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SIMULTANEOUS UNIFORMIZATION OF CHORD-ARC CURVES

AND BMO TEICHMÜLLER SPACE

KATSUHIKO MATSUZAKI

Abstract. By using a method of simultaneous uniformization, we parametrize the
space of chord-arc curves within the product of BMO Teichmüller spaces. This method
provides a biholomorphic correspondence between such embeddings γ onto chord-arc
curves Γ and log γ′ in the Banach space of BMO functions. In our previous work,
through this correspondence Λ, we have clarified the arguments of Teichmüller space
theory for chord-arc curves, solved the problem of the discontinuity of the Riemann
mapping parametrization of chord-arc curves, and simplified the proof for a real-analytic
diffeomorphism onto the space of reparametrizations by strongly quasisymmetric homeo-
morphisms. In this paper, we first review these results by renewing the arguments in
an effort to minimize reliance on other results. Then, we present a new application of
simultaneous uniformization to the Cauchy transform of BMO functions on a chord-arc
curve. We show that the Cauchy transform can be described by the derivative of the
biholomorphic map Λ and hence depends holomorphically on the variation of chord-arc
curves. Finally, we organize and demonstrate the corresponding results for the VMO
Teichmüller space.

1. Introduction

The universal Teichmüller space is a space that encompasses all Teichmüller spaces
formulated by quasiconformal mappings. It can be viewed as the space of all normalized
quasisymmetric homeomorphisms on the real line. Depending on the regularity of these
mappings, the subspaces contained within the universal Teichmüller space split into two
directions. The Teichmüller space of a compact hyperbolic surface is typically the space
of all totally singular quasisymmetric homeomorphisms, while many Teichmüller spaces
associated with function spaces consist of (locally) absolutely continuous quasisymmetric
homeomorphisms.
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These subspaces TX of the universal Teichmüller space T can be defined by various
means, such as by quasisymmetric homeomorphisms, by Beltrami coefficients as the com-
plex dilatations of quasiconformal mappings, by the (pre-)Schwarzian derivatives of quasi-
conformally extendable conformal mappings on the half-plane H, or by quasicircles which
are the images of the real line R under quasiconformal self-homeomorphisms of the whole
plane C. The first step in studying the structure of a given Teichmüller space TX is to
establish the correspondence between these different representations. Furthermore, if TX
is defined by a family of absolutely continuous quasisymmetric homeomorphisms h, the
logarithm of their derivatives log h′ form a function space, which can be used to provide
TX with more interesting analytic structures. We call generically such TX absolutely
continuous Teichmüller spaces.

To investigate a family of quasicircles, we introduce a method called simultaneous uni-
formization by Bers, which has been used in the theory of deformation of quasi-Fuchsian
groups and associated hyperbolic 3-manifolds. Especially, complex analytic aspects of
Thurston’s theory are built upon this foundation. We apply this method for the analysis
of families of curves Γ. This allows us to coordinate them in the direct product of their
corresponding Teichmüller spaces TX . Furthermore, we can prove a biholomorphic rela-
tionship between the product of TX and a domain in the function space to which log γ′ of
a quasisymmetric embedding γ : R → Γ ⊂ C belongs.

Specifically, we focus on the BMO Teichmüller space TB in this paper. This is because
TB leads other absolutely continuous Teichmüller spaces TX in the sense that TB includes
TX in many cases and the research on TB has advanced significantly. Additionally, within
the BMO Teichmüller space, we consider a region defined by certain rectifiable quasicircles
called chord-arc curves and investigate problems related to the structure of this family of
curves using Teichmüller space theory. These curves possess a weaker regularity among
non-fractal curves, and there have been many studies in real analysis concerning function
spaces defined on them.

A locally rectifiable Jordan curve passing through infinity is called a chord-arc curve if
the length of any “arc” along the curve between any two points is uniformly bounded by
a constant multiple of the length of the line segment “chord” connecting the two points.
If we replace the length of the “arc” with its diameter, it characterizes a quasicircle. A
quasicircle Γ passing through infinity is also characterized as the image of R under a
quasiconformal self-homeomorphism of C. The set of all such quasicircles, up to affine
translations, can be identified with the universal Teichmüller space T . Similarly, chord-arc
curves are the images of R under bi-Lipschitz self-homeomorphisms of C.

A quasisymmetric homeomorphism h : R → R is the extension of a quasiconformal self-
homeomorphism of H. All the normalized quasisymmetric self-homeomorphisms form a
group denoted by QS and it can be identified with the universal Teichmüller space T . If h
is locally absolutely continuous and its derivative h′ belongs to the class of Muckenhoupt’s
A∞-weights, then h is called strongly quasisymmetric. The set of all normalized strongly
quasisymmetric self-homeomorphisms is a subgroup of QS denoted by SQS.



SIMULTANEOUS UNIFORMIZATION OF CHORD-ARC CURVES 3

BMO functions are an important class of functions that appear and play an essential
role in many problems of real analysis. Let BMO(R) be the space of all complex-valued
BMO functions on R, and BMO∗(R) the subset consisting of φ ∈ BMO(R) for which |eφ|
is an A∞-weight. This forms a convex open subset of the complex Banach space BMO(R).
For any h ∈ SQS, it can be understood that log h′ is in ReBMO∗(R), the subset consisting
of real-valued functions. In fact, the correspondence SQS → ReBMO∗(R) is bijective.

The BMO Teichmüller space TB in T possesses several characterizations as described
above. As a space of quasisymmetric homeomorphisms, it coincides with SQS. The
corresponding space of Beltrami coefficients on the half-plane H is denoted byMB(H), for
which TB is defined by the quotient under the Teichmüller equivalence. More explicitly, an
element inMB(H) is defined by the Carleson measure condition for a Beltrami coefficient.

We can apply the method of simultaneous uniformization to chord-arc curves. For
any µ+ ∈ MB(H

+) and µ− ∈ MB(H
−), where H± are the upper and lower half-planes,

we consider the normalized quasiconformal self-homeomorphism G(µ+, µ−) having the
prescribed complex dilatations on H±. A BMO embedding γ : R → C is given by
γ = G(µ+, µ−)|R and it is well-defined by a pair of Teichmüller classes ([µ+], [µ−]). The
space of all BMO embeddings is identified with the product T+

B × T−
B of the BMO Teich-

müller spaces. We call these pairs the Bers coordinates. Among the Bers coordinates of
BMO embeddings γ : R → C, the subset whose image Γ = γ(R) is a chord-arc curve

is defined to be T̃C ⊂ T+
B × T−

B . Any γ = γ([µ+], [µ−]) for ([µ+], [µ−]) ∈ T̃C is locally
absolutely continuous, and log γ′ belongs to BMO∗(R).

The following theorem is a fundamental assertion in studying chord-arc curves from
the viewpoint of Teichmüller spaces. This has been proved in [45], and in this paper, we
review its proof with a view towards studying the Cauchy transform on a chord-arc curve.
Additionally, along the way of its proof, we include several different arguments from the
existing ones.

Theorem 1.1. T̃C is an open subset of T+
B × T−

B , and the map Λ([µ+], [µ−]) = log γ′

defined for γ = γ([µ+], [µ−]) and ([µ+], [µ−]) ∈ T̃C is a biholomorphic homeomorphism

onto an open subset of BMO∗(R) containing ReBMO∗(R).

The importance of this result lies in the fact that the holomorphic dependence of BMO
functions can be transformed into a complex-analytic structure of the Teichmüller space.
Chord-arc curves have been studied from the perspective of harmonic analysis as plane
curves, but research from Teichmüller space theory through such simultaneous uniformiza-
tion has not been done so far. Hereinafter, we will see that such a perspective can provide
concise proofs for some discussions related to chord-arc curves and clarify them.

In the above theorem, we also see that the derivative d([µ+],[µ−])Λ of the biholomorphic

homeomorphism Λ at ([µ+], [µ−]) ∈ T̃C induces an isomorphism between the tangent
spaces. Hence, according to the direct sum decomposition of the tangent space associated
with T+

B × T−
B , d([µ+],[µ−])Λ induces the topological direct sum decomposition of BMO(R)
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and the bounded projections to these factors. We denote these projections in BMO(R) by
P+
([µ+],[µ−]) and P

−
([µ+],[µ−]). It holds P

+
([µ+],[µ−])φ+ P−

([µ+],[µ−])φ = φ for every φ ∈ BMO(R).

Let Γ be a chord-arc curve, and Ω+ and Ω− the complementary domains of C divided
by Γ. The Cauchy integrals of a BMO function ψ on Γ are defined by

(P±
Γ ψ)(ζ) =

−1

2πi

∫

Γ

(
ψ(z)

ζ − z
−

ψ(z)

ζ±0 − z

)
dz (ζ ∈ Ω±)

for some fixed ζ±0 ∈ Ω±, where the line integrals over Γ are taken in the positive directions
with respect to Ω±. These are holomorphic functions on Ω±, and have non-tangential
limits almost everywhere on Γ. These boundary functions on Γ are called the Cauchy
projections of ψ on Γ, denoted by the same notations P±

Γ ψ. The Plemelj formula implies
that P+

Γ ψ + P−
Γ ψ = ψ.

We compare the Cauchy projections P±
Γ with the conjugates of the projections P±

([µ+],[µ−])

under γ. Applied to a BMO function ψ on Γ, they induce the holomorphic functions on
Ω± having the same jump ψ (or the same sum ψ depending on the choice of directions of
the line integral) across Γ. In these circumstances, general arguments deduce that they
coincide with each other. Thus, the boundedness on the BMO function space and the
holomorphic dependence on γ possessed by P±

([µ+],[µ−]) can be imported into the properties

of the Cauchy projections P±
Γ .

Theorem 1.2. Let γ = γ([µ+], [µ−]) be a BMO embedding for ([µ+], [µ−]) ∈ T̃C with

a chord-arc curve Γ = γ(R) as its image. Then, the Cauchy projections P±
Γ are the

conjugates by γ of the projections P±
([µ+],[µ−]) associated with the topological direct sum

decomposition of BMO(R). Moreover, P±
([µ+],[µ−]) depend holomorphically on ([µ+], [µ−]) ∈

T̃C as bounded linear operators acting on BMO(R).

The Cauchy transform of a BMO function on a chord-arc curve Γ is defined by the
singular integral

(HΓψ)(ξ) = p.v.
1

π

∫

Γ

(
ψ(z)

ξ − z
−

ψ(z)

ζ±0 − z

)
dz (ξ ∈ Γ).

By the Plemelj formula, HΓ can be represented by the Cauchy projections P±
Γ . The

Cauchy transform of BMO functions on a chord-arc curve is an important subject in
real analysis. This originates in Calderón’s work. Simultaneous uniformization makes it
possible to investigate it in the framework of complex-analytic Teichmüller space theory.

Corollary 1.3. The conjugate of the Cauchy transform HΓ under γ represented by

H([µ+],[µ−]) = −i(P+
([µ+],[µ−]) − P−

([µ+],[µ−]))

depend holomorphically on ([µ+], [µ−]) ∈ T̃C as the bounded linear operators on BMO(R).

This result should be useful for considering and simplifying several problems on function
spaces on chord-arc curves. We demonstrate an application.
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Finally, we touch on the theory of the little subspace of TB, the VMO Teichmüller
space TV . This corresponds to the closed subspace VMO(R) of BMO(R), which consists
of BMO functions whose norm equalities satisfy a canonical vanishing property. Results
for various little subspaces defined by their vanishing conditions are often stated in a way
that mirrors those for the original Teichmüller spaces. However, in the case of TV , it
possesses preferable properties that TB does not, such as a topological group structure
and a global section for the Teichmüller projection. Moreover, subtle differences arise
when considering TV defined on S versus on R. Emphasizing these points, we provide a
concise exposition of this theory and present new observations as well.

In this paper, we only deal with the BMO Teichmüller space and chord-arc curves,
but there is another important class for which our arguments are very effective. That is
the integrable Teichmüller space and the Weil–Petersson curves. A separate paper [25]
develops parallel arguments to those in this paper.

2. BMO Teichmüller space and BMOA

Let M(H) denote the open unit ball of the Banach space L∞(H) of all essentially
bounded measurable functions on the half-plane H. An element in M(H) is called a Belt-

rami coefficient. The universal Teichmüller space T is the set of all Teichmüller equivalence
classes [µ] of Beltrami coefficients µ in M(H). Here, µ1 and µ2 in M(H) are equivalent if
h(µ1) = h(µ2) on R, where h(µ) = H(µ)|R is the boundary extension of the quasiconformal
self-homeomorphism H = H(µ) of H, called a quasisymmetric homeomorphism, such that
its complex dilatation ∂̄H/∂H is µ ∈M(H) and h(µ) satisfies the normalization condition
keeping the points 0, 1 and ∞ fixed.

