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Introduction

Tensor products are of great interest in representation theory. Determining their struc-
ture has been the subject of much research. When the category of representations we are
working with is semisimple, the central question is to find the decomposition of a tensor
product of simple modules into a direct sum of simple modules. In particular, this is the
case for representations of simple Lie algebras over the field of complex numbers, and for
representations of simple algebraic groups over the same field. In the case of sl2(C), the
Clebsch-Gordan formula gives an answer to this question.

Another question that has been the subject of research is to determine whether certain
simple modules appear several times in the decomposition of the tensor product, and thus
classify tensor products without multiplicity. In the case of simple Lie algebras and simple
algebraic groups, this question was resolved in 2003 by Stembridge ([Ste03]). In particular,
this classification shows that if the tensor product of two simple modules is multiplicity-free,
then the highest weight of one of the two modules is a multiple of a fundamental weight.
This fact is no longer true in positive characteristic.

When we move on to a field of positive characteristic, the category of representations
of a simple algebraic group is no longer semisimple. Other questions, often complicated,
may then arise, such as finding indecomposable direct summands and classifying completely
reducible tensor products. The classification of multiplicity-free modules is also of inter-
est. Recently, Gruber showed that a multiplicity-free tensor product of simple modules is
necessarily completely reducible, which gives another motivation for this classification.

In this project, we will therefore focus on the classification of multiplicity-free tensor
products of simple modules over an algebraically closed field of characteristic p > 0. Our
main question is:

Question 1. Given a simply connected simple algebraic group G, for which pairs of simple
modules L(λ) and L(µ) is the tensor product L(λ) ⊗ L(µ) multiplicity-free ?

We will provide the complete classification in the case of SL2 and SL3, and show a
number of important results in the case of Sp4. In addition, we will show that, under
certain assumptions, being completely reducible implies being multiplicity-free. Using the
classification of completely reducible tensor products of simple modules for SLn over a field
of characteristic 2, established by Gruber ([Gru21]), we will answer our question in the case
of SLn for p = 2.

The first part of this project recalls important notions of representation theory that will
be used later. In the second part, we recall some results related to tensor products and show
that we can restrict our attention to simple modules with p-restricted highest weight in order
to answer our question. In the third part, we show some connections between multiplicity-
freeness over C and in positive characteristic. In parts 4 to 7, we proceed to the classification
of multiplicity-free tensor products in the cases of SL2, SL3, Sp4 (partial classification only),
and SLn for p = 2 respectively. This work could be continued on the one hand by completing
the classification for Sp4, and on the other hand by generalising these results to other simply
connected simple algebraic groups.

It should also be noted that we used Magma ([BCP97]) in order to compute the compo-
sition factors of certain tensor products and to have concrete examples, which enabled us to
have a better understanding of the structure of these tensor products.

We assume that the reader is familiar with the representation theory of semisimple Lie
algebras, as well as with the basics of algebraic group theory. We will therefore not repeat the
relative notions in the preliminaries, but refer the reader to [Hum00] for the representation
theory of semisimple Lie algebras and to [MT11] for the theory of algebraic groups.
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1 Preliminaries

In this section, we introduce all the notions needed to solve our problem and introduce
some arguments which will be used several times in the next parts of this project.

1.1 Weights and alcoves

We start by recalling some results about root systems and weights. Then, we will de-
fine the notion of an alcove, which has a very important role in the structure of some modules.

Let XR be a Euclidean space of dimension n with scalar product ( , ) : XR × XR → R
and let Φ ⊆ XR be an irreducible root system. We fix Π = {α1, . . . , αn} a base of Φ and
denote by Φ+ the set of positive roots with respect to Π. Moreover, we fix p a prime.

For α ∈ Φ, we define its coroot α∨ := 2α
(α,α) ∈ XR. We set

X+
R := {x ∈ XR| (x, α∨) ≥ 0 ∀α ∈ Φ+},

and define the weight lattice of Φ to be the set

X := {λ ∈ XR| (λ, α∨) ∈ Z ∀α ∈ Φ}.

Moreover we define the set of dominant weights to be the set

X+ := X ∩X+
R = {λ ∈ X| (λ, α∨) ≥ 0 ∀α ∈ Φ+}.

There is a partial order on X given by λ ≤ µ if λ − µ is a N-linear combination of simple
roots, i.e. λ− µ =

∑
α∈Π

nαα with nα ∈ N ∀α ∈ Π.

Since Π is a basis of XR, it follows that {α∨| α ∈ Π} is a basis of XR. Thus it admits a
dual basis with respect to ( , ) and there exists a set {ωα| α ∈ Π} whose elements satisfy

(ωα, α
∨) = 1 and (ωα, β

∨) = 0 ∀β ∈ Π \ {α}.

We observe that the ωα ∈ X+ for all α ∈ Π. We call the weights ωα with α ∈ Π the
fundamental dominant weights. One can easily check that every weight is a Z-linear combi-
nation of the fundamental dominant weights. To simplify the notation, we set ωi := ωαi

for
i ∈ {1, . . . , n}. We will use the numeration of simple roots given in [Hum00, 11.4], so the
numeration of the fundamental dominant weights will correspond to this labelling of Dynkin
diagrams.

Definition 1.1. A dominant weight λ ∈ X+ is called p-restricted if (λ, α∨) < p for all
α ∈ Π.

We denote the highest short root in the root system Φ (with respect to Π) by αh

and the half sum of all positive roots by ρ := 1
2

∑

α∈Φ+

α. This element satisfies ρ =
n∑
i=1

ωi

([Hum00, 13.3]). The Coxeter number of the root system Φ is h := (ρ, α∨
h ) + 1.

Remark 1.2. The coroot α∨
h is the highest root in the dual root system Φ∨ and for any

dominant weight λ ∈ X+, we have (λ, α∨) ≤ (λ, α∨
h ) for all α ∈ Φ+. More generally, for

every x ∈ X+
R and α ∈ Φ+, we have (x, α∨) ≤ (x, α∨

h ). Recall also that (α,α∨
h ) ≥ 0 for all

α ∈ Φ+.

Definition 1.3. A set Y ⊆ X is called saturated if for all λ ∈ Y, α ∈ Φ and i between 0
and (λ, α∨), we have λ− iα ∈ Y .
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For α ∈ Φ we define the reflection sα ∈ GL(XR) by

sα(v) := v −
2(v, α)

(α,α)
α for v ∈ XR.

We also define the Weyl group of Φ by

W := 〈sα| α ∈ Φ〉 ⊆ GL(XR).

The group W is generated by {sα| α ∈ Π}. More precisely, (W, {sα| α ∈ Π}) is a Coxeter
system ([Hum90, 1.5]). It contains a unique longest element which we denote by w0 ∈ W
([Hum90, 1.8]).

For α ∈ Φ and m ∈ Z, we define the affine reflection sα,mp ∈ AGL(XR) by

sα,mp(v) := sα(v) +mpα for v ∈ XR.

The affine Weyl group associated to Φ and p, denoted by Wp, is the group

Wp := 〈sα,mp| α ∈ Φ, m ∈ Z〉 ⊆ AGL(XR).

The dot action of Wp on XR is the group action given by

w·x := w(x + ρ) − ρ for w ∈ Wp and x ∈ XR.

For α ∈ Φ and m ∈ Z, we define the reflection hyperplane of sα,mp (for the dot action) to be
the set

Hα,m := {x ∈ XR| (x+ ρ, α∨) = mp}.

Since W is a subgroup of Wp, we can restrict the dot action to W . We set

D := {λ ∈ X| λ+ ρ ∈ X+},

which is a fundamental domain for the dot action of W on X. (This follows from the facts
that X+

R is a fundamental domain for the action of W on XR ([Hum90, 1.12]) and that X is
preserved by W .)

Definition 1.4. Let n = (nα)α∈Φ+ ∈ Z|Φ+|. We define

Cn := {x ∈ XR| (nα − 1)p < (x+ ρ, α∨) < nαp for all α ∈ Φ+}.

We say that Cn is an alcove if it is a non-empty set. For Cn an alcove, its upper closure is
the set

”Cn := {x ∈ XR| (nα − 1)p < (x+ ρ, α∨) ≤ nαp for all α ∈ Φ+},

and its closure is the set

Cn := {x ∈ XR| (nα − 1)p ≤ (x+ ρ, α∨) ≤ nαp for all α ∈ Φ+}.

Alternatively, we can define an alcove to be a connected component of XR \
⋃
α∈Φ
m∈Z

Hα,m.

Definition 1.5. The fundamental alcove is the alcove

C1 := {x ∈ XR| 0 < (x+ ρ, α∨) < p for all α ∈ Φ+}.

Remark 1.6. By Remark 1.2, we have

C1 = {x ∈ XR| (x+ ρ, α∨
h ) < p and 0 < (x+ ρ, α∨) for all α ∈ Π}.

2



Lemma 1.7. Let λ ∈ X+ ∩ Ĉ1 and µ ∈ X+ be such that µ ≤ λ. We have µ ∈ Ĉ1.

Proof. Let a1, . . . an ∈ N be such that µ = λ −
n∑
i=1

ciαi. By assumption, µ ∈ X+, thus

(µ + ρ, α) ≥ 0 for all α ∈ Π. Thus, using Remark 1.6, we only need to show that
(µ + ρ, α∨

h ) ≤ p. Since (λ+ ρ, α∨
h ) ≤ p and (αi, α

∨
h ) ≥ 0 for all αi ∈ Π, we have

(µ+ ρ, α∨
h ) = (λ−

n∑

i=1

ciαi + ρ, α∨
h ) = (λ+ ρ, α∨

h ) −
n∑

i=1

ci(αi, α
∨
h ) ≤ (λ+ ρ, α∨

h ) ≤ p,

so µ ∈ Ĉ1.

Definition 1.8. An alcove C is p-restricted if there exists a p-restricted dominant weight
λ ∈ X+ such that λ ∈ “C.

Theorem 1.9 ([Hum90, 4.5 and 4.8]). The affine Weyl group Wp acts simply transitively on
the set of alcoves. Moreover, C1 is a fundamental domain for the dot action of Wp on XR.

Definition 1.10. Let λ, µ ∈ X. The weight λ is linked to µ if λ = µ or if there exist affine
reflections sβ1,m1p, . . . , sβt,mtp ∈ Wp such that

λ ≤ sβ1,m1p·λ ≤ . . . ≤ sβt,mtp · · · sβ1,m1p·λ = µ.

In this case, we write λ ↑ µ.

Remark 1.11. The relation ↑ is a partial order on X.

1.2 Chevalley groups and algebraic groups

In this section, we recall some definitions about linear algebraic groups, following [MT11],
and we construct Chevalley groups following [Ste16].

1.2.1 Linear algebraic groups

Let G be a linear algebraic group. A Borel subgroup B ≤ G is a closed, connected,
solvable subgroup of G which is maximal with respect to all these properties. The radical
R(G) of G is the maximal closed connected solvable normal subgroup of G. The group G is
semisimple if R(G) = 1. A non-trivial semisimple algebraic group G is simple if it has no
non-trivial proper closed connected normal subgroups. A representation ρ : G → GL(V ) is
rational if ρ is a morphism of algebraic groups.

1.2.2 Chevalley groups

We fix a numeration of the roots Φ = {α1, . . . , αm} such that htαi ≤ htαj for all
i ≤ j (recall that Π = {α1, . . . , αn}). Let g be the simple Lie algebra associated to Φ (over
C) with Cartan subalgebra h. We denote by U(g) its universal enveloping algebra and by
κ : g× g → C the Killing form on g. We fix {eα, hβ| α ∈ Φ, β ∈ Π} a Chevalley basis of g
which satisfies the following properties:

(1) hα is the coroot of α, i.e. hα = 2tα
κ(tα,tα) where tα ∈ h is the unique element such that

κ(tα, h) = α(h) for all h ∈ h,

(2) eα ∈ gα for all α ∈ Φ,

(3) [hαhβ ] = 0 for all α, β ∈ Π,

(4) [hαeβ ] = (β, α∨)eα,

3



(5) [eαe−α] = hα for all α ∈ Π,

(6) [eαeβ ] = 0 if α+ β /∈ Φ and β 6= −α,

(7) if β − rα, . . . , β + qα is the α-string through β, then [eαeβ ] = Nα,βeα+β if α + β ∈ Φ
with Nα,β = −N−α,−β = ±(r + 1).

The existence of this basis is proven in [Hum00, 25.2], [Car89, 4.2.1] and [Ste16, Chapter 1].
For α ∈ Φ+, we set fα := e−α. Moreover, for any sequences of non-negative integers

A = (a1, . . . , am), B = (b1, . . . , bm) ∈ Nm, C = (c1, . . . , cn) ∈ Nn, we define

EA :=
ea1
α1

a1!
· · ·

eam
αm

am!
∈ U(g),

FB :=
f b1
α1

b1!
· · ·

f bm
αm

bm!
∈ U(g),

HC :=

Ç
hα1

c1

å
· · ·

Ç
hαn

cn

å
∈ U(g),

where Ç
hαi

ci

å
:=

hαi
(hαi

− 1) · · · (hαi
− ci + 1)

ci!
.

Using the PBW Theorem (see [Hum00, 17.3] or [Ste16, Chapter 2]), the set {FBHCEA} is
a basis of U(g). We define U(g)Z to be the subring of U(g) generated by {e

a
α

a! | α ∈ Φ, a ∈ N},

U(g)±
Z to be the subring of U(g) generated by {e

a
α

a! | α ∈ Φ±, a ∈ N}, and U(g)◦
Z the subring

of U(g) generated by {
(
hα

c

)
| α ∈ Φ, a ∈ N}. Then {FBHCEA} is a Z-basis of U(g)Z

([Ste16, Chapter 2]).
Let V be an irreducible finite-dimensional U(g)-module with highest weight λ. There

exists v+ ∈ V a maximal vector for U(g)◦ U(g)+ of weight λ. We define M := U(g)−
Z v

+,
which is a lattice in V . Then M is stable under U(g)Z. For an arbitrary field k, we define
U(g)k := U(g) ⊗Zk and Vk := M ⊗Z k, which has thus the structure of a U(g)k-module.

For α ∈ Φ and t ∈ k, we define

xα(t) := exp(teα) =
∞∑

i=0

ti
eiα
i!
.

Since eα acts nilpotently on Vk, the map xα(t) is well-defined and is an automorphism of Vk
([Ste16, Chapter 3]). We call the group

G = G(V, k) = 〈xα(t)| α ∈ Φ, t ∈ k〉 ⊆ GL(Vk)

the Chevalley group associated to V and k. The type of G is the type of the root system Φ.

We fix G = G(V, k) a Chevalley group. For α ∈ Φ, we define the root subgroup corre-
sponding to α to be

Xα := {xα(t)| t ∈ k} ≤ G.

We also define

U := 〈Xα| α ∈ Φ+〉 ≤ G and U− := 〈Xα| α ∈ Φ−〉 ≤ G.

Furthermore, for t ∈ k∗, we define

wα(t) := xα(t)x−α(−t−1)xα(t) ∈ G and hα(t) := wα(t)wα(1)−1 ∈ G

4



and set
T := 〈hα(t)| α ∈ Φ, t ∈ k∗〉 ≤ G.

Finally, we set
B := 〈U, T 〉 ≤ G.

From now on, we assume that k is algebraically closed. Then G is a semisimple algebraic
group (over k) with maximal torus T and Borel subgroup B ([Ste16, Theorem 6]). We call
Φ the root system associated to G.

Let XG be the lattice of all weights appearing in rational representations of G. Then
XG ⊆ X ([MT11, Section 9.2]), and we say that G is simply connected if XG = X. For each
type of root system, there exists a unique simply connected Chevalley group of this type
(up to isomorphism). For a root system of type An, we have G = SLn+1, for a root system
of type Bn, we have G = Spin2n+1, and for a root system of type Cn, we have G = Sp2n

([Ste16, Chapter 3]).
If G = G(V, k) is simply connected and G(V ′, k) is another Chevalley group of the

same type, there exists a surjective homomorphism G → G(V ′, k) ([Ste16, Corollary 5]). In
particular, V ′ has the structure of a G-module.

For the rest of this paper, we fix k an algebraically closed field of characteristic p > 0, Φ a
root system with base Π, weight lattice X and set of dominant weights X+, G = G(V, k) the
simply connected Chevalley group with root system Φ, and B,T ≤ G as in the last section.
Moreover, we fix W the Weyl group associated to Φ and we set GC = G(V,C).

1.3 Modules

In this section, we define several notions related to modules for G. In particular, we define
Weyl modules and tilting modules. All the modules that we consider are finite-dimensional
and correspond to rational representations. Moreover, by module, we always mean G-module.

1.3.1 First definitions and irreducible modules

We start by recalling some basic definitions and the classification of finite-dimensional
simple G-modules.

Let M be a G-module. Its socle, denoted by socM, is the sum of all its simple submodules
and its radical, denoted by radM , is the intersection of all its maximal submodules. The
socle socM is the largest completely reducible submodule of M . The radical radM is the
smallest submodule of M such that M/ radM is completely reducible ([Jan03, I 2.14]). A
vector v ∈ M is a maximal vector with respect to B if Bv ⊆ kv. For λ ∈ X, we denote
by mM (λ) := dimMλ the multiplicity of the weight λ in M , where Mλ is the weight space
associated to the weight λ in M . The weight µ is called the highest weight of M if every
ν ∈ X with mM (ν) > 0 satisfy ν ≤ µ. For a ∈ N, we define the a-th symmetric power of M
to be

SaM := M⊗a/〈P − σ(P )〉

where P is a pure tensor and σ(v1 ⊗ . . .⊗ va) = vσ(1) ⊗ . . .⊗ vσ(a) for σ ∈ Sa. By multilinear
algebra, if (v1, . . . , vm) is an ordered basis of M , then {vi1 ⊗ . . .⊗ via}1≤i1≤...≤ia≤m is a basis
of SaV .

The irreducible G-modules are classified by their highest weight.

Theorem 1.12 ([Hum75, 31.3]). Let λ ∈ X+ be a dominant weight. Up to isomorphism,
there exists a unique irreducible module with highest weight λ which we denote by L(λ). This
module satisfies mL(λ)(λ) = 1. Moreover, every irreducible module is of the form L(ν) for
some ν ∈ X+.

5



Proposition 1.13 ([Pie12, 2.4]). Let M be a completely reducible module, and N < M be a
submodule. Then N and M/N are completely reducible.

Let M be a G-module. A composition series for M is a sequence of submodules

0 = M0 ⊆ M1 ⊆ . . . ⊆ Mn = M

such that the quotients Mi/Mi−1 are simple for all i ∈ {1, . . . , n}. For ν ∈ X+, we write

[M : L(ν)] := |{i ∈ {1, . . . , n}| Mi/Mi−1
∼= L(ν)}|.

Due to Jordan-Hölder Theorem, the value [M : L(ν)] does not depend on the choice of
the composition series (see for example [Erd18, Theorem 3.11]). An irreducible module
L(ν) is called a composition factor of M if it appears in a composition series for M , i.e. if
[M : L(ν)] > 0. If M is a G-module with composition series 0 = M0 ⊆ M1 ⊆ . . . ⊆ Mn = M ,
we write this composition series [L(νn), . . . , L(ν1)] where L(νi) ∼= Mi/Mi−1.

We are now ready to define the central notion of this project.

Definition 1.14. A module M is multiplicity-free if all composition factors appear with
multiplicity 1, i.e. [M : L(ν)] ≤ 1 for all ν ∈ X+. If a module M is not multiplicity-free, we
say that M has multiplicity.

Lemma 1.15 ([Tes88, 1.30]). Let λ =
n∑
i=1

aiωi ∈ X+ with 0 ≤ ai < p for all i ∈ {1, . . . , n}.

Then for i = 1, . . . , n and 0 ≤ r ≤ ai, we have

mL(λ)(λ− rαi) = 1.

1.3.2 Duality

Now we define two notions of duality in the category of G-modules.

Definition 1.16. Let M be a G-module. Its dual M∗ is the usual dual vector space of M
with G-action given by

(gf)(m) = f(g−1m) for f ∈ M∗, g ∈ G, m ∈ M.

Proposition 1.17 ([Jan03, II 1.16]). There exists τ an antiautomorphism of G which sat-
isfies

τ2 = idG, τ |T = idT and τ(Xα) = X−α for all α ∈ Φ.

Moreover, if G = SLn(k) and T := {diagonal matrices}, we can take τ to be the matrix
transposition, i.e. τ(g) = gt for g ∈ G.

Definition 1.18. Let M be a G-module. Its contravariant dual M τ is the dual vector space
M∗ with action defined by

(gf)(m) = f(τ(g)m) for f ∈ M∗, g ∈ G, m ∈ M,

where τ is the antiautomorphism from Proposition 1.17. The module M is called contravari-
antly self-dual if M τ ∼= M .

Remark 1.19. One can easily check that M τ ⊗N τ ∼= (M ⊗N)τ for any G-modules M,N .

Remark 1.20 ([Jan03, II 2.12]). Irreducible modules are contravariantly self-dual.

Lemma 1.21 ([Gru22, V 4.2]). Let M be a contravariantly self-dual module. If M is
multiplicity-free, then M is completely reducible.
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1.3.3 Weyl modules

In this section, we will define the so called Weyl modules. In characteristic 0, those
modules and the irreducible modules coincide. In positive characteristic, the Weyl modules
are no longer irreducible, but are still useful to understand the irreducible modules.

Let λ ∈ X+, V ′ the U(g)-module of highest weight λ and V ′
k be as defined in section 1.2.

The group G acts naturally on V ′
k. We call thisG-module the Weyl module of highest weight λ

and denote it by ∆(λ). The Weyl module ∆(λ) is generated by a maximal vector for B of
weight λ and satisfies the following universal property ([Jan03, II 2.13]):

Lemma 1.22. Let V be a G-module generated by a maximal vector for B of weight λ ∈ X+.
There exists a surjective morphism ∆(λ) → V .

Proposition 1.23 ([Hum00, 21.3]). Let λ ∈ X+. The set {ν ∈ X| m∆(λ)(ν) > 0} is
saturated with highest weight λ.

To compute weight multiplicities in Weyl modules, we can use Freudenthal’s formula,
whose proof can be found in [Hum00, 22.3].

Theorem 1.24 (Freudenthal’s formula). Let λ ∈ X+ and µ ∈ X. Then

((λ+ ρ, λ+ ρ) − (µ+ ρ, µ+ ρ))m∆(λ)(µ) = 2
∑

α∈Φ+

∞∑

i=1

m∆(λ)(µ + iα)(µ + iα, α).

It can be combined with the following proposition.

Proposition 1.25 ([Cav17, Proposition A]). Let λ =
n∑
i=1

aiωi ∈ X+ and µ = λ −
n∑
i=1

ciαi

with ci ∈ N for all i. Suppose the existence of a non-empty subset J ⊆ {1, . . . , n} such that

cj ≤ aj for all j ∈ J . Let λ′ = λ−
∑
j∈J

(aj − cj)ωj and µ′ = λ′ −
n∑
i=1

ciαi. Then

m∆(λ)(µ) = m∆(λ′)(µ
′).

For λ ∈ X+, we define the costandard module of highest weight λ by

∇(λ) := ∆(−w0(λ))∗.

The module ∇(λ) is also called the induced module or dual Weyl module in the literature,
and satisfies ∇(λ) ∼= ∆(λ)τ ([Jan03, II 2.13]).

Proposition 1.26 ([Jan03, II 2.4 and 2.14]). Let λ ∈ X+. We have ∆(λ)/ rad ∆(λ) ∼= L(λ)
and soc ∇(λ) ∼= L(λ).

1.3.4 Filtrations and tilting modules

Another class of useful modules are the so-called tilting modules, which we define in this
subsection. They will be very useful to show that some tensor products have multiplicity.
Before that, we define two special kinds of filtrations. We end this section by stating the
classification of indecomposable tilting modules.

Definition 1.27. Let M be a G-module. A Weyl filtration of M is a sequence

0 = M0 ⊆ M1 ⊆ . . . ⊆ Mn = M

of submodules such that Mi/Mi−1 is a Weyl module for all i ∈ {1, . . . , n}, i.e. there exist
dominant weights λ1, . . . , λn ∈ X+ such that Mi/Mi−1

∼= ∆(λi) for all i ∈ {1, . . . , n}.
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Theorem 1.28 ([Mat90, Theorem 1]). Let λ, µ ∈ X+ be dominant weights. The tensor
product ∆(λ) ⊗ ∆(µ) admits a Weyl filtration.

Definition 1.29. Let M be a G-module. A good filtration of M is a sequence

0 = M0 ⊆ M1 ⊆ . . . ⊆ Mn = M

of submodules such that there exist dominant weights λ1, . . . , λn ∈ X+ with Mi/Mi−1
∼= ∇(λi)

for all i ∈ {1, . . . , n}.

