Tv → F ∗
v , tv 7→ χv(tv)

and a continuous homomorphism |χ|F : T (AF )→ VF ⊆ R+ defined by

(tv)v 7→
∏

v

|χv(tv)|v.

Definition 16. Given T defined over F and splitting over E/F , let T (AF )
1 = ∩χ ker |χ|F

with χ running over XΓE/F . An unramified character of T is a continuous homomorphism

T (AF )/T (F ) → C∗ trivial on T (AF )
1. The space of all such characters is denoted XT,F .

As before, we shall omit the reference on the field F and write only XT .

We shall characterize XT . Following [MW], given the lattice of rational characters XΓE/F

of T , consider the real vector spaces a∗0 = R ⊗XΓE/F and a0 = Hom(XΓE/F ,R). Define a

homomorphism of abelian groups logT : T (AF )→ a0 characterized by

(6) 〈χ, logT (t)〉 = logq(|χ|F (t)),

for χ ∈ XΓE/F and t ∈ T (AF ). Here, q = e if F is a number field and, in the function field

case, q = qF is the base of the valuation group VF . In both cases, we have ker(logT ) =

T (AF )
1. Let LT := logT (T (AF )). Note that logT is a continuous surjection from T (AF )→

LT , which induces a topological isomorphism between LT and T (AF )/T (AF )
1. In the

number field case we have LT = a0 while in the function field case LT ⊂ a0 is a sublattice

of Hom(XΓE/F ,Z) of finite index. We have a topological identification XT ≈ Homc(LT ,C
∗).

Proposition 17. There is a continuous and open surjection e : Lie(T̂ )ΓE/F → XT which is

an isomorphism in the number field case and its kernel is L̂T = Hom(LT ,Z) in the function

field case.

Proof. If F is a number field, using LT = a0
∼= R ⊗ Hom(XΓE/F ,Z) and the

tensor-hom adjunction we obtain

XT
∼= Homc(LT ,C

∗) ∼= Homc(R,Hom(Hom(XΓE/F ,Z),C∗)) ∼= Lie(T̂ )ΓE/F ,

where we used that any continuous homomorphism between finite dimensional

Lie groups is necessarily smooth. Furthermore, Lie(T̂ )ΓE/F ∼= a
∗
C
. In the function
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field case, since LT ⊆ Hom(XΓE/F ,Z) is of finite index, we have Hom(LT ,C) ∼=

C⊗L̂T
∼= a

∗
C
. As LT is free (and discrete), applying Hom(LT ,−) to the exponential

exact sequence yields 0→ L̂T → a
∗
C
→ XT → 1, finishing the proof. �

Remark 18. When F is local non-Archimedean, we can similarly define logT : T (F )→ a0

as in (6) and there is a similar sequence 0→ L̂T → a
∗
C
→ XT → 1 characterizing XT , with

LT = logT (T (F )) homeomorphic to T (F )/T (F )1.

4.5. Compactness and identity components. In this section, we shall study some

topological features of the space Homc(HomΓE/F
(X,CE),C

∗). In light of Langlands’s result,

Theorem 6, the information extracted in this section will provide a proof of Theorem 1.

To ease notations, let us make the convention

(7) TCF
:= HomΓE/F

(X,CE).

We assume here that the field F is either local or global with finite Galois extension E/F

splitting T . The group TCF
is a locally compact topological group with topology determined

by that of CE. Furthermore, if χ ∈ XΓE/F is a rational character, then for any t ∈ TCF
, we

have χ(t) ∈ CF and hence |χ|F = | · |F ◦ χ is a continuous character of TCF
. Similarly to

the definitions in the local and global cases, let us write

(8) T 1
CF

= ∩
χ∈X

ΓE/F ker(|χ|F ).

Proposition 19. For F local or global, we have that T 1
CF

is the maximal compact subgroup

of TCF
.

Proof. We claim that T 1
CF

= HomΓE/F
(X,C1

E). Indeed, note that, by (8), we have

HomΓE/F
(X,C1

E) ⊆ T 1
CF

. Conversely, let t /∈ HomΓE/F
(X,C1

E), that is, t ∈ TCF

and there exists x ∈ X with |x(t)|E > 1. We show that t 6∈ T 1
CF

. Indeed, for

x ∈ X as above, let

x̃ =
∑

γ∈ΓE/F

γ(x) ∈ XΓ
E/F

and note that x̃(t) =
∏

γ∈ΓE/F
γ(x(t)) = NE/F (x(t)) ∈ CF , where NE/F is the

norm map. It follows that |x̃(t)|F = |NE/F (x(t))|F = |x(t)|E > 1, from which

we conclude that t 6∈ T 1
CF

. As C1
E is compact, then T 1

CF
is compact. Now, T 1

CF

contains every compact subgroup of TCF
, since R+ does not admit any non-trivial

compact subgroups. This finishes the proof. �

Corollary 20. If F is a global field, then T (AF )
1/T (F ) is compact. If F is a local field,

then T (F )1 is the maximal compact subgroup of T (F ).
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Proof. In the global case we have T (AF )/T (AF )
1 = T 1

CF
∩ (T (AF )/T (F )), and

since T 1
CF

is compact and T (AF )/T (F ) ⊂ TCF
is closed, then T 1(AF )/T (F ) is

compact. If F local, TCF
= T (F ) so the claim follows from Proposition 19. �

Now let us consider the continuous restriction mapR : Homc(TCF
,C∗)→ Homc(T

1
CF
,C∗).

Its kernel consists of those characters that are trivial on T 1
CF

and is naturally identified

with Homc(TCF
/T 1

CF
,C∗). Let us write ker(R) = X̃T .