We denote the quotient projection by π : M(H) → T , which is called the Teichmüller

projection. Thus, we can identify T with the set QS of all normalized quasisymmetric
homeomorphisms h(µ) for µ ∈ M(H). The topology of T is defined as the quotient
topology induced from M(H) by π. The universal Teichmüller space possesses the group
structure under the identification T ∼= QS. The composition h(µ) ◦ h(ν) in QS is denoted
by [µ] ∗ [ν] in T and the inverse h(µ)−1 is denoted by [µ]−1. For every [ν] ∈ T , the right
translation r[ν] : T → T on the group T is defined by [µ] 7→ [µ] ∗ [ν].

Let F µ denote the normalized (0, 1 and∞ are fixed) quasiconformal self-homeomorphism
of C whose complex dilatation is µ ∈ M(H+) on the upper half-plane H+ and 0 on the
lower half-plane H−. For µ1 and µ2 in M(H+), we see that π(µ1) = π(µ2) if and only if
F µ1 |H− = F µ2 |H−.

We define the following spaces of holomorphic functions Ψ and Φ on H as follows:

A(H) = {Ψ | ‖Ψ‖A = sup
z∈H

|Im z|2|Ψ(z)| <∞};

B(H) = {Φ | ‖Φ‖B = sup
z∈H

|Im z||Φ′(z)| <∞}.
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Here, A(H) is a complex Banach space with the hyperbolic L∞-norm ‖ · ‖A, and B(H) is
the Bloch space with the semi-norm ‖·‖B. By ignoring the difference in constant functions,
we regard B(H) as a complex Banach space with the norm ‖ · ‖B.

The pre-Schwarzian derivative map L : M(H+) → B(H−) is defined by the correspon-
dence µ 7→ log(F µ|H−)′ and the Schwarzian derivative map S : M(H+) → A(H−) is
defined by S(µ) = L(µ)′′ − (L(µ)′)2/2, where B(H) and A(H) serve appropriate spaces
as the targets of L and S, respectively. Let D(Φ) = Φ′′ − (Φ′)2/2 for Φ ∈ B(H−), which
satisfies S = D ◦ L. Then, D restricted to L(M(H+)) is a holomorphic bijection onto
S(M(H+)).

It is proved that S is a holomorphic split submersion onto the bounded contractible
domain S(M(H+)) in A(H−). Since S = D ◦L, we see that D : L(M(H+)) → S(M(H+))
is a biholomorphic homeomorphism and L is also a holomorphic split submersion onto
the bounded contractible domain L(M(H+)) in B(H−). Moreover, these maps induce
well-defined injections α : T → A(H−) such that α ◦π = S and β : T → B(H−) such that
β ◦ π = L. We call α the Bers embedding and β the pre-Bers embedding. By the facts
that S and L are split submersions, we see that α and β are homeomorphisms onto the
bounded contractible domains α(T ) = S(M(H+)) in A(H−) and β(T ) = L(M(H+)) in
B(H−), respectively.

We can refer to a textbook [22] for most of the aforementioned facts on the universal
Teichmüller space. Concerning the pre-Schwarzian derivative map, see [38].

Our subject turns to the BMO Teichmüller space TB, which lies in T as introduced
by Astala and Zinsmeister [3]. In general, we say that a measure λ on H is a Carleson

measure if

‖λ‖c = sup
I⊂R

λ(I × (0, |I|))

|I|
<∞,

where the supremum is taken over all bounded intervals I in R. For µ ∈ L∞(H), we

consider an absolutely continuous measure λµ = |µ(z)|2dxdy/y and let ‖µ‖c = ‖λµ‖
1/2
c .

Then, we provide a stronger norm ‖µ‖∞+‖µ‖c for µ. Let LB(H) denote the Banach space
consisting of all elements µ ∈ L∞(H) with ‖µ‖∞ + ‖µ‖c < ∞, namely, λµ is a Carleson
measure on H. Moreover, we define the corresponding space of Beltrami coefficients as
MB(H) =M(H) ∩ LB(H).

Definition 2.1. The BMO Teichmüller space TB ⊂ T is defined as π(MB(H)), equipped
with the quotient topology from MB(H) by π.

We introduce the space of holomorphic functions

AB(H) = {Ψ ∈ A(H) | ‖λ
(2)
Ψ ‖1/2c <∞},

where λ
(2)
Ψ = |Ψ(z)|2y3dxdy is a Carleson measure on H. This is a complex Banach space

with norm ‖Ψ‖AB
= ‖λ

(2)
Ψ ‖

1/2
c . Similarly,

BMOA(H) = {Φ ∈ B(H) | ‖λ
(1)
Φ ‖1/2c <∞},
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where λ
(1)
Φ = |Φ′(z)|2ydxdy is a Carleson measure on H. This space modulo constants is

a complex Banach space with norm ‖Φ‖BMOA = ‖λ
(1)
Φ ‖

1/2
c .

The following result is proved by Shen and Wei [36, Theorem 5.1] extending [3, Theorem
1].

Proposition 2.1. The Schwarzian derivative map S is a holomorphic map on MB(H
+)

into AB(H
−). Moreover, for each point Ψ in S(MB(H

+)), there exists a neighborhood VΨ
of Ψ in AB(H

−) and a holomorphic map σ : VΨ →MB(H
+) such that S ◦σ is the identity

on VΨ.

This fact also leads a claim on the pre-Schwarzian derivative map L on MB(H
+), and

we have that L(MB(H
+)) ⊂ BMOA(H−) and L :MB(H

+) → BMOA(H−) is holomorphic.
Moreover, we also see that D restricted to L(MB(H

+)) is a holomorphic bijection onto
S(MB(H

+)). Hence, likewise to the case of the universal Teichmüller space, the pre-
Schwarzian derivative map L satisfies the same property on MB(H

+) as in Proposition
2.1. These arguments are given in [36, Section 6].

Proposition 2.2. The pre-Schwarzian derivative map L is a holomorphic map onMB(H
+)

into BMOA(H−), and at each point in the image L(MB(H
+)), there exists a local holo-

morphic right inverse of L.

Propositions 2.1 and 2.2 also imply that S(MB(H
+)) and L(MB(H

+)) are open sub-
sets in AB(H

−) and BMOA(H−) respectively, and D : L(MB(H
+)) → S(MB(H

+)) is a
biholomorphic homeomorphism.

Under these properties of S and L on MB(H
+), the Bers embedding α and the pre-

Bers embedding β of the BMO Teichmüller space TB can be established in the same way
as in the case of T . These maps induce complex Banach structures to TB which are
biholomorphically equivalent, and hence α and β are biholomorphic homeomorphisms.

Theorem 2.3. (1) The Bers embedding α : TB → S(MB(H
+)) ⊂ AB(H

−) is a homeomor-

phism onto the image. (2) The pre-Bers embedding β : TB → L(MB(H
+)) ⊂ BMOA(H−)

is a homeomorphism onto the image.

Next, we focus on the relationship between BMOA and BMO. A locally integrable
complex-valued function φ on R is of bounded mean oscillation (BMO) if

‖φ‖BMO = sup
I⊂R

1

|I|

∫

I

|φ(x)− φI |dx <∞,

where the supremum is taken over all bounded intervals I on R and φI denotes the
integral mean of φ over I. The set of all complex-valued BMO functions on R is denoted
by BMO(R). This is regarded as a Banach space with norm ‖ · ‖BMO by ignoring the
difference in complex constant functions.

The John–Nirenberg inequality for BMO functions (see [15, VI.2]) asserts that there
exist two universal positive constants C0 and CJN such that for any complex-valued BMO
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function φ, any bounded interval I of R, and any λ > 0, it holds that

1

|I|
|{t ∈ I : |φ(t)− φI | ≥ λ}| ≤ C0 exp

(
−CJNλ

‖φ‖BMO

)
. (1)

Concerning the boundary extension of Φ ∈ BMOA(H) to R, we note that Φ has non-
tangential limits almost everywhere on R and the Poisson integral of this boundary func-
tion reproduces Φ. This links the BMO properties of Φ on H and on R. The following
theorem is well known, which can be seen from [49, Theorems 9.17 and 9.19].

Theorem 2.4. Let E(Φ) be the boundary extension of Φ ∈ BMOA(H) defined by the non-

tangential limits on R. Then, E(Φ) ∈ BMO(R), and the trace operator E : BMOA(H) →
BMO(R) is a Banach isomorphism onto the image.

By considering the trace operators E+ and E− for the half-planes H+ and H−, we
obtain the closed subspaces E+(BMOA(H+)) and E−(BMOA(H−)) in BMO(R). Func-
tions in E+(BMOA(H+)) and E−(BMOA(H−)) correspond by complex conjugation. By
the identification under the Banach isomorphism E± : BMOA(H±) → BMO(R), we may
regard BMOA(H±) as closed subspaces of BMO(R).

Conversely, the projection from BMO(R) to BMOA(H) ∼= E(BMOA(H)) associated
with E is specifically provided by using the following map.

Definition 2.2. For φ ∈ BMO(R), we define the singular integral

H(φ)(x) = p.v.
1

π

∫ ∞

−∞
φ(t)

(
1

x− t
+

t

1 + t2

)
dt

to be a linear operator on BMO(R) called the Hilbert transform.

It is well known thatH gives a Banach automorphism of BMO(R) satisfyingH◦H = −I
(see [15, Chapter VI]). Let P± = 1

2
(I ± iH), which we call the Riesz projections. We can

apply the Riesz projections P± to BMO(R) as bounded linear operators. We note that
P+ + P− = I and P+ ◦ P− = P− ◦ P+ = O by the definition of P± and the property
H ◦ H = −I. Moreover, the images of P± coincide with E±(BMOA(H±)), which are
the closed subspaces of BMO(R) consisting of all elements that extend to holomorphic
functions on H± by the Poisson integral.

Theorem 2.5. The Riesz projections P± in BMO(R) are bounded linear projections onto

the closed subspaces E±(BMOA(H±)). They yield the topological direct sum decomposition

BMO(R) = E+(BMOA(H+))⊕ E−(BMOA(H−)).

Holomorphic functions of the upper and the lower half-planes H± defined by the Cauchy
integrals of φ ∈ BMO(R),

−1

2πi

∫

R

φ(t)

(
1

z − t
+

t

1 + t2

)
dt (z ∈ H

±),
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are called the Szegö projections of φ. Here, the integration over R is taken in the increasing
direction

∫∞
−∞ when z ∈ H+ and in the decreasing direction

∫ −∞
∞ when z ∈ H−.

We see that the Szegö projections give the bounded linear maps BMO(R) → BMOA(H±)
whose composition with the trace operators E± : BMOA(H±) → BMO(R) coincide with
the Riesz projections P± (by the Plemelj formula in the special case). In the sequel, we do
not distinguish them, denote both of them by P±, and call the Szegö projections. More-
over, we regard BMOA(H±) as the subspaces of BMO(R) by omitting E± and represent
the topological direct sum decomposition of BMO(R) in Theorem 2.5 by

BMO(R) = BMOA(H+)⊕ BMOA(H−). (2)

3. Strongly quasisymmetric homeomorphisms

The universal Teichmüller space T is identified with the set QS of all normalized qua-
sisymmetric homeomorphisms. A quasisymmetric homeomorphism h can be characterized
by the doubling property for the pull-back of the Lebesgue measure on R by h. The BMO
Teichmüller space TB is identified with the subset of quasisymmetric homeomorphisms
h(µ) = H(µ)|R for µ ∈MB(H). We consider intrinsic characterization of these quasisym-
metric homeomorphisms.

Definition 3.1. A quasisymmetric homeomorphism h : R → R is called strongly qua-

sisymmetric if there are positive constants K and α such that

|h(E)|

|h(I)|
≤ K

(
|E|

|I|

)α

(3)

for any bounded interval I ⊂ R and for any measurable subset E ⊂ I.

We denote the set of all normalized strongly quasisymmetric homeomorphisms by SQS.
As QS is a group under the composition, SQS is a subgroup of QS by definition (3.1). We
also see that h ∈ SQS is locally absolutely continuous, and hence it can be represented as
h(x) =

∫ x

0
h′(t)dt.

Theorem 3.1. Let h(µ) be a normalized quasisymmetric homeomorphism of R. Then,

[µ] belongs to TB if and only if h(µ) is strongly quasisymmetric.

The “only-if” part of this theorem follows from [13, Theorem 2.3] and the “if” part
follows from [13, Theorem 4.2]. Later, we will give a different proof for Theorem 3.1 in
Theorems 4.7 and 6.5. Yet other proofs through other equivalent conditions are summa-
rized in [36, Theorem A].

Here, we show the way of extending a strongly quasisymmetric homeomorphism of R to
a quasiconformal self-homeomorphism of H whose complex dilatation induces a Carleson
measure. This is introduced by Fefferman, Kenig and Pipher [13]. There is a detailed
exposition in [41, Theorem 3.4].