Remark 1.30. A G-module M admits a Weyl filtration if and only if its dual M∗ admits a
good filtration if and only if M τ admits a good filtration.

Definition 1.31. A module M is a tilting module if it admits a Weyl filtration and a good
filtration.

An important result is that the tensor product of two tilting modules is again a tilting
module. We will use it several times in the next sections without further reference.

Theorem 1.32. Let M,N be two tilting modules. Then M ⊗N is a tilting module.

Proof. This is a direct consequence of [Mat90, Theorem 1].

Like the simple modules, the indecomposable tilting modules are classified by their highest
weight.

Proposition 1.33 ([Jan03, II E.6]). Let λ ∈ X+ be a dominant weight. There exists a unique
indecomposable tilting module T (λ) with highest weight λ and mT (λ)(λ) = 1. Moreover, for
every tilting module T , there exist dominant weights ν1, . . . , νn ∈ X+ such that

T ∼=
n⊕

i=1

T (νi).

Lemma 1.34. Every tilting module is contravariantly self-dual.

Proof. If T is a tilting module, then T τ is a tilting module. By definition, (−)τ preserves
the weights of the representation. Thus, if T is indecomposable with highest weight λ, then
so is T τ , and we conclude by uniqueness in Proposition 1.33 that T (λ)τ ∼= T (λ).

Corollary 1.35. Let T (λ) be an indecomposable tilting module. Then T (λ) is multiplicity-
free if and only if T (λ) is irreducible.

Proof. This is a direct consequence of Lemmas 1.34 and 1.21.

Lemma 1.36. Let M be a tilting module. Let η ∈ X+ be such that L(η) is a composition
factor of M and T (η) is not irreducible. Then M has multiplicity.

Proof. Using Proposition 1.33, there exist ν1, . . . , νs ∈ X+ such that M ∼=
⊕s

i=1 T (νi). There
exists νi ≥ η such that L(η) is a composition factor of T (νi). If νi > η, then T (νi) is not
irreducible, hence it has multiplicity by Corollary 1.35, and so M has multiplicity. If νi = η,
we conclude using the assumption that T (η) is not irreducible.

Lemma 1.37. Let λ ∈ X+. If ∆(λ) ∼= L(λ), then T (λ) ∼= ∇(λ) ∼= L(λ). Else, T (λ) is not
irreducible.

Proof. If ∆(λ) is irreducible, then so is ∇(λ). In particular, L(λ) ∼= ∆(λ) ∼= ∇(λ) admits
a Weyl filtration and a good filtration. Thus, L(λ) is a tilting module, and we conclude by
uniqueness in Proposition 1.33.

Otherwise, ∆(λ) appear in the Weyl filtration of T (λ), hence T (λ) is not irreducible.
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1.4 Characters

A lot of information about a G-module M is given by the dimensions of its weight spaces.
These informations are encoded in the character of the module, a notion that we define in
this section. Later on, we will use those characters to compute the composition factors
of tensor products of simple G-modules, and in particular to show that some of them are
multiplicity-free.

Lemma 1.38 ([MT11, Lemma 15.3]). Let M be an irreducible G-module, λ ∈ X and w ∈ W .
Then

mM (λ) = mM (wλ).

Definition 1.39. Let M be a G-module. Its character is the formal sum

chM :=
∑

λ∈X

mM (λ)eλ ∈ Z[X],

where Z[X] has Z-basis {eλ| λ ∈ X}.

We denote by Z[X]W the fixed points in Z[X] for the natural action of W . By
Lemma 1.38, we have chM ∈ Z[X]W for every G-module M .

Remark 1.40. Let M,N be two G-modules. We have ch(M ⊕ N) = chM + chN and
ch(M ⊗N) = chM · chN .

Notation 1.41. We denote the character of the Weyl module of highest weight λ ∈ X+ by

χ(λ) := ch ∆(λ).

Theorem 1.42 (Weyl’s character formula). For λ ∈ X+, we have

χ(λ) =

∑
w∈W det(w)ew(λ+ρ)

∑
w∈W det(w)ew(ρ)

.

Corollary 1.43 (Weyl’s degree formula). For λ ∈ X+, we have

dim ∆(λ) =

∏
α∈Φ+(λ+ ρ, α)
∏
α∈Φ+(ρ, α)

.

Proofs of Weyl’s character formula and Weyl’s degree formula are given in [Hum00, 24].

Weyl’s character formula allows us to extend our definition of character for non-dominant
weights.

Definition 1.44. Let λ ∈ X. The Weyl character associated to λ is the formal element

χ(λ) :=

∑
w∈W det(w)ew(λ+ρ)

∑
w∈W det(w)ew(ρ)

.

Lemma 1.45. For λ ∈ X, we have

(1) χ(w·λ) = det(w)χ(λ) ∀w ∈ W ,

(2) χ(λ) = 0 ∀λ ∈ D \X+.
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Proof. For g ∈ W , we have

χ(g·λ) =

∑
w∈W det(w)e

w(g·λ+ρ)

∑
w∈W det(w)ew(ρ)

=

∑
w∈W det(w)ew(g(λ+ρ))

∑
w∈W det(w)ew(ρ)

= det(g)

∑
w∈W det(wg)ewg(λ+ρ)

∑
w∈W det(w)ew(ρ)

= det(g)

∑
w∈W det(w)ew(λ+ρ)

∑
w∈W det(w)ew(ρ)

= det(g)χ(λ).

Now observe that for λ ∈ D \ X+, there exists α ∈ Π such that sα·λ = λ. Therefore,
χ(λ) = −χ(λ) so χ(λ) = 0.

The following lemma will be useful to compute an explicit decomposition of a product
of characters into a sum of irreducible or Weyl characters. It ensures the existence and the
uniqueness of such a decomposition. We will use it several times in the next sections without
further reference.

Lemma 1.46 ([Jan03, II 5.8]). The set of characters of irreducible modules
{chL(λ)| λ ∈ X+} is a Z-basis of Z[X]W . Moreover, the set of Weyl characters
{χ(λ)| λ ∈ X+} is a Z-basis of Z[X]W .

Proposition 1.47 ([Ste03, Proposition 2.1]). For λ, µ ∈ X+, we have

χ(λ)χ(µ) =
∑

ν∈X

m∆(λ)(ν) · χ(µ+ ν).

Corollary 1.48. For λ, µ ∈ X+, we have

chL(λ) · χ(µ) =
∑

ν∈X

mL(λ)(ν) · χ(µ+ ν).

Proof. Since chL(λ) ∈ Z[X]W , there exist λ1, . . . , λn ∈ X+ and a1, . . . , an ∈ Z such that

chL(λ) =
n∑
i=1

aiχ(λi) (Lemma 1.46). For ν ∈ X, we have mL(λ)(ν) =
n∑
i=1

aim∆(λi)(ν). Using

Proposition 1.47 in the second equality below, we get

chL(λ) · χ(µ) =

Ç
n∑

i=1

aiχ(λi)

å
χ(µ) =

n∑

i=1

ai
∑

ν∈X

m∆(λi)(ν) · χ(µ+ ν)

=
∑

ν∈X

Ç
n∑

i=1

aim∆(λi)(ν)

å
· χ(µ+ ν) =

∑

ν∈X

mL(λ)(ν) · χ(µ+ ν).

1.4.1 Jantzen p-sum formula

As previously claimed, the Weyl modules are not always irreducible in positive charac-
teristic. Thus, it will be useful to compute their composition factors. An important tool
for this computation is the so-called Jantzen p-sum formula. We will use it to compute the
composition factors of Weyl modules with p-restricted highest weight.

Let m ∈ N∗ be a positive integer. Recall that p is a fixed prime. Let a, b ∈ N be such
that p ∤ b and m = pab. The p-adic valuation of n is νp(m) := a.

Proposition 1.49 (Jantzen p-sum formula, [Jan03, II 8.19]). Let λ ∈ X+. There exists a
filtration

∆(λ) ⊇ ∆(λ)1 ⊇ ∆(λ)2 ⊇ . . .
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such that ∑

i>0

ch ∆(λ)i =
∑

α∈Φ+

∑

0<mp<(λ+ρ,α∨)

νp(mp)χ(sα,mp·λ)

and
∆(λ)/∆(λ)1 ∼= L(λ).

Notation 1.50. We set

JSF(λ) :=
∑

α∈Φ+

∑

0<mp<(λ+ρ,α∨)

νp(mp)χ(sα,mp·λ).

Remark 1.51. Observe that, for λ ∈ X+ a p-restricted weight, we have

(λ+ ρ, α∨) ≤ p
n∑

i=1

(ωi, α
∨) = p(ρ, α∨) ≤ p(ρ, α∨

h ) = p(h− 1).

Therefore, if p ≥ h− 1, all the p-adic valuations in JSF(λ) are equal to 1.

Remark 1.52. Let λ ∈ X+. If there exists µ ∈ X+ such that JSF(λ) = chL(µ), then ∆(λ)
admits two composition factors, L(λ) and L(µ). Since ∆(λ)/ rad ∆(λ) ∼= L(λ), it follows
that ∆(λ) admits a unique composition series, given by [L(λ), L(µ)].

1.5 Linkage principle

Another useful tool to compute the composition factors of a Weyl module is the Strong
Linkage Principle. It allows us to show that Weyl modules with highest weight in the
fundamental alcove are irreducible.

Proposition 1.53 (The Strong Linkage Principle, [Jan03, II 6.13]). Let λ, µ ∈ X+ be
dominant weights. If

[∆(λ) : L(µ)] > 0,

then µ ↑ λ.

Proposition 1.54 ([Jan03, II 6.24]). Let λ ∈ X+ be a dominant weight. Suppose that µ ∈ X
is maximal in the set {ν ∈ X| ν ↑ λ, ν 6= λ} with respect to the ordering ↑. If µ ∈ X+ and
µ /∈ {λ− pα| α ∈ Φ+}, then

[∆(λ) : L(µ)] = 1.

Lemma 1.55. For every λ ∈ X+ ∩ Ĉ1 we have L(λ) ∼= ∆(λ).

Proof. Let µ ∈ X+ be such that L(µ) is a composition factor of ∆(λ). By the Strong

Linkage Principle (Proposition 1.53), we have µ ↑ λ, and in particular, µ ≤ λ, so µ ∈ Ĉ1 by
Lemma 1.7. Moreover, µ ∈ Wp·λ. Since C1 is a fundamental domain for the dot action of

Wp (Lemma 1.9), we have µ ∈ C1 ∩ Wp·λ = {λ}. We conclude that µ = λ, therefore ∆(λ)
is irreducible.

Lemma 1.56. Let λ ∈ Ĉ1 ∩X+ and ν ∈ X+ such that ν ≤ λ. Then L(ν) ∼= ∆(ν).

Proof. This is a direct consequence of Lemmas 1.7 and 1.55.

Lemma 1.57 ([Jan03, II 4.16]). Let λ, µ ∈ X+. The tensor product ∆(λ) ⊗ ∆(µ) admits a
submodule isomorphic to ∆(λ+ µ).
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1.6 An argument to count multiplicities

In this subsection, we provide an argument to compute the multiplicities of each compo-
sition factor of the tensor product of two simple modules. We will use it several times later
to show that some tensor products of two simple modules have multiplicity.

Argument 1. Let λ, µ ∈ X+ be dominant weights, and let M = L(λ) ⊗ L(µ). A vector
v⊗w ∈ M is a weight vector of weight ν if and only if v is a weight vector in L(λ) of weight
ν1, w is a weight vector in L(µ) of weight ν2 and ν1 + ν2 = ν. Therefore,

mM(ν) =
∑

ν1,ν2∈X
ν1+ν2=ν

mL(λ)(ν1)mL(µ)(ν2).

Suppose that ν1, . . . , νs ∈ X+ is the complete list of the dominant weights corresponding
to all composition factors of M (with multiplicity). For every weight η ∈ X, we have

mM (η) =
s∑

i=1

mL(νi)(η).

We compute the νi’s as follows. We set ν1 = λ + µ. Suppose that we have already
ν1, . . . , νt for t < s. Let η ∈ X+ be such that

mM (η) >
t∑

i=1

mL(νi)(η) and mM (ν) =
t∑

i=1

mL(νi)(ν) for every dominant weight ν > η.

It follows that mL(νi)(ν) = 0 for every i > t and every ν > η. In particular, νi ≯ η for every
i > t. Moreover, there exists i > t such that mL(νi)(η) > 0, thus νi ≥ η. Therefore, we
deduce that νi = η for some i > t, and we can choose νt+1 = η.
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2 Properties of tensor products

In this section, we establish some properties of tensor products. We state Steinberg’s
tensor product theorem (see [Jan03, II 3.16] for a proof), which allows us to restrict our
attention to tensor products of irreducible modules with p-restricted highest weight in order
to answer our question.

2.1 Steinberg’s tensor product theorem

Theorem 2.1 ([Spr09, Theorem 9.4.3]). The Frobenius endomorphism k → k : c 7→ cp

induces a group endomorphism F : G → G given by xα(c) 7→ xα(cp) for all α ∈ Φ, c ∈ k and
F (t) = tp for t ∈ T .

Notation 2.2. Let φ : G → GL(M) be a representation. We denote by M (pi) the vector
space M with G-action corresponding to the representation φ ◦F i : G → GL(M) where F is
the group endomorphism described in Theorem 2.1.

Proposition 2.3 ([MT11, Proposition 16.6]). For every λ ∈ X+, we have an isomorphism
of G-modules L(pλ) ∼= L(λ)(p).

Theorem 2.4 (Steinberg’s tensor product theorem). Let λ = λ0 +pλ1 + . . .+pnλn ∈ X+ be
a dominant weight such that λi is p-restricted for all i ∈ {0, . . . , n}. We have an isomorphism

L(λ) ∼= L(λ0) ⊗ L(λ1)(p) ⊗ · · · ⊗ L(λn)(pn).

2.2 Reduction to p-restricted highest weights

Lemma 2.5 ([Gru21, Lemma 4.12]). Let λ, µ ∈ X+ be dominant weights. If the G-module
L(λ) ⊗ L(µ) is multiplicity-free, then it is completely reducible.

Proof. Using Remarks 1.19 and 1.20, we have

(L(λ) ⊗ L(µ))τ ∼= L(λ)τ ⊗ L(µ)τ ∼= L(λ) ⊗ L(µ).

We conclude by Lemma 1.21.

Theorem 2.6 ([Gru21, Theorem A]). Let λ, µ ∈ X+ be p-restricted dominant weights. If the
G-module L(λ)⊗L(µ) is completely reducible, then all its composition factors are p-restricted.

Corollary 2.7. Let λ, µ ∈ X+ be p-restricted dominant weights. If the G-module L(λ)⊗L(µ)
is multiplicity-free, then all its composition factors are p-restricted.

Proof. This is a direct consequence of Lemma 2.5 and Theorem 2.6.

Corollary 2.8. Let λ, µ ∈ X+ be p-restricted weights. If λ + µ is not p-restricted, then
L(λ) ⊗ L(µ) has multiplicity.

Proof. We know that L(λ+ µ) is a composition factor of L(λ) ⊗L(µ). Thus we conclude by
Corollary 2.7.

Proposition 2.9. Let λ = λ0 + pλ1 + . . . + pnλn, µ = µ0 + pµ1 + . . . + pnµn ∈ X+ be
dominant weights such that λi, µi are p-restricted for all i ∈ {0, . . . , n}. Then L(λ) ⊗ L(µ)
is multiplicity-free if and only if L(λi) ⊗ L(µi) is multiplicity-free for all i ∈ {0, . . . , n}.
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Proof. First, using Steinberg’s tensor product theorem (Theorem 2.4), we have an isomor-
phism

L(λ) ⊗ L(µ) ∼=
n⊗

i=0

(L(λi)
(pi) ⊗ L(µi)

(pi)) ∼=
n⊗

i=0

(L(λi) ⊗ L(µi))
(pi).

Clearly, if there exists i ∈ {0, . . . , n} such that L(λi) ⊗ L(µi) has multiplicity, then
(L(λi) ⊗ L(µi))

(pi) has multiplicity, thus L(λ) ⊗ L(µ) has multiplicity.
Now suppose that L(λi) ⊗L(µi) is multiplicity-free for all i ∈ {0, . . . , n}. By Lemma 2.5

and Corollary 2.7, for each i ∈ {0, . . . , n}, there exist ν1
i , . . . , ν

mi

i ∈ X+ distinct and
p-restricted such that

L(λi) ⊗ L(µi) ∼=
mi⊕

j=1

L(νji ).

Therefore, we have

L(λ) ⊗ L(µ) ∼=
n⊗

i=0

mi⊕

j=1

L(νji )
(pi) ∼=

⊕

~j

n⊗

i=0

L(νji

i )(pi),

where ~j = (j0, . . . , jn) runs over
n

×
i=0

{1, . . . ,mi}. Since all the weights νji are p-restricted, we

can use Steinberg’s tensor product theorem again to get

L(λ) ⊗ L(µ) ∼=
⊕

~j

L(
n∑

i=0

piνji

i ).

By uniqueness of the p-adic expansion of a weight, we conclude that L(λ)⊗L(µ) is multiplicity-
free.

By this proposition, in order to classify multiplicity-free tensor products of simple
G-modules, we may restrict our attention to the study of the tensor products of simple
modules with p-restricted highest weights.
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3 Connections between characteristic 0 and positive charac-

teristic

In this section, we show some links between multiplicity-free tensor products in charac-
teristic 0 and in positive characteristic. In particular, we show that in positive characteristic,
multiplicity-free tensor products and completely reducible tensor products are closely related.
This will allow us to classify multiplicity-free tensor products for p = 2 and G of type An
(see section 7).

Notation 3.1. For λ ∈ X+, we denote by LC(λ) the irreducible GC-module of highest
weight λ (over C). Recall that chLC(λ) = χ(λ).

Proposition 3.2. Let λ, µ ∈ X+ be dominant weights such that ∆(λ) ∼= L(λ) and
∆(µ) ∼= L(µ). Suppose that ∆(ν) ∼= L(ν) for all dominant weights ν ∈ X+ such that
L(ν) is a composition factor of L(λ) ⊗ L(µ). Then L(λ) ⊗ L(µ) is multiplicity-free if and
only if LC(λ) ⊗ LC(µ) is multiplicity-free.

Proof. We show that the composition factors in characteristic p and in characteristic 0 are
the same. Let ν1, . . . , νm ∈ X+ be distinct weights and k1, . . . , km ∈ Z>0 be such that
ch(L(λ) ⊗ L(µ)) = k1 chL(ν1) + . . .+ km chL(νm). By assumption, we have

χ(λ)χ(µ) = chL(λ) chL(µ) = ch(L(λ) ⊗ L(µ)) = k1 chL(ν1) + . . .+ km chL(νm)

= k1χ(ν1) + . . . + kmχ(νm).

By uniqueness of the composition factors and linear independence of the Weyl characters
(Lemma 1.46), it follows that LC(λ) ⊗ LC(µ) is multiplicity-free if and only if ki = 1 for all
i ∈ {1, . . . ,m} if and only if L(λ) ⊗ L(µ) is multiplicity-free.

Corollary 3.3. Let λ, µ ∈ X+ be dominant weights such that ∆(λ) ∼= L(λ) and ∆(µ) ∼= L(µ).
If ∆(ν) ∼= L(ν) for all dominant weights ν ≤ λ+ µ, then L(λ) ⊗ L(µ) is multiplicity-free if
and only if LC(λ) ⊗ LC(µ) is multiplicity-free.

Proof. If L(ν) is a composition factor of L(λ) ⊗ L(ν), then ν is dominant and ν ≤ λ + µ.
Thus we can apply Proposition 3.2

Corollary 3.4. Let λ, µ ∈ X+ be such that λ + µ ∈ Ĉ1. The module L(λ) ⊗ L(µ) is
multiplicity-free if and only if LC(λ) ⊗ LC(µ) is multiplicity-free.

Proof. By Lemmas 1.7 and 1.55, Corollary 3.3 applies in case λ+ µ ∈ Ĉ1.

The next theorem allows us to find the explicit decomposition of some tensor products as
a direct sum of irreducible modules. Then we prove a more general version which allows us
to conclude that some tensor products of irreducible modules are multiplicity-free without
computing the explicit decomposition.

Theorem 3.5. Let λ, µ ∈ X+ be p-restricted dominant weights such that the following hold:

(1) L(λ) ∼= ∆(λ),

(2) L(µ) ∼= ∆(µ),

(3) L(λ) ⊗ L(µ) is completely reducible and

(4) LC(λ) ⊗ LC(µ) is multiplicity-free.
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Then L(λ) ⊗ L(µ) is multiplicity-free. Moreover, if we have the decomposition

LC(λ) ⊗ LC(µ) ∼=
m⊕

i=1

LC(νm)

for distinct dominant weights ν1, . . . , νm ∈ X+, then L(νi) ∼= ∆(νi) for all i ∈ {1, . . . ,m}
and

L(λ) ⊗ L(µ) ∼=
m⊕

i=1

L(νm).

Proof. To simplify the notation, we set M := L(λ) ⊗ L(µ).
Since L(λ) and L(µ) are tilting modules, M must be a tilting module. Thus there

exist ν1, . . . , νm ∈ X+ such that M ∼= T (ν1) ⊕ . . . ⊕ T (νm) (Proposition 1.33). Since M is
completely reducible, T (νi) must be completely reducible for every i ∈ {1, . . . ,m}. Therefore,
T (νi) ∼= L(νi) ∼= ∆(νi) for every i ∈ {1, . . . ,m}, so all dominant weights ν such that L(ν) is a
composition factors of M satisfy ∆(ν) ∼= L(ν). Therefore, we can conclude by Proposition 3.2
(and its proof).

Theorem 3.6. Let λ, µ ∈ X+ be p-restricted dominant weights such that the following hold:

(1) L(λ) ⊗ L(µ) is completely reducible and

(2) LC(λ) ⊗ LC(µ) is multiplicity-free.

Then L(λ) ⊗ L(µ) is multiplicity-free.

Proof. We know that we have a surjection ∆(λ) → L(λ) and a surjection ∆(µ) → L(µ). By
right exactness of tensor products, we get a surjection

φ : ∆(λ) ⊗ ∆(µ) → L(λ) ⊗ ∆(µ) → L(λ) ⊗ L(µ).

Using Theorem 1.28, we fix a Weyl filtration

0 = V0 ⊆ V1 ⊆ . . . ⊆ Vm = ∆(λ) ⊗ ∆(µ).

Thus there exist ν1, . . . , νm ∈ X+ such that Vi/Vi−1
∼= ∆(νi) for i = 1, . . . ,m. In particular,

we have

χ(λ)χ(µ) =
m∑

i=1

χ(νi).

Since LC(λ) ⊗ LC(µ) is multiplicity-free, we deduce that νi 6= νj for all i 6= j.
For i ∈ {1, . . . ,m}, we set Wi := φ(Vi) and we denote by φi : Vi → Wi the restriction

and corestriction of the map φ. In particular, φi is surjective for all i ∈ {1, . . . ,m}. By
construction, we have a filtration

0 = W0 ⊆ W1 ⊆ . . . ⊆ Wm = L(λ) ⊗ L(µ)

of L(λ) ⊗ L(µ).
Now we identify the quotients Wi/Wi−1 for i = 1, . . . ,m. Let ιi : Vi−1 → Vi be the

inclusion map. We have the following situation:

0 Vi−1 Vi ∆(νi) 0

0 Wi−1 Wi Wi/Wi−1 0.

ιi

θi

φi−1 φi
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Since θi◦φi◦ιi = 0, i.e. Vi−1 ⊆ ker(θi◦φi), there exists a unique map ψi : Vi/Vi−1 → Wi/Wi−1

such that the following diagram commutes:

0 Vi−1 Vi ∆(νi) 0

0 Wi−1 Wi Wi/Wi−1 0.

ιi

θi

φi−1 φi ψi

In particular, ψi is surjective because θi and φi are surjective. By Proposition 1.13, Wi is com-
pletely reducible and so Wi/Wi−1 is completely reducible. Therefore, rad ∆(νi) ⊆ ker(ψi),
so ψi factors as

∆(νi) Wi/Wi−1

L(νi)

ψi

ψ̄i

Therefore, Wi/Wi−1 is a quotient of L(νi), so either Wi/Wi−1
∼= L(νi) or Wi/Wi−1 = 0. We

deduce that L(λ) ⊗ L(ν) is isomorphic to a submodule of
m⊕
i=1

L(νi), and in particular it is

multiplicity-free since all the νi’s are distinct.
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4 SL2

In this section, we establish the classification of multiplicity-free tensor products of simple
SL2(k)-modules. Recall that SL2(k) has root system Φ of type A1, so Φ = {α,−α}. The
fundamental weight ω satisfies α = 2ω. Since all weights are integer multiples of ω, we will
identify the set of weights with Z. Under this identification, ω corresponds to 1, the positive
root α to 2, and dominant weights are in bijection with N. Moreover, we have ρ = 1

2α = ω
and it corresponds to 1.