Proposition 21. Let F be a local or a global field. Then X̃T = Homc(TCF
,C∗)◦. Further-

more, we have that X̃T is an open subgroup of Homc(TCF
,C∗).

Proof. As T 1
CF

is compact, we have Homc(T
1
CF
,C∗) = Homc(T

1
CF
,T) is discrete,

as it is well-known that the Pontryagin dual of a compact topological group is

discrete [HR, (23.17) Theorem]. Hence, the kernel of R, X̃T , is a subgroup which

is open and closed, and then must be a connected component, provided it is

connected. From [Ma], it suffices to show that TCF
/T 1

CF
is torsion-free, which we

now show. From the split exact sequence 1 → C1
E → CE → VE → 1, we obtain

the exact sequence

1→ T 1
CF
→ TCF

→ HomΓE/F
(X, VE)→ H1(ΓE/F ,Hom(X,C1

E)).

But HomΓE/F
(X, VE) = Hom((XΓE/F

)/(XΓE/F
)tor, VE) since VE is trivial for the

ΓE/F -action and torsion-free. It follows that HomΓE/F
(X, VE) is torsion-free for

both the Z- and the R-cases. Since the quotient TCF
/T 1

CF
maps isomorphically to

a submodule (the kernel of the last arrow) of a torsion-free space, it is torsion-free.

This finishes the proof. �

Proposition 22. Let F be a global field. Then, the restriction map

ρ : Homc(TCF
,C∗)→ Homc(T (AF )/T (F ),C

∗)

is continuous, open, and closed, if both spaces are endowed with the compact-open topology.

Proof. When F is global, we have that T (AF )/T (F ) ⊆ TCF
is a closed inclusion

of finite index [La, p. 245]. Hence, T (AF )/T (F ) is also an open subgroup of TCF

and thus ρ is a continuous and open surjection (see [HR, (24.5) Theorem] for the

T-valued case; their proof that this homomorphism is also open can be adapted

to the C∗-valued case). As ker(ρ) is finite, this map is also closed. �

Corollary 23. If F is a local field, then XT = Hom(T (F ),C∗)◦. If F is a global field, then

XT = Hom(T (AF )/T (F ),C
∗)◦. In both cases, XT is an open subgroup.
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Proof. If F local, we have TCF
= T (F ), and hence X̃T = XT in this case. If F is

global, from Propositions 21 and 22, it follows that

XT = ρ(X̃T ) = Homc(T (AF )/T (F ),C
∗)◦,

since the closure of the image of the identity component under a continuous and

open homomorphism is the identity component of the target space [HR, (7.12)

Theorem]. This finishes the proof. �

With the description of T (F )1 at hand, we can be more precise in the description of

T (F ), in the local case. Given a subtorus S of T we let X(S) denote its character lattice.

Proposition 24. Let F be a local field. The following assertions hold true:

(a) The quotient T (F )/T (F )1 is isomorphic to S(F )/S(F )1, where S ⊂ T is the largest

F -split subtorus of T .

(b) If F is a local Archimedean field, then XT ≈ Lie(T̂ )ΓE/F . If F is a local non-

Archimedean field, then XT ≈ T̂ΓE/F
.

Proof. Recall [Bo, Proposition 8.15] that T (F ) = Ta(F ) ·S(F ) is the almost prod-

uct of the largest anisotropic and largest split subtori defined over F . Further-

more, in the local case, anisotropic tori are compact (see [Hu, Section 35.3] for the

Archimedean case and [Pr] for the non-Archimedean case). So, from Corollary 20,

we have Ta(F ) ⊂ T (F )1. Thus, the composition S(F ) → T (F ) → T (F )/T (F )1

is a surjective homomorphism, whose kernel is S(F ) ∩ T (F )1. It follows that

T (F )

T (F )1
∼=

S(F )

S(F ) ∩ T (F )1
.

On the other hand, from the finite-index injection XΓE/F → X(S) (see [MW, p.

6]), it follows that S(F )1 ⊆ S(F ) ∩ T (F )1, a closed injection with finite-index.

Hence, there is a natural surjective, finite-to-one homomorphism

S(F )

S(F )1
→

S(F )

S(F ) ∩ T (F )1
.

But the quotient S(F )/S(F )1 does not admit finite subgroups, since it is either a

lattice (in the non-Archimedean case) or a real vector space (in the Archimedean

case), from which we conclude these two quotients are isomorphic, proving (a).

As for item (b), it follows from (a) that T (F )/T (F )1 = Hom(XΓE/F , VF ). If

F is local non-Archimedean, then XT ≈ T̂ΓE/F
and if F is Archimedean, then

XT ≈ Lie(T̂ )ΓE/F . �
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5. Cohomological side

In order to discuss the continuity of the Langlands’s map, we obviously need to topologize

the cohomology groups first. We shall use the theory developed by C. Moore in the series

of papers [Mo1, Mo2, Mo3, Mo4]. In fact, we shall closely follow the axiomatic treatment

of [Mo3, Definition, p. 16]. See also [AM] and [Ra, Section 3] for other accounts on this

theory.