Let φ(x) = 1√
π
e−x2

and ψ(x) = φ′(x) = −2xφ(x). We extend a strongly quasisymmetric

homeomorphism h : R → R to H by setting a real-analytic diffeomorphism H : H → C
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by

H(x, y) = U(x, y) + iV (x, y);

U(x, y) = (h ∗ φy)(x), V (x, y) = (h ∗ ψy)(x),

where ϕy(x) = y−1ϕ(y−1x) for x ∈ R and y > 0, and ∗ is the convolution. We call this
extension the variant of the Beurling–Ahlfors extension by the heat kernel. The original
extension in [4] uses the kernels φ(x) = 1

2
1[−1,1](x) and ψ(x) =

1
2
1[−1,0](x)−

1
2
1[0,1](x).

The quasiconformal extension theorem can be summarized as follows. The latter state-
ment is in [43, Proposition 3.2].

Theorem 3.2. For h ∈ SQS, the map H given by the variant of the Beurling–Ahlfors

extension by the heat kernel is a quasiconformal real-analytic self-diffeomorphism of H

whose complex dilatation belongs to MB(H). Moreover, H is bi-Lipschitz with respect to

the hyperbolic metric.

We note that in the case where the BMO norm of log h′ is sufficiently small for h ∈ SQS,
Semmes [34, Proposition 4.2] used a modified Beurling–Ahlfors extension H by compactly
supported kernels φ and ψ to prove the same properties as in Theorem 3.2. By dividing
the weight h′ into small pieces and composing the resulting maps, the assumption on
the small BMO norm can be removed to obtain a quasiconformal extension of the same
properties.

A locally integrable non-negative measurable function ω ≥ 0 on R is called a weight.
We say that ω is an A∞-weight if it satisfies the reverse Jensen inequality, namely, there
exists a constant C∞ ≥ 1 such that

1

|I|

∫

I

ω(x)dx ≤ C∞ exp

(
1

|I|

∫

I

logω(x)dx

)
(4)

for every bounded interval I ⊂ R. On the contrary, ω is defined to be an A∞-weight
if h(x) =

∫ x

0
ω(t)dt is a strongly quasisymmetric homeomorphism of R by Coifman and

Fefferman [8, Theorem III]. In other words, h′ is an A∞-weight if h ∈ SQS. It is known
that these definitions are equivalent (see [18]). Moreover, the constants K and α for
the strong quasisymmetry in (3.1) can be estimated in terms of C∞. Concerning the
relationship with Ap-weight (p > 1) of Muckenhoupt [28], see [14, Section IV.2] and [15,
Section VI.6]. In particular, ω is an A∞-weight if and only if it is an Ap-weight for all
sufficiently large p.

We also define ω to be an A1-weight if there exists a constant C1 ≥ 1 such that

1

|I|

∫

I

ω(x)dx ≤ C1 ess inf
x∈I

ω(x)

for any bounded interval I ⊂ R. By the Jones factorization theorem (see [14, Corollary
IV.5.3]), ω is an A∞-weight if and only if there are A1-weights ω0, ω1 and p > 1 such that
ω = ω0ω

1−p
1 .
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We see that if ω is an A∞-weight on R, then log ω belongs to ReBMO(R), which is
the real subspace of BMO(R) consisting of all real-valued BMO functions. In particular,
log h′ ∈ ReBMO(R) for h ∈ SQS. Conversely, we know the following fact (see [14, p.409]
and [15, Lemma VI.6.5]).

Proposition 3.3. Suppose that a weight ω ≥ 0 satisfies log ω ∈ ReBMO(R). If the BMO

norm ‖ logω‖BMO is less than the constant CJN of (2), then ω is an A∞-weight.

There is an example of φ ∈ ReBMO(R) such that eφ is not an A∞-weight: φ(x) =
log(1/|x|). Let BMO∗(R) denote the proper subset of BMO(R) consisting of all BMO
functions φ such that eReφ = |eφ| is an A∞-weight. Moreover, let ReBMO∗(R) =
ReBMO(R) ∩ BMO∗(R). We have the following claim.

Proposition 3.4. ReBMO∗(R) is a convex open subset of the real Banach subspace

ReBMO(R). Hence, so is BMO∗(R) of the complex Banach space BMO(R).

Proof. For the convexity of ReBMO∗(R), we have to show that if ω and ω̃ are A∞-weights,
then ωsω̃t is also an A∞-weight for s, t ≥ 0 with s + t = 1. By the Jones factorization,
for any sufficiently large p > 1, we have the decomposition ω = ω0ω

1−p
1 and ω̃ = ω̃0ω̃

1−p
1

by these A1-weights. Then,

ωsω̃t = ωs
0ω

s(1−p)
1 ω̃t

0ω̃
t(1−p)
1 = (ωs

0ω̃
t
0)(ω

s
1ω̃

t
1)

(1−p). (5)

We can verify that ωs
0ω̃

t
0 and ωs

1ω̃
t
1 are A1-weights:

1

|I|

∫

I

ω0(x)
sω̃0(x)

tdx ≤

(
1

|I|

∫

I

ω0(x)dx

)s(
1

|I|

∫

I

ω̃0(x)dx

)t

.

(
ess inf

x∈I
ω0(x)

)s(
ess inf

x∈I
ω̃0(x)

)t

≤ ess inf
x∈I

ω0(x)
sω̃0(x)

t

for any bounded interval I ⊂ R. Hence, ωs
0ω̃

t
0 is an A1-weight. The same estimate holds

true for ωs
1ω̃

t
1, which is also an A1-weight. Again by the factorization in (3), we see that

ωsω̃t is an Ap-weight, and hence A∞-weight.
As another property of A∞-weights, we know that if ω is an Ap-weight, then there is

some ε > 0 such that ωr is an Ap-weight for every r ∈ [0, 1+ε) (see [14, Theorem IV.2.7]).
Combining these properties with the fact in Proposition 3.3 that the open ball centered
at the origin of ReBMO(R) with radius CJN is contained in ReBMO∗(R), we can prove
that ReBMO∗(R) is open. Indeed, ReBMO∗(R) is the union of open cones spanned by
the CJN -neighborhood of the origin having any points of ReBMO∗(R) as their vertices.

Because BMO∗(R) = ReBMO∗(R)⊕iReBMO(R), we also see that BMO∗(R) is convex
and open. �

A strongly quasisymmetric homeomorphism h : R → R can be also characterized by
the composition operator on the Banach space BMO(R). The pre-composition of h to
φ ∈ BMO(R) gives a change of the variables, and we denote this linear operator on
BMO(R) by Ch. Its boundedness is proved by Jones [20] as follows. Concerning the
dependence of the constants, see [17, Example 2.3].
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Theorem 3.5. An increasing homeomorphism h of R onto itself belongs to SQS if and

only if the composition operator Ch : φ 7→ φ ◦ h gives an automorphism of BMO(R), that
is, Ch and C−1

h are bounded linear operators. Moreover, the operator norm satisfies an

estimate

‖Ch‖ ≍ ‖C−1
h ‖ .

K

α
in terms of the constants K and α for the strong quasisymmetry of h in (3.1).

4. Chord-arc curves and conformal welding

The universal Teichmüller space T is also identified with the set of all normalized
quasicircles. As the corresponding characterization for the BMO Teichmüller space TB,
a certain geometric condition is obtained by Bishop and Jones [6, Theorem 4], which is
preserved under a bi-Lipschitz self-homeomorphism of C. This is a sort of localization
of chord-arc condition, and a chord-arc curve defined below satisfies this condition. The
subset consisting of all chord-arc curves occupies a certain portion of TB.

Definition 4.1. A Jordan curve Γ in C passing through ∞ is called a chord-arc curve if
Γ is locally rectifiable and there exists a constant κ ≥ 1 such that the length of the arc
between any two points z1, z2 ∈ Γ is bounded by κ|z1− z2|. In other words, the arc length
parametrization of Γ yields a bi-Lipschitz embedding of R into C.

A Jordan curve Γ in C passing through ∞ is a quasicircle if Γ is the image of R under a
quasiconformal self-homeomorphism of C. This is known to be equivalent to satisfying a
weaker condition than in the above definition by replacing the length of the arc between
z1 and z2 with its diameter even though Γ is not necessarily locally rectifiable (see [1,
Theorems IV.4, 5]). In particular, a chord-arc curve is a quasicircle. The corresponding
characterization of a chord-arc curve by the image of R was shown in [19, Proposition
1.13], [30, Theorems 7.9, 7.10], and [39, Theorem] as follows.

Proposition 4.1. A Jordan curve Γ passing through ∞ is a chord-arc curve if and only

if Γ is the image of R under a bi-Lipschitz self-homeomorphism of C with respect to the

Euclidean metric. In fact, any bi-Lipschitz embedding γ : R → C extends to a bi-Lipschitz

self-homeomorphism of C.

First, we note a basic property of the boundary extension of a conformal homeomor-
phism of H determined by µ ∈MB(H) in general. Let F µ be the normalized quasiconfor-
mal self-homeomorphism of C that is conformal onH− and has the complex dilatation µ on
H

+. By Proposition 2.2, the condition µ ∈ MB(H
+) implies log(F µ|H−)′ ∈ BMOA(H−).

Moreover, the converse is also true (see Theorem 4.9).

Lemma 4.2. If Φ = log(F µ|H−)′ belongs to BMOA(H−), then f = F µ|R has its derivative

with f ′(x) 6= 0 almost everywhere on R, and log f ′ coincides with E(Φ) ∈ BMO(R).

Proof. By Theorem 2.4, the boundary extension φ = E(Φ) is in BMO(R), and in partic-
ular, φ(x) is finite almost everywhere on R. Since f(R) is a quasicircle, it is known that
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f ′(x) exists and coincides with the angular derivative of F µ at x almost everywhere on R

(see [30, Theorem 5.5]). Hence, log f ′ = φ. �

In this setting of quasicircle, the Lavrentiev theorem in particular gives a condition
under which the image of R by F µ is a chord-arc curve. See [19, Theorem 4.2] and [30,
Theorem 7.11]. We note that every function in BMOA(H−) can be represented by the
Poisson integral of its boundary extension on R by Theorem 2.5.

Theorem 4.3. For a quasiconformal self-homeomorphism F µ of C with µ ∈M(H+), Γ =
F µ(R) is a chord-arc curve if and only if log(F µ|H−)′ belongs to BMOA(H−), f = F µ|R is

locally absolutely continuous, and |f ′| is an A∞-weight. Namely, the equivalent condition

is that log f ′ ∈ BMO∗(R).

In fact, any chord-arc curve falls in this situation as the following claim asserts. Overall
expositions around these arguments are in [27].

Corollary 4.4. Every chord-arc curve passing through ∞ is the image of R under some

F µ with log f ′ ∈ BMO∗(R) for f = F µ|R.

Proof. By Proposition 4.1, Γ is the image ofR under a quasiconformal self-homeomorphism
F µ of C. We may assume that F µ is conformal on H by pre-composing a quasiconformal
self-homeomorphism of C preserving R. Then, Theorem 4.3 yields the assertion. �

Definition 4.2. A subset of TB consisting of all elements [µ] such that F µ(R) is a chord-
arc curve is denoted by TC .

There exists some [µ] ∈ TB that is not contained in TC . In fact, there are examples of
F µ such that F µ(R) are not locally rectifiable (see [3, Theorem 6], [5, Theorem 1.1] and
[32, Theorem]).

Proposition 4.5. TC is a proper open subset of TB containing the origin.

Proof. We consider the composition of the pre-Bers embedding β : TB → BMOA(H) and
the trace operator E : BMOA(H) → BMO(R). Since E◦β : TB → BMO(R) is continuous,
BMO∗(R) is open in BMO(R) by Proposition 3.4, and TC = (E ◦ β)−1(BMO∗(R)) by
Theorem 4.3, we see that TC is an open subset of TB containing the origin. �

Remark 4.1. Whether TC is connected or not is an open problem. Since the inverse
image E−1(BMO∗(R)) is also a convex open subset of BMOA(H), the shape of the image
of TB under the pre-Bers embedding β comes into question.

The following properties for TC are easily obtained. See [26, Theorem 4].

Proposition 4.6. (1) Every element [µ] ∈ TB can be obtained by a finite composition

[µ] = [µ1] ∗ · · · ∗ [µn] of elements [µi] ∈ TC (i = 1, . . . , n). (2) If [µ] ∈ TC then [µ]−1 ∈ TC .

In general, a quasisymmetric homeomorphism h : R → R can be expressed as the
discrepancy between the boundary values f1 = F1|R and f2 = F2|R of two conformal
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homeomorphisms F1 : H− → Ω− and F2 : H+ → Ω+, where Ω− and Ω+ are the comple-
mentary domains in C with ∂Ω− = ∂Ω+. This expression h = f−1

2 ◦ f1 is called conformal

welding. This allows us to see that the property of h is determined by that of f1 and f2.
We determine the class of h ∈ QS whose quasiconformal extension H(µ) to H is given

by µ ∈ MB(H). The following theorem corresponds to the “only if” part of Theorem
3.1. Representing a quasisymmetric homeomorphism h(µ) = H(µ)|R with µ ∈MB(H) by
conformal welding, we will give an alternative proof for it.