Since there exists a unique positive root in Φ, alcoves are in bijection with Z, with

Cn = {λ ∈ XR| (n− 1)p < (λ+ ρ, α∨) < np}.

Using the identification previously described, we identify XR with R. Thus we get

Cn = {λ ∈ R | (n− 1)p < λ+ 1 < np}.

In particular, there exists a unique p-restricted alcove, the fundamental alcove C1, and by
Lemma 1.55, L(λ) ∼= ∆(λ) for all p-restricted dominant weights λ ∈ X+.

We start by computing the Weyl characters and the decomposition of the product of two
such characters.

Lemma 4.1. Let λ ∈ X+. Then

χ(λ) =
λ∑

i=0

eλ−2i.

Proof. We show this result using Weyl’s character formula (Theorem 1.42). We have

(e1 − e−1)
λ∑

i=0

eλ−2i =
λ∑

i=0

eλ+1−2i −
λ∑

i=0

eλ−1−2i

= eλ+1 +
λ∑

i=1

eλ+1−2i − e−λ−1 −
λ−1∑

i=0

eλ−1−2i

= eλ+1 − e−λ−1.

Therefore

χ(λ) =
eλ+1 − e−λ−1

e1 − e−1
=

λ∑

i=0

eλ−2i.

Proposition 4.2 (Clebsch-Gordan formula). For λ, µ ∈ X+ with λ ≥ µ, we have

χ(λ)χ(µ) = χ(λ+ µ) + χ(λ+ µ− 2) + . . . + χ(λ− µ+ 2) + χ(λ− µ).

Proof. By Proposition 1.47 and Lemma 4.1, we have

χ(λ)χ(µ) = χ(µ)χ(λ) =
µ∑

i=0

χ(λ+ µ− 2i).

We are now ready to state the main result of this section.

Proposition 4.3. Let λ, µ ∈ X+ be p-restricted dominant weights. Then L(λ) ⊗ L(µ) is
multiplicity-free if and only if λ+ µ is p-restricted.
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Proof. The ”only if” direction is a direct consequence of Corollary 2.8. For the ”if” direction,
observe that LC(λ) ⊗ LC(µ) is multiplicity-free for all λ, µ ∈ X+ by Proposition 4.2. If

λ+ µ < p, then λ+ µ ∈ Ĉ1, and L(λ) ⊗ L(µ) is multiplicity-free by Corollary 3.4.

Finally, we state the classification theorem for SL2(k).

Theorem 4.4. Let λ = λ0 + pλ1 + . . .+ pnλn, µ = µ0 + pµ1 + . . .+ pnµn ∈ X+ be dominant
weights with λi, µi p-restricted for all i ∈ {0, . . . , n}. Then L(λ) ⊗L(µ) is multiplicity-free if
and only if λi + µi is p-restricted for all i ∈ {0, . . . , n}.

Proof. By Proposition 2.9, L(λ) ⊗ L(µ) is multiplicity-free if and only if L(λi) ⊗ L(µi) is
multiplicity-free for all i ∈ {0, . . . , n}. We conclude by Proposition 4.3.
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5 SL3

In this section, we establish the classification of multiplicity-free tensor products of simple
SL3-modules with p-restricted highest weight. We fix G = SL3(k) with root system Φ of type
A2 and Π = {α1, α2} a base of Φ. With respect to this base, we have ρ = α1 + α2. For
λ = xω1 + yω2 ∈ XR, we write λ = (x, y). In particular, we have α1 = (2,−1), α2 = (−1, 2)
and ρ = (1, 1).

We will prove the following theorem:

Theorem 5.1. Let λ = (a, b), µ = (c, d) ∈ X+ be non-zero p-restricted dominant weights.
Up to the reordering of λ and µ, the module L(λ) ⊗ L(µ) is multiplicity-free if and only if
one of the following holds:

(1) b = d = 0 and a+ c < p,

(2) a = c = 0 and b+ d < p,

(3) b = c = 0 and a+ d < p− 1 or (a, d) ∈ {(p − 1, 1), (1, p − 1)},

(4) b = 0 and a+ c+ d < p− 1,

(5) a = 0 and b+ c+ d < p− 1,

(6) b = 0, c+ d = p− 1, a+ c < p and a < c+ 2,

(7) a = 0, c+ d = p− 1, b+ d < p and b < d+ 2,

(8) b = 0, c+ d > p− 1, a+ c < p and a+ d < p,

(9) a = 0, c+ d > p− 1, b+ c < p and b+ d < p or

(10) a+ b < p− 1, c+ d = p− 1, a+ b+ c < p and a+ b+ d < p.

We start by recalling some facts about the structure of those simple modules. Then we
consider the relation between characters of simple modules and Weyl characters. Finally, we
will establish a sequence of propositions which yield the classification.

5.1 Alcoves

In this subsection, we describe the p-restricted alcoves of a root system of type A2. There
are two such alcoves which we define to be the fundamental alcove

C1 := {λ ∈ XR| (λ+ ρ, α∨
1 ) > 0, (λ+ ρ, α∨

2 ) > 0, (λ+ ρ, (α1 + α2)∨) < p}

and the second alcove

C2 := {λ ∈ XR| (λ+ ρ, α∨
1 ) < p, (λ+ ρ, α∨

2 ) < p, (λ+ ρ, (α1 + α2)∨) > p}.

Therefore, all p-restricted dominant weights belong to Ĉ1 ⊔Ĉ2. Using the notation previously
defined, we get

Ĉ1 ∩X+ = {(a, b) ∈ N2 | a+ b ≤ p− 2}

and
Ĉ2 ∩X+ = {(a, b) ∈ N2 | a < p, b < p, a+ b > p− 2}.
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Furthermore, we define the walls

F1,2 := C1 ∩C2 = {(x, y) ∈ [−1, p − 1]2| x+ y = p− 2},

F2,3 := {λ ∈ C2| (λ+ ρ, α∨
1 ) = p},

F2,3′ := {λ ∈ C2| (λ+ ρ, α∨
2 ) = p}.

Thus we get

F1,2 ∩X+ = {(a, b) ∈ N2 | a+ b = p− 2},

F2,3 ∩X+ = {(p− 1, b) ∈ N2 | b ≤ p− 1},

F2,3′ ∩X+ = {(a, p − 1) ∈ N2 | a ≤ p− 1}.

Remark 5.2. Following the labelling of the alcoves from [BDM15], we have F2,i = C2 ∩ Ci
for i = 3, 3′.

Let us illustrate these alcoves with a picture. The blue arrows form the root system.
The black arrows are the fundamental weights, generating the weight lattice (in black). The
region containing the dominant weights is coloured in green. The red triangles are the walls
of the alcoves.

α2

α1

ω2

ω1

C2

C1

C3

C3′

Figure 1: Alcoves for A2 and p = 7.

5.2 Structure of Weyl modules and weights in irreducible modules

In this subsection, we compute the composition factors of Weyl modules with p-restricted
highest weight and the multiplicity of certain weights in irreducible modules with p-restricted
highest weight.
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Lemma 5.3. Let λ = (a, b) ∈ X+ be a p-restricted dominant weight.

• If a+ b < p− 1 (i.e. λ ∈ Ĉ1), then ∆(λ) ∼= L(λ).

• If a = p− 1 or b = p− 1 (i.e. λ ∈ F2,3 or λ ∈ F2,3′), then ∆(λ) ∼= L(λ).

• Else (i.e. if λ ∈ C2), then ∆(λ) admits exactly two composition factors, L(λ) and
L(λ− (a+ b+ 2 − p)ρ).

In particular, T (λ) is irreducible if and only if λ ∈ Ĉ1 ∪ F2,3 ∪ F2,3′ .

Proof. We use the Jantzen p-sum formula (Proposition 1.49) to show this result.

• If λ ∈ Ĉ1, then ∆(λ) ∼= L(λ) by Lemma 1.55.

• If λ ∈ Ĉ2, then

JSF(λ) = χ(sα1+α2,p·λ) = χ(λ− (a+ b+ 2 − p)ρ) = χ(p− b− 2, p − a− 2).

If a = p − 1 or b = p − 1, then JSF(λ) = 0 because sα1+α2,p·λ ∈ D \X+ and ∆(λ) is
irreducible. Else, ∆(λ) admits the unique composition series

[L(λ), L(λ − (a+ b+ 2 − p)ρ)].

The last claim follows directly from Lemma 1.37.

We can also prove Lemma 5.3 using Proposition 1.54, see for example [Sch19, Lemma 2.1.4].
To simplify the notation we define the map

Θ :
X → Z

(a, b) 7→ a+ b+ 2 − p.

Remark 5.4. By the proof of Lemma 5.3, we have

chL(λ) = χ(λ) − χ(λ− Θ(λ)ρ)

for all dominant weights λ ∈ Ĉ2.

Lemma 5.5. Let λ ∈ X+ be p-restricted. Then λ ∈ Ĉ2 if and only if Θ(λ) ≥ 1.

Proof. This is a direct consequence of the definitions of Θ and Ĉ2.

Lemma 5.6 ([Tes88, 1.35]). Let λ = (a, b) ∈ X+ be p-restricted with a 6= 0 and b 6= 0. Then

mL(λ)(λ− α1 − α2) =

®
1 if a+ b = p− 1,

2 otherwise.

Lemma 5.7. Let λ = (a, 0) ∈ X+ with a < p. Then

mL(λ)(λ− iα1 − jα2) =

®
1 if 0 ≤ j ≤ i ≤ a,

0 else.

Proof. First, observe that for a < p, we have ∆(λ) ∼= L(λ) by Lemma 5.3. Recall that
ρ = ω1 + ω2. Using Weyl’s degree formula (Corollary 1.43) with (α1, α1) = 2, we have

dimL(λ) =
(λ+ ρ, α1)(λ+ ρ, α2)(λ+ ρ, α1 + α2)

(ρ, α1)(ρ, α2)(ρ, α1 + α2)
=

(a+ 1) · 1 · (a+ 2)

1 · 1 · 2
=

(a+ 2)(a+ 1)

2
.

Observe that A = {λ − iα1 − jα2}0≤j≤i≤a is saturated with highest weight λ. Thus, by
Proposition 1.23, we have mL(λ)(ν) = m∆(λ)(ν) ≥ 1 for all ν ∈ A. Moreover,

|A| =
a∑

i=0

i∑

j=0

1 =
a∑

i=0

(i+ 1) =
a+1∑

i=1

i =
(a+ 2)(a+ 1)

2
= dimL(λ).

Therefore, mL(λ)(ν) = 1 for all ν ∈ A, as claimed.
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5.3 The classification

In this subsection, we prove several propositions which yield the classification of
multiplicity-free tensor products of simple SL3(k)-modules with p-restricted highest weight
(Theorem 5.1). We start by stating a theorem from Stembridge ([Ste03, Theorem 1.1.A])
which classifies multiplicity-free tensor products of simple SL3(C)-modules.

Theorem 5.8. Let (a, b), (c, d) ∈ X+ be dominant weights. Then LC(a, b) ⊗ LC(c, d) is
multiplicity-free if and only if a · b · c · d = 0.

Before moving on to the classification, recall that L(a, b)∗ ∼= L(b, a) for all a, b ∈ N and
observe that L(λ) ⊗ L(µ) is multiplicity-free if and only if (L(λ) ⊗ L(µ))∗ ∼= L(λ)∗ ⊗ L(µ)∗

is multiplicity-free. This allows us to treat several cases simultaneously.

5.3.1 L(a, 0) ⊗ L(c, 0)

Proposition 5.9. Let λ = (a, 0), µ = (c, 0) ∈ X+ be p-restricted. Then L(λ) ⊗ L(µ) is
multiplicity-free if and only if a+ c < p.

Proof. The ”only if” direction is a direct consequence of Corollary 2.8.
Suppose that a + c < p. By Lemma 5.3, we have ∆(λ) ∼= L(λ) and ∆(µ) ∼= L(µ). If

ν ≤ λ+µ is a dominant weight, then either ν = λ+µ or ν ∈ Ĉ1. We have ∆(λ+µ) ∼= L(λ+µ)

by Lemma 5.3 and ∆(ν) ∼= L(ν) for all ν ∈ Ĉ1 by Lemma 1.56. Thus we can apply
Corollary 3.3. By Theorem 5.8, LC(λ) ⊗ LC(µ) is multiplicity-free, thus L(λ) ⊗ L(µ) is
multiplicity-free.

Remark 5.10. By duality, L(0, b) ⊗ L(0, d) is multiplicity-free if and only if b+ d < p.

5.3.2 L(a, 0) ⊗ L(0, d)

Proposition 5.11. Let λ = (a, 0), µ = (0, d) ∈ X+ be p-restricted with a, d 6= 0. Then
L(λ) ⊗L(µ) is multiplicity-free if and only if a+ d < p− 1, or (a, d) ∈ {(p− 1, 1), (1, p− 1)}.

Proof. To simplify the notation, we set M := L(λ) ⊗ L(µ).
By Lemma 5.3, L(λ) and L(µ) are tilting modules. By Theorem 1.32, M is a tilting

module. We know that L(λ + µ) is a composition factor of M . If λ + µ ∈ C2, then we
conclude that M has multiplicity using Lemma 1.36.

If a+ d < p− 1 (i.e. if λ+µ ∈ Ĉ1), we apply Corollary 3.4 and Theorem 5.8 to conclude
that M is multiplicity-free.

Suppose a = p− 1 and d > 1 (in particular, λ+ µ ∈ F2,3). We use Lemmas 1.15 and 5.7
and Argument 1 to compute

mM (λ+ µ) = 1, mM (λ+ µ− α1) = 1, mM (λ+ µ− α2) = 1,

mM (λ+ µ− α1 − α2) = 3.

Since mL(λ+µ)(λ + µ − α1) = mL(λ+µ)(λ + µ − α2) = 1 (Lemma 1.15), we conclude that
L(λ + µ − α1) and L(λ + µ − α2) are not composition factors of M . Moreover,
mL(λ+µ)(λ + µ − α1 − α2) = 2 by Lemma 5.6, thus L(λ + µ − α1 − α2) is a composi-
tion factor of M . But λ + µ − α1 − α2 = (p − 2, d − 1) ∈ C2, so T (λ + µ − α1 − α2) is not
irreducible by Lemma 5.3. By Lemma 1.36, we conclude that M has multiplicity. The case
a > 1, d = p− 1 is symmetric.
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Finally consider the case a = p− 1, d = 1 (in particular, λ+ µ ∈ F2,3). Again, we have

mM (λ+ µ) = 1, mM(λ+ µ− α1) = 1, mM(λ+ µ− α2) = 1.

Therefore, L(λ + µ) is a composition factor, and all other composition factors have highest

weight ν with ν ≤ λ+µ−α1 −α2, ν ≤ λ+µ−2α1 or ν ≤ λ+µ−2α2. In particular, ν ∈ Ĉ1.
By Lemma 5.3, this implies that for all dominant weights ν such that L(ν) is a composition
factor of M , we have L(ν) ∼= ∆(ν). Using Proposition 3.2 and Theorem 5.8, we conclude
that M is multiplicity-free. The case a = 1, d = p− 1 is symmetric

5.3.3 L(a, 0) ⊗ L(c, d)

Proposition 5.12. Let λ = (a, 0), µ = (c, d) ∈ X+ be p-restricted with a, c, d 6= 0 and

a+ c+ d < p− 1 (i.e. λ+ µ ∈ Ĉ1). Then L(λ) ⊗ L(µ) is multiplicity-free.

Proof. This is a direct consequence of Corollary 3.4 and Theorem 5.8.

Proposition 5.13. Let λ = (a, 0), µ = (c, d) ∈ X+ be p-restricted with a, c, d 6= 0,

a + c + d ≥ p − 1 and L(µ) ∼= ∆(µ) (i.e. λ + µ /∈ Ĉ1 and µ ∈ Ĉ1 ∪ F2,3 ∪ F2,3′). Then
L(λ) ⊗ L(µ) has multiplicity.

Proof. To simplify the notation, we set M := L(λ) ⊗L(µ). By assumption ∆(λ) ∼= L(λ) and
∆(µ) ∼= L(µ), in particular these two modules are tilting modules. By Theorem 1.32, M is
a tilting module.

If a + c ≥ p, we conclude directly by Corollary 2.8 that M has multiplicity. So we can
restrict our attention to the case a+ c < p.

Observe that for d = p− 2, the condition ∆(λ) ∼= L(λ) forces c = p− 1 (Lemma 5.3), so
a+ c ≥ p and M has multiplicity.

Suppose that d = p− 1. By Lemma 1.15 and Argument 1, we have

mM (λ+ µ) = 1, mM(λ+ µ− α1) = 2.

By Lemma 1.15, we have mL(λ+µ)(λ + µ − α1) = 1, so we deduce that L(λ + µ − α1) is a
composition factor of M . But λ + µ − α1 = (a + c − 2, p) is not p-restricted, thus M has
multiplicity by Corollary 2.7.

Suppose that a+ c < p− 1 and d < p − 1. By assumption, λ+ µ ∈ C2, and T (λ+ µ) is
not irreducible by Lemma 5.3. Therefore, by Lemma 1.36, M has multiplicity.

Finally, consider the case a+ c = p− 1, d < p− 2. Again, we have

mM (λ+ µ) = 1, mM(λ+ µ− α1) = 2,

and L(λ+µ−α1) is a composition factor of M . Observe that λ+µ−α1 = (p−3, d+1) ∈ C2,
so T (λ+µ−α1) is not irreducible. We conclude by Lemma 1.36 that M has multiplicity.

Proposition 5.14. Let λ = (a, 0), µ = (c, d) ∈ X+ be p-restricted with a, c, d 6= 0. If
d+ min(a, c) ≥ p, then L(λ) ⊗ L(µ) has multiplicity.

Proof. To simplify the notation, we set M := L(λ) ⊗ L(µ).
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If a + c ≥ p, we conclude directly using Corollary 2.8. Thus we can assume a + c < p.
We show inductively that [M : L(λ + µ − sα1)] = 1 for 0 ≤ s ≤ p − d ≤ min(a, c). For
0 ≤ s ≤ min(a, c), using Lemma 1.15, we have

mM (λ+ µ− sα1) =
s∑

i=0

mL(λ)(λ− iα1) ·mL(µ)(µ− (s− i)α1) = s+ 1.

Moreover, if 0 ≤ i < s ≤ p − d, then λ+ µ − iα1 = (a + c− 2i, d + i) is p-restricted and by
Lemma 1.15, we have

s−1∑

i=0

mL(λ+µ−iα1)(λ+ µ− sα1) = s.

We know that [M : L(λ + µ)] = 1, and combining the two previous equations, we conclude
inductively that [M : L(λ+µ−sα1)] = 1 for 0 ≤ s ≤ p−d. In particular, L(λ+µ−(p−d)α1)
is a composition factor of M . But λ+µ− (p− d)α1 = (a+ c− 2(p− d), p) is not p-restricted.
We conclude by Corollary 2.7 that M has multiplicity.

Proposition 5.15. Let λ = (a, 0), µ = (c, d) ∈ X+ be p-restricted with a, c, d 6= 0,

c + d = p − 1 and a + c < p (in particular, µ ∈ Ĉ2). Then L(λ) ⊗ L(µ) is multiplicity-
free if and only if a < c+ 2.

Proof. We set M := L(λ) ⊗ L(µ).
By Remark 5.4, we have chL(µ) = χ(µ) − χ(µ − ρ) and chL(λ) = χ(λ). Therefore, by

Proposition 1.47, we have

chM = χ(λ)(χ(µ) − χ(µ − ρ)) =
∑

ν∈X

m∆(λ)(ν)(χ(µ + ν) − χ(µ+ ν − ρ)).

Now we use Lemma 5.7 to rewrite this sum. We get

chM =
∑

ν∈X

m∆(λ)(ν)(χ(µ + ν) − χ(µ+ ν − ρ))

=
a∑

i=0

i∑

j=0

χ(µ+ λ− iα1 − jα2) − χ(µ+ λ− iα1 − jα2 − ρ)

=
a∑

i=0

i∑

j=0

χ(µ+ λ− iα1 − jα2) −
a∑

i=0

i∑

j=0

χ(µ + λ− iα1 − jα2 − ρ)

=
a∑

i=0

i∑

j=0

χ(µ+ λ− iα1 − jα2) −
a+1∑

i=1

i∑

j=1

χ(µ+ λ− iα1 − jα2)

=
a∑

i=0

χ(µ+ λ− iα1) −
a+1∑

j=1

χ(µ + λ− (a+ 1)α1 − jα2)

=
a∑

i=0

χ(µ+ λ− iα1) −
a∑

j=0

χ(µ + λ− (a+ 1)α1 − (a+ 1 − j)α2)

=
a∑

i=0

χ(µ+ λ− iα1) − χ(µ+ λ− (a+ 1)α1 − (a+ 1 − i)α2)
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=
a∑

i=0

χ(µ+ λ− iα1) − χ(µ+ λ− iα1 − (a+ 1 − i)ρ)

=
a∑

i=0

χ(µ+ λ− iα1) − χ(µ+ λ− iα1 − Θ(µ+ λ− iα1)ρ), (1)

where in the last equality, we used that, for i ∈ {0, . . . , a}, we have

µ+ λ− iα1 = (a+ c− 2i, d+ i),

so Θ(µ+ λ− iα1) = a+ 1 − i. Now we dissociate several cases.

First, suppose that a ≤ c. In this case, for i ∈ {0, . . . , a} we have 0 ≤ a+ c− 2i < p and
0 < d+ i ≤ d+ c < p, therefore µ+ λ− iα1 is dominant and p-restricted. Moreover,

Θ(µ+ λ− iα1) = a+ 1 − i ≥ 1.

By Lemma 5.5, we have µ+ λ− iα1 ∈ Ĉ2 for all i ∈ {0, . . . , a}. Using Remark 5.4, we get

chM =
a∑

i=0

χ(µ+ λ− iα1) − χ(µ+ λ− iα1 − Θ(µ+ λ− iα1)ρ)

=
a∑

i=0

chL(µ+ λ− iα1). (2)

Thus we conclude that M is multiplicity-free.

Suppose that a = c+ 1. Using line (1), we have

chM =
c∑

i=0

(
χ(µ+ λ− iα1) − χ(µ+ λ− iα1 − Θ(µ+ λ− iα1)ρ)

)

+ χ(µ + λ− aα1) − χ(µ+ λ− aα1 − Θ(µ+ λ− aα1)ρ).

In this case, for i ∈ {0, . . . , c} we have 0 ≤ a + c − 2i < p and 0 < d + i ≤ d + c < p so
µ+ λ− iα1 is dominant and p-restricted. Moreover,

Θ(µ+ λ− iα1) = a+ 1 − i ≥ 2,

so by Lemma 5.5, µ+ λ− iα1 ∈ Ĉ2 for all i ∈ {0, . . . , c}. By Remark 5.4, we have

χ(µ+ λ− iα1) − χ(µ+ λ− iα1 − Θ(µ + λ− iα1)ρ) = chL(µ+ λ− iα1). (3)

Moreover,
µ+ λ− aα1 = (−1, d+ a) ∈ D \X+,

so by Lemma 1.45 we have
χ(µ + λ− aα1) = 0. (4)

Finally,

µ+ λ− aα1 − Θ(µ+ λ− aα1)ρ = µ+ λ− aα1 − ρ = (−2, d + a− 1) = (−2, p − 1).

Using again Lemma 1.45, we get

χ(−2, p − 1) = −χ(sα1·(−2, p − 1)) = −χ(0, p − 2) = − chL(0, p − 2)

= − chL(λ+ µ− aα1 − α2) (5)
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where in the last equality, we used that λ + µ − aα1 − α2 = (0, p − 2) ∈ X+ is p-restricted
and Lemma 5.3. Combining lines (3), (4) and (5), we conclude that

chM =
c∑

i=0

(
χ(µ+ λ− iα1) − χ(µ+ λ− iα1 − Θ(µ+ λ− iα1)ρ)

)

+ χ(µ + λ− aα1) − χ(µ+ λ− aα1 − Θ(µ+ λ− aα1)ρ)

= chL(λ+ µ− aα1 − α2) +
c∑

i=0

chL(µ + λ− iα1), (6)

and M is multiplicity-free.