5.1. Measurable cohomology theory. We briefly recall Moore’s construction of his

cohomology theory in the next paragraph, for any locally compact group G and polish G-

modules A (i.e., a Hausdorff, second countable, abelian topological group whose topology

admits a separable complete metric [Mo3, Proposition 1] endowed with a continuous G-

action). We are interested in A a lattice, a vector space or a complex torus, so this theory

is well-suited.

First, given any σ-finite measurable space (X,B, µ) with (X,B) countably generated and

A a separable metric space, chose a finite measure ν equivalent to µ and metric ρ on A of

finite diameter. Define I(X,A) as the set of equivalence classes of ν-measurable functions

X → A under the almost-everywhere-equality equivalence relation and equipped with the

metric

(9) ρ̄(ϕ, ψ) =

∫

X

ρ(ϕ(x), ψ(x))dν(x).

The topology on I(X,A) defined by ρ̄ depends only on the measure class of ν and the topol-

ogy of A (see [Mo3, Corollary to Proposition 6]) and not on the particular choices made.

Now, let G be a locally compact group with Haar measure µ and A a polish G-module

as above. Define the chain complex (C∗(G,A), δ∗) where Cn(G,A) = I(Gn, A) endowed

with the metric ρ̄ of (9) and δn is the usual algebraic coboundary operator restricted to

elements of Cn(G,A). The subgroups Zn(G,A), Bn(G,A) are given the induced topology.

We then let Hn(G,A) denote the cohomology groups of the chain complex (C∗(G,A), δ∗),

topologized with the quotient topology. The following proposition summarizes what we

need from this construction. All proofs are found in [Mo3] and [AM].

Proposition 25. The following assertions hold true:

(1) The coboundary operators δn are continuous for all n.

(2) If Bn(G,A) is a closed subgroup of Zn(G,A), then Hn(G,A) is a polish G-module.

(3) For any locally compact G and polish A we have H1(G,A) ∼= H1
c (G,A) as abelian

groups which is a homeomorphism if H1
c (G,A) is endowed with the quotient topology

and Z1
c (G,A), B

1
c (G,A) are given the compact-open topology.
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(4) For any short exact sequence 0 → A
i
→ B

p
→ C → 0 of polish G-modules with i a

homeomorphism onto its image and p continuous and open, all morphisms in the

long exact sequence induced by H∗(G,−) are continuous.

(5) Given any f : G → G′ continuous homomorphism between locally compact groups,

A,A′ polish G- and G′-modules and ϕ : A′ → A a continuous homomorphism of

abelian groups satisfying

ϕ(f(g) · a′) = g · ϕ(a′),

then the induced morphism Hn(G,A)→ Hn(G′, A′) is continuous.

(6) Suppose that the quotient G/G◦ is compact. If A is discrete, then Hp(G,A) is

countable and discrete in its quotient topology, for all p > 0. If A is a Euclidean

space, then Hp(G,A) is a Euclidean space in its quotient topology, for all p > 0.

(7) If G is compact and A is a Euclidean space, then Hp(G,A) = 0, for all p > 0.

Proof. Item (1) is [Mo3, Proposition 20]. For item (2), see the discussion on [Mo3,

p. 10]. Item (3) is [Mo3, Theorem 3, Corollary 1, Theorem 7]. Item (4) is [Mo3,

Proposition 25] and item (5) is, with minor modifications, [Mo3, Proposition 27].

Assertion (6) is in [AM, Theorem D] and the last one in [AM, Theorem A]. �

Note that item (5) of the previous proposition implies that in all homomorphisms be-

tween the cohomology groups in the spectral sequence (so in particular in the inflation-

restriction exact sequence) are continuous. We shall make extensive use of this property.

5.2. Low-dimensional measurable cohomology groups. The biggest issue when deal-

ing with the theory of measurable cohomology groups as described by Moore is the state-

ment (2) in Proposition 25: In general, the groups Hr(WE/F , A) may not be Hausdorff.

There are several partial results to describe when these groups are Hausdorff, and for a

discussion on this topic, we refer to [AM, Section 1.4].

Our first task will be to prove that in our context, the cohomology groups H1
c (WE/F , A)

are complete metric spaces when we take A to be T̂ , Lie(T̂ ) or X . We note that in some

possibilities for WE/F , this is a consequence of [AM, Theorem D], but we will give an

alternative proof that works for all possible cases of WE/F . Note also that when T is

split over F , the relevant first group of continuous cohomology becomes the space of all

continuous functions from CF to A, which is naturally a metrizable space, when endowed

with the compact-open topology. Before we continue, we need a preliminary result.

Lemma 26. Let Γ be a finite group acting linearly on a finite dimensional inner product

space U with UΓ = 0. Suppose that (um) is a sequence on U such that (γ(um) − um)

converges for all γ ∈ Γ. Then, (um) converges.



14 MARCELO DE MARTINO AND ERIC OPDAM

Proof. Since UΓ = 0 and U ∼= U∗, we get UΓ = 0 so that U =
∑

γ∈Γ(γ − id)(U).

Thus, any element u ∈ U can be written as u =
∑

γ(γ
−1 − id)(uγ) for suitable

elements uγ ∈ U . Now let (−,−) be a Γ-invariant inner product on U . Then,

(um, u) =
∑

γ

(um, (γ
−1 − id)(uγ)) =

∑

γ

(γ(um)− um, uγ)

which, from the assumptions, imply (um, u) converges and so does (um). �

Theorem 27. For F local or global, we have that H1
c (WE/F , T̂ ) is a Polish G-module.