Theorem 4.7. If µ ∈ MB(H), then h(µ) ∈ SQS. In other words, h = h(µ) is locally

absolutely continuous and φ = log h′ belongs to BMO∗(R).

The following method of conformal welding works only when [µ] belongs to TC , that
is to say, when the conformal welding is done along a chord-arc curve F µ(R). For the
general case, we decompose [µ] into finitely many such elements, and apply this to each
of them.

Lemma 4.8. If F µ(R) is a chord-arc curve, then h(µ) is strongly quasisymmetric.

Proof. Let F1 = F µ as before and let F2 = Fµ̄−1 be the normalized quasiconformal self-
homeomorphism of C that is conformal on H+ and has complex dilatation µ̄−1 on H−.
Here, µ̄ is the reflection of µ with respect to R defined by µ̄(z̄) = µ(z). We note that the
normalization of F1 and F2 requires F1(R) = F2(R). Let f1 = F1|R and f2 = F2|R. Then,
we have that f2 ◦ h = f1.

Theorem 4.3 asserts that f1 and f2 are locally absolutely continuous and log f ′
1 and log f ′

2

belong to BMO∗(R). Namely, |f ′
1| and |f ′

2| are A∞-weights. Moreover, f ′
2(x) 6= 0 (a.e.)

by Lemma 4.2, and this implies that h is also locally absolutely continuous. Then, taking
the absolute value of the derivative for the conformal welding f2 ◦ h = f1, we have
|f ′

2| ◦ h · h
′ = |f ′

1|.

Let f̃1(x) =
∫ x

0
|f ′

1(t)|dt and f̃2(x) =
∫ x

0
|f ′

2(t)|dt, which belong to SQS. Moreover,

f̃1(x) =

∫ x

0

|f ′
2| ◦ h(t) · h

′(t)dt =

∫ h(x)

0

|f ′
2(τ)|dτ = f̃2 ◦ h(x).

Hence, h = f̃−1
2 ◦ f̃1, which is also a strongly quasisymmetric homeomorphism. �

Proof of Theorem 4.7. We represent h = h(µ) for µ ∈ MB(H
+) by conformal welding

as h = (Fµ̄−1)−1 ◦ F µ|R. If F µ(R) is a chord-arc curve, then Lemma 4.8 implies that
h ∈ SQS. In the general case, we decompose [µ] ∈ TB into a finite number of elements in
TC by Proposition 4.6; [µ] = [µ1] ∗ · · · ∗ [µn] for [µi] ∈ TC (i = 1, . . . , n). By the above
argument, each hi = h(µi) is in SQS. Hence, we see that h = h1 ◦ · · · ◦ hn is strongly
quasisymmetric. �

Finally, we mention the characterizations for a Beltrami coefficient µ to be in MB(H)
in terms of the Schwarzian and the pre-Schwarzian derivative maps S and L.
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Theorem 4.9. Suppose that F µ(R) is a chord-arc curve for µ ∈ M(H+). Then, the

following conditions are equivalent: (a) µ ∈ MB(H
+); (b) S(µ) ∈ AB(H

−); (c) L(µ) ∈
BMOA(H−).

Proof. The implications (a) ⇒ (b) ⇒ (c) are along the same line as Propositions 2.1 and
2.2. The crucial step is to prove (c) ⇒ (a). If F µ(R) is a chord-arc curve, Lemma 4.8 shows
that h(µ) is strongly quasisymmetric. Then, by “if” part of Theorem 3.1 (=Theorem 6.5),
we conclude that [µ] ∈ TB, that is, µ belongs to MB(H

+). �

Remark 4.2. The above theorem is still valid without the assumption that F µ(R) is
a chord-arc curve. This is proved in [3, Theorem 4]. The step (c) ⇒ (a) relies on the
geometric characterization of a curve F µ(R) for log(F µ|H−)′ ∈ BMOA(H−) given by [6,
Theorem 4]. As a consequence, it follows that

S(MB(H
+)) = S(M(H+)) ∩AB(H

−), L(MB(H
+)) = L(M(H+)) ∩ BMOA(H−).

5. BMO Embeddings in Bers Coordinates

We generalize strongly quasisymmetric homeomorphisms h : R → R to BMO embed-
dings γ : R → C, and consider those whose images are chord-arc curves. Then, we use
the BMO Teichmüller space TB to coordinate these embeddings. We remark here that
a BMO embedding is a mapping γ of R, that is, the image Γ = γ(R) together with its
parametrization, whereas a chord-arc curve refers to the image Γ itself of a certain special
BMO embedding γ.

Definition 5.1. A topological embedding γ : R → C passing through ∞ is called a BMO

embedding if there is a quasiconformal self-homeomorphism G of C with G|R = γ whose
complex dilatation µ = ∂̄G/∂G satisfies µ|H+ ∈MB(H

+) and µ|H− ∈MB(H
−).

We first consider the derivative of a BMO embedding γ : R → C though γ is not
necessarily absolutely continuous. The following claim is proved in a more general setting
in [27, Theorem 6.2]. See [45, Proposition 3.3] for the proof along quasiconformal theory.
Later in Theorem 5.3, we show this in the special case where the image of γ is a chord-arc
curve.

Proposition 5.1. A BMO embedding γ : R → C has its derivative γ′ almost everywhere

on R and log γ′ belongs to BMO(R).

We consider parametrization of all BMO embeddings. The simultaneous uniformization
due to Bers works for it. In general, a quasisymmetric embedding γ : R → Γ ⊂ C onto
a quasicircle Γ passing through ∞ is induced by a quasiconformal self-homeomorphism
G(µ+, µ−) of C for µ+ ∈ M(H+) and µ− ∈ M(H−). We assume that G(µ+, µ−) is
normalized so that it fixes 0, 1, and ∞. We see in the following proposition that such
an embedding γ = G(µ+, µ−)|R is determined by the Teichmüller equivalence class pair
([µ+], [µ−]). The proof is the same as that in [45, Proposition 4.1].
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Proposition 5.2. For µ+, ν+ ∈M(H+) and µ−, ν− ∈M(H−), G(µ+, µ−)|R = G(ν+, ν−)|R
if and only if [µ+] = [ν+] and [µ−] = [ν−] in T .

Thus, the space of all such normalized quasisymmetric embeddings can be identified
with the product T+ × T− of the universal Teichmüller space for T+ = π(M(H+)) and
T− = π(M(H−)). We refer to this as the Bers coordinates. We can introduce these coor-
dinates for the BMO embeddings as well. Let T+

B = π(MB(H
+)) and T−

B = π(MB(H
−)).

Any BMO embedding is represented by γ([µ+], [µ−]) = G(µ+, µ−)|R for ([µ+], [µ−]) ∈
T+
B × T−

B , and thus T+
B × T−

B becomes the Bers coordinates of the space of normalized
BMO embeddings.

Let µ̄ ∈ MB(H
−) denote the reflection µ(z̄) of a Beltrami coefficient µ(z) for z ∈ H+.

Then, G(µ, µ̄) is nothing but the normalized quasiconformal homeomorphism H(µ) : C →
C preserving R. The axis of symmetry of the product space T+

B × T−
B is defined as

Sym (T+
B × T−

B ) = {([µ], [µ̄]) | [µ] ∈ T+
B }.

For [µ] ∈ TB, the corresponding h = h(µ) ∈ SQS is expressed as h = G(µ, µ̄)|R =
γ([µ], [µ̄]). The canonical map ι : TB → Sym (T+

B × T−
B ) ⊂ T+

B × T−
B defined by

[µ] 7→ ([µ], [µ̄]) is a real-analytic embedding, and hence Sym (T+
B × T−

B ) is a real-analytic
submanifold of T+

B × T−
B .

For every [ν] ∈ TB, the right translation r[ν] : TB → TB of the group structure of
TB ∼= SQS is defined by [µ] 7→ [µ] ∗ [ν] for every [µ] ∈ TB. It is known that r[ν] is a
biholomorphic automorphism of TB (see [36, Remark 5.1] and [45, Lemma 4.2]). This can
be extended to T+

B × T−
B as the parallel translation

R[ν]([µ
+], [µ−]) = (r[ν]([µ

+]), r[ν̄]([µ
−])) = ([µ+] ∗ [ν], [µ−] ∗ [ν̄]),

which is a biholomorphic automorphism of T+
B × T−

B that preserves Sym (T+
B × T−

B ).
We see that any chord-arc curve Γ passing through ∞ is the image of some BMO

embedding by Corollary 4.4 and Theorem 4.9. We have defined TC as the subset of
TB consisting of all [µ] ∈ TB such that F µ(R) is a chord-arc curve, which is an open

subset of TB by Proposition 4.5. Let T̃C be the subset of T+
B × T−

B consisting of the
Bers coordinates of BMO embeddings γ : R → C whose images are chord-arc curves. By

definition, TC × {[0]}, {[0]} × TC , and Sym (T+
B × T−

B ) are all contained in T̃C . We will

see later that T̃C is an open subset of T+
B × T−

B .
In Theorem 4.7, by using the method of conformal welding, we have obtained that any

element h = γ([µ], [µ̄]) with [µ] ∈ TB is locally absolutely continuous and log h′ belongs
to ReBMO∗(R). The characterization of a chord-arc curve as in Theorem 4.3 can be
generalized as follows by using the inverse method of conformal welding.

Theorem 5.3. Let γ = γ([µ+], [µ−]) be a BMO embedding with ([µ+], [µ−]) ∈ T+
B × T−

B .

Then, the image of γ : R → C is a chord-arc curve, that is ([µ+], [µ−]) ∈ T̃C , if and only

if γ is locally absolutely continuous and log γ′ belongs to BMO∗(R).



SIMULTANEOUS UNIFORMIZATION OF CHORD-ARC CURVES 17

Proof. We represent γ as the following composition:

γ([µ+], [µ−]) = γ([0], [µ−] ∗ [µ+]−1) ◦ γ([µ+], [µ+]).

Here, f = γ([0], [µ−] ∗ [µ+]−1) is given as Fν |R for the normalized quasiconformal self-
homeomorphism Fν of C that is conformal on H+ and has complex dilatation ν on H−

with [ν] = [µ−] ∗ [µ+]−1, and h = γ([µ+], [µ+]) is given as H(µ+)|R for the normalized
quasiconformal self-homeomorphism H(µ+) of C with the indicated complex dilatation.
We have [ν] ∈ TB since TB ∼= SQS is a group. Hence, f is a BMO embedding and the
image of f coincides with that of γ.

Suppose that the image of γ is a chord-arc curve. Then, f is locally absolutely con-
tinuous and log f ′ ∈ BMO∗(R) by Theorem 4.3. In addition, h ∈ SQS by Theorem 4.7.
Therefore, γ = f ◦ h is locally absolutely continuous and satisfies |γ′| = |f ′| ◦ h · h′. Let

f̃(x) =
∫ x

0
|f ′(t)|dt, which is in SQS. Then,

γ̃(x) =

∫ x

0

|γ′(t)|dt =

∫ x

0

|f ′| ◦ h(t) · h′(t)dt =

∫ h(x)

0

|f ′(τ)|dτ = f̃ ◦ h(x)

is also in SQS. This implies that |γ′| is an A∞-weight, and hence log γ′ ∈ BMO∗(R).
Conversely, suppose that γ is locally absolutely continuous and log γ′ is in BMO∗(R).

Then, f is also locally absolutely continuous. Under the above definition, we consider γ̃
and f̃ . Since |γ′| is an A∞-weight, γ̃ is in SQS, and hence so is f̃ . Thus, |f ′| is an A∞-
weight and log f ′ is in BMO∗(R). By Theorem 4.3 again, the image of f is a chord-arc
curve. This implies that the image of γ is also a chord-arc curve. �

In particular, if a BMO embedding γ satisfies |γ′| = 1, which means that γ is parametrized
by its arc-length, then γ(R) is a chord-arc curve.

6. Holomorphy to the BMO space

For a BMO embedding γ : R → C with γ = γ([µ+], [µ−]) for ([µ+], [µ−]) ∈ T+
B × T−

B ,
we have log γ′ ∈ BMO(R) by Proposition 5.1. By this correspondence, we define a map

Λ : T+
B × T−

B → BMO(R).

We first prove that this correspondence is holomorphic in the Bers coordinates.

Theorem 6.1. The map Λ : T+
B × T−

B → BMO(R) is holomorphic.