Finally, we consider the case a ≥ c+ 2. We show that M has multiplicity. Using line (1),
we have

chM =
c∑

i=0

(
χ(µ+ λ− iα1) − χ(µ+ λ− iα1 − Θ(µ+ λ− iα1)ρ)

)
(7)

+
a∑

i=c+1

(
χ(µ+ λ− iα1) − χ(µ+ λ− iα1 − Θ(µ+ λ− iα1)ρ)

)
. (8)

By the same argument as in the previous case (see line (3)), we write (7) as

c∑

i=0

(
χ(µ+ λ− iα1) − χ(µ + λ− iα1 − Θ(µ+ λ− iα1)ρ)

)
=

c∑

i=0

chL(µ+ λ− iα1). (9)

We rewrite the sum of line (8) by making the expression of the weights explicit. We get

a∑

i=c+1

(
χ(µ+ λ− iα1) − χ(µ + λ− iα1 − Θ(µ+ λ− iα1)ρ)

)

=
a∑

i=c+1

(
χ(a+ c− 2i, d+ i) − χ(c− i− 1, d+ 2i− a− 1)

)

=
a−c∑

i=1

(
χ(a− c− 2i, d + c+ i) − χ(−i− 1, d+ 2c+ 2i− a− 1)

)

=
a−c∑

i=1

χ(a− c− 2i, p − 1 + i) (10)

−
a−c∑

i=1

χ(−i− 1, d+ 2c+ 2i− a− 1). (11)

We show that the sum in line (10) is equal to zero. Using Lemma 1.45, we have

a−c∑

i=1

χ(a− c− 2i, p − 1 + i)

= −
a−c∑

i=1

χ(sα1·(a− c− 2i, p − 1 + i))

= −
a−c∑

i=1

χ(−a+ c+ 2i− 2, p − i+ a− c)
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= −
a−c∑

i=1

χ(−a+ c+ 2(a− c+ 1 − i) − 2, p − (a− c+ 1 − i) + a− c)

= −
a−c∑

i=1

χ(a− c− 2i, p − 1 + i)

Therefore,

a−c∑

i=1

χ(a− c− 2i, p − 1 + i) = 0. (12)

Now, let us study line (11). Using Lemma 1.45, we have

a−c∑

i=1

χ(−i− 1, d+ 2c+ 2i− a− 1) = −
a−c∑

i=1

χ(sα1·(−i− 1, d+ 2c+ 2i− a− 1))

= −
a−c∑

i=1

χ(i− 1, d + 2c+ i− a− 1) = −
a−c−1∑

i=0

χ(i, p − 1 + c− a+ i).

Observe that (i, p − 1 + c − a + i) ∈ X+ is p-restricted for all i ∈ {0, . . . , a − c − 1}. We
dissociate the cases a− c even and odd.

If a− c is even, we get

a−c−1∑

i=0

χ(i, p − 1 + c− a+ i) =

a−c
2

−1∑

i=0

χ(a− c− 1 − i, p− 2 − i) + χ(i, p − 1 + c− a+ i)

=

a−c
2

−1∑

i=0

χ(a− c− 1 − i, p− 2 − i)

+ χ((a− c− 1 − i, p− 2 − i) − Θ(a− c− 1 − i, p − 2 − i)ρ).

For i ∈ {0, . . . , a−c
2 − 1}, we have

(a− c− 1 − i) + (p− 2 − i) ≥ a− c− 1 + p− (a− c− 2) = p+ 1,

thus (a− c− 1 − i, p − 2 − i) ∈ C2. This implies that

(a− c− 1 − i, p − 2 − i) − Θ(a− c− 1 − i, p− 2 − i)ρ ∈ C1,

and in particular, by Lemma 5.3 we have

χ((a− c− 1 − i, p − 2 − i) − Θ(a− c− 1 − i, p − 2 − i)ρ)

= chL((a− c− 1 − i, p − 2 − i) − Θ(a− c− 1 − i, p − 2 − i)ρ).

Therefore, by Remark 5.4, we have

a−c
2

−1∑

i=0

χ(a− c− 1 − i, p− 2 − i) + χ((a− c− 1 − i, p − 2 − i) − Θ(a− c− 1 − i, p− 2 − i)ρ)

=

a−c
2

−1∑

i=0

chL(a− c− 1 − i, p − 2 − i)

+ 2χ((a− c− 1 − i, p − 2 − i) − Θ(a− c− 1 − i, p − 2 − i)ρ)
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=

a−c
2

−1∑

i=0

chL(a− c− 1 − i, p − 2 − i)

+ 2 chL((a− c− 1 − i, p− 2 − i) − Θ(a− c− 1 − i, p− 2 − i)ρ)

=

a−c
2

−1∑

i=0

chL(a− c− 1 − i, p − 2 − i) + 2 chL(i, p − 1 + c− a+ i)

=

a−c
2∑

i=1

chL(a− c− i, p − 1 − i) + 2 chL(i− 1, p− 2 + c− a+ i)

=

a−c
2∑

i=1

chL(λ+ µ− cα1 − iρ) + 2 chL(λ+ µ− cα1 − (a+ d− i+ 2 − p)ρ). (13)

Similarly, if a− c is odd, we get

a−c−1∑

i=0

χ(i, p − 1 + c− a+ i)

=

a−c−1

2
−1∑

i=0

(
χ(i, p − 1 + c− a+ i) + χ(a− c− 1 − i, p − 2 − i)

)

+ χ(
a− c− 1

2
, p − 1 +

c− a− 1

2
).

Since (a−c−1
2 , p − 1 + c−a−1

2 ) ∈ C1, we get, as in the even case,

a−c−1

2
−1∑

i=0

(
χ(i, p − 1 + c− a+ i) + χ(a− c− 1 − i, p − 2 − i)

)

+ χ(
a− c− 1

2
, p − 1 +

c− a− 1

2
)

=

a−c−1

2
−1∑

i=0

chL(a− c− 1 − i, p − 2 − i) + 2 chL(i, p − 1 + c− a+ i)

+ chL(
a− c− 1

2
, p− 1 +

c− a− 1

2
)

=

a−c−1

2∑

i=1

chL(λ+ µ− cα1 − iρ) + 2 chL(λ+ µ− cα1 − (a+ d− i+ 2 − p)ρ)

+ chL(λ+ µ− cα1 −
a− c+ 1

2
ρ). (14)
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Combining lines (9), (12) and (13) (respectively (14)), we find, if a− c is even:

chM =
c∑

i=0

chL(µ+ λ− iα1)

+

a−c
2∑

i=1

chL(λ+ µ− cα1 − iρ) + 2 chL(λ+ µ− cα1 − (a+ d− i+ 2 − p)ρ),

and if a− c is odd:

chM = chL(λ+ µ− cα1 −
a− c+ 1

2
ρ) +

c∑

i=0

chL(µ+ λ− iα1)

+

a−c−1

2∑

i=1

chL(λ+ µ− cα1 − iρ) + 2 chL(λ+ µ− cα1 − (a+ d− i+ 2 − p)ρ).

In both cases, the second sum is non-empty since a ≥ c + 2 by assumption, and we deduce
that M has multiplicity.

Proposition 5.16. Let λ = (a, 0), µ = (c, d) ∈ X+ be p-restricted with a, c, d 6= 0,
c + d > p − 1, a + c < p and a + d < p (in particular, µ ∈ C2). Then L(λ) ⊗ L(µ) is
multiplicity-free.

Proof. We set M := L(λ) ⊗ L(µ), and m := Θ(µ) = c + d + 2 − p ≥ 2. Observe that our
hypotheses imply a < c and a < d.

By Remark 5.4 and Lemma 5.3, we have chL(µ) = χ(µ)−χ(µ−mρ) and chL(λ) = χ(λ).
Therefore, by Proposition 1.47, we have

chM = chL(λ) · chL(µ) = χ(λ) · (χ(µ) − χ(µ−mρ))

=
∑

ν∈X

m∆(λ)(ν)(χ(µ + ν) − χ(µ+ ν −mρ)).

We use Lemma 5.7 to rewrite this sum. We get

chM =
∑

ν∈X

m∆(λ)(ν)(χ(µ + ν) − χ(µ+ ν −mρ))

=
a∑

i=0

i∑

j=0

χ(µ+ λ− iα1 − jα2) − χ(µ+ λ− iα1 − jα2 −mρ)

=
a∑

i=0

i∑

j=0

χ(µ+ λ− iα1 − jα2) −
a∑

i=0

i∑

j=0

χ(µ + λ− iα1 − jα2 −mρ)

=
a∑

i=0

i∑

j=0

χ(µ+ λ− iα1 − jα2) −
a+m∑

i=m

i∑

j=m

χ(µ + λ− iα1 − jα2). (15)

For 0 ≤ j ≤ i ≤ a, we have

µ+ λ− iα1 − jα2 = (a+ c+ j − 2i, d + i− 2j) (16)

with
0 < c− a ≤ c+ a− 2i ≤ c+ a+ j − 2i ≤ c+ a− i ≤ c+ a < p
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and
0 < d− a ≤ d− j ≤ d+ i− 2j ≤ d+ i ≤ d+ a < p.

Therefore,

µ+ λ− iα1 − jα2 ∈ X+ is p-restricted for all 0 ≤ j ≤ i ≤ a. (17)

Moreover, using line (16), we have

Θ(λ+ µ− iα1 − jα2) = (a+ c+ j − 2i) + (d+ i− 2j) + 2 − p = m+ a− i− j, (18)

and if 0 ≤ j ≤ i ≤ min{a,m− 1}, then

Θ(λ+ µ− iα1 − jα2) = m+ a− i− j ≥ 1.

Using line (17) and Lemma 5.5, we deduce that

λ+ µ− iα1 − jα2 ∈ Ĉ2 for all 0 ≤ j ≤ i ≤ min{a,m− 1}. (19)

We dissociate the cases a < m and a ≥ m.
If a < m, using line (15), we have

chM =
a∑

i=0

i∑

j=0

χ(µ+ λ− iα1 − jα2) −
a+m∑

i=m

i∑

j=m

χ(µ + λ− iα1 − jα2)

=
a∑

i=0

i∑

j=0

χ(µ+ λ− iα1 − jα2) −
a+m∑

j=m

a+m∑

i=j

χ(µ+ λ− iα1 − jα2)

=
a∑

i=0

i∑

j=0

χ(µ+ λ− iα1 − jα2) −
a+m∑

i=m

a+m∑

j=i

χ(µ+ λ− jα1 − iα2)

=
a∑

i=0

i∑

j=0

χ(µ+ λ− iα1 − jα2) −
a∑

i=0

a∑

j=i

χ(µ+ λ− jα1 − iα2 −mρ)

=
a∑

i=0

i∑

j=0

χ(µ+ λ− iα1 − jα2) −
a∑

i=0

i∑

j=0

χ(µ + λ− (a− j)α1 − (a− i)α2 −mρ)

=
a∑

i=0

i∑

j=0

χ(µ+ λ− iα1 − jα2) − χ(µ+ λ− (a− j)α1 − (a− i)α2 −mρ)

=
a∑

i=0

i∑

j=0

χ(µ+ λ− iα1 − jα2) − χ(µ+ λ− iα1 − jα2 − (m + a− i− j)ρ)

=
a∑

i=0

i∑

j=0

χ(µ+ λ− iα1 − jα2) − χ(µ+ λ− iα1 − jα2 − Θ(µ+ λ− iα1 − jα2)ρ),

where in the last equality, we use line (18). Since a ≤ m − 1, we can use line (19) and
Remark 5.4 to conclude that

chM =
a∑

i=0

i∑

j=0

χ(µ+ λ− iα1 − jα2) − χ(µ+ λ− iα1 − jα2 − Θ(µ+ λ− iα1 − jα2)ρ)

=
a∑

i=0

i∑

j=0

chL(µ+ λ− iα1 − jα2). (20)
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In particular, M is multiplicity-free.

If a ≥ m, using line (15), we have

chM =
a∑

i=0

i∑

j=0

χ(µ+ λ− iα1 − jα2) −
a+m∑

i=m

i∑

j=m

χ(µ + λ− iα1 − jα2)

=
m−1∑

i=0

i∑

j=0

χ(µ+ λ− iα1 − jα2) +
a∑

i=m

m−1∑

j=0

χ(µ + λ− iα1 − jα2)

−
a+m∑

i=a+1

i∑

j=m

χ(µ+ λ− iα1 − jα2)

=
m−1∑

i=0

i∑

j=0

χ(µ+ λ− iα1 − jα2) +
a∑

i=m

m−1∑

j=0

χ(µ + λ− iα1 − jα2)

−
a+m∑

j=a+1

a+m∑

i=j

χ(µ+ λ− iα1 − jα2) −
a∑

j=m

a+m∑

i=a+1

χ(µ+ λ− iα1 − jα2)

=
m−1∑

i=0

i∑

j=0

χ(µ+ λ− iα1 − jα2) −
m−1∑

i=0

m−1∑

j=i

χ(µ+ λ− jα1 − iα2 − (a+ 1)ρ) (21)

+
a∑

i=m

m−1∑

j=0

χ(µ+ λ− iα1 − jα2) −
a∑

i=m

m−1∑

j=0

χ(µ+ λ− (j + a+ 1)α1 − iα2). (22)

Let us study line (21). We have

m−1∑

i=0

i∑

j=0

χ(µ+ λ− iα1 − jα2) −
m−1∑

i=0

m−1∑

j=i

χ(µ + λ− jα1 − iα2 − (a+ 1)ρ)

=
m−1∑

i=0

i∑

j=0

χ(µ+ λ− iα1 − jα2)

−
m−1∑

i=0

i∑

j=0

χ(µ+ λ− (m− 1 − j)α1 − (m − 1 − i)α2 − (a+ 1)ρ)

=
m−1∑

i=0

i∑

j=0

χ(µ+ λ− iα1 − jα2) − χ(µ+ λ− iα1 − jα2 − (a+m− i− j)ρ)

=
m−1∑

i=0

i∑

j=0

χ(µ+ λ− iα1 − jα2) − χ(µ+ λ− iα1 − jα2 − Θ(µ+ λ− iα1 − jα2)ρ),

where in the last equality, we use line (18). Now we can use line (19) and Remark 5.4 to
conclude that
m−1∑

i=0

i∑

j=0

χ(µ+ λ− iα1 − jα2) − χ(µ+ λ− iα1 − jα2 − Θ(µ+ λ− iα1 − jα2)ρ)

=
m−1∑

i=0

i∑

j=0

chL(µ+ λ− iα1 − jα2). (23)
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Now we study line (22). We have

a∑

i=m

m−1∑

j=0

χ(µ+ λ− iα1 − jα2) −
a∑

i=m

m−1∑

j=0

χ(µ+ λ− (j + a+ 1)α1 − iα2)

=
a∑

i=m

m−1∑

j=0

χ(µ+ λ− iα1 − jα2) −
a∑

i=m

m−1∑

j=0

χ(µ+ λ− ((m − 1 − j) + a+ 1)α1 − iα2)

=
a−m∑

i=0

m−1∑

j=0

χ(µ + λ− (i+m)α1 − jα2) −
a−m∑

i=0

m−1∑

j=0

χ(µ+ λ− (m+ a− j)α1 − (i+m)α2)

=
a−m∑

i=0

m−1∑

j=0

χ(µ + λ− (i+m)α1 − jα2)

−
a−m∑

i=0

m−1∑

j=0

χ(µ+ λ− (m+ a− j)α1 − ((a−m− i) +m)α2)

=
a−m∑

i=0

m−1∑

j=0

χ(µ + λ− (i+m)α1 − jα2) −
a−m∑

i=0

m−1∑

j=0

χ(µ+ λ− (m+ a− j)α1 − (a− i)α2)

=
a−m∑

i=0

m−1∑

j=0

χ(µ + λ− (i+m)α1 − jα2) − χ(µ+ λ− (m + a− j)α1 − (a− i)α2)

=
a−m∑

i=0

m−1∑

j=0

χ(µ + λ− (i+m)α1 − jα2) − χ(µ+ λ− (i+m)α1 − jα2 − (a− i− j)ρ)

=
a−m∑

i=0

m−1∑

j=0

χ(µ + λ− (i+m)α1 − jα2)

− χ(µ+ λ− (i+m)α1 − jα2 − Θ(µ+ λ− (i+m)α1 − jα2)ρ),

where in the last equality, we use line (18). For 0 ≤ i ≤ a−m, 0 ≤ j ≤ m− 1, we have

Θ(µ+ λ− (i+m)α1 − jα2) = a− i− j ≥ 1.

Therefore, using line (17) and Lemma 5.5, we deduce that µ+ λ− (i+m)α1 − jα2 ∈ Ĉ2 for
all 0 ≤ i ≤ a−m, 0 ≤ j ≤ m− 1. By Remark 5.4, we conclude that

a−m∑

i=0

m−1∑

j=0

χ(µ+ λ− (i+m)α1 − jα2)

− χ(µ+ λ− (i+m)α1 − jα2 − Θ(µ+ λ− (i+m)α1 − jα2)ρ)

=
a−m∑

i=0

m−1∑

j=0

chL(µ+ λ− (i+m)α1 − jα2). (24)
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We conclude by combining lines (23) and (24) to obtain

chM =
m−1∑

i=0

i∑

j=0

chL(µ+ λ− iα1 − jα2) +
a−m∑

i=0

m−1∑

j=0

chL(µ + λ− (i+m)α1 − jα2)

=
m−1∑

i=0

i∑

j=0

chL(µ+ λ− iα1 − jα2) +
a∑

i=m

m−1∑

j=0

chL(µ+ λ− iα1 − jα2). (25)

In particular, M is multiplicity-free.

Remark 5.17. By duality, for λ = (0, b), µ = (c, d) ∈ X+ with 0 < b, c, d < p, the tensor
product L(λ) ⊗ L(µ) is multiplicity-free if and only if one of the following holds:

(1) b+ c+ d < p− 1,

(2) c+ d = p− 1, b+ d < p and b < d+ 2 or

(3) c+ d > p− 1, b+ c < p and b+ d < p.

At this step, let us make the following observation, which will be useful in the next
proposition.

Corollary 5.18. Let λ = (a, 0), µ = (c, d) ∈ X+ be p-restricted with a, c, d 6= 0, c+d ≥ p−1,
a+ c < p and a+ d < p (in particular µ ∈ C2). Let m := Θ(µ). Then

ch(L(λ) ⊗ L(µ)) =
a∑

i=0

i∑

j=0

chL(λ+ µ− iα1 − jα2) −
a∑

i=m

i∑

j=m

chL(λ+ µ− iα1 − jα2).

Proof.

• If c+ d > p− 1 and a < m, then the second double sum is empty and we find the same
result as in line (20) (in the proof of Proposition 5.16).

• If c + d > p − 1 and a ≥ m, the result is a consequence of line (25) in the proof of
Proposition 5.16 since we have

ch(L(λ) ⊗ L(µ)) =
m−1∑

i=0

i∑

j=0

chL(µ + λ− iα1 − jα2) +
a∑

i=m

m−1∑

j=0

chL(µ+ λ− iα1 − jα2)

=
a∑

i=0

i∑

j=0

chL(λ+ µ− iα1 − jα2) −
a∑

i=m

i∑

j=m

chL(λ+ µ− iα1 − jα2).

• If c+ d = p− 1, the condition a+ d < p is equivalent to a ≤ c. Moreover, in this case
m = Θ(µ) = 1. Therefore, by line (2) in the proof of Proposition 5.15, we get

ch(L(λ) ⊗ L(µ)) =
a∑

i=0

chL(µ+ λ− iα1)

=
a∑

i=0

i∑

j=0

chL(λ+ µ− iα1 − jα2) −
a∑

i=1

i∑

j=1

chL(λ+ µ− iα1 − jα2)

=
a∑

i=0

i∑

j=0

chL(λ+ µ− iα1 − jα2) −
a∑

i=m

i∑

j=m

chL(λ+ µ− iα1 − jα2).

Hence in all cases we are done.

34



5.3.4 L(a, b) ⊗ L(c, d)

Lemma 5.19. Let λ = (a, b) ∈ X+ be p-restricted with a, b 6= 0 and a + b < p − 1 (i.e.

λ ∈ Ĉ1). Then

ch(L(a, 0) ⊗ L(0, b)) − ch(L(a− 1, 0) ⊗ L(0, b− 1)) = chL(a, b).

Proof. First, note that (a − 1, 0) + (0, b − 1) = λ − ρ. By Lemma 5.3, we have
L(a − 1, 0) ∼= ∆(a − 1, 0), L(a, 0) ∼= ∆(a, 0), L(0, b − 1) ∼= ∆(0, b − 1), L(0, b) ∼= ∆(0, b)
and L(λ) ∼= ∆(λ). By Proposition 1.47 and Lemma 5.7, and using Lemma 1.45 in the
seventh equality below, we get

ch(L(a, 0) ⊗ L(0, b)) − ch(L(a− 1, 0) ⊗ L(0, b− 1)) = χ(a, 0)χ(0, b) − χ(a− 1, 0)χ(0, b − 1)

=
a∑

i=0

i∑

j=0

χ(λ− iα1 − jα2) −
a−1∑

i=0

i∑

j=0

χ(λ− ρ− iα1 − jα2)

=
a∑

i=0

i∑

j=0

χ(λ− iα1 − jα2) −
a∑

i=1

i∑

j=1

χ(λ− iα1 − jα2)

=
a∑

i=0

χ(λ− iα1)

= χ(λ) +
a∑

i=1

χ(λ− iα1)

= χ(λ) +
1

2

a∑

i=1

χ(λ− iα1) + χ(λ− (a+ 1 − i)α1)

= χ(λ) +
1

2

a∑

i=1

χ(λ− iα1) − χ(sα1·(λ− (a+ 1 − i)α1))

= χ(λ) +
1

2

a∑

i=1

χ(λ− iα1) − χ(λ− iα1)

= χ(λ)

= chL(a, b).

Proposition 5.20. Let λ = (a, b), µ = (c, d) ∈ X+ be two p-restricted weights with
a, b, c, d 6= 0. Then L(λ) ⊗ L(µ) is multiplicity-free if and only if one of the following holds:

(1) a+ b = p− 1, c+ d < p− 1, a+ c+ d < p and b+ c+ d < p or

(2) a+ b < p− 1, c+ d = p− 1, a+ b+ c < p and a+ b+ d < p.

Proof. We set M := L(λ) ⊗ L(µ).

If a + c ≥ p or b + d ≥ p, then M has multiplicity by Corollary 2.8. Therefore, we can
assume a + c < p and b + d < p. In particular, it cannot happen that a + b ≥ p − 1 and
c+ d > p− 1.

35



Suppose that a + b 6= p − 1 and c + d 6= p − 1. Using Argument 1, we show that
L(λ+ µ− α1 − α2) has multiplicity at least 2 in M . Using Lemmas 1.15 and 5.6, we have

mM (λ+ µ) = 1, mM (λ+ µ− α1) = 2, mM (λ+ µ− α2) = 2,

mM (λ+ µ− α1 − α2) = 6.

Using Lemmas 1.15 and 5.6 again, we have

mL(λ+µ)(λ+ µ− α1) = 1, mL(λ+µ)(λ+ µ− α2) = 1.

Therefore, L(λ + µ − α1) and L(λ + µ − α2) are composition factors of M . Using
Lemmas 1.15 and 5.6 a third time, we get

mL(λ+µ)(λ+ µ− α1 − α2) ≤ 2, mL(λ+µ−α1)(λ+ µ− α1 − α2) = 1,

mL(λ+µ−α2)(λ+ µ− α1 − α2) = 1.

We conclude that L(λ+ µ− α1 − α2) is a composition factor with multiplicity

[M : L(λ+ µ− α1 − α2)] ≥ 6 − 1 − 1 − 2 = 2.

Therefore, M = L(λ) ⊗ L(µ) has multiplicity.

Suppose that a+ b = c + d = p − 1. Since we assume a + c < p and b + d < p, we only
need to consider the case λ+µ = (p− 1, p− 1). Using the same reasoning as in the previous
case, we deduce that L(λ+µ−α1) is a composition factor of M . But λ+µ−α1 = (p− 3, p)
is not p-restricted. Therefore, by Corollary 2.7, M has multiplicity.

Let us consider the case a+ b < p− 1, c+ d = p− 1, a+ b+ d ≥ p (the other remaining
cases where we claim that M has multiplicity are symmetric). Note that b + c + d ≥ p,
therefore b + d + min(a, c) ≥ p. We show inductively that [M : L(λ + µ − sα1)] = 1 for
0 ≤ s ≤ p− b− d ≤ min(a, c). For 0 ≤ s ≤ min(a, c), using Lemma 1.15, we have:

mM (λ+ µ− sα1) =
s∑

i=0

mL(λ)(λ− iα1) ·mL(µ)(µ− (s− i)α1) = s+ 1.

Moreover, if i < p− b−d, then λ+µ− iα1 = (a+ c− 2i, b+d+ i) is p-restricted and we have

s−1∑

i=0

mL(λ+µ−iα1)(λ+ µ− sα1) = s.

We know that [M : L(λ + µ)] = 1, and combining the two previous equations, we
conclude inductively that [M : L(λ + µ − sα1)] = 1 for 0 ≤ s ≤ p − b − d.
In particular, L(λ + µ − (p − b − d)α1) is a composition factor of M . But
λ + µ − (p − b − d)α1 = (a + c − 2(p − b − d), p) is not p-restricted. We conclude by
Corollary 2.7 that M has multiplicity.