Proof. From (2) and (3) of Proposition 25, it suffices to show that B1(WE/F , T̂ )

is closed in C1(WE/F , T̂ ). To that end, let (bm)m∈N be a sequence in B1(WE/F , T̂ )

converging to some f ∈ C1(WE/F , T̂ ). We shall show that f ∈ B1(WE/F , T̂ ).

Associated to the sequence (bm) is a sequence (tm) in T̂ such that bm(w) =

w(tm)t
−1
m for each w ∈ WE/F . Furthermore, for each m ∈ N we can choose

νm ∈ Lie(T̂ ) such that exp(νm) = tm. Then,

bm(w) = w(exp(νm)) exp(−νm) = exp(w(νm)− νm),

since the action of WE/F commutes with the exponential map. We will show that

we can modify the sequence (νm) without changing (bm) in such a way that (νm)

becomes convergent, and hence the limiting cocycle is in fact a coboundary.

From [Mo3, Proposition 6], there exists a measure 0 set S ⊆ WE/F outside which

bm(w)→ f(w) pointwise. Hence, we can choose representatives {γ} ⊆ WE/F \ S

for the quotient WE/F/CE
∼= ΓE/F such that, for each γ, we have

bm(γ) = exp(γ(νm)− νm)→ f(γ).

Write νm = λm + iµm, where λm and µm are in the real form Lie(T̂ )0 = X ⊗ R

of Lie(T̂ ) = X ⊗ C. First, note that each νm ∈ Lie(T̂ ) is determined up to

translations by (2πi)X . So, we can and will assume that the imaginary parts

(µm) lie in a bounded region of Lie(T̂ )0. Passing to a subsequence, if needed, we

might as well assume (µm) is convergent. Then, since λm = νm − iµm, we get

exp(γ(λm)− λm) = bm(γ) exp(γ(iµm)− iµm)
−1

and hence exp(γ(λm) − λm) converges, since both factors in the right-hand side

converge. Using that the exponential map restricted to Lie(T̂ )0 is a homeomor-

phism onto its image, it then follows that (γ(λm) − λm) is convergent. Now, if

ν ∈ Lie(T̂ )
ΓE/F

0 , then

(γ(λm + ν)− (λm + ν)) = (γ(λm)− λm),
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so we can further assume that (λm) is a sequence on U , where U is a ΓE/F -stable

complement of Lie(T̂ )
ΓE/F

0 . We can now use Lemma 26 to conclude that (λm) also

converges and, hence, limm νm = ν for some ν ∈ Lie(T̂ ). Setting t = exp(ν) we

obtain that f(γ) = γ(t)t−1 for all γ. Hence, asWE/F can be written as the disjoint

unionWE/F = ∪γγCE and CE acts trivially on T̂ , we get bm(w)→ f(w) = w(t)t−1

for all w /∈ S, i.e., f ∈ B1(WE/F , T̂ ). �

In fact, the proof of Theorem 27 yield similar consequences for X and Lie(T̂ ).

Corollary 28. For F local or global, both H1
c (WE/F , X) and H1

c (WE/F ,Lie(T̂ )) are Polish

G-modules.

Proof. From Proposition 25(2) and (3), it suffices to show that the respective

measurable coboundary group is closed. Let A = X or A = Lie(T̂ ). Note that

a similar statement as in Lemma 26 holds true if we replace a finite dimensional

inner product space by a lattice; the proof would be to embed such lattice in an

inner product space as in that lemma. So, if (bm) is a sequence in B1(WE/F , A)

that converges to f ∈ C1(WE/F , A), then there is an associated sequence (am) in A

such that bm(w) = w(am)−am. Just like in the poof of Theorem 27, we can assume

that (am) is in a ΓE/F -stable complement of AΓE/F and Lemma 26 (or its lattice

version) would imply that (am) is convergent and hence f ∈ B1(WE/F , T̂ ). �

Proposition 29. Let F be local or global. Then, H1(WE/F , X) and H2(WE/F , X) are

countable and, as topological spaces, discrete.

Proof. We know from Corollary 28 that H1(WE/F , X) is a complete metric space,

so for this group, it suffices to show that this cohomology group is countable.

However, using the arguments in the proof of Proposition 7.2 in [AM], it turns

out to be a general fact that any countable quotient B/C of Polish spaces with

C an analytic subset is necessarily discrete as a topological space, and hence

Hausdorff. But, in the R-case, note that CE is almost connected in the sense that

CE/C
◦
E is compact; it is profinite in the global case [NSW, Chapter VIII, §2] and

trivial in the local case. Hence, WE/F is almost connected, and it follows from

[Mo2, Proposition 1.3] thatHr(WE/F , X) is countable for r = 1, 2. For the Z-case,

we use the computations done in [Ra, Proposition] to deduce that Hr(WE/F , X)

is countable, for r = 1, 2. Indeed, first recall that as Z is free and discrete, then

the measurable, continuous and abstract cohomology theories agree (see table in

[AM, p. 913]). We thus have Hr(Z, A) = 0 for any Z-module A and for all r > 1

[Wb, Remark, p.170]. So, from the exact sequence 1 → W 1
F → WF → Z → 0,
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where W 1
F is compact (and profinite) and WF is the absolute Weil group of F , we

obtain from the inflation-restriction exact sequence that

1→ H1(Z, XW 1

F )→ H1(WF , X)→ H1(W 1
F , X)Fr → 0.