Proof. By the Hartogs theorem for Banach spaces (see [7, §14.27]), to see that Λ is holo-
morphic, it suffices to show that Λ is separately holomorphic. Namely, we fix, say [µ+

0 ],
and prove that Λ([µ+

0 ], [µ
−]) is holomorphic on [µ−]. The other case is treated in the same

way.
Let Ch0 be the composition operator acting on BMO(R) induced by h0 = h(µ+

0 ) ∈
SQS. We define the affine translation Qh0(φ) of φ ∈ BMO(R) by Ch0(φ) + log h′0. Then,
Λ ◦R[µ+

0 ] = Qh0 ◦ Λ holds. This relation yields a useful representation

Λ([µ+
0 ], · ) = Qh0 ◦ Λ([0], r

−1

[ µ̄+
0 ]
( · )). (6)
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Here, Λ([0], · ) becomes the trace operator E+ in Theorem 2.4 by composing the pre-Bers
embedding β− : T−

B → BMOA(H+). Namely,

Λ([0], [µ]) = E+(β−([µ])) ([µ] ∈ T−
B ).

Since E+ is a bounded linear operator and r−1

[ µ̄+
0 ]

is holomorphic, we conclude that Λ([µ+
0 ], · )

is holomorphic. �

In the above proof, we see that the affine translation Qh0 of BMO(R) preserves the

image Λ(T̃C) invariant because R[µ+
0 ] preserves T̃C invariant.

Proposition 6.2. T̃C = Λ−1(BMO∗(R)), and T̃C is an open subset of T+
B × T−

B .

Proof. The first assertion follows from Theorem 5.3. Since Λ is continuous by Theorem
6.1 and BMO∗(R) is open by Proposition 3.4, we obtain the second assertion. �

In the sequel, we restrict Λ to T̃C and define this map as

Λ : T̃C → BMO∗(R)

using the same notation Λ.

Proposition 6.3. The map Λ : T̃C → BMO∗(R) is a holomorphic injection.

Proof. Holomorphy follows from Theorem 6.1. Let Λ([µ+
1 ], [µ

−
1 ]) = log γ′1, Λ([µ

+
2 ], [µ

−
2 ]) =

log γ′2, and suppose that log γ′1 = log γ′2. Since γ1 = γ([µ+
1 ], [µ

−
1 ]) and γ2 = γ([µ+

2 ], [µ
−
2 ])

are locally absolutely continuous, we have γ1 = γ2 by the normalization. This implies
that [µ+

1 ] = [µ+
2 ] and [µ−

1 ] = [µ−
2 ] by Proposition 5.2, and hence Λ is injective. �

We denote the tangent space of TB at [µ] by T[µ]TB. The tangent space of T+
B × T−

B at
([µ+], [µ−]) is represented by the direct sum

T([µ+],[µ−])(T
+
B × T−

B ) = T[µ+]T
+
B ⊕ T[µ−]T

−
B .

By the identification T+
B

∼= β(T+
B ) ⊂ BMOA(H−) and T−

B
∼= β(T−

B ) ⊂ BMOA(H+) under
the pre-Bers embedding by Theorem 2.3, we may assume that T[µ+]T

+
B

∼= BMOA(H−) and
T[µ−]T

−
B

∼= BMOA(H+). Then, the derivative d([µ+],[µ−])Λ of Λ at ([µ+], [µ−]) is regarded
as the linear mapping

d([µ+],[µ−])Λ : BMOA(H−)⊕ BMOA(H+) → BMO(R) = BMOA(H−)⊕ BMOA(H+)

by taking the direct sum decomposition (2) into account.
The derivative d([0],[0])Λ at the origin can be easily understood. By checking that the

restriction of Λ to T+
B and T−

B coincides with

Λ|T+
B
×{[0]} = β+ : T+

B → BMOA(H−), Λ|{[0]}×T−
B
= β− : T−

B → BMOA(H+),

we see that the derivative d([0],[0])Λ is the identity map of BMOA(H−) ⊕ BMOA(H+).
This implies the following claim by the inverse mapping theorem (see [7, §7.18]).
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Proposition 6.4. The inverse map Λ−1 is holomorphic in some neighborhood U of 0 in

BMO∗(R) with U ⊂ Λ(T̃C).

Theorem 4.7 implies that Λ([µ], [µ̄]) ∈ ReBMO∗(R) for every ([µ], [µ̄]) ∈ Sym (T+
B ×T−

B ).
The converse of this claim also holds.

Theorem 6.5. For every φ ∈ ReBMO∗(R), there exists ([µ], [µ̄]) ∈ Sym (T+
B × T−

B )
such that Λ([µ], [µ̄]) = φ. Hence, any strongly quasisymmetric homeomorphism h(x) =∫ x

0
eφ(t)dt is given as h = h(µ) for some µ ∈MB(H

+).

Proof. For each s ∈ [0, 1], let

hs(x) =

∫ x

0

esφ(t)dt.

Then, hs is an increasing and locally absolutely continuous homeomorphism of R with
h0 = id and log h′s = sφ ∈ ReBMO∗(R). By the Hölder inequality, we see that the
constant C∞ in (3) for the A∞-weights h′s for all s are bounded by that for h′. Hence,
hs are uniformly strongly quasisymmetric homeomorphisms for all s ∈ [0, 1] in the sense
that we can take the constants α and K in (3.1) uniformly, and so are their inverses h−1

s

by [8, Lemma 5].
We have that

log(hs̃ ◦ h
−1
s )′ = (log h′s̃ − log h′s) ◦ h

−1
s = (s̃− s)C−1

hs
φ

for any s, s̃ ∈ [0, 1]. This belongs to ReBMO(R) and the operator norms ‖C−1
hs

‖ are
uniformly bounded by Theorem 3.5 because the constants for strong quasisymmetry of
h−1
s are independent of s. Hence, we can choose a positive integer n ≥ 1 such that

log(hj/n ◦ h
−1
(j−1)/n)

′ belong to the neighborhood U of 0 in BMO∗(R) taken by Proposition

6.4 for all j = 1, . . . , n.
By this proposition, there exist ([µj], [µ̄j]) ∈ Sym (T+

B × T−
B ) such that Λ([µj], [µ̄j]) =

log(hj/n ◦ h
−1
(j−1)/n)

′ for all j. Therefore,

h = (h1 ◦ h
−1
(n−1)/n) ◦ · · · ◦ (h1/n ◦ h

−1
0 )

is given as [µ] = [µn] ∗ · · · ∗ [µ1] in TB. Then, we have Λ([µ], [µ̄]) = log h′ = φ, which is
the desired assertion. �

Therefore, combined with Theorem 6.5, Theorem 4.7 is improved to the complete char-
acterization of TB in terms of strong quasisymmetry or ReBMO∗(R). Thus, we obtain
the alternative proof of Theorem 3.1, independently of the theorems in [13].

7. Biholomorphic correspondence

We have seen that BMO embeddings γ with chord-arc images are represented in the
Bers coordinates, and the map Λ to BMO∗(R) via log γ′ is a holomorphic injection. In fact,
this map is a biholomorphic homeomorphism onto its image, as shown in [45, Theorem
6.1]. Here, we restructure the proof to emphasize the surjectivity of the derivative of Λ
as the main point.
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Theorem 7.1. Let Λ : T̃C → BMO∗(R) be the holomorphic injection given by

Λ([µ+], [µ−]) = log γ′ (γ = γ([µ+], [µ−])).

Then, its image Λ(T̃C) is an open subset of BMO∗(R) containing ReBMO∗(R), and Λ is

a biholomorphic homeomorphism onto Λ(T̃C).

In the direct sum decomposition of the tangent space

T([µ+],[µ−])T̃C = T[µ+]T
+
B ⊕ T[µ−]T

−
B , (7)

we denote the canonical projections by

J+ : T([µ+],[µ−])(T̃C) → T[µ−](T
−
B ), J− : T([µ+],[µ−])(T̃C) → T[µ+](T

+
B ).

We first determine the image of each factor under the derivative d([µ+],[µ−]). In the sequel,
h± ∈ SQS always denote the quasisymmetric homeomorphisms given by h± = h(µ±).

Lemma 7.2. d([µ+],[µ−]) Λ(T[µ±]T
±
B ) = Ch∓(BMOA(H∓)).

Proof. Formula (6) shows that

Λ([µ+], [µ−]) = Λ ◦R[µ+]([0], [µ
−] ∗ [µ̄+]−1) = Qh+ ◦ Λ([0], r−1

[µ̄+]([µ
−])).

By fixing [µ+], we take the partial derivative of this formula along the direction of T−
B .

Then,
d([µ+],[µ−]) Λ|T[µ−]T

−
B
= Ch+ ◦ d([0],[µ−]∗[µ̄+]−1)Λ ◦ d[µ−]r

−1
[µ̄+],

where d([0],[µ−]∗[µ̄+]−1)Λ restricted to the tangent subspace T[µ−]∗[µ̄+]−1T−
B

∼= BMOA(H+)
can be regarded as the identity map. Hence, d([µ+],[µ−]) Λ(T[µ−]T

−
B ) = Ch+(BMOA(H+)).

The other equation is similarly proved. �

The surjectivity of the derivative of Λ is reduced to the following condition.

Lemma 7.3. If the real subspace iReBMO(R) is contained in Ran d([µ+],[µ−]) Λ, the image

of the derivative of Λ at ([µ+], [µ−]) ∈ T̃C, then d([µ+],[µ−])Λ is surjective. Similarly, if the

real subspace ReBMO(R) is contained in Ran d([µ+],[µ−])Λ, then d([µ+],[µ−]) Λ is surjective.

Proof. For the former statement, it suffices to show that ReBMO(R) ⊂ Ran d([µ+],[µ−]) Λ.
We note that Lemma 7.2 implies that Ch+(BMOA(H+)) ⊂ Ran d([µ+],[µ−]) Λ.

We take any φ ∈ ReBMO(R). Since Ch+ maps ReBMO(R) isomorphically onto itself,
C−1

h+ (φ) also belongs to ReBMO(R). Its Szegö projection

P+(C−1
h+ (φ)) =

1

2
C−1

h+ (φ) + i
1

2
H ◦ C−1

h+ (φ) (8)

is in BMOA(H+). This implies that

φ+ iCh+ ◦ H ◦ C−1
h+ (φ) ∈ Ran d([µ+],[µ−]) Λ

by the application of 2Ch+ to (7). Here, iCh+ ◦ H ◦ C−1
h+ (φ) ∈ iReBMO(R) also belongs

to Ran d([µ+],[µ−]) Λ by the assumption. Therefore, we have that φ ∈ Ran d([µ+],[µ−]) Λ.
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For the latter statement, it suffices to show that iReBMO(R) ⊂ Ran d([µ+],[µ−]) Λ. We
take any iφ ∈ iReBMO(R). By (7), we have that

iP+(C−1
h+ (φ)) =

i

2
C−1

h+ (φ)−
1

2
H ◦ C−1

h+ (φ)

is in BMOA(H+), and hence

iφ− Ch+ ◦ H ◦ C−1
h+ (φ) ∈ Ran d([µ+],[µ−]) Λ.

Here, Ch+ ◦H◦C−1
h+ (φ) ∈ ReBMO(R) also belongs to Ran d([µ+],[µ−]) Λ by the assumption,

and thus we have iφ ∈ Ran d([µ+],[µ−]) Λ. �

The following is the crucial claim for establishing our argument. If Λ([µ+
0 ], [µ

−
0 ]) = log γ′

lies in iReBMO(R), then γ(x) =
∫ x

0
γ′(t) dt is the arc-length parametrization of a chord-

arc curve, since |γ′(t)| = 1. In this context, there are several important studies in real
analysis regarding the deformation of chord-arc curves, which are surveyed in [31]. We
extend these results to:

Lemma 7.4. If Λ([µ+
0 ], [µ

−
0 ]) is in the subspace iReBMO(R), then iReBMO(R) is in

Ran d([µ+],[µ−])Λ, the image of the derivative of Λ at ([µ+], [µ−]).

Proof. This can be seen from the work on chord-arc curves by Semmes [34, p.254]. In
fact, for every φ0 = Λ([µ+

0 ], [µ
−
0 ]) ∈ iReBMO(R), there is a neighborhood U0 of φ0 in

BMO(R) and a holomorphic map τ : U0 →MB(H
+)×MB(H

−) such that Λ◦(π+×π−)◦τ
is the identity on U0. To prove this claim, we first see that τ is defined to be bounded on
some neighborhood U0 by the quasiconformal extension given in [34, Proposition 4.13].
Then, by [37, Formulas (6.7),(6.27)], the complex dilatation τ(φ) for φ ∈ U0 is explicitly
represented, and τ(φ)(z) is Gâteaux holomorphic on U0 for each fixed z ∈ H+∪H−. Under
these conditions, we can conclude that τ is holomorphic on U0 by [44, Lemma 6.1]. �

Proof of Theorem 7.1. Proposition 6.3 asserts that Λ is a holomorphic injection. To show

that Λ is biholomorphic, we prove that the derivative d([µ+],[µ−]) Λ at every ([µ+], [µ−]) ∈ T̃C
is surjective onto BMO(R). Then, by the inverse mapping theorem (see [7, §7.18]), we
obtain the required claim.