Now we consider the cases where we claim that M is multiplicity-free. Up to the reorder-
ing of the weights and up to symmetry, we can suppose a + b < p − 1, c + d = p − 1 and
c ≥ d. Thus the conditions in the statement of the proposition are equivalent to a single
one: a + b + c < p. In particular we have a < d ≤ c and b < d ≤ c. We show that M is
multiplicity-free by showing the following equality of characters:

chM =
a∑

i=0

b∑

j=0

chL(λ+ µ− iα1 − jα2).
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Let 0 ≤ i ≤ a, 0 ≤ j ≤ b. We claim that λ+ µ− iα1 − jα2 ∈ Ĉ2. We have

λ+ µ− iα1 − jα2 = (a+ c− 2i+ j, b+ d− 2j + i)

with

a+ c− 2i+ j ≤ a+ c+ b < p,

b+ d− 2j + i ≤ b+ d+ a ≤ a+ b+ c < p and

(a+ c− 2i+ j) + (b+ d− 2j + i) = a+ b+ c+ d− i− j ≥ c+ d = p− 1.

Thus λ+ µ− iα1 − jα2 ∈ Ĉ2 for all 0 ≤ i ≤ a, 0 ≤ j ≤ b.
By Lemma 5.19, we have

chM = chL(a, b) chL(c, d)

= (ch(L(a, 0) ⊗ L(0, b)) − ch(L(a− 1, 0) ⊗ L(0, b− 1))) chL(c, d)

= ch(L(a, 0) ⊗ L(0, b) ⊗ L(c, d)) − ch(L(a− 1, 0) ⊗ L(0, b− 1) ⊗ L(c, d))

= chL(a, 0) ch(L(0, b) ⊗ L(c, d)) − chL(a− 1, 0) ch(L(0, b − 1) ⊗ L(c, d)).

Since c + d = p − 1, b + d < p and b ≤ d, we can use line (2) in the proof of Lemma 5.15
to express ch(L(0, b) ⊗ L(c, d)) and ch(L(0, b − 1) ⊗ L(c, d)). We set λb := (0, b) and
λb−1 := (0, b − 1). We get

ch(L(0, b) ⊗ L(c, d)) =
b∑

k=0

chL(λb + µ− kα2),

and

ch(L(0, b − 1) ⊗ L(c, d)) =
b−1∑

k=0

chL(λb−1 + µ− kα2).

Observe that λb + µ− kα2 = (c+ k, b+ d− 2k). For 0 ≤ k ≤ b, we have

0 < c ≤ c+ k ≤ c+ b < p− 1,

0 < d− b ≤ b+ d− 2k ≤ b+ d < p− 1 and

(c+ k) + (b+ d− 2k) ≥ c+ d = p− 1. (26)

Therefore λb + µ− kα2 ∈ C2 for all k ∈ {0, . . . , b}. Moreover, we have

a+ c+ k ≤ a+ b+ c < p and (27)

a+ b+ d− 2k ≤ a+ b+ d ≤ a+ b+ c < p. (28)

Similarly, for all 0 ≤ k ≤ b− 1, we have λb−1 + µ− kα2 = (c+ k, b− 1 + d− 2k) ∈ C2 and

(c+ k) + (b− 1 + d− 2k) ≥ p− 1, (29)

(a− 1) + c+ k ≤ a+ b+ c− 2 < p and (30)

(a− 1) + b− 1 + d− 2k ≤ a+ b+ d− 2 ≤ a+ b+ c− 2 < p. (31)
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Let m := Θ(λb + µ) = b+ c+ d+ 2 − p = b+ 1. Observe that Θ(λb + µ− kα2) = m− k
and Θ(λb−1 + µ − kα2) = m − k − 1. Lines (26), (27), (28), (29), (30) and (31) allow us to
use Corollary 5.18 in the fourth equality below, to get

chM = chL(a, 0) ch(L(0, b) ⊗ L(c, d)) − chL(a− 1, 0) ch(L(0, b − 1) ⊗ L(c, d))

= chL(a, 0)

(
b∑

k=0

chL(λb + µ− kα2)

)
− chL(a− 1, 0)

(
b−1∑

k=0

chL(λb−1 + µ− kα2)

)

=

(
b∑

k=0

chL(a, 0) chL(λb + µ− kα2)

)
−

(
b−1∑

k=0

chL(a− 1, 0) chL(λb−1 + µ− kα2)

)

=
b∑

k=0

a∑

i=0

i∑

j=0

chL(λ+ µ− iα1 − (j + k)α2)

−
b∑

k=0

a∑

i=m−k

i∑

j=m−k

chL(λ+ µ− iα1 − (j + k)α2)

−
b−1∑

k=0

a−1∑

i=0

i∑

j=0

chL(λ+ µ− ρ− iα1 − (j + k)α2)

+
b−1∑

k=0

a−1∑

i=m−k−1

i∑

j=m−k−1

chL(λ+ µ− ρ− iα1 − (j + k)α2)

=
b∑

k=0

a∑

i=0

i∑

j=0

chL(λ+ µ− iα1 − (j + k)α2)

−
b∑

k=0

a∑

i=m−k

i∑

j=m−k

chL(λ+ µ− iα1 − (j + k)α2)

−
b−1∑

k=0

a∑

i=1

i∑

j=1

chL(λ+ µ− iα1 − (j + k)α2)

+
b−1∑

k=0

a∑

i=m−k

i∑

j=m−k

chL(λ+ µ− iα1 − (j + k)α2).

To simplify the notation, we set Z(i, j) := chL(λ+ µ− iα1 − jα2). Thus we get

chM =
b∑

k=0

a∑

i=0

i∑

j=0

Z(i, j + k) −
b∑

k=0

a∑

i=m−k

i∑

j=m−k

Z(i, j + k)

−
b−1∑

k=0

a∑

i=1

i∑

j=1

Z(i, j + k) +
b−1∑

k=0

a∑

i=m−k

i∑

j=m−k

Z(i, j + k)

=
b−1∑

k=0

Z(0, k) +
b−1∑

k=0

a∑

i=1

Z(i, k) +
a∑

i=0

i∑

j=0

Z(i, j + b) −
a∑

i=m−b

i∑

j=m−b

Z(i, j + b)
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=
b−1∑

k=0

a∑

i=0

Z(i, k) +
a∑

i=0

Z(i, b) +
a∑

i=1

i∑

j=1

Z(i, j + b) −
a∑

i=m−b

i∑

j=m−b

Z(i, j + b)

=
b∑

k=0

a∑

i=0

Z(i, k) +
a∑

i=1

i∑

j=1

Z(i, j + b) −
a∑

i=m−b

i∑

j=m−b

Z(i, j + b).

Finally, observe that m− b = 1. This allows us to conclude that

chM =
b∑

k=0

a∑

i=0

Z(i, k) +
a∑

i=1

i∑

j=1

Z(i, j + b) −
a∑

i=1

i∑

j=1

Z(i, j + b)

=
b∑

k=0

a∑

i=0

Z(i, k)

=
b∑

k=0

a∑

i=0

chL(λ+ µ− iα1 − kα2). (32)

In particular, M = L(λ) ⊗ L(µ) is multiplicity-free.

Now Theorem 5.1 follows from the previous sequence of propositions.

5.4 Decomposition of multiplicity-free tensor products

Since multiplicity-free tensor products of simple modules are completely reducible
(Lemma 3.5), we can specify the structure of those modules. For some of the cases, we
still need to compute the decomposition in characteristic zero, which we do in the next
lemma.

Lemma 5.21. Let λ = (a, 0), µ = (c, d) ∈ X+. Then

χ(λ)χ(µ) =
a∑

i=0

min{i,d}∑

j=max{0,i−c}

χ(λ+ µ− iα1 − jα2).

Moreover, all weights appearing in the sum are dominant.

Proof. By Proposition 1.47 and Lemma 5.7, we get

χ(λ)χ(µ) =
a∑

i=0

i∑

j=0

χ(λ+ µ− iα1 − jα2)

=
a∑

i=0

min{i,d}∑

j=max{0,i−c}

χ(λ+ µ− iα1 − jα2) (33)

+
a∑

i=0

min{i−c−1,d}∑

j=0

χ(λ+ µ− iα1 − jα2) (34)

+
a∑

i=0

i∑

j=d+1

χ(λ+ µ− iα1 − jα2). (35)

Observe that

λ+ µ− iα1 − jα2 = (a+ c− 2i+ j, d + i− 2j). (36)
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In particular, for i ≤ a and j ≥ i− c, we have

a+ c− 2i+ j ≥ a− i ≥ 0,

and for i ≥ 0 and j ≤ min{i, d}, we have

d+ i− 2j ≥ (d− j) + (i− j) ≥ 0.

Therefore, all weights appearing in line 33 are dominant.

We show that lines (34) and (35) are equal to zero. We start by line (35). Using
Lemma 1.45, and line (36) in the second equality below, we have

i∑

j=d+1

χ(λ+ µ− iα1 − jα2) = −
i∑

j=d+1

χ(sα2·(λ+ µ− iα1 − jα2))

= −
i∑

j=d+1

χ(λ+ µ− iα1 − jα2 − (d+ i− 2j + 1)α2)

= −
i∑

j=d+1

χ(λ+ µ− iα1 − (d+ i− j + 1)α2)

= −
i∑

j=d+1

χ(λ+ µ− iα1 − (d+ i− (d+ 1 + i− j) + 1)α2)

= −
i∑

j=d+1

χ(λ+ µ− iα1 − jα2).

Therefore,
i∑

j=d+1

χ(λ+ µ− iα1 − jα2) = 0

and
a∑

i=0

i∑

j=d+1

χ(λ+ µ− iα1 − jα2) = 0.

Now we work on line (34). If i < c+ 1, then i− c− 1 < 0. Thus we have

a∑

i=0

min{i−c−1,d}∑

j=0

χ(λ+ µ− iα1 − jα2) =
a∑

i=c+1

min{i−c−1,d}∑

j=0

χ(λ+ µ− iα1 − jα2)

=

min{a−c−1,d}∑

j=0

a∑

i=c+1+j

χ(λ+ µ− iα1 − jα2). (37)

We fix j and work on the second sum in line (37). Using Lemma 1.45, and line (36) in the
second equality below, we get

a∑

i=c+1+j

χ(λ+ µ− iα1 − jα2)

= −
a∑

i=c+1+j

χ(sα1·(λ+ µ− iα1 − jα2))
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= −
a∑

i=c+1+j

χ(λ+ µ− iα1 − jα2 − (a+ c− 2i+ j + 1)α1)

= −
a∑

i=c+1+j

χ(λ+ µ− (a+ c− i+ j + 1)α1 − jα2)

= −
a∑

i=c+1+j

χ(λ+ µ− (a+ c− (a+ c+ 1 + j − i) + j + 1)α1 − jα2)

= −
a∑

i=c+1+j

χ(λ+ µ− iα1 − jα2).

Therefore,
a∑

i=c+1+j

χ(λ+ µ− iα1 − jα2) = 0

so
min{a−c−1,d}∑

j=0

a∑

i=c+1+j

χ(λ+ µ− iα1 − jα2) = 0

and
a∑

i=0

min{i−c−1,d}∑

j=0

χ(λ+ µ− iα1 − jα2) = 0.

Remark 5.22. Let (a, b), (c, d) ∈ X+ be dominant weights. Lemma 5.21 shows that
LC(λ) ⊗ LC(µ) is multiplicity-free if a · b · c · d = 0. Moreover, using Argument 1 like in the
proof of Proposition 5.20, one can prove that [LC(λ) ⊗ LC(µ) : LC(λ + µ − α1 − α2)] = 2 if
a · b · c · d 6= 0. These two facts provide a proof of Theorem 5.8.

Remark 5.23. The computations in Lemma 5.21 can be done using the Littlewood-Richardson
rule, see [LR34, Theorem III] or [FH04, Proposition 15.25] for this specific case.

Corollary 5.24. Let λ = (a, b), µ = (c, d) ∈ X+ be non-zero and p-restricted such that
L(λ) ⊗ L(µ) is multiplicity-free. We have the following decompositions:

(1) If b = d = 0, a+ c < p and a ≤ c, then

L(λ) ⊗ L(µ) ∼=
a⊕

i=0

L(µ+ λ− iα1).

(2) If b = c = 0, a ≤ d and a+ d < p− 1 or (a, d) = (1, p − 1), then

L(λ) ⊗ L(µ) ∼=
a⊕

i=0

L(µ + λ− iρ).

(3) If b = 0 and a+ c+ d < p− 1, then

L(λ) ⊗ L(µ) ∼=
a⊕

i=0

min{i,d}⊕

j=max{0,i−c}

L(µ+ λ− iα1 − jα2).

(4) If b = 0, c+ d = p− 1, a+ c < p and a ≤ c, then

L(λ) ⊗ L(µ) ∼=
a⊕

i=0

L(µ+ λ− iα1).
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(5) If b = 0, c+ d = p− 1, a+ c < p and a = c+ 1, then

L(λ) ⊗ L(µ) ∼= L(λ+ µ− aα1 − α2) ⊕
c⊕

i=0

L(µ+ λ− iα1).

(6) If b = 0, c+ d > p− 1, a+ c < p and a+ d < p, then

L(λ) ⊗ L(µ) ∼=
a⊕

i=0

min{i,Θ(µ)−1}⊕

j=0

L(µ+ λ− iα1 − jα2).

(7) If a · b · c · d 6= 0, a+ b < p− 1, c+ d = p− 1, a+ b+ c < p and a+ b+ d < p, then

L(λ) ⊗ L(µ) ∼=
b⊕

k=0

a⊕

i=0

L(λ+ µ− iα1 − kα2).

Proof.

(1) This follows from Lemma 5.21 and Proposition 5.9.

(2) This follows from Lemma 5.21 and Proposition 5.11.

(3) This follows from Lemma 5.21 and Proposition 5.12.

(4) This follows from line (2) in the proof of Proposition 5.15.

(5) This follows from line (6) in the proof of Proposition 5.15.

(6) This follows from lines (20) and (25) in the proof of Proposition 5.16.

(7) This follows from line (32) in the proof of Proposition 5.20.
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6 Sp4

In this section, we establish a number of results for the classification of multiplicity-free
tensor products of simple Sp4-modules with p-restricted highest weight. We fix G = Sp4(k)

with root system Φ of type B2 = C2 and Π = {α1, α2} a base of Φ with (α1,α1)
(α2,α2) = 2. With

respect to this base, we have ρ = 3
2α1 + 2α2. We assume p ≥ 5, so that there exist weights

inside the alcoves. Since the Coxeter number of a root system Φ of type B2 is h = 4, we
have in particular p ≥ h. For λ = xω1 + yω2 ∈ X, we write λ = (x, y). In particular, we
have α1 = (2,−2), α2 = (−1, 2) and ρ = (1, 1).

In this section, we will also use Euclidean coordinates several times. We fix an orthogonal
basis (ǫ1, ǫ2) of R2 with ǫ1 = ω1 = α1 +α2 and ǫ2 = α2 = 2ω2−ω1. With respect to this basis,
we have α1 = (1,−1), α2 = (0, 1), α1 + α2 = (1, 0), α1 + 2α2 = (1, 1) and ρ = (3

2 ,
1
2). Since

the notation ( , ) might be confusing, we will always explicitly state when we use Euclidean
coordinates. If it is not mentioned, then it means that we use coordinates with respect to
the fundamental weights basis. In particular, coordinates with respect to the fundamental
weights are used in all statements of propositions in the classification (section 6.3).

6.1 Alcoves

In this subsection, we describe the four p-restricted alcoves of a root system of type B2.
We start by defining a numeration of those alcoves.

Definition 6.1. We set

C1 := {λ ∈ XR| (λ+ ρ, α∨
1 ) > 0, (λ+ ρ, α∨

2 ) > 0, (λ+ ρ, (α1 + α2)∨) < p},

C2 := {λ ∈ XR| (λ+ ρ, α∨
2 ) > 0, (λ+ ρ, (α1 + α2)∨) > p, (λ+ ρ, (α1 + 2α2)∨) < p},

C3 := {λ ∈ XR| (λ+ ρ, α∨
2 ) < p, (λ+ ρ, (α1 + α2)∨) < 2p, (λ+ ρ, (α1 + 2α2)∨) > p},

C4 := {λ ∈ XR| (λ+ ρ, α∨
1 ) < p, (λ+ ρ, α∨

2 ) < p, (λ+ ρ, (α1 + α2)∨) > 2p}.

We called C1 the fundamental alcove, C2 the second alcove, C3 the third alcove and C4 the
fourth alcove.

We also set

Fi,i+1 := Ci ∩ Ci+1

for i = 1, 2, 3, i.e. Fi,i+1 is the wall between the alcove Ci and Ci+1. Finally, we set

F3,5 := {λ ∈ C3| (λ+ ρ, α∨
2 ) = p},

F4,6 := {λ ∈ C4| (λ+ ρ, α∨
1 ) = p} and

F4,7 := {λ ∈ C4| (λ+ ρ, α∨
2 ) = p}.

We set C5 := sα2,p·C3, C6 := sα1,p·C4 and C7 := sα2,p·C4. Then Fi,j = Ci ∩ Cj for
(i, j) ∈ {(3, 5), (4, 6), (4, 7)}.

Using coordinates with respect to the fundamental weights, we have

Ĉ1 ∩X+ = {(a, b) ∈ N2 | 2a+ b ≤ p− 3},

Ĉ2 ∩X+ = {(a, b) ∈ N2 | 2a+ b > p− 3, a+ b ≤ p− 2},

Ĉ3 ∩X+ = {(a, b) ∈ N2 | a+ b > p− 2, 2a+ b ≤ 2p − 3, b ≤ p− 1},

Ĉ4 ∩X+ = {(a, b) ∈ N2 | 2a+ b > 2p− 3, a ≤ p− 1, b ≤ p− 1}.
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Using Euclidean coordinates, we have

X = {(a, b) ∈ (1
2 Z)2| a+ b ∈ Z},

Ĉ1 ∩X+ = {(a, b) ∈ (1
2 N)2| a+ b ∈ N, a ≤

p− 3

2
, b ≤ a},

Ĉ2 ∩X+ = {(a, b) ∈ (1
2 N)2| a+ b ∈ N, a >

p− 3

2
, a+ b ≤ p− 2},

Ĉ3 ∩X+ = {(a, b) ∈ (1
2 N)2| a+ b ∈ N, a+ b > p− 2, a ≤ p−

3

2
, b ≤

p− 1

2
},

Ĉ4 ∩X+ = {(a, b) ∈ (1
2 N)2| a+ b ∈ N, a > p−

3

2
, b ≤

p− 1

2
, a− b ≤ p− 1}.

Moreover, a weight (a, b) ∈ X is dominant if and only if 0 ≤ b ≤ a, and (a, b) ∈ D if and
only if −1

2 ≤ b ≤ a+ 1.

Let us illustrate these alcoves with a picture. The blue arrows form the root system.
The black arrows are the fundamental weights, generating the weight lattice (in black). The
region containing the dominant weights is coloured in green. The red triangles are the walls
of the alcoves.

α2

α1

C2

C1

C3

C4

C5

C6

C7

ω2

ω1

Figure 2: Alcoves for B2 and p = 7.
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Remark 6.2. In Euclidean coordinates, we have

(1) sα1·(a, b) = (b− 1, a + 1),

(2) sα2·(a, b) = (a,−b− 1),

(3) sα1+α2,p·(a, b) = (p− 3 − a, b),

(4) sα1+2α2,p·(a, b) = (a−m, b−m) with m = (a+ b+ 2 − p).

Lemma 6.3. Let λ = (a, b), µ = (c, d) ∈ X with µ ≤ λ. Then c+ d ≤ a+ b.

Proof. Let s, t ∈ N be such that µ = λ−sα1−tα2. We have µ = (a−2s+t, b−2t+2s) =: (c, d)
and c+ d = a+ b− t ≤ a+ b.

6.2 Structure of Weyl modules and weights in irreducible modules

In this subsection, we compute the composition factors of Weyl modules with p-restricted
highest weight and the multiplicity of certain weights in irreducible modules with p-restricted
highest weight.

Lemma 6.4. Let λ = (a, b) ∈ X+ be a p-restricted dominant weight.

• If λ ∈ C1, then ∆(λ) ∼= L(λ).

• If λ ∈ Ci for i ∈ {2, 3, 4}, then ∆(λ) admits the unique composition series [L(λ), L(µ)]
where µ ∈ Ci−1 is the unique weight linked to λ.

• If λ ∈ Fi,j with (i, j) 6= (4, 7) then ∆(λ) ∼= L(λ).

• If λ ∈ F4,7 \ F4,6, then ∆(λ) admits the unique composition series [L(λ), L(µ)] where
µ ∈ F3,5 is the unique weight linked to λ.

In particular, T (λ) is irreducible if and only if λ ∈ Ĉ1 ∪ F2,3 ∪ F3,4 ∪ F3,5 ∪ F4,6.

Proof. We prove this lemma using Jantzen p-sum formula (Proposition 1.49). For a weight
λ ∈ Ci, we write λj for the unique weight in (Wp·λ) ∩ Cj . We will use Remark 1.52 and
Lemma 1.45 several times without further reference.

• If λ ∈ Ĉ1 then ∆(λ) ∼= L(λ) by Lemma 1.55.

• If λ ∈ C2, then
JSF(λ) = χ(sα1+α2,p·λ) = χ(λ1) = chL(λ1).

Therefore, χ(λ2) = chL(λ2) + chL(λ1) and chL(λ2) = χ(λ2) − χ(λ1).

• If λ ∈ C3, then

JSF(λ) = χ(sα1+α2,p·λ) + χ(sα1+2α2,p·λ) = −χ(λ1) + χ(λ2) = chL(λ2).

Therefore, χ(λ3) = chL(λ3) + chL(λ2) and chL(λ3) = χ(λ3) − χ(λ2) + χ(λ1).

• If λ ∈ C4, then

JSF(λ) = χ(sα1+α2,p·λ) + χ(sα1+α2,2p·λ) + χ(sα1+2α2,p·λ) = χ(λ1) + χ(λ3) − χ(λ2)

= chL(λ3).
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• If λ ∈ F2,3, then
JSF(λ) = χ(sα1+α2,p·λ) = 0

because sα1+α2,p·λ ∈ D \X+. Thus ∆(λ) is irreducible.

• If λ ∈ F3,4, then

JSF(λ) = χ(sα1+α2,p·λ) + χ(sα1+2α2,p·λ) = 0

because sα1+2α2,p·λ ∈ D \X+ and sα1
sα1+α2,p·λ ∈ D \X+. Thus ∆(λ) is irreducible.

• If λ ∈ F3,5, then

JSF(λ) = χ(sα1+α2,p·λ) +χ(sα1+2α2,p·λ) = −χ(sα1
sα1+α2,p·λ) +χ(sα1+2α2,p·λ) = 0

because sα1
sα1+α2,p·λ = sα1+2α2,p·λ. Thus ∆(λ) is irreducible.

• If λ ∈ F4,6, then

JSF(λ) = χ(sα1+α2,p·λ) + χ(sα1+α2,2p·λ) + χ(sα1+2α2,p·λ)

= χ(sα1+α2,2p·λ) − χ(sα2
sα1+2α2,p·λ) = 0

where we used that sα1+α2
sα1+α2,p·λ ∈ D \ X+ in the second equality and

sα1+α2,2p·λ = sα2
sα1+2α2,p·λ in the last equality. Thus ∆(λ) is irreducible.

• If λ ∈ F4,7 \ F4,6, then

JSF(λ) = χ(sα1+α2,p·λ) + χ(sα1+α2,2p·λ) + χ(sα1+2α2,p·λ)

= χ(sα1
sα1+α2

sα1+α2,p·λ) + χ(sα1+α2,2p·λ) − χ(sα2
sα1+2α2,p·λ)

= χ(sα1+α2,2p·λ)

where we used that sα1
sα1+α2

sα1+α2,p·λ = sα2
sα1+2α2,p·λ in the last equality. Now

observe that sα1+α2,2p·λ ∈ F3,5, so χ(sα1+α2,2p·λ) = chL(sα1+α2,2p·λ) by one of the
previous cases and we are done.

The last claim follows directly from Lemma 1.37.

Combining Lemma 6.4 and Remark 6.2, we get the following remark.

Remark 6.5. In this remark, we use Euclidean coordinates. Let λ = (a, b) ∈ X+. We set
m := a+ b+ 2 − p.

• If λ ∈ Ĉ2, then chL(λ) = χ(a, b) − χ(p− 3 − a, b).

• If λ ∈ C3, then χ(a, b) = chL(a, b) + chL(a−m, b−m).