For any WF -module A, we have H1(Z, A) = A/(Fr − 1)A with Fr the image

of 1 ∈ Z in Aut(A), so H1(Z, XW 1

F ) is countable. As W 1
F is profinite, it is

almost connected, so we also have that Hr(W 1
F , X)Fr is countable for r = 1, 2

[Mo2, Proposition 1.3], from which H1(WF , X) is countable. But using again

that Hr(Z, A) = 0 for r > 1, we get the higher inflation-restriction sequence just

as in the proof of [Ra, Proposition 6] for n = 2:

1→ H1(Z, H1(W 1
F , X))→ H2(WF , X)→ H2(W 1

F , X)Fr → 0.

We conclude, just as for H1(WF , X), that H2(WF , X) is countable. From the

extension 1 → W c
E → WF → WE/F → 1 the inflation-restriction exact sequence

yields

0→ H1(WE/F , X)→ H1(WF , X)→

→ H1(W c
E , X)WE/F → H2(WE/F , X)→ H2(WF , X).

Since WE acts trivially on X then H1(W c
E, X) ∼= Homc(W

c
E , X) = 0 and we

conclude that Hr(WE/F , X) for r = 1, 2 is also countable, finishing the proof. �

Proposition 30. For F a global or a local field, we have H1(WE/F ,Lie(T̂ )) ≈ Lie(T̂ )ΓE/F .

Proof. Consider the exact sequence 1 → W 1
E/F → WE/F → VF → 1. As W 1

E/F

is compact and Lie(T̂ ) is a Euclidean space, we obtain from [AM, Theorem A]

that H1(W 1
E/F ,Lie(T̂ )) = 0. Hence in the R-cases, from the inflation-restriction

exact sequence, and using that VF acts trivially on Lie(T̂ )W
1

E/F = Lie(T̂ )ΓE/F ,

we obtain a continuous isomorphism of abelian groups Homc(VF ,Lie(T̂ )
ΓE/F ) ∼=

H1(WE/F ,Lie(T̂ )) which is readily seen to be a linear map, hence a homeo-

morphism, as both spaces are complete metric spaces. In the Z-cases, given

that we are working with a linear action of VF on a finite dimensional vector

space, H1(VF ,Lie(T̂ )
W 1

E/F ) is naturally homeomorphic to the VF -coinvariants in

Lie(T̂ )
W 1

E/F , hence to the space of invariants Lie(T̂ )WE/F . �

5.3. Long exact sequence in cohomology. We now apply our knowledge of the low

dimensional cohomology groups Hr(WE/F , A) with A = X,A = Lie(T̂ ) or A = T̂ to some

natural constructions in homological algebra. Since X = Hom(TE,Gm) is a free abelian
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group, applying Hom(X̂,−) to the injective resolution 0→ Z→ C→ C∗ → 1 of the trivial

module yields the short exact sequence

(10) 0→ X → Lie(T̂ )→ T̂ → 1.

Using Proposition 25(4), the discreteness of H2(WE/F , X) in Proposition 29 and the home-

omorphism of Proposition 30, we get the long exact sequence

(11) 1→ XΓE/F → Lie(T̂ )ΓE/F → T̂ ΓE/F →

→ H1(WE/F , X)→ Lie(T̂ )ΓE/F → H1(WE/F , T̂ )
◦ → 1,

where all the arrows are continuous. The first conclusion that we draw from this is the

following.

Proposition 31. If F is a local or a global field, then H1
c (WE/F , T̂ )

◦ is an open subgroup

of H1
c (WE/F , T̂ ).

Proof. We use Proposition 25(3) and that H1(WE/F , T̂ )
◦ is the inverse image of

(the open set) {0} ∈ H2(WE/F , X). �

Theorem 32. Suppose that VF = R+. Then H1
c (WE/F , T̂ )

◦ ≈ Lie(T̂ )ΓE/F .

Proof. We know that when VF = R+, the Weil group WE/F is almost con-

nected. Since X is a discrete WE/F -module, we obtain that H1(WE/F , X) is

torsion [Mo2, p. 67]. It follows that H1(WE/F , X) → H1(WE/F ,Lie(T̂ )) is

the zero map, as H1(WE/F ,Lie(T̂ )) is a vector space (see Proposition 30) and

hence H1(WE/F ,Lie(T̂ )) ∼= H1(WE/F , T̂ )
◦ is a continuous isomorphism of abelian

groups, hence a homeomorphism, as both groups are Euclidean spaces. �

We now turn our attention to the cases when VF ∼= Z. In this case, the Weil groupWE/F

is not almost connected. Rather, it is locally profinite, thus totally disconnected. We start

by noting that the long exact sequence (11) yields the exact sequence

(12) 0→ A→ Lie(T̂ )ΓE/F → H1(WE/F , T̂ )
◦ → 1,

where A ⊆ Lie(T̂ )ΓE/F is the image of the continuous homomorphism H1(WE/F , X) →

Lie(T̂ )ΓE/F . By Proposition 29 we conclude that A is countable, and since A is also the

kernel of the continuous map Lie(T̂ )ΓE/F → H1(WE/F , T̂ )
◦ we also see that A is closed. A

closed, countable subgroup of a finite dimensional real or complex vector space is necessarily

a discrete subgroup. It follows that A is a lattice, and H1(WE/F , T̂ )
◦ is a connected abelian

complex Lie group with Lie algebra Lie(T̂ )ΓE/F . We will now study the lattice A in more

detail.
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Lemma 33. Let G be a group and D a divisible abelian group. Then, for all n > 0 and

any left G-module A, we have an isomorphism

Hn(G,Hom(A,D)) ∼= Hom(Hn(G,A), D).