Let φ = Λ([µ+], [µ−]) ∈ BMO∗(R). We can find φ0 ∈ iReBMO(R) ∩ Λ(T̃C) and
[ν] ∈ TB such that Qh(φ0) = φ with h = h(ν). Indeed, we take [ν] ∈ TB such that
Λ([ν], [ν̄]) = log h′ = Reφ by Theorem 6.5, and set φ0 = iC−1

h (Imφ). Then,

Qh(φ0) = Ch(φ0) + log h′ = i Imφ+ Reφ = φ.

We consider the derivative of Λ at ([µ+
0 ], [µ

−
0 ]) = R−1

[ν] ([µ
+], [µ−]), where Λ([µ+

0 ], [µ
−
0 ]) =

Q−1
h ◦Λ([µ+], [µ−]) = φ0. By Lemma 7.4, we have iReBMO(R) ⊂ Ran d([µ+

0 ],[µ−
0 ]) Λ. Under

this condition, Lemma 7.3 yields that d([µ+
0 ],[µ−

0 ])Λ is surjective. Since

d([µ+],[µ−]) Λ = dφ0Qh ◦ d([µ+
0 ],[µ−

0 ]) Λ ◦ d([µ+],[µ−])R
−1
[ν] ,

this is also surjective. �
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The proof of Theorem 7.1 shows that the derivative

d([µ+],[µ−])Λ : T([µ+],[µ−]) T̃C → BMO(R)

of Λ at every point ([µ+], [µ−]) ∈ T̃C is a surjective isomorphism. Therefore, in account of
Lemma 7.2, we obtain the topological direct sum decomposition of BMO(R) at ([µ+], [µ−])
as

BMO(R) = Ch−(BMOA(H−))⊕ Ch+(BMOA(H+)). (9)

According to this decomposition, we define the bounded linear projections as

P±
([µ+],[µ−]) : BMO(R) → Ch±(BMOA(H±)).

Lemma 7.5. P±
([µ+],[µ−]) = d([µ+],[µ−]) Λ ◦ J± ◦ (d([µ+],[µ−]) Λ)

−1.

Proof. By Lemma 7.2, we see that the derivative d([µ+],[µ−]) Λ preserves each factor of the
direct sum decompositions (7) and (7). Then, the projections J+ and P+

([µ+],[µ−]) to the

second factors are conjugated by d([µ+],[µ−]) Λ, and so are the projections J− and P−
([µ+],[µ−])

to the first factors. �

Finally, as an application of Theorem 7.1, we obtain a result about the real-analytic
structure of the BMO Teichmüller space TB. We restrict the biholomorphic homeomor-
phism Λ to the real-analytic submanifold Sym (T+

B ×T−
B ), as in the setting of Theorem 4.7.

By composing Λ with the canonical real-analytical embedding ι : TB → Sym (T+
B × T−

B ),
we have the following. This has appeared in [45, Corollary 6.2].

Corollary 7.6. The map Λ ◦ ι : TB → ReBMO∗(R) given by h 7→ log h′ is a real-analytic

diffeomorphism. Hence, the BMO Teichmüller space TB is real-analytically equivalent to

ReBMO∗(R).

8. The Cauchy transform on chord-arc curves

In the course of proving the biholomorphic correspondence Λ : T̃C → BMO∗(R) from
BMO embeddings with chord-arc image in Bers coordinates to the BMO space, we inves-

tigated the derivative d([µ+],[µ−])Λ at ([µ+], [µ−]) ∈ T̃C . In this section, we show that the
Cauchy transform and the Cauchy projection of BMO functions on the chord-arc curve
Γ = γ(R) for γ = γ([µ+], [µ−]) can be represented by d([µ+],[µ−])Λ. In particular, this
proves the Calderón theorem in real analysis for BMO functions on chord-arc curves.

We first introduce the Cauchy transform and the Cauchy projection by considering the
Cauchy integral on a chord-arc curve Γ = γ(R). We define the Banach space of BMO
functions on Γ by the push-forward of BMO(R) by γ and identify this pair. Namely,

BMO(γ(R)) = {γ∗φ = φ ◦ γ−1 | φ ∈ BMO(R)}

with norm ‖γ∗φ‖BMO(γ) = ‖φ‖BMO.
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Remark 8.1. Usually, a function space on a locally rectifiable curve Γ is defined by using
its arc-length parametrization. In our case, for a BMO embedding γ0 : R → C such
that γ0 gives an arc-length parametrization of Γ, we may set BMO(γ0(R)) by the above
definition. However, the difference between γ and γ0 is given by the composition operator
Ch for h ∈ SQS (as explained in the next section in detail), and it can be controlled well.
Hence, we adopt the representation BMO(γ(R)) because it simplifies the arguments for
considering the dependence of the operators acting on it when the embedding γ varies.

Definition 8.1. The Cauchy transform of ψ ∈ BMO(γ(R)) on a chord-arc curve Γ = γ(R)
(oriented by R in the increasing direction) is defined by the singular integral

(HΓψ)(ξ) = p.v.
1

π

∫

Γ

(
ψ(z)

ξ − z
−

ψ(z)

ζ±0 − z

)
dz (ξ ∈ Γ),

where dz = γ′(t)dt, and ζ+0 and ζ−0 are arbitrary points in the left and the right domains
Ω+ and Ω− bounded by Γ, respectively. The Cauchy integrals of ψ on Γ are defined by

(P±
Γ ψ)(ζ) =

−1

2πi

∫

Γ

(
ψ(z)

ζ − z
−

ψ(z)

ζ±0 − z

)
dz (ζ ∈ Ω±),

which are holomorphic functions on Ω±. Here, the integration over Γ is taken in the
inverse direction when ζ ∈ Ω−.

The point-wise convergence of the Cauchy transform and the Cauchy integrals for ψ ∈
BMO(γ(R)) are guaranteed by this definition of using the regularized kernel. By the
Privalov theorem (see [16, p.431]), if the Cauchy transform (HΓψ)(ξ) exists a.e. on Γ,
then the Cauchy integrals (P±

Γ ψ)(ζ) have non-tangential limits a.e. on Γ, and vice versa.
The boundary extensions of P±

Γ ψ to Γ are also denoted by the same symbol and called
the Cauchy projections of ψ.

The Plemelj formula for the Riemann–Hilbert problem asserts the following relation
between the Cauchy transform and the Cauchy projections. This is a generalization of
the relation between the Hilbert transform and the Szegö projections. We remark that
the sign of P−

Γ is opposite to the usual one due to the orientation of Γ.

Proposition 8.1. For a function ψ ∈ BMO(γ(R)) on a chord-arc curve Γ = γ(R), the
Cauchy transform HΓ and the Cauchy projections P±

Γ satisfy

P+
Γ ψ =

1

2
(ψ + iHΓψ), P−

Γ ψ =
1

2
(ψ − iHΓψ).

In other words,

ψ = P+
Γ ψ + P−

Γ ψ, iHΓψ = P+
Γ ψ − P−

Γ ψ

holds.

Next, we consider the space of holomorphic functions to which the Cauchy integrals
P±
Γ ψ belong. Let F± : H± → Ω± be the normalized Riemann mappings, where Ω± are the
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complementary domains of Γ in C. Then, we define the Banach space of BMOA functions
on Ω± by the push-forward of BMOA(H±) by F± and identify these pairs. Namely,

BMOA(Ω±) = {(F±)∗Φ
± = Φ± ◦ (F±)−1 | Φ± ∈ BMOA(H±)}

with norm ‖(F±)∗Φ
±‖BMOA(Ω±) = ‖Φ±‖BMOA.

For (F±)∗Φ
± ∈ BMOA(Ω±), their boundary extensions to Γ are E(Φ±)◦(F±)−1, where

the Riemann mappings F± are assumed to extend to homeomorphisms of R onto Γ. We
define the boundary extension operators E±

Γ to Γ by

E±
Γ ((F

±)∗Φ
±) = E(Φ±) ◦ (F±)−1.

Proposition 8.2. It holds that E±
Γ (BMOA(Ω±)) ⊂ BMO(γ(R)). Moreover, these trace

operators E±
Γ are Banach isomorphisms onto their images, where their operator norms are

estimated in terms of the norms of the composition operators Ch± for h± = h(µ±) ∈ SQS,
respectively.

Proof. The norm on BMOA(Ω±) is induced from BMOA(H±) by F± whereas the norm
of BMO(γ(R)) is induced from BMO(R) by γ. Because γ = F± ◦ h±, the differences
between E± and E±

Γ are caused by the composition operators Ch±, respectively. �

By this proposition, we see that E±
Γ (BMOA(Ω±)) are closed subspaces of BMO(γ(R)).

Moreover, under the Banach isomorphism E±
Γ , we may identify E±

Γ (BMOA(Ω±)) with
BMOA(Ω±). Hence, we regard BMOA(Ω±) as closed subspaces of BMO(γ(R)) without
noticing E±

Γ hereafter.

For ([µ+], [µ−]) ∈ T̃C , we have obtained the images of the tangent subspaces T[µ+]T
+
B and

T[µ−]T
−
B under the surjective derivative d([µ+],[µ−])Λ, which correspond to the topological

direct sum decomposition (7). Then, every φ ∈ BMO(R) is uniquely represented by
φ = φ+ + φ− for φ+ ∈ Ch+(BMOA(H+)) and φ− ∈ Ch−(BMOA(H−)). These bounded
linear projections are denoted by φ± = P±

([µ+],[µ−])(φ).

Theorem 8.3. In the function space BMO(γ(R)) on a chord-arc curve Γ = γ(R), the
Cauchy projections P±

Γ satisfy

P±
Γ = γ∗ ◦ P

±
([µ+],[µ−]) ◦ γ

−1
∗ .

In particular, P±
Γ maps BMO(γ(R)) onto BMOA(Ω±), they are bounded linear operators,

and their operator norms are estimated in terms of ‖Ch±‖.

Proof. Let φ = γ−1
∗ (ψ) = ψ ◦ γ for ψ ∈ BMO(γ(R)) = γ∗(BMO(R)). Then, φ ∈ BMO(R)

and P±
([µ+],[µ−]) ◦ γ

−1
∗ (ψ) = φ± ∈ Ch±(BMOA(H±)). Therefore,

γ∗ ◦ P
±
([µ+],[µ−]) ◦ γ

−1
∗ (ψ) ∈ BMOA(Ω±)

since γ = F± ◦ h± and BMOA(Ω±) = F±
∗ (BMOA(H±)) for the Riemann mappings

F± : H± → Ω±. By the definition of the projections P±
([µ+],[µ−]), we have

γ∗ ◦ P
+
([µ+],[µ−]) ◦ γ

−1
∗ (ψ) + γ∗ ◦ P

−
([µ+],[µ−]) ◦ γ

−1
∗ (ψ) = ψ.
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Let Ψ1 be a measurable function on C defined by BMOA functions γ∗ ◦P
+
([µ+],[µ−]) ◦γ

−1
∗ (ψ)

on Ω+ and −γ∗◦P
−
([µ+],[µ−])◦γ

−1
∗ (ψ) on Ω−. Then, Ψ1 is locally integrable and is of growth

order Ψ1(z) = o(|z|) as z → ∞.
We can verify that −2i∂̄Ψ1 = ψdzΓ as a distribution according to the argument in [33,

p.204]. Here, dzΓ denotes a continuous linear functional defined by

〈X, dzΓ〉 =

∫

Γ

X(z)dz

for every test function X ∈ C∞
0 (C). Then, we have

〈X,ψdzΓ〉 =

∫

Γ

X(z)ψ(z)dz = 2i

∫

C

∂̄X(z)Ψ1(z)dxdy = −2i〈X, ∂̄Ψ1〉.

The middle equality in the above equations is derived from the Green formula.
To see this more precisely, we choose a simply connected bounded domain W ⊂ C of

smooth boundary intersecting Γ and containing the support of X . Moreover, we choose
a decreasing sequence of neighborhoods Un of Γ with

⋂∞
n=1Un = Γ appropriately, and let

W±
n = (W ∩ Ω±) \ Un. Then, the Green formula implies that

∫

∂W±
n

X(z)Ψ1(z)dz =

∫

W±
n

∂̄(X(z)Ψ1(z))dz̄ ∧ dz = 2i

∫

W±
n

∂̄X(z)Ψ1(z)dxdy.

Here, the first integrals over ∂W±
n tend to the integrals involving the non-tangential limits

of Ψ1 over Γ ∩ W as n → ∞ because Ψ1 is made of BMOA(Ω±) whose restrictions to
W± = W ∩ Ω± belong to the Hardy space Hp(W±). Then, summing up two equations
for ± after passing to these limits, we obtain the required equation.

The Cauchy projections P±
Γ (ψ) satisfy the same properties as γ∗ ◦ P

±
([µ+],[µ−]) ◦ γ

−1
∗ (ψ).

They are holomorphic functions on Ω± such that their boundary extensions satisfy P+
Γ (ψ)+

P−
Γ (ψ) = ψ by Proposition 8.1. Let Ψ2 be a measurable function on C defined by
P+
Γ (ψ) on Ω+ and −P−

Γ (ψ) on Ω−. Then, Ψ2 is locally integrable and is of growth order
Ψ2(z) = o(|z|) as z → ∞. These facts are verified in [33, Lemma 3.2].