Lemma 6.6 ([Tes88, 1.35].). Let λ = (a, b) ∈ X+ be p-restricted with a 6= 0 and b 6= 0.
Then

mL(λ)(λ− α1 − α2) =

®
1 if 2a+ b+ 2 ≡ 0 mod p,

2 otherwise.
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Lemma 6.7. Let λ = (a, b) ∈ X+. We have the following weight multiplicities:

λ = (a, b) a ≥ 1, b ≥ 2 a ≥ 1, b = 1 a = 0, b ≥ 2 a ≥ 1, b = 0 a = 0, b = 1

m∆(λ)(λ) 1 1 1 1 1

m∆(λ)(λ− α1) 1 1 0 1 0

m∆(λ)(λ− α2) 1 1 1 0 1

m∆(λ)(λ− α1 − α2) 2 2 1 1 1

m∆(λ)(λ− 2α2) 1 0 1 0 0

m∆(λ)(λ− α1 − 2α2) 3 2 2 1 1

Moreover, for λ = (a, 0) ∈ X+ with a ≥ 2, we have

m∆(a,0)(λ− α1 − α2) = 1, m∆(a,0)(λ− α1 − 2α2) = 1, m∆(a,0)(λ− 2α1 − α2) = 1,

m∆(a,0)(λ− 2α1 − 2α2) = 2.

Proof. This follows from Proposition 1.25 and tables of dominant weights ([Bre85]).

Lemma 6.8. Let λ = (a, b) ∈ X+ with 1 ≤ a < p and 2 ≤ b < p. Then

mL(λ)(λ− α1 − 2α2) =





2 if 2a+ b+ 2 ≡ 0 mod p,

2 if a+ b = p− 1,

3 otherwise.

Proof.

• If 2a+ b+ 2 = p, then λ ∈ C2 and by Lemma 6.4, ∆(λ) admits the unique composition
series [L(λ), L(λ − α1 − α2)]. By Lemma 6.7, we get

mL(λ)(λ−α1 − 2α2) = m∆(λ)(λ−α1 − 2α2) −m∆(λ−α1−α2)(λ−α1 − 2α2) = 3 − 1 = 2.

• If 2a + b + 2 = 2p, then λ ∈ C4 ∪ (F4,7 \ F4,6) and by Lemma 6.4, ∆(λ) admits the
unique composition series [L(λ), L(λ − α1 − α2)]. By Lemmas 6.7 and 1.15, we get

mL(λ)(λ−α1 − 2α2) = m∆(λ)(λ−α1 − 2α2) −mL(λ−α1−α2)(λ−α1 − 2α2) = 3 − 1 = 2.

• If a+ b = p− 1, then λ ∈ C3 and by Lemma 6.4, ∆(λ) admits the unique composition
series [L(λ), L(λ − α1 − 2α2)]. By Lemma 6.7, we get

mL(λ)(λ−α1 − 2α2) = m∆(λ)(λ−α1 − 2α2) −m∆(λ−α1−2α2)(λ−α1 − 2α2) = 3 − 1 = 2.

• In all other cases, either ∆(λ) ∼= L(λ) or all composition factors of ∆(λ) except L(λ)
have highest weight ν � λ− α1 − 2α2, thus

mL(λ)(λ− α1 − 2α2) = m∆(λ)(λ− α1 − 2α2) = 3

by Lemma 6.7.

Lemma 6.9. Let λ = (a, 1) ∈ X+ with 1 ≤ a < p. Then

mL(λ)(λ− α1 − 2α2) =

®
1 if 2a+ 3 = p,

2 otherwise.
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Proof.

• If 2a + 3 = p, then λ ∈ C2 and by Lemma 6.4, ∆(λ) admits the unique composition
series [L(λ), L(λ − α1 − α2)]. By Lemma 6.7, we get

mL(λ)(λ−α1 − 2α2) = m∆(λ)(λ−α1 − 2α2) −m∆(λ−α1−α2)(λ−α1 − 2α2) = 2 − 1 = 1.

• In all other cases, either ∆(λ) ∼= L(λ) or all composition factors of ∆(λ) except L(λ)
have highest weight ν � λ− α1 − 2α2, thus

mL(λ)(λ− α1 − 2α2) = m∆(λ)(λ− α1 − 2α2) = 2

by Lemma 6.7.

Lemma 6.10. Let 2 ≤ a < p and set W := ∆(1, 0). Then χ(a, 0) = chSa(W )− chSa−2(W )
and ∆(0, a) ∼= Sa(∆(0, 1)). In particular χ(0, a) = chSa(∆(0, 1)).

Proof. For χ(a, 0), see [FH04, §19.5]. For ∆(0, a), observe that Sa(∆(0, 1)) admits a maximal
vector of weight (0, a). By Lemma 1.22, there exists a non-zero morphism
θ : ∆(0, a) → Sa(∆(0, 1)). By Lemma 6.4, ∆(0, a) is irreducible, thus θ is injective. To show
that θ is surjective and thus an isomorphism, it is enough to show that
dim ∆(0, a) = dimSa(∆(0, 1)). Using usual multilinear algebra, we have
dimSa(∆(0, 1)) =

(
a+3

3

)
. On the other hand, using Weyl’s degree formula (Corollary 1.43),

with the choice (α2, α2) = 2 (and hence (α1, α1) = 4), we have

dim ∆(0, a) =
(λ+ ρ, α1)(λ+ ρ, α2)(λ+ ρ, α1 + α2)(λ+ ρ, α1 + 2α2)

(ρ, α1)(ρ, α2)(ρ, α1 + α2)(ρ, α1 + 2α2)

=
2(a+ 1)(a + 3)(2a+ 4)

2 · 1 · 3 · 4
=

Ç
a+ 3

3

å
,

hence we are done.

Notation 6.11. Let λ = xǫ1 + yǫ2 ∈ X. We define its 1−norm

‖λ‖ := |x| + |y|

and its ∞-norm
|λ|∞ := max{|x|, |y|}.

Lemma 6.12. Let a ∈ N and λ ∈ X. We have

m∆(a,0)(λ) =

®
⌊a−‖λ‖

2 ⌋ + 1 if ‖λ‖ ∈ N and ‖λ‖ ≤ a,

0 else.

Proof. In this proof, we use Euclidean coordinates. We set W := ∆(1, 0). Let k ∈ N. We
compute mSkW (λ) and then use Lemma 6.10.

Let i := ⌊k−‖λ‖
2 ⌋. We claim that

mSkW (λ) =

®(2+i
2

)
if ‖λ‖ ∈ N and ‖λ‖ ≤ k,

0 else.

We know that dimW = 5 and W admits the five weights 0,±ǫ1,±ǫ2, all of them with
multiplicity 1. We fix (v−2, v−1, v0, v1, v2) an ordered basis of W with v0 a weight vector
associated to 0 and v±i a weight vector associated to ±ǫi for i = 1, 2. By multilinear algebra,
SkW admits the basis {vi1 ⊗· · ·⊗vik}i1≤i2≤...≤ik and there exists a natural bijection between
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this basis and the set {(x, y, z, s, t) ∈ N5 | x+ y+ z+ s+ t = k} where x is the number of vij
with ij = −2, y is the number of vij with ij = −1, and so on. Moreover, under this bijection,
a basis vector associated to (x, y, z, s, t) is a weight vector with weight (t− x)ǫ2 + (s− y)ǫ1.
Thus, to compute mSkW (λ), we will count the number of 5-tuples (x, y, z, s, t) with associated
weight λ. Let us write λ = fǫ1 + gǫ2. Then (x, y, z, s, t) is associated to λ if t − x = g and
s− y = f . In particular, we need ‖λ‖ ∈ N and ‖λ‖ ≤ k. In this case, we get

mSkW (λ) = |{(x, y, z, s, t) ∈ N5 | x+ y + z + s+ t = k, t− x = g, s− y = f}|.

Up to symmetry we can assume that both f and g are non-negative. We get

mSkW (λ) = |{(x, y, z, s, t) ∈ N5 | x+ y + z + s+ t = k, t− x = g, s− y = f}|

= |{(x, y, z) ∈ N3 | 2x+ g + 2y + f + z = k}|

= |{(x, y, z) ∈ N3 | 2x+ 2y + z = k − ‖λ‖}|.

If k − ‖λ‖ is odd, then so is z, and we have

|{(x, y, z) ∈ N3 | 2x+ 2y+ z = k− ‖λ‖}| = |{(x, y, z) ∈ N3 | 2x+ 2y+ (z− 1) = k− ‖λ‖ − 1}|.

In this case, let z′ := (z − 1)/2. We get

mSkW (λ) = |{(x, y, z′) ∈ N3 | 2x+ 2y + 2z′ = k − ‖λ‖ − 1}|

= |{(x, y, z′) ∈ N3 | x+ y + z′ = (k − ‖λ‖ − 1)/2}|

=

Ç
2 + (k − ‖λ‖ − 1)/2

2

å

=

Ç
2 + ⌊(k − ‖λ‖)/2⌋

2

å

where the third equality is a well-known combinatorial result, see for example [MN08, 3.3].
Now suppose that k − ‖λ‖ and z are even, and set z′ := z/2. Using the same reasoning we
get

mSkW (λ) = |{(x, y, z′) ∈ N3 | 2x+ 2y + 2z′ = k − ‖λ‖}|

= |{(x, y, z′) ∈ N3 | x+ y + z′ = (k − ‖λ‖)/2}|

=

Ç
2 + (k − ‖λ‖)/2

2

å

=

Ç
2 + ⌊(k − ‖λ‖)/2⌋

2

å
.

Hence in both cases we are done with our claim.

Now let i := ⌊a−‖λ‖
2 ⌋ and observe that ⌊ (a−2)−‖λ‖

2 ⌋ = i− 1. For ‖λ‖ ∈ N and ‖λ‖ ≤ a− 2,
by Lemma 6.10, we have

m∆(a,0)(λ) = mSaW (λ) −mSa−2W (λ) =

Ç
2 + i

2

å
−

Ç
1 + i

2

å
=

(2 + i)!

2!i!
−

(1 + i)!

2!(i − 1)!

=
(2 + i)! − i(1 + i)!

2!i!
=

2(i+ 1)!

2!i!
= i+ 1 = ⌊

a− ‖λ‖

2
⌋ + 1.
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If ‖λ‖ ∈ {a, a − 1}, then i = 0 and

m∆(a,0)(λ) = mSaW (λ) =

Ç
2

2

å
= 1.

If ‖λ‖ /∈ N or if ‖λ‖ > a, we conclude that m∆(a,0)(λ) = 0.

Corollary 6.13. Let a ∈ N. We set

Y (i, j) := ⌊
a− |i| − |j|

2
⌋ + 1.

We have

χ(a, 0) =
a∑

i=0

a−i∑

j=i−a

Y (i, j)ejǫ1+iǫ2 +
a∑

i=1

a−i∑

j=i−a

Y (i, j)ejǫ1−iǫ2.

Proof. This is a direct consequence of Lemma 6.12.

Corollary 6.14. Let a = p−1
2 and λ ∈ X. Then

mL(a,0)(λ) =

®
1 if ‖λ‖ ∈ N and ‖λ‖ ≤ a,

0 else.

In particular, we have

chL(a, 0) =
a∑

i=0

a−i∑

j=i−a

ejǫ1+iǫ2 +
a∑

i=1

a−i∑

j=i−a

ejǫ1−iǫ2.

Proof. Observe that (a, 0) ∈ C2. Moreover, sα1+α2,p·(a, 0) = (a− 2, 0), so (a− 2, 0) ∈ C1 is
the only weight in the first alcove linked to (a, 0). By Lemmas 6.4 and 6.13, we have

mL(a,0)(λ) = m∆(a,0)(λ) −m∆(a−2,0)(λ)

=





⌊a−‖λ‖
2 ⌋ + 1 −

Ä
⌊a−2−‖λ‖

2 ⌋ + 1
ä

if ‖λ‖ ∈ N and ‖λ‖ ≤ a− 2,

⌊a−‖λ‖
2 ⌋ + 1 if ‖λ‖ ∈ {a, a− 1},

0 else.

Observe that ⌊a−‖λ‖
2 ⌋ + 1 = 1 for ‖λ‖ ∈ {a, a− 1} and

⌊
a− ‖λ‖

2
⌋ + 1 −

Å
⌊
a− 2 − ‖λ‖

2
⌋ + 1

ã
= ⌊1 +

a− 2 − ‖λ‖

2
⌋ − ⌊

a− 2 − ‖λ‖

2
⌋ = 1,

which allows us to conclude.

Lemma 6.15. Let 0 ≤ b < p and λ ∈ X. Then

mL(0,b)(λ) = m∆(0,b)(λ) =

®
( b2 − |λ|∞) + 1 if b

2 − |λ|∞ ∈ N,

0 else.

Proof. Let V := ∆(0, 1). First, observe that L(0, b) = ∆(0, b) = SbV by Lemmas 6.4
and 6.10. We know that dimV = 4 and V admits the four weights 1

2(±ǫ1 ± ǫ2), all of
them with multiplicity 1. We fix a basis of weight vectors (v−2, v−1, v1, v2) with v±2 associ-
ated to ±1

2(ǫ1 + ǫ2) and v±1 to ±1
2(ǫ1 − ǫ2). By multilinear algebra, SbV admits the basis

{vi1 ⊗ · · · ⊗ vik }i1≤i2≤...≤ik and there exists a natural bijection between this basis and the
set {(x, y, s, t) ∈ N4 | x + y + s + t = b} where x is the number of vij with ij = −2, y is
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the number of vij with ij = −1, and so on. Moreover, under this bijection, a basis vector
associated to (x, y, s, t) is a weight vector with weight

(t− x)
1

2
(ǫ1 + ǫ2) + (s− y)

1

2
(ǫ1 − ǫ2) =

1

2
(t + s− x− y)ǫ1 + (t+ y − x− s)ǫ2.

Thus, to compute mSbV (λ), we will count the number of 4-tuples (x, y, s, t) with associated
weight λ. Let us write λ = f 1

2(ǫ1 + ǫ2) + g 1
2 (ǫ1 − ǫ2). Then (x, y, s, t) is associated to λ if

t− x = f and s− y = g. Therefore we get

mSbV (λ) = |{(x, y, s, t) ∈ N4 | x+ y + s+ t = b, t− x = f, s− y = g}|.

Up to symmetry we can assume that both f and g are non-negative. In particular, this
implies that |λ|∞ = 1

2 (f + g), so we get

mSbV (λ) = |{(x, y, s, t) ∈ N4 | x+ y + s+ t = b, t− x = f, s− y = g}|

= |{(x, y) ∈ N2 | 2x+ f + 2y + g = b}|

= |{(x, y) ∈ N2 | 2x+ 2y = b− 2|λ|∞}|

= |{(x, y) ∈ N2 | x+ y = 1
2b− |λ|∞}|.

Clearly, the equality x + y = 1
2b − |λ|∞ cannot be satisfied for x, y ∈ N if 1

2b − |λ|∞ /∈ N.
Thus we can restrict our attention to the case 1

2b − |λ|∞ ∈ N, and using the combinatorial
result ([MN08, 3.3]) again, we get

mSbV (λ) = |{(x, y) ∈ N2 | x+ y = 1
2b− |λ|∞} =

Ç
1
2b− |λ|∞ + 1

1

å
= 1

2b− |λ|∞ + 1,

thus we are done.

6.3 Classification results

In all statements of this section, unless stated otherwise, we use coordinates with respect
to the fundamental weights.

We start by stating a theorem from Stembridge ([Ste03, Theorem 1.1.B]) which classifies
multiplicity-free tensor products of simple Sp4(C)-modules.

Theorem 6.16. Let λ = (a, b), µ = (c, d) ∈ X+ be dominant weights. Up to the reordering
of λ and µ, LC(λ) ⊗ LC(µ) is multiplicity-free if and only if one of the following holds:

(1) a = 0 and b = 1,

(2) a = 1 and b = 0,

(3) a = d = 0,

(4) a = c = 0,

(5) b = 0 and d = 1, or

(6) b = d = 0.

Proposition 6.17. Let λ ∈ C2 and µ ∈ Ĉ1. If λ+µ ∈ C3, then L(λ)⊗L(µ) has multiplicity.
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Proof. Let λ′ := sα1+α2,p·λ ∈ C1, so that ∆(λ) admits the unique composition series
[L(λ), L(λ′)] and let η := sα1+2α2,p·(λ + µ) ∈ C2, so that ∆(λ + µ) admits the unique
composition series [L(λ+ µ), L(η)] (Lemma 6.4). We have a short exact sequence

0 L(λ′) ∆(λ) L(λ) 0.

By Lemma 6.4, we have L(µ) ∼= ∆(µ) and L(λ′) ∼= ∆(λ′). Taking the tensor product with
L(µ), we get the short exact sequence

0 ∆(λ′) ⊗ ∆(µ) ∆(λ) ⊗ ∆(µ) L(λ) ⊗ L(µ) 0.
φ ψ

By Lemma 1.57, ∆(λ)⊗∆(µ) admits a submodule isomorphic to ∆(λ+µ). We will abuse
the notation and denote it by ∆(λ+ µ). Thus, we can restrict our exact sequence to

0 φ−1(∆(λ+ µ)) ∆(λ+ µ) ψ(∆(λ+ µ)) 0.
φ ψ

Suppose for contradiction that L(λ) ⊗ L(µ) is multiplicity-free. Then in particular it is
completely reducible, and ψ(∆(λ + µ)) is completely reducible (Proposition 1.13). There-
fore, rad ∆(λ + µ) ⊆ ker(ψ) and ψ(∆(λ + µ)) ∼= L(λ + µ) or ψ(∆(λ + µ)) = 0. We claim
that the second case is impossible. By exactness, it would imply φ−1(∆(λ+µ)) ∼= ∆(λ+µ),
but λ + µ � λ′ + µ, so it cannot appear as a submodule of ∆(λ′) ⊗ ∆(µ). Thus,
φ−1(∆(λ+ µ)) ∼= L(η) and it is a submodule of ∆(λ′) ⊗ ∆(µ).

Using Theorem 1.28, we fix

0 = V0 ⊆ V1 ⊆ . . . ⊆ Vm = ∆(λ′) ⊗ ∆(µ)

a Weyl filtration. Thus there exist ν1, . . . , νm ∈ X+ such that Vi/Vi−1
∼= ∆(νi) for

i ∈ {1, . . . ,m}. We set Wi := Vi ∩ φ−1(∆(λ + µ)). Since φ−1(∆(λ + µ)) is irreducible,
then Wi = 0 or Wi

∼= L(η). Let j be minimal such that Wj
∼= L(η) (in particular Wj−1 = 0).

We have the following situation

0 Vj−1 Vj ∆(νj) 0

L(η)

πj

Since ker πj = Vj−1 and Wj ∩ Vj−1 = Wj−1 = 0, we have an injective map L(η) → ∆(νj), so
L(η) is a submodule of ∆(νj). In particular, L(η) is a composition factor of ∆(νj), so η ↑ νj
by the Strong Linkage Principle (Proposition 1.53). Recall at this step that η ↑ λ+µ. Now,
observe that νj ≤ λ′ + µ < λ + µ, so νj 6= λ + µ. By the geometry of alcoves, it follows
that νj ∈ C2, so η = νj. But L(η) is not a submodule of ∆(η) (Lemma 6.4), so we get a
contradiction. Therefore, L(λ) ⊗ L(µ) has multiplicity.

6.3.1 L(0, b) ⊗ L(0, d)

Proposition 6.18. Let λ = (0, b), µ = (0, d) ∈ X+ be p-restricted dominant weights with
0 < b, d < p. Then L(λ) ⊗ L(µ) is multiplicity-free if and only if one of the following holds:

(1) b+ d ≤ p− 3 (i.e. λ+ µ ∈ Ĉ1) or

(2) (b, d) ∈ {(1, p − 2), (p − 2, 1)}.
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Proof. We set M := L(λ) ⊗ L(µ). By Lemma 6.4, L(λ) and L(µ) are tilting modules, so M
is a tilting module.

If b+ d ≥ p, we conclude directly from Corollary 2.8 that M has multiplicity.

If b+ d ≤ p− 3 (i.e. λ+ µ ∈ Ĉ1), we apply Corollary 3.4 and Theorem 6.16 to conclude
that M is multiplicity-free.

Suppose that b+ d = p− 2. By Lemma 1.15, we have

mL(λ)(λ− α2) = 1, mL(µ)(µ − α2) = 1, mL(λ+µ)(λ+ µ− α2) = 1.

Using Argument 1, we have

mM (λ+ µ− α2) = 1 + 1 = 2,

and we deduce that L(λ + µ − α2) is a composition factor of M . Observe that
λ + µ − α2 = (1, p − 4) ∈ C2, so T (λ + µ − α2) is not irreducible by Lemma 6.4. We
can thus conclude by Lemma 1.36 that M has multiplicity.

If b+ d = p− 1 and b 6= 1, d 6= 1, we use Argument 1. By Lemma 1.15, we have

mL(λ)(λ− α2) = 1, mL(λ)(λ− 2α2) = 1,

mL(µ)(µ− α2) = 1, mL(µ)(µ− 2α2) = 1,

mL(λ+µ)(λ+ µ− α2) = 1, mL(λ+µ)(λ+ µ− 2α2) = 1,

mL(λ+µ−α2)(λ+ µ− α2) = 1, mL(λ+µ−α2)(λ+ µ− 2α2) = 1.

Therefore, we get

mM (λ+ µ− α2) = 2, mM (λ+ µ− 2α2) = 3.

We deduce that L(λ + µ − 2α2) is a composition factor of M . Observe that
λ + µ − 2α2 = (2, p − 5) ∈ C2, so T (λ + µ − α2) is not irreducible by Lemma 6.4. As
in the previous case, we conclude by Lemma 1.36 that M has multiplicity.

Finally, consider the case b = 1, d = p − 2 (the case b = p − 2, d = 1 is symmetric). By
Proposition 1.47 and Lemmas 6.4 and 1.45, we have

chM = χ(λ)χ(µ) = χ(0, p − 1) + χ(1, p − 3) + χ(0, p − 3) + χ(−1, p− 1)

= chL(0, p − 1) + chL(1, p − 3) + chL(0, p − 3).

Therefore, M is multiplicity-free.

6.3.2 L(a, 0) ⊗ L(c, 0)

Lemma 6.19. Let a, c ∈ N. We use Euclidean coordinates. For i, j ∈ Z, we set

δ(a, i, j) :=

®
1 if a− i− j is even,

0 if a− i− j is odd.

Then

χ(aω1)χ(cω1) =
a∑

i=0

a−i∑

j=i−a

δ(a, i, j)χ(c + j, i).

Moreover, if a ≤ c, then all the weights on the right hand side of the equality are dominant.
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Proof. In this proof we use Euclidean coordinates. Like in Corollary 6.13, we set

Y (i, j) := ⌊
a− |i| − |j|

2
⌋ + 1.

Using Proposition 1.47 and Corollary 6.13 in the first equality below, Lemma 1.45 in the
second one and Remark 6.2 in the third one, we get

χ(aω1)χ(cω1) =
a∑

i=0

a−i∑

j=i−a

Y (i, j)χ(c + j, i) +
a∑

i=1

a−i∑

j=i−a

Y (i, j)χ(c + j,−i)

=
a∑

i=0

a−i∑

j=i−a

Y (i, j)χ(c + j, i) −
a∑

i=1

a−i∑

j=i−a

Y (i, j)χ(sα2·(c+ j,−i))

=
a∑

i=0

a−i∑

j=i−a

Y (i, j)χ(c + j, i) −
a∑

i=1

a−i∑

j=i−a

Y (i, j)χ(c + j, i − 1)

=
a∑

i=0

a−i∑

j=i−a

Y (i, j)χ(c + j, i) −
a−1∑

i=0

a−i−1∑

j=i+1−a

Y (i+ 1, j)χ(c + j, i)

=
a−1∑

i=0

a−i−1∑

j=i+1−a

(Y (i, j) − Y (i+ 1, j))χ(c + j, i)

+
a−1∑

i=0

Y (i, a− i)χ(c+ a− i, i) + Y (i, i− a)χ(c+ i− a, i)

+ Y (a, 0)χ(c, a).

For i ∈ {0, . . . , a − 1}, we have Y (i, a − i) = Y (i, i − a) = 1 = δ(a, i,±(a − i)), and
Y (a, 0) = 1 = δ(a, a, 0). Moreover

Y (i, j) − Y (i+ 1, j) = (⌊
a− |i| − |j|

2
⌋ + 1) − (⌊

a− |i+ 1| − |j|

2
⌋ + 1) = δ(a, i, j).

Therefore, we get

χ(aω1)χ(cω1) =
a−1∑

i=0

a−i−1∑

j=i+1−a

δ(a, i, j)χ(c + j, i)

+
a−1∑

i=0

δ(a, i, a − i)χ(c + a− i, i) + δ(a, i, i − a)χ(c+ i− a, i)

+ δ(a, a, 0)χ(c, a)

=
a∑

i=0

a−i∑

j=i−a

δ(a, i, j)χ(c + j, i). (38)

Finally, if 0 ≤ i, a ≤ c and i− a ≤ j, then 0 ≤ i ≤ i+ (c− a) ≤ c+ j, hence all the weights
appearing in line (38) are dominant.