Proof. This is known. It was done, for example, in [BB, Proposition 4.7]. We

sketch the proof for convenience. The tensor-hom adjunction yields a natural

isomorphism

Hom(M ⊗ZG A,D) ∼= HomG(M,Hom(A,D))

for any right G-module M . By replacing M by a projective resolution P • of Z by

G-modules, we obtain an isomorphism of chain complexes

Hom(P • ⊗ZG A,D) ∼= HomG(P
•,Hom(A,D)).

Since D is divisible, the functor H = Hom(−, D) is an exact contravariant functor

and hence it commutes with homology of chain complexes. Taking the homology

of the complexes and using the commutativity, we get

Hom(Hn(G,A), D) = Hn(Hom(P • ⊗ZG A,D))

∼= Hn(HomG(P
•,Hom(A,D))

= Hn(G,Hom(A,D)),

as required. �

Proposition 34. If VF ∼= Z, let A be the lattice of (12). Then, we have an isomorphism

A ∼= Homc(HomΓE/F
(X,CE),Z).

Proof. Applying the left exact functor Hom(HomΓE/F
(X,CE),−) to the exponen-

tial sequence 0 → Z → C → C∗ → 1 implies that Hom(HomΓE/F
(X,CE),Z) is

isomorphic to the kernel of the map

Hom(HomΓE/F
(X,CE),C)→ Hom(HomΓE/F

(X,CE),C
∗).

Using the isomorphism HomΓE/F
(X,CE) ∼= H1(WE/F , X̂), which is induced by

the restriction map H1(WE/F , X̂) → H1(CE, X̂) (as in [La, p. 233]) and the

isomorphism H1(WE/F ,Hom(X̂,D)) ∼= Hom(H1(WE/F , X̂), D) of Lemma 33 (D

a divisible abelian group), we get that Hom(HomΓE/F
(X,CE),Z) is the kernel of

H1(WE/F ,Hom(X̂,C))→ H1(WE/F ,Hom(X̂,C∗)).

Taking continuous classes, it follows that Homc(HomΓE/F
(X,CE),Z) is isomorphic

to the kernel of H1
c (WE/F ,Lie(T̂ )) ∼= Lie(T̂ )ΓE/F → H1

c (WE/F , T̂ ) which, by (12),

is isomorphic to A, finishing the proof. �
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Corollary 35. Suppose that VF ∼= Z. Then H1
c (WE/F , T̂ )

◦ ≈ Lie(T̂ )ΓE/F /A is a complex

algebraic torus, equipped with a canonical surjective homomorphism H1
c (WE/F , T̂ )

◦ → XT

with finite kernel.

Proof. For both F local non-Archimedean and a global function field, we can

characterize XT via the exact sequence

(13) 0→ L̂T → Lie(T̂ )ΓE/F → XT → 1,

with LT the image of the respective logT maps, and L̂T is the lattice Hom(LT ,Z).

Now, when F is non-Archimedean local, we have HomΓE/F
(X,CE) = T (F ). From

continuity, it follows that Homc(T (F ),Z) = Homc(T (F )/T (F )
1,Z) and hence

A ∼= L̂T , using Proposition 34. From (12) and (13) we get H1
c (WE/F , T̂ )

◦ ∼= XT .

For F a function field, we have T (AF )/T (F ) → HomΓE/F
(X,CE), a closed

inclusion of finite index (see [La, p. 245]) from which we obtain (by Proposition

34) an inclusion A →֒ Homc(T (AF )/T (F ),Z) = Hom(T (AF )/T (AF )
1,Z) ∼= L̂T

with finite cokernel. By (13) this implies the result. �

6. Continuity of Langlands’s map

In this section, we shall prove Theorem 3 and also finish the proof of Theorem 2. Recall

the notation TCF
:= HomΓE/F

(X,CE) of (7). As a consequence of Propositions 21 and 31,

to study the continuity of Langlands’s canonical map

H1
c (WE/F , T̂ )→ Homc(TCF

,C∗),

it will suffice to show continuity when restricting to the identity components of each side.

From the exponential sequence 0 → Z → C → C∗ → 1 and seeing these abelian groups

as trivial TCF
-modules we obtain, from the long exact sequence in cohomology, the exact

sequence

(14) 0→ Homc(TCF
,Z)→ Homc(TCF

,C)→ Homc(TCF
,C∗)→ H2(TCF

,Z),

where all arrows are continuous. Here, we used that H1(TCF
, A) ≈ Homc(TCF

, A), as

the actions are trivial (see also Proposition 25(3)) and that H1(TCF
,Z) is discrete [AM,

Theorem D], so that the map C∗ → Homc(TCF
,Z) is the zero map.

Proposition 36. We have an isomorphism of abelian groups Homc(TCF
,C) ∼= Lie(T̂ )ΓE/F

which is a homeomorphism.
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Proof. We know the splitting CE ≈ C1
E × VE , and since C1

E is compact, the

continuity coupled with the fact that ΓE/F acts trivially on VE yields that

Homc(Hom(X,CE)
ΓE/F ,C) ∼= Homc(Hom(X, VE)

ΓE/F ,C)

∼= Homc(X̂
ΓE/F ⊗ VE,C)

∼= Lie(T̂ )ΓE/F .