Moreover, we have also −2i∂̄Ψ2 = ψdzΓ as a distribution. Indeed, for every test function
X ∈ C∞

0 (C), the Pompeiu formula (applied at =̇) implies that

−2i〈X, ∂̄Ψ2〉 = 2i

∫

C

∂̄X(ζ)Ψ2(ζ)dξdη =
−1

π

∫

C

∂̄X(ζ)

(∫

Γ

(
ψ(z)

ζ − z
−

ψ(z)

ζ±0 − z

)
dz

)
dξdη

=

∫

Γ

(
−1

π

∫

C

∂̄X(ζ)

ζ − z
dξdη

)
ψ(z)dz =̇

∫

Γ

X(z)ψ(z)dz = 〈X,ψdzΓ〉.

The exchange of order of the integrations is guaranteed simply by integrability of

|∂̄X(ζ)|

∣∣∣∣
ψ(z)

ζ − z
−

ψ(z)

ζ±0 − z

∣∣∣∣

over (ζ, z) ∈ C× Γ.
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Since we have seen that −2i∂̄Ψ1 = ψdzΓ = −2i∂̄Ψ2, ∂̄-derivative of the locally inte-
grable function Ψ1−Ψ2 is 0 on C in the distribution sense. Hence, it is holomorphic on C

by the Weyl lemma. The growth order Ψ1(z)−Ψ2(z) = o(|z|) (z → ∞) forces the entire
function Ψ1 − Ψ2 to be a constant. Thus, we have P±

Γ (ψ) = γ∗ ◦ P
±
([µ+],[µ−]) ◦ γ

−1
∗ (ψ) on

Ω± up to constants. �

Corollary 8.4. The Cauchy transformHΓ on a chord-arc curve Γ = γ(R) maps BMO(γ(R))
to BMO(γ(R)), which is a Banach automorphism of BMO(γ(R)).

Proof. Since HΓ = −i(P+
Γ −P−

Γ ) by Proposition 8.1, the statement follows from Proposi-
tion 8.2 and Theorem 8.3. �

Remark 8.2. The boundedness of the Cauchy transform HΓ as well as the Cauchy
projections P±

Γ is also verified in [23, Theorem 1.1] as an application of the corresponding
Lp estimate in [12].

Theorem 8.3 also leads to the Calderón theorem (see [9, Section 8]) for chord-arc curves.

Corollary 8.5. The Cauchy projections P±
Γ on a chord-arc curve Γ = γ(R) are associated

with the topological direct sum decomposition

BMO(γ(R)) = BMOA(Ω+)⊕ BMOA(Ω−).

Remark 8.3. P±
Γ ◦γ∗ = γ∗◦P

±
([µ+],[µ−]) maps BMO(R) onto BMOA(Ω±). When [µ+] = [0]

or [µ−] = [0], this coincides with what is called the Faber operator. See [23, 24] for related
arguments. In our setting, we see not only the boundedness of this operator but also
its holomorphic dependence when the embeddings γ vary in the Teichmüller space as is
discussed in the next section.

9. Holomorphic dependence of the Cauchy transform

In this section, we consider the variation of the Cauchy transform HΓ when Γ = γ(R)
moves according to γ = γ([µ+], [µ−]). To formulate this problem, we take the conjugate

of HΓ so that it acts on BMO(R). Namely, for ([µ+], [µ−]) ∈ T̃C , we set

H([µ+],[µ−]) = γ−1
∗ ◦ HΓ ◦ γ∗, (10)

which is a Banach automorphism of BMO(R) by Corollary 8.4. More explicitly,

H([µ+],[µ−])(φ)(x) = p.v.
1

π

∫ ∞

−∞

φ(t)

γ(x)− γ(t)
γ′(t)dt (x ∈ R)

for φ ∈ BMO(R).
By Proposition 8.1, the relationship between the Cauchy transform HΓ and the Cauchy

projections P±
Γ is given as HΓ = −i(P+

Γ − P−
Γ ). Moreover, Theorem 8.3 shows P±

Γ =
γ∗ ◦ P

±
([µ+],[µ−]) ◦ γ

−1
∗ . Then, we have

H([µ+],[µ−]) = −i(P+
([µ+],[µ−]) − P−

([µ+],[µ−])). (11)
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For ([0], [0]) ∈ T̃C , H([0],[0]) coincides with the Hilbert transform H. For ([µ], [µ̄]) ∈
Sym (T+

B × T−
B ), H([µ],[µ̄]) is the conjugate of H by the composition operator Ch for h =

h(µ) ∈ SQS. Indeed, (9) applied to the case of Γ = h(R) = R with γ([µ], [µ̄]) = h yields
H([µ],[µ̄]) = Ch ◦ H ◦ C−1

h .
Let L(BMO(R)) be the Banach space of all bounded linear operators BMO(R) →

BMO(R) equipped with the operator norm. We consider the map

η : T̃C → L(BMO(R))

defined by ([µ+], [µ−]) 7→ H([µ+],[µ−]).

Theorem 9.1. η : T̃C → L(BMO(R)) is holomorphic.

Proof. Due to formula (9), it suffices to show that P±
([µ+],[µ−]) depend holomorphically on

([µ+], [µ−]) ∈ T̃C . By Lemma 7.5, we have

P±
([µ+],[µ−]) = d([µ+],[µ−])Λ ◦ J± ◦ (d([µ+],[µ−]) Λ)

−1 = d([µ+],[µ−]) Λ ◦ J± ◦ dΛ([µ+],[µ−]) Λ
−1.

Since Λ is biholomorphic, these operators depend holomorphically on ([µ+], [µ−]) ∈ T̃C .
�

A related result can be found in [9, Théorème 1], though without involving the bi-
holomorphic map Λ, demonstrating in methods of real analysis that η|Sym(T+

B
×T−

B
) is real-

analytic, in other words, the real-analytic dependence of H([µ],[µ̄]) = Ch ◦ H ◦ C−1
h upon

h ∈ BMO∗(R). This claim immediately follows from Theorem 9.1. In the sequel, as an
application of this claim, we consider the theorem of Coifman and Meyer in [10, Theorem
1]. A survey of this theorem is in [31, Theorem 5].

We define Z = iBMO(R)∩Λ(T̃C) as the real-analytic submanifold of Λ(T̃C) consisting
of purely imaginary-valued BMO functions which is an open subset of the real Banach
subspace iBMO(R) as used in Lemmas 7.3 and 7.4. We do not know whether Z is
connected or not. For ψ ∈ Z,

g0(x) =

∫ x

0

expψ(t)dt (x ∈ R)

serves as the arc-length parameterization of the chord-arc curve g0(R).
In general, for any BMO embedding with chord-arc image

g(x) =

∫ x

0

expϕ(t)dt (x ∈ R)

determined by ϕ ∈ Λ(T̃C) ⊂ BMO∗(R), we take a strongly quasisymmetric homeomor-
phism

h(x) =

∫ x

0

exp(Reϕ(t))dt
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and set ψ = i Imϕ ◦ h−1 ∈ Z. Then, the arc-length parameter g0 of the chord-arc curve
g(R) determined by ψ allows g to be expressed as the reparametrization of g0 by h, that
is, g = g0 ◦ h.

We define Y = BMOA(H+) ∩ Λ(T̃C) as the complex submanifold of Λ(T̃C) consisting
of BMOA functions on H+. We do not know whether Y is connected or not. For ϕ ∈ Y ,
the corresponding BMO embedding with chord-arc image

f(x) =

∫ x

0

expϕ(t)dt (x ∈ R),

when applied as above, can be expressed as the reparametrization of the arc-length pa-
rameter g0 by a strongly quasisymmetric homeomorphism h so that f = g0 ◦ h. This
correspondence between f and g0 is bijective, thus defining a mapping from Z to Y . Sim-
ilarly, the correspondence from the pair (f, g0) to their reparametrization h allows the
definition of a mapping from Z to ReBMO∗(R).

To investigate these mappings on T̃C through the biholomorphic homeomorphism Λ,
we define

ρ : T̃C → {[0]} × T−
C , ([µ+], [µ−]) 7→ ([0], [µ−] ∗ [µ+]−1);

δ : T̃C → Sym (T+
B × T−

B ), ([µ+], [µ−]) 7→ ([µ+], [µ+]).

Here, δ is the projection to the symmetric axis, which is real-analytic. The unique de-
composition

([µ+], [µ−]) = ρ([µ+], [µ−]) ∗ δ([µ+], [µ−])

corresponds to the decomposition of a quasisymmetric embedding g = γ([µ+], [µ−]) into
g = f ◦h in general, where f = γ(ρ([µ+], [µ−])) is the boundary extension of the conformal
homeomorphism of H+ to R, and h = γ(δ([µ+], [µ−])) is a quasisymmetric homeomor-
phism of R.

We transform the two maps defined on the submanifold Z ⊂ Λ(T̃C) into those on T̃C
via Λ. The map Z → Y corresponds to

ρ0 = ρ|Λ−1(Z) : Λ
−1(Z) → {[0]} × T−

C = Λ−1(Y ),

and the map Z → ReBMO∗(R) corresponds to

δ0 = δ|Λ−1(Z) : Λ
−1(Z) → Sym (T+

B × T−
B ) = Λ−1(ReBMO∗(R)).

We set Z̃ = Λ−1(Z) and Ỹ = Λ−1(Y ).
We formulate the result on the map δ0 shown in [10, Theorem 1] as follows. The proof

follows from what has been demonstrated earlier.

Theorem 9.2. δ0 : Z̃ → Sym (T+
B ×T−

B ) is a real-analytic diffeomorphism onto its image.

Proof. Since δ0 is a real-analytic, it suffices to show that it is injective and its inverse δ−1
0

is also real-analytic. As before, we consider the conjugate

Λ ◦ δ0 ◦ Λ
−1 : Z → ReBMO∗(R).
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Let g0(x) =
∫ x

0
ψ(t)dt for ψ ∈ Z and h(x) =

∫ x

0
φ(t)dt for φ = Λ ◦ δ0 ◦ Λ−1(ψ) ∈

ReBMO∗(R). Then, f = g0 ◦h
−1 is a Riemann mapping parametrization of the chord-arc

curve and log f ′ ∈ Y . Taking the logarithm of the derivative of g0 = f ◦ h, we have

log g′0 = log f ′ ◦ h + log h′.

Since log g′0 = ψ is purely imaginary and log h′ = φ is real, the real and imaginary parts
of this equation become

0 = Re log f ′ ◦ h+ log h′ and − iψ = Im log f ′ ◦ h. (12)

Moreover, since log f ′ is the boundary extension of the holomorphic function logF ′ for the
Riemann mapping F on H

+, Re log f ′ and Im log f ′ are related by the Hilbert transform
H on R:

Im log f ′ = H(Re log f ′). (13)

Then, the combination of (9) and (9) yields that

−Ch ◦ H ◦ C−1
h (log h′) = −iψ. (14)

This shows that ψ = log g′0 is determined by φ = log h′ and thus Λ ◦ δ0 ◦ Λ
−1 : ψ 7→ φ

is injective. Equation (9) also gives

Λ ◦ δ−1
0 ◦ Λ−1(φ) = −iCh ◦ H ◦ C−1

h (φ) = −iHΛ−1(φ)φ.

Then, because the Cauchy transformHΛ−1(φ) depends real-analytically on φ ∈ ReBMO∗(R)

by Theorem 9.1, we see that Λ ◦ δ−1
0 ◦ Λ−1 is real-analytic. �

Finally, we mention discontinuity of the map ρ0 in brief. We consider the problem of
continuous dependence of parameters of chord-arc curves given by the Riemann mappings.
For any chord-arc curve Γ, the normalized Riemann mapping from H

+ to the domain
enclosed by Γ defines a BMO embedding γ : R → Γ. The set of all such BMO embeddings

is identified with Ỹ = {[0]} × T−
C , which is a complex analytic submanifold of T̃C . The

map Z → Y and ρ0 : Z̃ → Ỹ give the correspondence of these Riemann mapping
parametrizations to the chord-arc curves with arc length parametrizations. The problem
of asking whether ρ0 is continuous or not is essentially raised in [21, p.303]. It is answered
in [45, Theorem 8.3] as follows.

Theorem 9.3. ρ0 : Z̃ → Ỹ is not continuous.