Proposition 6.20. Let λ = (a, 0), µ = (c, 0) ∈ X+ be two p-restricted dominant weights

with 0 < a < c, c ≥ p−1
2 and a + c < p − 1 (i.e. λ ∈ Ĉ1, µ ∈ C2 and λ + µ ∈ Ĉ2). Then

L(λ) ⊗ L(µ) is multiplicity-free.
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Proof. In this proof we use Euclidean coordinates. We set M := L(λ) ⊗ L(µ) and
m := 2c− p+ 2. Like in Lemma 6.19, for i, j ∈ Z, we set

δ(a, i, j) :=

®
1 if a− i− j is even,

0 if a− i− j is odd.

Note that δ(a, i, j) = δ(a, i,−j).

By Remark 6.5 and Proposition 1.47, and using Lemma 6.19 in the second equality below,
we have

chM =χ(a, 0)(χ(c, 0) − χ(p − 3 − c, 0))

=
a∑

i=0

a−i∑

j=i−a

δ(a, i, j)χ(c + j, i) −
a∑

i=0

a−i∑

j=i−a

δ(a, i, j)χ(p − 3 − c+ j, i)

=
a∑

i=0

a−i∑

j=i−a

δ(a, i, j)χ(c + j, i) −
a∑

i=0

a−i∑

j=i−a

δ(a, i,−j)χ(p − 3 − c− j, i)

=
a∑

i=0

a−i∑

j=max{i−a,a−i−m}

δ(a, i, j)χ(c + j, i) +
a∑

i=0

a−i−m−1∑

j=i−a

δ(a, i, j)χ(c + j, i)

−
a∑

i=0

a−i∑

j=max{i−a,a−i−m}

δ(a, i,−j)χ(p − 3 − c− j, i)

−
a∑

i=0

a−i−m−1∑

j=i−a

δ(a, i,−j)χ(p − 3 − c− j, i)

=
a∑

i=0

a−i∑

j=max{i−a,a−i−m}

δ(a, i, j)(χ(c + j, i) − χ(p− 3 − c− j, i)) (39)

+
a∑

i=0

(
a−i−m−1∑

j=i−a

δ(a, i, j)χ(c + j, i) −
a−i−m−1∑

j=i−a

δ(a, i, j)χ(p − 3 − c− j, i)

)
(40)

We show that line (40) is equal to zero. We have

a−i−m−1∑

j=i−a

δ(a, i, j)χ(c + j, i) −
a−i−m−1∑

j=i−a

δ(a, i, j)χ(p − 3 − c− j, i)

=
a−i−m−1∑

j=i−a

δ(a, i, j)χ(c + j, i)

−
a−i−m−1∑

j=i−a

δ(a, i,−m − 1 − j)χ(p − 3 − c− (−m− 1 − j), i)

=
a−i−m−1∑

j=i−a

δ(a, i, j)χ(c + j, i) −
a−i−m−1∑

j=i−a

δ(a, i,−m − 1 − j)χ(c + j, i)

=
a−i−m−1∑

j=i−a

(δ(a, i, j) − δ(a, i,−m − 1 − j))χ(c + j, i) = 0,
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where in the last equality, we use that m is odd, thus −m − 1 is even and
δ(a, i,−m − 1 − j) = δ(a, i, j). Therefore

a∑

i=0

(
a−i−m−1∑

j=i−a

δ(a, i, j)χ(c + j, i) −
a−i−m−1∑

j=i−a

δ(a, i, j)χ(p − 3 − c− j, i)

)
=

a∑

i=0

0 = 0.

Now we work on line (39). For 0 ≤ i ≤ a and max {i− a, a− i−m} ≤ j ≤ a − i, we

claim that (c+ j, i) ∈ Ĉ2. Indeed, we have i ≥ 0 and

(c+ j) + i ≤ c+ (a− i) + i ≤ p− 2

by assumption. Thus it remains to show that c+ j > p−3
2 . If i− a ≥ p−1

2 − c, then

c+ j ≥ c+ i− a ≥
p− 1

2
>
p− 3

2
,

hence we are done. If i− a < p−1
2 − c, then a− i > c− p−1

2 and

c+ j ≥ c+ a− i−m > 2c−
p− 1

2
−m = 2c−

p− 1

2
− (2c− p+ 2) =

p− 3

2
.

so we are done. Using Remark 6.5, we get

chM =
a∑

i=0

a−i∑

j=max{i−a,a−i−m}

δ(a, i, j)(χ(c + j, i) − χ(p− 3 − c− j, i))

=
a∑

i=0

a−i∑

j=max{i−a,a−i−m}

δ(a, i, j) ch L(c+ j, i).

We conclude that M is multiplicity-free.

Proposition 6.21. Let λ = (a, 0), µ = (c, 0) ∈ X+ be p-restricted dominant weights with
0 < a ≤ c. Then L(λ) ⊗ L(µ) is multiplicity-free if and only if one of the following holds:

(1) a+ c ≤ p−3
2 (i.e. λ+ µ ∈ Ĉ1),

(2) c ≥ p−1
2 and a+ c < p− 1 or

(3) a = c = p−1
2 .

Proof. We set M := L(λ) ⊗ L(µ).
If a+ c ≥ p, we use Corollary 2.8 to conclude that M has multiplicity.

If a + c ≤ p−3
2 (i.e. λ + µ ∈ Ĉ1), we apply Corollary 3.4 and Theorem 6.16 to conclude

that M is multiplicity-free.

Suppose that c ≤ p−3
2 and a+ c > p−3

2 (i.e. µ ∈ Ĉ1 and λ+ µ ∈ C2). In this case, L(λ)
and L(µ) are tilting modules by Lemma 6.4, hence M is a tilting module. Since T (λ+ µ) is
not irreducible by Lemma 6.4, we conclude that M has multiplicity by Lemma 1.36.

Consider the case a = 1, c = p − 2 (in particular µ ∈ F2,3, λ ∈ Ĉ1 and λ+ µ ∈ F4,6). By
Lemma 6.4, we have L(λ) and L(µ) are tilting modules, therefore M is a tilting module. We
use Argument 1. By Lemma 1.15, we have

mL(λ)(λ− α1) = 1, mL(µ)(µ − α1) = 1, mL(λ+µ)(λ+ µ− α1) = 1.
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Since mM (λ + µ − α1) = 2, we deduce that L(λ + µ − α1) is a composition factor of M .
Observe that λ+µ−α1 = (p− 3, 2) ∈ C3, so T (λ+µ−α1) is not irreducible by Lemma 6.4.
We conclude by Lemma 1.36 that M has multiplicity.

If a + c = p − 1 and a 6= 1, p−1
2 , then p−1

2 < c < p − 2 (i.e. λ ∈ Ĉ1 and µ ∈ C2)
and by Lemma 6.4, we have L(λ) ∼= ∆(λ). Moreover, ∆(µ) admits the unique composi-
tion series [L(µ), L(η)] with η = sα1+α2,p·µ ∈ C1. Since c ≥ p+1

2 , we have in particular
η < µ − 2α1 − 2α2, thus mL(µ)(ν) = m∆(µ)(ν) for all weights ν ≥ λ − 2α1 − 2α2. We use
Argument 1 to show that [M : L(λ+µ− 2α1 − 2α2)] = 2. Using Lemmas 6.7 and 1.15 (note
that a ≥ 2), we have

mM (λ+ µ) = 1, mM (λ+ µ− α1) = 2,

mM (λ+ µ− 2α1) = 3, mM (λ+ µ− α2) = mM(λ+ µ− 2α2) = 0,

mM (λ+ µ− α1 − α2) = 2, mM (λ+ µ− α1 − 2α2) = 2,

mM (λ+ µ− 2α1 − α2) = 4, mM (λ+ µ− 2α1 − 2α2) = 7.

We deduce that

[M : L(λ+ µ)] = [M : L(λ+ µ− α1)] = [M : L(λ+ µ− 2α1)] = 1,

[M : L(λ+ µ− α2)] = [M : L(λ+ µ− 2α2)] = 0.

By Lemma 6.4, L(λ + µ) ∼= ∆(λ + µ). Moreover, λ + µ − α1 = (p − 3, 2). Thus, using
Lemmas 1.15 and 6.7, we get

[M : L(λ+ µ− α1 − α2)] = 0, and [M : L(λ+ µ− α1 − 2α2)] = 0.

Since 2(p− 3) + 2 + 2 6≡ 0 mod p, we have mL(λ+µ−α1)(λ+µ− 2α1 −α2) = 2 by Lemma 6.6.
By Lemma 1.15, we have mL(λ+µ−2α1)(λ+ µ− 2α1 − α2) = 1. Moreover, by Lemma 6.7, we
have mL(λ+µ)(λ+ µ− 2α1 − α2) = 1. Therefore,

[M : L(λ+ µ− 2α1 − α2)] = 0.

Finally observe that (p− 3) + 2 = p− 1. Thus, using Lemmas 6.7, 6.8 and 1.15, we have

mL(λ+µ)(λ+ µ− 2α1 − 2α2) = 2, mL(λ+µ−α1)(λ+ µ− 2α1 − 2α2) = 2,

mL(λ+µ−2α1)(λ+ µ− 2α1 − 2α2) = 1.

We conclude that

[M : L(λ+ µ− 2α1 − 2α2)] = 7 − 2 − 2 − 1 = 2.

In particular, M has multiplicity.

If c ≥ p−1
2 and a+ c < p− 1 then M is multiplicity-free by Proposition 6.20.

Finally, suppose that a = c = p−1
2 (i.e. λ, µ ∈ C2 and λ+ µ ∈ F4,6). We show that M is

multiplicity-free. We have
sα1+α2,p·µ = µ− 2(α1 + α2).
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For the rest of this proof we use Euclidean coordinates. Using Corollary 1.48 and Lemma 6.4
in the first equality below, Corollary 6.14 in the second one and Lemma 1.45 in the third
one, we get

chM =
∑

ν∈X

mL(λ)(ν)(χ(µ + ν) − χ(µ − 2(α1 + α2) + ν))

=
a∑

i=0

a−i∑

j=i−a

χ(a+ j, i) − χ(a− 2 + j, i) +
a∑

i=1

a−i∑

j=i−a

χ(a+ j,−i) − χ(a− 2 + j,−i)

=
a∑

i=0

a−i∑

j=i−a

χ(a+ j, i) −
a∑

i=1

a−i∑

j=i−a

χ(sα2·(a+ j,−i))

−
a∑

i=0

a−i∑

j=i−a

χ(a− 2 + j, i) +
a∑

i=1

a−i∑

j=i−a

χ(sα2·(a− 2 + j,−i))

=
a∑

i=0

a−i∑

j=i−a

χ(a+ j, i) −
a∑

i=1

a−i∑

j=i−a

χ(a+ j, i − 1)

−
a∑

i=0

a−i∑

j=i−a

χ(a− 2 + j, i) +
a∑

i=1

a−i∑

j=i−a

χ(a− 2 + j, i − 1)

=
a∑

i=0

a−i∑

j=i−a

χ(a+ j, i) −
a−1∑

i=0

a−i−1∑

j=i+1−a

χ(a+ j, i)

−
a∑

i=0

a−i∑

j=i−a

χ(a− 2 + j, i) +
a−1∑

i=0

a−i−1∑

j=i+1−a

χ(a− 2 + j, i)

=

Ç
a−1∑

i=0

χ(i, i) + χ(2a− i, i)

å
+ χ(a, a)

−

Ç
a−1∑

i=0

χ(i− 2, i) + χ(2a− 2 − i, i)

å
− χ(a− 2, a)

=
a∑

i=0

χ(i, i) + χ(2a, 0) +
a−1∑

i=1

χ(2a− i, i)

−
a−2∑

i=0

χ(2a− 2 − i, i) − χ(a− 1, a− 1) − χ(−2, 0) −
a−1∑

i=1

χ(i− 2, i) − χ(a− 2, a).

At this step, recall that we use Euclidean coordinates and observe that (i, i) ∈ Ĉ1 ∪F2,3 ∪F3,5

for 0 ≤ i ≤ a = p−1
2 . Thus, by Lemma 6.4, we have χ(i, i) = chL(i, i). Similarly,

(2a, 0) = (p− 1, 0) ∈ F4,6, hence χ(2a, 0) = chL(2a, 0) by Lemma 6.4. Using those facts and
Lemma 1.45, we get

chM =
a∑

i=0

chL(i, i) + chL(2a, 0) +
a−1∑

i=1

χ(2a− i, i) −
a−1∑

i=1

χ(2a− 1 − i, i − 1)

+
a−1∑

i=1

χ(sα1·(i− 2, i)) + χ(sα1+α2·(−2, 0)) − χ(a− 1, a− 1) + χ(sα1·(a− 2, a))
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=
a∑

i=0

chL(i, i) + chL(2a, 0) +
a−1∑

i=1

χ(2a− i, i) −
a−1∑

i=1

χ(2a− 1 − i, i − 1)

+
a−1∑

i=1

χ(i− 1, i − 1) + χ(−1, 0) − χ(a− 1, a− 1) + χ(a− 1, a− 1)

=
a∑

i=0

chL(i, i) + chL(2a, 0) +
a−1∑

i=1

χ(2a− i, i)

−

Ç
a−1∑

i=1

χ(2a− 1 − i, i− 1) − χ(i− 1, i− 1)

å
,

where in the last equality we use that (−1, 0) ∈ D \X+ so χ(−1, 0) = 0 by Lemma 1.45. If
i ∈ {1, . . . , a− 1}, then (2a − 1 − i, i− 1) ∈ C2. Thus, by Remark 6.2, we have

sα1+α2,p·(2a− 1 − i, i− 1) = (p − 3 − (2a− 1 − i), i− 1) = (i− 1, i− 1),

and by Remark 6.5 we get

χ(2a− 1 − i, i− 1) − χ(i− 1, i − 1) = chL(2a− 1 − i, i − 1).

Moreover, (2a− i, i) ∈ C3 and 2a− i+ i− (p− 2) = 1, so by Remark 6.5, we have

χ(2a− i, i) = chL(2a− i, i) + chL(2a− i− 1, i− 1).

We can thus conclude that

chM =
a∑

i=0

chL(i, i) + chL(2a, 0) +
a−1∑

i=1

χ(2a− i, i) −
a−1∑

i=1

chL(2a− 1 − i, i− 1)

=
a∑

i=0

chL(i, i) + chL(2a, 0) +
a−1∑

i=1

chL(2a− i, i)

=
a∑

i=0

chL(i, i) +
a−1∑

i=0

chL(2a− i, i).

In particular, M is multiplicity-free.

6.3.3 L(a, 0) ⊗ L(0, d)

Lemma 6.22. Let a, b ∈ N. In Euclidean coordinates, we have

χ(aω1)χ(bω2) =
b∑

i=0

min{i,b−i}∑

j=0

χ(a+
b

2
− i,

b

2
− j).

Moreover, if b < p and a < p, then all weights appearing on the right hand side of the equality
belong to D ∪W·C1 and the dominant ones are p-restricted.

Proof. In this proof, we use Euclidean coordinates. Let λ = aω1 and µ = bω2. We set
X(i, j) := m∆(µ)(

b
2 − i, b2 − j) = b

2 − max{| b2 − i|, | b2 − j|} + 1 (Lemma 6.15). We get

χ(λ)χ(µ) =
∑

ν∈X

m∆(µ)(ν)χ(λ+ ν) =
b∑

i=0

b∑

j=0

X(i, j)χ(a +
b

2
− i,

b

2
− j).
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We dissociate the cases b even and b odd. First suppose that b is even. Using Lemma 1.45
in the second equality below and Remark 6.2 in the third one, we get

χ(λ)χ(µ) =
b∑

i=0

b
2∑

j=0

X(i, j)χ(a +
b

2
− i,

b

2
− j) +

b∑

i=0

b∑

j= b
2

+1

X(i, j)χ(a +
b

2
− i,

b

2
− j)

=
b∑

i=0

b
2∑

j=0

X(i, j)χ(a +
b

2
− i,

b

2
− j) −

b∑

i=0

b∑

j= b
2

+1

X(i, j)χ(sα2·(a+
b

2
− i,

b

2
− j))

=
b∑

i=0

b
2∑

j=0

X(i, j)χ(a +
b

2
− i,

b

2
− j) −

b∑

i=0

b∑

j= b
2

+1

X(i, j)χ(a +
b

2
− i,−

b

2
+ j − 1)

=
b∑

i=0

b
2∑

j=0

X(i, j)χ(a +
b

2
− i,

b

2
− j)

−
b∑

i=0

b
2∑

j=1

X(i, b− j + 1)χ(a+
b

2
− i,−

b

2
+ (b− j + 1) − 1)

=
b∑

i=0

b
2∑

j=0

X(i, j)χ(a +
b

2
− i,

b

2
− j) −

b∑

i=0

b
2∑

j=1

X(i, b − j + 1)χ(a+
b

2
− i,

b

2
− j)

=
b∑

i=0

X(i, 0)χ(a +
b

2
− i,

b

2
)

+
b∑

i=0

b
2∑

j=1

(X(i, j) −X(i, b− j + 1))χ(a +
b

2
− i,

b

2
− j). (41)

If b is odd, then for any i, we have

sα2·(a+
b

2
− i,

b

2
−
b+ 1

2
) = sα2·(a+

b

2
− i,−

1

2
) = (a+

b

2
− i,−

1

2
),

so χ(a+ b
2 − i, b2 − b+1

2 ) = 0 by Lemma 1.45. Similarly to the case where b is even, we get

χ(λ)χ(µ) =
b∑

i=0

b−1

2∑

j=0

X(i, j)χ(a +
b

2
− i,

b

2
− j) +

b∑

i=0

b∑

j= b+3

2

X(i, j)χ(a +
b

2
− i,

b

2
− j)

=
b∑

i=0

b−1

2∑

j=0

X(i, j)χ(a +
b

2
− i,

b

2
− j) −

b∑

i=0

b∑

j= b+3

2

X(i, j)χ(sα2·(a+
b

2
− i,

b

2
− j))

=
b∑

i=0

b−1

2∑

j=0

X(i, j)χ(a +
b

2
− i,

b

2
− j) −

b∑

i=0

b∑

j= b+3

2

X(i, j)χ(a +
b

2
− i,−

b

2
+ j − 1)
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=
b∑

i=0

b−1

2∑

j=0

X(i, j)χ(a +
b

2
− i,

b

2
− j)

−
b∑

i=0

b−1

2∑

j=1

X(i, b − j + 1)χ(a+
b

2
− i,−

b

2
+ (b− j + 1) − 1)

=
b∑

i=0

b−1

2∑

j=0

X(i, j)χ(a +
b

2
− i,

b

2
− j) −

b∑

i=0

b−1

2∑

j=1

X(i, b − j + 1)χ(a +
b

2
− i,

b

2
− j)

=
b∑

i=0

X(i, 0)χ(a +
b

2
− i,

b

2
)

+
b∑

i=0

b−1

2∑

j=1

(X(i, j) −X(i, b− j + 1))χ(a +
b

2
− i,

b

2
− j). (42)

At this step, observe that X(i, 0) = 1, and set Y (i, j) := X(i, j) − X(i, b − j + 1). Using
lines (41) and (42), for all b, we have

χ(λ)χ(µ) =
b∑

i=0

χ(a+
b

2
− i,

b

2
) +

b∑

i=0

⌊ b
2

⌋∑

j=1

Y (i, j)χ(a +
b

2
− i,

b

2
− j)

=
b∑

i=0

χ(a+
b

2
− i,

b

2
)

+

⌊ b
2

⌋∑

i=0

⌊ b
2

⌋∑

j=1

Y (i, j)χ(a +
b

2
− i,

b

2
− j) (43)

+
b∑

i=⌊ b
2

⌋+1

⌊ b
2

⌋∑

j=1

Y (i, j)χ(a +
b

2
− i,

b

2
− j). (44)

We compute the value of Y (i, j) in lines (43) and (44). Recall that
Y (i, j) = X(i, j) −X(i, b− j + 1) and X(i, j) = b

2 − max{| b2 − i|, | b2 − j|} + 1. Therefore, for

j ≤ b
2 , we have

Y (i, j) = (
b

2
− max{|

b

2
− i|, |

b

2
− j|} + 1) − (

b

2
− max{|

b

2
− i|, |

b

2
− (b− j + 1)|} + 1)

= max{|
b

2
− i|, |j −

b

2
− 1|} − max{|

b

2
− i|, |

b

2
− j|}

= max{|
b

2
− i|, |

b

2
− j + 1|} − max{|

b

2
− i|, |

b

2
− j|}

= max{|
b

2
− i|,

b

2
− j + 1} − max{|

b

2
− i|,

b

2
− j}.

If | b2 − i| ≥ b
2 − j + 1, then

max{|
b

2
− i|,

b

2
− j + 1} = max{|

b

2
− i|,

b

2
− j} = |

b

2
− i|
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so Y (i, j) = 0.
If | b2 − i| < b

2 − j + 1, then | b2 − i| ≤ b
2 − j and we have

max{|
b

2
− i|,

b

2
− j + 1} =

b

2
− j + 1 and max{|

b

2
− i|,

b

2
− j} =

b

2
− j,

so Y (i, j) = 1. Therefore, we have

Y (i, j) =

®
0 if | b2 − i| ≥ b

2 − j + 1

1 if | b2 − i| < b
2 − j + 1.

(45)

If i ≤ b
2 , as in line (43), then

|
b

2
− i| =

b

2
− i ≥

b

2
− j + 1 ⇐⇒ j ≥ i+ 1. (46)

If i > b
2 , as in line (44), then

|
b

2
− i| = i−

b

2
≥
b

2
− j + 1 ⇐⇒ j ≥ b− i+ 1. (47)

Combining lines (45), (46) and (47) with lines (43) and (44), we get

χ(λ)χ(µ) =
b∑

i=0

χ(a+
b

2
− i,

b

2
) +

⌊ b
2

⌋∑

i=0

i∑

j=1

χ(a+
b

2
− i,

b

2
− j)

+
b∑

i=⌊ b
2

⌋+1

b−i∑

j=1

χ(a+
b

2
− i,

b

2
− j)

=
b∑

i=0

χ(a+
b

2
− i,

b

2
) +

b∑

i=0

min{i,b−i}∑

j=1

χ(a+
b

2
− i,

b

2
− j)

=
b∑

i=0

min{i,b−i}∑

j=0

χ(a+
b

2
− i,

b

2
− j), (48)

establishing the claim of the first statement.
Finally, assume that a < p and b < p. We do a change of basis to express our weights in

coordinates with respect to the fundamental weights. We have

(a+
b

2
− i)ǫ1 + (

b

2
− j)ǫ2 = (a− i+ j)ω1 + (b− 2j)ω2.

For the rest of the proof, we use coordinates with respect to the fundamental weights. Let
0 ≤ i ≤ b < p and 0 ≤ j ≤ min{i, b − i}. We set ν := (a− i+ j, b− 2j). We have

a− i+ j ≤ a < p and b− 2j ≤ b < p,

so dominant weights appearing in line (48) are p-restricted. Moreover, j ≤ b
2 , thus b−2j ≥ 0.

If (a− i+ j) ≥ −1, then ν ∈ D and we are done. Assume (a− i+ j) < −1. We have

sα1·(a− i+ j, b− 2j) = (i− a− j − 2, b+ 2a− 2i+ 2) =: ν ′.

By assumption, we have

i− a− j − 2 = −(a− i+ j) − 2 > 1 − 2 = −1.
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If b+ 2a− 2i+ 2 ≥ −1, then ν ′ ∈ D and

2(i− a− j − 2) + (b+ 2a− 2i+ 2) = b− 2j − 2 ≤ b− 2 ≤ p− 3,

so ν ′ ∈ C1 and we are done.
Finally, suppose b+ 2a− 2i+ 2 < −1. Then we have

sα2·(i− a− j − 2, b+ 2a− 2i+ 2) = (b+ a− i− j + 1, 2i − b− 2a− 4) =: η.

By assumption, we have

2i− b− 2a− 4 = −(b+ 2a− 2i+ 2) − 2 > 1 − 2 = −1

and
b+ a− i− j + 1 = (b− i) − j + a+ 1 ≥ a+ 1 > 0,

hence η ∈ D. Moreover, we have

2(b+ a− i− j + 1) + (2i− b− 2a− 4) = b− 2j − 2 ≤ p− 3

so η ∈ C1. Therefore in all cases we are done.

Proposition 6.23. Let λ = (p − 2, 0), µ = (0, d) ∈ X+ be p-restricted with d > 0. Then
L(λ) ⊗ L(µ) is multiplicity-free if and only if d = 1.

Proof. We set M := L(λ) ⊗ L(µ). Observe that λ ∈ F2,3, so ∆(λ) ∼= L(λ) by Lemma 6.4.