Since Homc(TCF
,C) ≈ H1(TCF

,C) has a natural structure of a Euclidean space

[AM, Theorem D], one checks that this isomorphism of abelian groups is linear

and thus a homeomorphism. �

Theorem 37. For F local or global, the natural map

Λ : H1
c (WE/F , T̂ )→ Homc(HomΓE/F

(X,CE),C
∗)

described by Langlands is a homeomorphism.

Proof. As remarked, to discuss the continuity of the Langlands map, it suf-

fices to restrict to the identity component. Note that in (14), since the space

H2(TCF
,Z) is discrete [AM, Theorem D], the last arrow becomes zero, when

restricted to the identity components. Furthermore, the continuity of a homo-

morphism HomΓE/F
(X,CE) → A (with A = Z, A = C or A = C∗) forces it to

factor through HomΓE/F
(X, VE)→ A. Hence, from the arguments presented thus

far, we have the following commutative diagram

(15)

0 0

AF Homc(HomΓE/F
(X, VE),Z)

H1
c (WE/F ,Lie(T̂ )) Homc(HomΓE/F

(X, VE),C)

H1
c (WE/F , T̂ )

◦ Homc(HomΓE/F
(X, VE),C

∗)◦

0 0

dΛ

Λ

.

The column in the left is the long exact sequence in cohomology (10) obtained

by from the short exact sequence 0 → X → Lie(T̂ ) → T̂ → 1, when truncated

with respect to the identity component of H1
c (WE/F , T̂ ). Here, the module AF is

obtained by modding-out the torsion submodule of H1
c (WE/F , X). When VF ∼= R
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we have AF = 0, while when VF ∼= Z, AF is the lattice described in Proposition

34. We know that both sides in the middle row carry the structure of a Euclidean

vector space. To show that Λ is continuous, it is enough to show that the map

dΛ is linear. But note that unwinding the equivalences (and since Langlands’s

result uses the identifications as in Lemma 33 and Proposition 34) we are tasked

with showing that the bijection

Homc(VE ,Hom(X̂ΓE/F ,C))→ Homc(X̂
ΓE/F ⊗ VE ,C)

realized by the tensor-hom adjunction is linear, which is a straightforward compu-

tation. We conclude that dΛ, and hence Λ are homeomorphisms when restricted

to the identity components. Since these are open, we are done. �

Coupled with the fact that Homc(HomΓE/F
(X,CE),C

∗) → Homc(T (AF )/T (F ),C
∗) is

open, Theorem 2 is proved.

Remark 38. For F local or global, it is known that H2(WF , T̂ ) = 0 (see [Ra]), where WF

is the absolute Weil group of F . Note that from extension 1→ W c
E → WF → WE/F → 1,

the inflation-restriction sequence implies that

H1(W c
E, T̂ )

WE/F → H2(WE/F , T̂ )→ H2(WF , T̂ )

is exact, and since H1(W c
E , T̂ )

∼= Homc(W
c
E , T̂ ) = 0 = H2(WF , T̂ ) we get H2(WE/F , T̂ ) =

0. In its turn, this implies that H2(WE/F , X) → H2(WE/F ,Lie(T̂ )) is surjective. Since

the target is a Euclidean space and H2(WE/F , X) is countable and discrete, we conclude

H2(WE/F ,Lie(T̂ )) = 0 as well. It then follows from the isomorphism Λ that

H2(WE/F , X) ≈
H1(WE/F , T̂ )

H1(WE/F , T̂ )◦
≈

Homc(TCF
,C∗)

Homc(TCF
,C∗)◦

≈
Homc(TCF

,C∗)

Homc(TCF
/T 1

CF
,C∗)

,

from which we conclude that

H2(WE/F , X) ≈ Homc(T
1
CF
,C∗).

When F is local non-Archimedean, we obtain H2(WE/F , X) ≈ Homc(T (F )
1,C∗), recover-

ing an observation made by Schwein in [Sc, Section 5.2].

Theorem 39. Suppose that VF ∼= Z. If F is local non-Archimedean, then (H1
c (WE/F , T̂ ))

◦

is isomorphic to XT . When F is a global function field, then the group H1
c (WE/F , T̂ )

◦/ ∼l.e.

is isomorphic to XT .

Proof. See Corollary 35 for the proof in the non-Archimedean local cases. For

global functions fields, the proof of Corollary 35 yields a commutative diagram
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(in which the rightmost vertical arrow is a surjection with finite kernel):

(16)

0 A Lie(T̂ )ΓE/F H1
c (WE/F , T̂ )

◦ 0

0 L̂T Lie(T̂ )ΓE/F XT 0

.

We claim that the kernel of H1
c (WE/F , T̂ )

◦ → XT consists of locally trivial classes.

For each local place v ∈ Pl(F ), let us denote by Ev′ = EFv the induced completion

of E and denote by Γv′|v andWv′|v the Galois group and the relative Weil group of

the extension Ev′/Ev. Let also LT,v ≈ T (Fv)/T (Fv)
1 denote the image of the local

logT map, and let XT,v denote the space of local unramified characters. Using

the isomorphism of XT,v and H1
c (Wv′|v, T̂ )

◦ of the previous paragraph, we obtain

a commutative diagram

0 L̂T,v Lie(T̂ )Γv′|v XT,v 0

0 Homc(T (Fv),Z) Lie(T̂ )Γv′|v H1
c (Wv′|v, T̂ )

◦ 0

0 A Lie(T̂ )ΓE/F H1
c (WE/F , T̂ )

◦ 0

0 L̂T Lie(T̂ )ΓE/F XT 0

∼ ∼

.