The proof of this result requires an application of the property that TB ∼= SQS does not
form a topological group (see [45, Proposition 8.1]). From this property, it follows that ρ

is not continuous on T̃C . However, the discontinuity of ρ0 = ρ|Z̃ is a stronger claim than

this and is derived from observing the local behavior of δ0 : Z̃ → Sym (T+
B × T−

B ) near
the origin. The fact that δ0 is a homeomorphism onto the image allows for some degree

of freedom in choosing elements in Z̃ via Sym (T+
B × T−

B ) and enables the construction of
a specific sequence of elements demonstrating the discontinuity of ρ0.
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10. VMO and asymptotically smooth embeddings

The final section is devoted to an exposition on the VMO Teichmüller space.
A Carleson measure λ on H is said to be vanishing if

lim
|I|→0

λ(I × (0, |I|))

|I|
= 0,

where I is a bounded interval in R. Let LV (H) denote the subspace of LB(H) consisting
of all elements µ such that λµ = |µ(z)|2dx dy/y is a vanishing Carleson measure on H.
We observe that LV (H) is closed in LB(H). Moreover, we define the corresponding space
of Beltrami coefficients as MV (H) =M(H) ∩ LV (H). For MV (H) ⊂M(H), we define the
VMO Teichmüller space TV as π(MV (H)). This is closed in TB.

Let AV (H) denote the subspace of AB(H) consisting of all holomorphic functions Ψ

such that λ
(2)
Ψ is a vanishing Carleson measure on H. This is a closed subspace of AB(H).

Similarly, VMOA(H) is defined as the closed subspace of BMOA(H) consisting of all

holomorphic functions Φ such that λ
(1)
Φ is a vanishing Carleson measure on H.

We apply the Schwarzian and pre-Schwarzian derivative maps S and L investigated in
Propositions 2.1 and 2.2 toMV (H

+), where S :MB(H
+) → AB(H

−) is a holomorphic map
with a local holomorphic right inverse σ at every Ψ ∈ S(MB(H

+)), and L : MB(H
+) →

BMOA(H−) is a holomorphic map with a holomorphic bijection D : L(MB(H
+)) →

S(MB(H
+)) satisfying D ◦ L = S. We refer to the results from [35, Theorems 2.1, 2.2].

In the unit disk case, the corresponding results are in [36, Sections 5, 6].

Proposition 10.1. (1) S maps MV (H
+) into AV (H

−), and σ maps the local neighbor-

hood in S(MV (H
+)) into AV (H

−). (2) L maps MV (H
+) into VMOA(H−). (3) D maps

L(MV (H
+)) onto S(MV (H

+)).

These results in particular imply that the Bers embedding α : TB → S(MB(H
+))

maps TV onto the domain S(MV (H
+)) in AV (H

−), and that the pre-Bers embedding
β : TB → L(MB(H

+)) maps TV onto the domain L(MV (H
+)) in VMOA(H−). Here, if we

apply Proposition 10.2 below, we have

S(MV (H
+)) = S(MB(H

+)) ∩AV (H
−); L(MV (H

+)) = L(MB(H
+)) ∩VMOA(H−).

Since α and β are biholomorphic homeomorphisms, TV has the complex structure as
a closed submanifold of TB, which is biholomorphically equivalent to L(MV (H

+)) and
S(MV (H

+)).
Moreover, it is proved in [48, Theorem 1.4] that if logF µ ∈ VMOA(H−) for µ ∈M(H+),

then µ ∈MV (H
+). We note that the strategy of showing this, which is used for (c) ⇒ (a)

below, is different from that in Theorem 4.9. From this, we obtain characterizations for
a Beltrami coefficient µ to be in MV (H

+) in terms of S and L.
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Proposition 10.2. For a Beltrami coefficient µ ∈ M(H+), the following conditions are

equivalent: (a) µ ∈ MV (H
+); (b) S(µ) ∈ AV (H

−); (c) L(µ) ∈ VMOA(H−). Hence,

S(MV (H
+)) = S(M(H+)) ∩ AV (H

−);

L(MV (H
+)) = L(M(H+)) ∩VMOA(H−).

A BMO function φ on R is said to be of vanishing mean oscillation (VMO) if

lim
|I|→0

1

|I|

∫

I

|φ(x)− φI |dx = 0,

where I is a bounded interval on R. The set of all VMO functions on R is denoted by
VMO(R). This is a closed subspace of BMO(R). The restriction of the trace operator
E : BMOA(H) → BMO(R) to VMOA(H) is a Banach isomorphism onto its image in
VMO(R). However, the composition operator Ch for h ∈ SQS does not necessarily pre-
serve VMO(R). If h is uniformly continuous in addition, then Ch preserves VMO(R) (see
[44, Proposition 3.1]).

A strongly quasisymmetric homeomorphism h is said to be strongly symmetric if log h′ ∈
VMO(R). Let SS denote the set of all normalized strongly symmetric homeomorphisms.
This set is identified with TV , but it does not form a subgroup of SQS (see [42, Corollary
5.6]). For h ∈ SS, the map H given by the variant of the Beurling–Ahlfors extension by
the heat kernel is a quasiconformal real-analytic self-diffeomorphism of H whose complex
dilatation belongs to MV (H) (see [41, Theorem 4.1]).

Because the VMO Teichmüller space defined onH and R, as described above, has several
defects alongside its desirable properties, we now shift our focus to a smaller VMO Teich-
müller space defined on the unit disk D and the unit circle S. Let Θ(z) = (z − i)/(z + i)
be the Cayley transformation of the Riemann sphere, which maps R ∪ {∞} onto S,
with Θ(∞) = 1. The space VMO(S) of VMO functions on S is defined similarly, and
it is a closed subspace of BMO(S). While BMO functions on S and their associated
Teichmüller spaces are well studied and equivalent to those defined on R—since the Cayley
transformation Θ provides an appropriate correspondence between all components of the
involved spaces—this equivalence does not hold for VMO functions.

We define VcMO(R) as the pull-back of VMO(S) via Θ. This coincides with the clo-
sure of compactly supported VMO functions on R with respect to the BMO norm, and
is sometimes denoted by CMO(R). In fact, as noted in [11, p.639], this is adopted as
the definition of VMO functions on R. By definition, VcMO(R) is a closed subspace of
VMO(R) ⊂ BMO(R). By considering the relationship between VMO(R) and other spaces
involved in the Teichmüller space TV , or by pulling back via the Cayley transformation,
we can derive the spaces corresponding to VcMO(R). These include the closed subspace
MV c(H) of Beltrami coefficients, the Banach subspaces VcMOA(H) and AV c(H) of holo-
morphic functions, the closed subset SSc of quasisymmetric homeomorphisms of R, and
the Teichmüller subspace TV c.

For these spaces, the equivalent conditions as in Proposition 10.2 also hold (see [36,
Theorem 4.1]). Furthermore, the aforementioned defects no longer exist. The following
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claims are established in the setting of S and D. Claim (1) is found in [2, p.458], (2) is in
[40, Theorem 4.1], and (3) is verified using a claim in [14, p.474].

Proposition 10.3. (1) The composition operator Ch for h ∈ SQS preserves VcMO(R).
(2) TV c

∼= SSc is a closed subgroup of TB ∼= SQS. In fact, it is a topological subgroup. (3)
VcMO(R) ⊂ BMO∗(R). Thus, F µ(R) is a chord-arc curve for µ ∈MV c(H), and TV c is a

proper closed subset of TC.

Furthermore, the chord-arc curve F µ(R) given by µ ∈ MV c(H
+) satisfies the following

condition on the chord-arc constant κ ≥ 1. See [29, Theorem 2].

Definition 10.1. A chord-arc curve Γ in C passing through ∞ is called asymptotically

smooth if the chord-arc constant κ ≥ 1 tends to 1 uniformly as the spherical distance
between two points on Γ tends to 0. Namely, setting |z̃1z2| as the length of the arc

between any two points z1, z2 ∈ Γ and d
Ĉ
(z1, z2) as the spherical distance on Ĉ,

lim
t→0

sup
d
Ĉ
(z1,z2)<t

|z̃1z2|

|z1 − z2|
= 1.

Remark 10.1. We have an equivalent definition for chord-arc curves even if we replace
the Euclidean distance with the spherical distance. Moreover, the condition for a Jordan

curve Γ in the Riemann sphere Ĉ to be a chord-arc curve is invariant under Möbius trans-
formations. See [27, p.877] and [39, Section 7]. The above definition for asymptotically
smoothness is the translation of that for bounded Jordan curves in [29] to the unbounded
case.

Proposition 10.4. For µ ∈ M(H+), F µ(R) is asymptotically smooth if and only if

log(F µ|H−)′ belongs to VcMOA(H−). This is equivalent to the condition µ ∈MV c(H
+).

From this fact and the group structure of TV c
∼= SSc, we conclude that for a BMO

embedding γ = γ([µ+], [µ−]) with ([µ+], [µ−]) ∈ T+
B ×T−

B , its image γ(R) is asymptotically
smooth if and only if ([µ+], [µ−]) ∈ T+

V c × T−
V c. We refer to this γ as an asymptotically

smooth embedding. In this case, we have log γ′ ∈ VcMO(R). Thus, T+
V c × T−

V c ⊂ T̃C .
We now consider the restriction of the biholomorphic map Λ to T+

V c × T−
V c. This yields

a biholomorphic homeomorphism

Λ : T+
V c × T−

V c → VcMO(R)

onto its image, which is a connected open subset of VcMO(R). In addition, Λ maps
Sym(T+

V c × T−
V c) onto ReVcMO(R) as a real-analytic diffeomorphism. Moreover, we can

construct a holomorphic right inverse of Λ on some neighborhood of the real subspace
ReVcMO(R), as in the following assertion.

Theorem 10.5. There exists a neighborhood W of ReVcMO(R) in VcMO(R) and a

holomorphic map Σ : W → MV c(H
+)×MV c(H

−) such that (π+×π−)◦W is a holomorphic

right inverse of Λ : T+
V c × T−

V c → VcMO(R) on W .
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Proof. This follows from the arguments around [44, Theorem 6.2]. Since L∞(R) is dense in
VcMO(R), we can define a holomorphic map Σ on some neighborhoodW of ReVcMO(R)
using the variant of the Beurling–Ahlfors extension as in Theorem 3.2. By a proof similar
to that of [44, Proposition 6.3], we see that

Σ(W ) ⊂MB(H
+)×MB(H

−); Σ(ReVcMO(R)) ⊂ MV c(H
+)×MV c(H

−),

and in particular, Σ|ReVcMO(R) is real-analytic. However, by combining the proof of [41,
Theorem 4.1] with that of [44, Lemma 5.4], we can actually show that Σ(W ) is contained
in MV c(H

+)×MV c(H
−). The results for VMO(R) are able to be applied to VcMO(R) ∼=

VMO(S) by lifting functions on S via the universal cover R → S. �

We investigate the correspondence from the arc-length parametrization to the Riemann
mapping parametrization for asymptotically smooth curves. Analogous to the general
case, we define

Zc = iBMO(R) ∩ Λ(T+
V c × T−

V c);

Yc = BMOA(H+) ∩ Λ(T+
V c × T−

V c) ⊂ VcMOA(H+).

The former is a real analytic submanifold, and the latter is a complex analytic submanifold

of Λ(T+
V c×T−

V c). Moreover, we set Z̃c = Λ−1(Zc) and Ỹc = Λ−1(Yc), and consider the map

ρ : T+
V c × T−

V c → {[0]} × T−
V c, ([µ+], [µ−]) 7→ ([0], [µ−] ∗ [µ+]−1).

Let ρ0 = ρ|Z̃c
.

By the topological group property of TV c, as established in Proposition 10.3, we derive
the following result in contrast to Theorem 9.3:

Theorem 10.6. ρ0 : Z̃c → Ỹc is a homeomorphism.

Proof. It is straightforward to verify that ρ0 is bijective. Since ρ is continuous due to the
topological group property of TV c, it follows that ρ0 is also continuous. Hence, it remains
to show that ρ−1

0 is continuous. To do this, we consider the conjugation of ρ−1
0 by Λ, that

is,

Λ ◦ ρ−1
0 ◦ Λ−1 : Yc → Zc.

For any ϕ ∈ Yc, we have

Λ ◦ ρ−1
0 ◦ Λ−1(ϕ) = C−1

h (i Imϕ),

where h(x) =
∫ x

0
exp(Reϕ(t)) dt. Since h 7→ h−1 is continuous in TV c

∼= SSc, we conclude
that the map

VcMO(R)× TV c → VcMO(R), (φ, h) 7→ C−1
h (φ),

is continuous by Lemma 10.7 below. Thus, Λ ◦ ρ−1
0 ◦ Λ−1 is continuous. �

Lemma 10.7. The map VcMO(R)×TV c → VcMO(R) defined by (φ, h) 7→ Ch(φ) is con-
tinuous. In particular, a sequence of bounded linear operators Chn

on VcMO(R) converges
to Ch strongly as hn → h in TV c.
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Proof. The affine translation Qh(φ) of φ ∈ VcMO(R) is given by Ch(φ) + log h′. Then,
we have

Λ ◦R[µ] = Qh ◦ Λ

for h = h(µ) ∈ SSc. From this, we deduce

Ch(φ) = Λ ◦R[µ] ◦ Λ
−1(φ)− log h′,

which is a continuous function of (φ, h). The continuity with respect to h follows from
the topological group property of TV c. �
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