By Theorem 37 the vertical arrows on the top and bottom right-hand side are the

local and global Langlands maps respectively, and the map in the middle is the

natural assignment from a global to local Langlands parameters. Given a global

parameter φ ∈ H1
c (WE/F , T̂ )

◦, let φv denote the corresponding local parameters of

φ, and let χφ ∈ XT denote the corresponding automorphic character of T . Since

automorphic characters are completely determined by their local components,

since Langlands’s maps are compatible with localization to a local place, and

since the local Langlands correspondences are bijective, it follows that χφ = 1 if

and only if all local parameters φv are trivial. This finishes the proof. �

6.1. Explicit Cocycles. In this last subsection, we exhibit an explicit realization of the

cocycles in Z1
c (WE/F , T̂ )

◦, and thus the cohomology classes inH1
c (WE/F , T̂ )

◦. For F local or

global, let us retain the convention of Section 4 and write logq to the isomorphism sending

VF to either R or Z. Given any element s ∈ T̂ ΓE/F , note that it determines a continuous
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function zs : WE/F → T̂ given by

(17) zs(ω) = slogq |ω|E/F ,

where ω ∈ WE/F .

Proposition 40. We have zs ∈ Z
1
c (WE/F , T̂ ), and the assignment s 7→ zs, with s ∈ T̂

ΓE/F ,

induces continuous a surjection (T̂ ΓE/F )◦ → H1
c (WE/F , T̂ )

◦. Furthermore, if F is a global

function field, then we have continuous surjections H1
c (WE/F , T̂ )

◦ → XT → T̂ΓE/F
.

Proof. As s ∈ T̂ ΓE/F we have zs(ω1ω2) = zs(ω1)zs(ω2) = zs(ω1)(
ω1zs(ω2)), so that

zs ∈ Z
1
c (WE/F , T̂ ). Given s, s′ ∈ T̂ ΓE/F we compute

zss′(ω) = (ss′)logq(|ω|E/F ) = zs(ω)zs′(ω)

so that we get a homomorphism T̂ ΓE/F → Z1
c (WE/F , T̂ ) which is readily seen to

be continuous since, with the compact-open topology, sn → s implies zsn → zs.

Composing further with the quotient to H1
c (WE/F , T̂ ) and restricting to the iden-

tity component, we get the required surjection. Note that for VF ∼= Z it fol-

lows from (12) that restricting to the identity component yields that (T̂ ΓE/F )◦ →

H1
c (WE/F , T̂ )

◦ is surjective. On the other hand, when VF ∼= R, we saw in Theo-

rem 32 that in the exact sequence (11), when modding-out torsion and restricting

to the identity component, we obtain an isomorphism between Lie(T̂ )ΓE/F ∼=

H1
c (WE/F , T̂ )

◦, so from the lift

Lie(T̂ )ΓE/F

(T̂ ΓE/F )◦ H1
c (WE/F , T̂ )

◦

we get the required surjectivity, finishing the proof for the first part.

As for the last statement in the global function field case, the surjectivity of

the arrow H1
c (WE/F , T̂ )

◦ → XT was discussed in (16). On the other hand, let

S ⊂ T be the largest split subtorus of T . Write X(S) = Hom(S,Gm) for the

character lattice of S and X̂(S) = Hom(Gm, S) for its cocharacter lattice. As

XΓE/F ⊆ X(S) is an inclusion of finite index, it induces an inclusion

S(AF )/S(AF )
1 = LS →֒ LT = T (AF )/T (AF )

1

which is also of finite index. Furthermore, as S is split we have a canonical

isomorphism X̂(S) = X̂ΓE/F ∼= LS, from which we obtain an epimorphism

Hom(LT ,C
∗) = XT → XS = Hom(LS ,C

∗) ∼= T̂ΓE/F
,

finishing the proof. �
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This concludes the proof of Theorem 3, in the function field case. We finish with a result

that shows that the position of H1(WE/F , T̂ )
◦ in between connected invariants and the

coinvariants of T̂ is sensitive to the value groups VE and VF .

Proposition 41. Suppose that F is a global function field. If VE = VF then we have

that H1
c (WE/F , T̂ )

◦ ∼= (T̂ ΓE/F )◦. Otherwise, the surjection (T̂ ΓE/F )◦ → H1
c (WE/F , T̂ )

◦ has

a finite kernel.

Proof. Note that zs ∈ Z
1
c (WE/F , T̂ ) is a coboundary if and only if there is t ∈ T̂

such that zs(ω) = slogq |ω|E/F = (ωt)t−1 for all ω ∈ WE/F . This implies that

zs(ω) = 1 for any ω = rE(x) with x ∈ CE →֒ WE/F , where rE is the reciprocity

map. Hence, if VE = VF then zs is a coboundary implies s = 1 and we get

H1
c (WE/F , T̂ )

◦ ∼= (T̂ ΓE/F )◦. If, on the other hand, VE 6= VF , then there is d > 1

such that VE = qdZ and VF = qZ. In this case, zs a coboundary implies s 6= 1 is

of finite order, and hence the surjection of Proposition 40 has a finite kernel. �
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