Suppose that d = 1. Using Corollary 1.48 and the structure of L(0, 1), we have

chM =
∑

ν∈X

mL(µ)(ν)χ(λ+ ν)

=χ(p− 2, 1) + χ(p− 3, 1) + χ(p − 2,−1) + χ(p− 1,−1).

Observe that (p − 2, 1) ∈ F3,4 and (p − 3, 1) ∈ F2,3 so χ(p − 2, 1) = chL(p − 2, 1) and
χ(p − 3, 1) = chL(p − 3, 1) by Lemma 6.4. Moreover, (p − 2,−1), (p − 1,−1) ∈ D \ X+ so
χ(p − 2,−1) = χ(p− 1,−1) = 0 by Lemma 1.45. Thus we get

chM = chL(p− 2, 1) + chL(p− 3, 1).

In particular, M is multiplicity-free.

Now suppose that d > 1. In particular, λ + µ ∈ C4 ∪ (F4,7 \ F4,6). By Lemma 6.4,
both L(λ) and L(µ) are tilting modules, so M is a tilting module. Since L(λ + µ) is a
composition factor of M but T (λ + µ) is not irreducible, we conclude by Lemma 1.45 that
M has multiplicity.

Proposition 6.24. Let λ = (p − 1, 0), µ = (0, d) ∈ X+ be p-restricted with d > 0. Then
L(λ) ⊗ L(µ) is multiplicity-free if and only if d = 1.

Proof. We set M := L(λ) ⊗ L(µ). Observe that λ ∈ F4,6, so ∆(λ) ∼= L(λ) by Lemma 6.4.
Moreover, λ+ µ ∈ F4,6.

Suppose that d = 1. Using Corollary 1.48 and the structure of L(0, 1), we get

chM =
∑

ν∈X

mL(µ)(ν)χ(λ+ ν)

=χ(p− 1, 1) + χ(p− 2, 1) + χ(p − 1,−1) + χ(p,−1).
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Observe that (p − 1, 1) ∈ F4,6 and (p − 2, 1) ∈ F3,4 so χ(p − 1, 1) = chL(p − 1, 1) and
χ(p − 2, 1) = chL(p − 2, 1) by Lemma 6.4. Moreover, (p − 1,−1), (p,−1) ∈ D \ X+ so
χ(p − 1,−1) = χ(p,−1) = 0 by Lemma 1.45. Thus we get

chM = chL(p− 1, 1) + chL(p− 2, 1).

In particular, M is multiplicity-free.

Now suppose that d > 1. By Lemma 6.4, both L(λ) and L(µ) are tilting modules, so M
is a tilting module. We use Argument 1 to show that L(λ + µ − α1 − α2) is a composition
factor of M . Using Lemmas 6.12, 6.15, 1.15 and 6.6, we have

mL(λ)(λ− α1) = 1, mL(λ)(λ− α1 − α2) = 1,

mL(µ)(µ− α2) = 1, mL(µ)(µ− α1 − α2) = 1,

mL(λ+µ)(λ+ µ− α1) = 1, mL(λ+µ)(λ+ µ− α2) = 1,

mL(λ+µ)(λ+ µ− α1 − α2) = 2.

Therefore mM (λ+µ−α1) = mM (λ+µ−α2) = 1 and L(λ+µ−α1), L(λ+µ−α2) are not
composition factors of M . Moreover, mM(λ+ µ− α1 − α2) = 3, thus L(λ+ µ− α1 − α2) is
a composition factor of M . Observe that λ+ µ− α1 − α2 = (p− 2, d) ∈ C4. By Lemma 6.4,
T (λ+ µ− α1 − α2) is not irreducible and by Lemma 1.36, M has multiplicity.

Proposition 6.25. Let λ = (a, 0), µ = (0, d) ∈ X+ with 2a + d ≤ p − 3 (i.e. λ+ µ ∈ Ĉ1).
Then L(λ) ⊗ L(µ) is multiplicity-free.

Proof. We apply Corollary 3.4 and Theorem 6.16 to conclude that L(λ)⊗L(µ) is multiplicity-
free.

Proposition 6.26. Let λ = (a, 0), µ = (0, d) ∈ X+ with 0 < a ≤ p−3
2 , 0 < d ≤ p − 3 and

2a+ d > p− 3 (i.e. λ, µ ∈ Ĉ1 and λ+ µ /∈ Ĉ1). Then L(λ) ⊗L(µ) is multiplicity-free if and
only if (a, d) = (1, p − 3).

Proof. We set M := L(λ) ⊗L(µ). Observe that λ+ µ ∈ C2 ∪C3 ∪ F2,3. Moreover, L(λ) and
L(µ) are tilting modules, so M is a tilting module.

Suppose that a+ d 6= p − 2 (i.e. λ+ µ /∈ F2,3, so λ + µ ∈ C2 ∪ C3). The tilting module
T (λ+µ) is thus not irreducible, and since L(λ+µ) is a composition factor of M , we conclude
by Lemma 1.36 that M has multiplicity.

Suppose that a + d = p − 2 and a 6= 1. Using the same argument as in the proof of
Proposition 6.24, we get that L(λ+µ−α1 −α2) is a composition factor of M . Observe that
λ+ µ− α1 − α2 = (a− 1, d) ∈ C2 so T (λ+ µ− α1 − α2) is not irreducible. We conclude by
Lemma 1.36 that M has multiplicity.

Finally, suppose that (a, d) = (1, p − 3). Using Proposition 1.47 and the structure of
L(1, 0), we get

chM =
∑

ν∈X

mL(1,0)(ν)χ(µ + ν)

=χ(1, p − 3) + χ(−1, p− 3) + χ(−1, p − 1) + χ(0, p − 3) + χ(1, p − 5)
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Observe that (1, p− 3) ∈ F2,3 and (0, p− 3), (1, p − 5) ∈ F1,2, so χ(1, p − 3) = chL(1, p− 3),
χ(0, p − 3) = chL(0, p − 3) and χ(1, p − 5) = chL(1, p − 5) by Lemma 6.4. Moreover,
(−1, p − 3), (−1, p − 1) ∈ D \ X+ so χ(−1, p − 3) = χ(−1, p − 1) = 0 by Lemma 1.45. Thus
we get

chM = chL(1, p − 3) + chL(0, p − 3) + chL(1, p − 5).

In particular, M is multiplicity-free.

Proposition 6.27. Let λ = (a, 0), µ = (0, p − 2) ∈ X+ with 0 < a ≤ p−3
2 (i.e. λ ∈ Ĉ1 and

µ ∈ F2,3). Then L(λ) ⊗ L(µ) has multiplicity.

Proof. By Lemma 6.4, both L(λ) and L(µ) are tilting modules, thus L(λ) ⊗L(µ) is a tilting
module. Moreover, λ + µ ∈ C3, hence T (λ + µ) is not irreducible. Since L(λ + µ) is a
composition factor of L(λ) ⊗ L(µ), we conclude by Lemma 1.36.

Proposition 6.28. Let λ = (a, 0), µ = (0, p − 1) ∈ X+ with 0 < a ≤ p−3
2 (i.e. λ ∈ Ĉ1 and

µ ∈ F3,5). Then L(λ) ⊗ L(µ) is multiplicity-free if and only if a = 1.

Proof. We set M := L(λ) ⊗ L(µ). Observe that L(λ) and L(µ) are tilting modules, thus M
is a tilting module.

Suppose that a = 1. Using Corollary 1.48 and the structure of L(1, 0), we have

chM =
∑

ν∈X

mL(1,0)(ν)χ(µ + ν)

=χ(1, p − 1) + χ(−1, p− 1) + χ(−1, p + 1) + χ(0, p − 1) + χ(1, p − 3).

Observe that (1, p− 1), (0, p − 1) ∈ F3,5 and (1, p − 3) ∈ F2,3, so χ(1, p − 1) = chL(1, p− 1),
χ(0, p − 1) = chL(0, p − 1) and χ(1, p − 3) = chL(1, p − 3) by Lemma 6.4. Moreover,
(−1, p − 1), (−1, p + 1) ∈ D \ X+ so χ(−1, p − 1) = χ(−1, p + 1) = 0 by Lemma 1.45. Thus
we get

chM = chL(1, p − 1) + chL(0, p − 1) + chL(1, p − 3).

In particular, M is multiplicity-free.

Now suppose a > 1. By Lemma 6.4, we have L(λ) ∼= ∆(λ), L(µ) ∼= ∆(µ) and
L(λ + µ) ∼= ∆(λ + µ). We use Argument 1 to show that L(λ + µ − α1 − 2α2) is a com-
position factor of M . By Lemma 6.7, we have

mL(λ)(λ− α1) = 1, mL(λ)(λ− α1 − α2) = 1,

mL(λ)(λ− α1 − 2α2) = 1, mL(µ)(µ− α2) = 1,

mL(µ)(µ− α1 − α2) = 1, mL(µ)(µ− α1 − 2α2) = 2,

mL(µ)(µ− 2α2) = 1, mL(λ+µ)(λ+ µ− α1) = 1,

mL(λ+µ)(λ+ µ− α2) = 1, mL(λ+µ)(λ+ µ− α1 − α2) = 2,

mL(λ+µ)(λ+ µ− 2α2) = 1, mL(λ+µ)(λ+ µ− α1 − 2α2) = 3,

mL(λ+µ−α1−α2)(λ+ µ− α1 − 2α2) = 1.

Therefore, mM (λ+µ−α1) = mM (λ+µ−α2) = mM (λ+µ−2α2) = 1, mM (λ+µ−α1−α2) = 3
and mM(λ+µ−α1 − 2α2) = 5. We deduce that L(λ+µ−α1 − 2α2) is a composition factor
of M . Observe that λ + µ − α1 − 2α2 = (a, p − 3) ∈ C3, thus T (λ + µ − α1 − 2α2) is not
irreducible. We conclude by Lemma 1.36 that M has multiplicity.
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Proposition 6.29. Let λ = (a, 0), µ = (0, b) ∈ X+ be p-restricted with p−1
2 ≤ a ≤ p− 3 and

a+ b ≤ p− 2 (i.e. λ ∈ C2 and λ+ µ ∈ Ĉ2). Then L(λ) ⊗ L(µ) is multiplicity-free.

Proof. In this proof, we use Euclidean coordinates. We set M := L(λ) ⊗ L(µ).
For i ∈ {0, . . . , b}, we have p − 2 − 2a+ i ≤ i. By Proposition 1.47 and Lemma 6.4, and

using Lemma 6.22 in the second equality below, we get

chM =χ(bω2)(χ(a, 0) − χ(p− 3 − a, 0))

=
b∑

i=0

min{i,b−i}∑

j=0

χ(a+
b

2
− i,

b

2
− j) −

b∑

i=0

min{i,b−i}∑

j=0

χ(p− 3 − a+
b

2
− i,

b

2
− j)

=
b∑

i=0

min{i,b−i}∑

j=max{0,p−2−2a+i}

χ(a+
b

2
− i,

b

2
− j)

+
b∑

i=0

min{b−i,p−3−2a+i}∑

j=0

χ(a+
b

2
− i,

b

2
− j)

−
b∑

i=0

min{i,b−i}∑

j=max{0,b−i+p−2−2a}

χ(p− 3 − a+
b

2
− i,

b

2
− j)

−
b∑

i=0

min{i,b−i+p−3−2a}∑

j=0

χ(p− 3 − a+
b

2
− i,

b

2
− j)

=
b∑

i=0

min{i,b−i}∑

j=max{0,p−2−2a+i}

χ(a+
b

2
− i,

b

2
− j) (49)

−
b∑

i=0

min{i,b−i}∑

j=max{0,b−i+p−2−2a}

χ(p− 3 − a+
b

2
− i,

b

2
− j) (50)

+
b∑

i=0

min{b−i,p−3−2a+i}∑

j=0

χ(a+
b

2
− i,

b

2
− j) (51)

−
b∑

i=0

min{i,b−i+p−3−2a}∑

j=0

χ(p− 3 − a+
b

2
− i,

b

2
− j). (52)

First, we work on the terms of lines (51) and (52). We claim that they sum to zero. To that
end, observe that in line (51), the second sum is empty whenever i < 2a+3−p and in line (52),
the second sum is empty whenever i > b+ p− 3 − 2a. Thus we get

b∑

i=0

min{b−i,p−3−2a+i}∑

j=0

χ(a+
b

2
− i,

b

2
− j) −

b∑

i=0

min{i,b−i+p−3−2a}∑

j=0

χ(p− 3 − a+
b

2
− i,

b

2
− j)

=
b∑

i=2a+3−p

min{b−i,p−3−2a+i}∑

j=0

χ(a+
b

2
− i,

b

2
− j)

−
b+p−3−2a∑

i=0

min{i,b−i+p−3−2a}∑

j=0

χ(p− 3 − a+
b

2
− i,

b

2
− j)
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=
b∑

i=2a+3−p

min{b−i,p−3−2a+i}∑

j=0

χ(a+
b

2
− i,

b

2
− j)

−
b∑

i=2a+3−p

min{i−2a−3+p,b−i}∑

j=0

χ(a+
b

2
− i,

b

2
− j)

= 0.

Therefore, only lines (49) and (50) remain and we get

chM =
b∑

i=0

min{i,b−i}∑

j=max{0,p−2−2a+i}

χ(a+
b

2
− i,

b

2
− j)

−
b∑

i=0

min{i,b−i}∑

j=max{0,b−i+p−2−2a}

χ(p− 3 − a+
b

2
− i,

b

2
− j)

=
b∑

i=0

min{i,b−i}∑

j=max{0,p−2−2a+i}

χ(a+
b

2
− i,

b

2
− j)

−
b∑

i=0

min{i,b−i}∑

j=max{0,i+p−2−2a}

χ(p− 3 − a−
b

2
+ i,

b

2
− j)

=
b∑

i=0

min{i,b−i}∑

j=max{0,p−2−2a+i}

χ(a+
b

2
− i,

b

2
− j) − χ(p− 3 − a−

b

2
+ i,

b

2
− j). (53)

At this step, observe that if i > b+2a+2−p
2 , then p− 2 − 2a+ i > b− i and the second sum in

line (53) is empty. Thus we get

chM =

min{b,⌊ b+2a+2−p

2
⌋}∑

i=0

min{i,b−i}∑

j=max{0,p−2−2a+i}

χ(a+
b

2
− i,

b

2
− j) − χ(p− 3 − (a+

b

2
− i),

b

2
− j).

For 0 ≤ i ≤ min{b, ⌊ b+2a+2−p
2 ⌋} and max{0, p − 2 − 2a+ i} ≤ j ≤ min{i, b − i}, we have

a+
b

2
− i ≥ a+

b

2
− (

b+ 2a+ 2 − p

2
) =

p− 2

2
>
p− 3

2
,

b

2
− j ≥ 0 and

(a+
b

2
− i) + (

b

2
− j) = a+ b− i− j ≤ a+ b ≤ p− 2.

Therefore, (a + b
2 − i, b2 − j) ∈ Ĉ2 for all 0 ≤ i ≤ min{b, ⌊ b+2a+2−p

2 ⌋} and
max{0, p − 2 − 2a+ i} ≤ j ≤ min{i, b − i} and by Remark 6.5, we get

chM =

min{b,⌊ b+2a+2−p

2
⌋}∑

i=0

min{i,b−i}∑

j=max{0,p−2−2a+i}

chL(a+
b

2
− i,

b

2
− j).

In particular, M is multiplicity-free.
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Proposition 6.30. Let λ = (a, 0), µ = (0, b) ∈ X+ be p-restricted with p−1
2 ≤ a ≤ p− 3 and

a+ b > p− 2 (i.e. λ ∈ C2 and λ+ µ ∈ Ĉ3 ∪ Ĉ4). Then L(λ) ⊗ L(µ) has multiplicity.

Proof. In this proof, we use Euclidean coordinates. We set M := L(λ) ⊗ L(µ). By
Proposition 1.47, Lemma 6.22 and Remark 6.5, we have

chM = χ(λ)χ(µ) − χ(sα1+α2,p·λ)χ(µ)

=
b∑

i=0

min{i,b−i}∑

j=0

χ(a+
b

2
− i,

b

2
− j) −

b∑

i=0

min{i,b−i}∑

j=0

χ(p − 3 − a+
b

2
− i,

b

2
− j). (54)

We set

A := {(a+
b

2
− i,

b

2
− j)| 0 ≤ i ≤ b, 0 ≤ j ≤ min{i, b − i}}

and

B := {(p − 3 − a+
b

2
− i,

b

2
− j)| 0 ≤ i ≤ b, 0 ≤ j ≤ min{i, b − i}}.

By Lemma 6.22, we have A,B ⊆ D ∪W·C1.

If a + b is even, we set t := a+b−p+1
2 , ν3 := (a + b

2 − t, b2 − t) ∈ C3 and

ν2 := sα1+2α2,p·ν3 = (a+ b
2 − (t+ 1), b2 − (t+ 1)) ∈ C2.

If a + b is odd, we set t := a+b−p
2 , ν3 := (a + b

2 − (t + 1), b2 − t) ∈ C3 and

ν2 := sα1+2α2,p·ν3 = (a+ b
2 − (t+ 2), b2 − (t+ 1)) ∈ C2.

In both cases, we show that ν2 has multiplicity 2 in M . Observe that ν2, ν3 ∈ A (this
follows from t+ 1 ≤ b

2). Moreover, we claim that ν2, ν3 /∈ B. We check ν3 in case a+ b even,

the other cases are similar. Suppose that (a + b
2 − t, b2 − t) = (p − 3 − a + b

2 − k, b2 − r) for

some k, r. Then r = t and k = p+b−5−3a
2 < r, thus ν3 /∈ B.

For every weight ν ∈ X, we fix wν ∈ W such that wν·ν ∈ D (recall that D is a
fundamental domain for the dot action of W on X). Moreover, we take the convention that
∆(ν) = 0 for every ν ∈ D \X+. Using line (54) and Lemma 1.45, we have

[M : L(ν2)] =
∑

η∈A

det(wη)[∆(wη·η) : L(ν2)] −
∑

η∈B

det(wη)[∆(wη·η) : L(ν2)].

By the Strong Linkage Principle (Proposition 1.53), [∆(η) : L(ν2)] = 0 unless ν2 ↑ η. By
Lemma 6.4, we have [∆(η) : L(ν2)] = 0 for all η ∈ C4. Thus, if η is p-restricted and such
that [∆(η) : L(ν2)] 6= 0, we have either η = ν2 or η = ν3. At this step, recall that every
η ∈ (A∪B)∩X+ is p-restricted. By Lemma 6.22, if η ∈ A∪B and wη 6= id, then wη·η ∈ C1

and [∆(wη·η) : ν2] = 0. Therefore, we have

[M : L(ν2)] =
∑

η∈A∩{ν2,ν3}

[∆(η) : L(ν2)] −
∑

η∈B∩{ν2,ν3}

[∆(η) : L(ν2)].

By the previous observations, B ∩ {ν2, ν3} = ∅ and A ∩ {ν2, ν3} = {ν2, ν3}. Therefore,

[M : L(ν2)] = [∆(ν2) : L(ν2)] + [∆(ν3) : L(ν2)] = 2

and M has multiplicity.
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6.3.4 L(a, b) ⊗ L(0, d)

Proposition 6.31. Let λ = (a, b), µ = (0, d) ∈ X+ with 1 ≤ a < p and 2 ≤ b, d < p. If
2a+ b+ 2 6≡ 0 mod p and a+ b 6= p− 1, then L(λ) ⊗ L(µ) has multiplicity.

Proof. We set M := L(λ) ⊗ L(µ). Using Argument 1, we show that either
[M : L(λ+ µ− α1 − α2)] ≥ 2 or [M : L(λ+ µ− α1 − 2α2)] ≥ 2.

Using Lemmas 1.15, 6.6, 6.7 and 6.8, we have

mM (λ+ µ) = 1, mM (λ+ µ− α1) = 1, mM (λ+ µ− α2) = 2,

mM (λ+ µ− α1 − α2) = 4, mM (λ+ µ− 2α2) = 3, mM (λ+ µ− α1 − 2α2) = 9.

Therefore

[M : L(λ+ µ)] = [M : L(λ+ µ− α2)] = [M : L(λ+ µ− 2α2)] = 1

and
[M : L(λ+ µ− α1)] = 0.

If mL(λ+µ)(λ+µ−α1 −α2) = 1, then [M : L(λ+µ−α1 −α2)] = 2 and M has multiplicity.
If mL(λ+µ)(λ+µ−α1 −α2) = 2, then [M : L(λ+µ−α1 −α2)] = 1. In this case, we have

mL(λ+µ)(λ+ µ− α1 − 2α2) ≤ 3 and mL(λ+µ−α2)(λ+ µ− α1 − 2α2) ≤ 2.

Therefore, [M : L(λ+ µ− α1 − 2α2)] ≥ 9 − 3 − 2 − 1 − 1 = 2 and M has multiplicity.

Proposition 6.32. Let λ = (a, b), µ = (0, 1) ∈ X+ with 1 ≤ a, b < p. Then L(λ) ⊗ L(µ) is
multiplicity-free if and only if λ ∈ C1 ∪ C2 ∪ C3 ∪ C4.

Proof. In this proof, we take the convention that chL(ν) = 0 for all ν /∈ X+. Moreover, for
ν = (c, d) ∈ X, we set

δ2(ν) :=

®
0 if 2c+ d+ 2 = p,

1 else.
δ3(ν) :=

®
0 if c+ d = p− 1,

1 else.

δ4(ν) :=

®
0 if 2c+ d+ 2 = 2p,

1 else.

We set M := L(λ) ⊗ L(µ). By Lemma 6.4, L(µ) is a tilting module.

• If λ ∈ F1,2 ∪ F2,3 ∪ F3,4 then L(λ) is a tilting module so M is a tilting module. In this
case λ+µ ∈ C2 ∪C3 ∪C4 ∪(F4,7 \F4,6), hence T (λ+µ) is not irreducible by Lemma 6.4.
We conclude by Lemma 1.36 that M has multiplicity.

• If λ ∈ F3,5∪F4,7, then b = p−1 so λ+µ is not p-restricted. We conclude by Corollary 2.8
that M has multiplicity.

• If λ ∈ F4,6 (i.e. a = p− 1), observe that L(λ+µ−α2) is a composition factor of M (by
Argument 1). But λ + µ − α2 is not p-restricted, hence we conclude by Corollary 2.7
that M has multiplicity.

• If λ ∈ C1, then λ+ µ ∈ Ĉ1 and we apply Corollary 3.4 and Theorem 6.16 to conclude
that M is multiplicity-free.
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• If λ ∈ C2, let λ1 := sα1+α2,p·λ ∈ C1 and δ2 := δ2(λ). By Proposition 1.47 and
Lemma 6.4 we have

chM = χ(µ)(χ(λ) − χ(λ1))

= χ(λ+ µ) + χ(λ+ µ− α2) + χ(λ+ µ− α1 − α2) + χ(λ+ µ− α1 − 2α2)

− χ(λ1 + µ) − χ(λ1 + µ− α2) − χ(λ1 + µ− α1 − α2)

− χ(λ1 + µ− α1 − 2α2)

= (χ(λ+ µ) − χ(λ1 + µ− α1 − α2)) + (χ(λ+ µ− α2) − χ(λ1 + µ− α1 − 2α2))

+ (χ(λ+ µ− α1 − α2) − χ(λ1 + µ))

+ (χ(λ+ µ− α1 − 2α2) − χ(λ1 + µ− α2))

= chL(λ+ µ) + chL(λ+ µ− α2) + δ2 · chL(λ+ µ− α1 − α2)

+ δ2 · chL(λ+ µ− α1 − 2α2).

Thus M is multiplicity-free.

• If λ ∈ C3, let λ2 := sα1+2α2,p·λ ∈ C2, δ2 := δ2(λ2) and δ3 := δ3(λ). By Proposition
1.47, Lemma 6.4 and the previous case, we have

chM = χ(µ)(χ(λ) − chL(λ2))

= χ(λ+ µ) + χ(λ+ µ− α2) + χ(λ+ µ− α1 − α2) + χ(λ+ µ− α1 − 2α2)

− chL(λ2 + µ) − chL(λ2 + µ− α2) − δ2 · chL(λ2 + µ− α1 − α2)

− δ2 · chL(λ2 + µ− α1 − 2α2)

= (χ(λ+ µ) − δ2 · chL(λ2 + µ− α1 − 2α2))

+ (χ(λ+ µ− α2) − chL(λ2 + µ− α2))

+ (χ(λ+ µ− α1 − α2) − δ2 · chL(λ2 + µ− α1 − α2))

+ (χ(λ+ µ− α1 − 2α2) − chL(λ2 + µ))

= chL(λ+ µ) + chL(λ+ µ− α2) + chL(λ+ µ− α1 − α2)

+ δ3 · chL(λ+ µ− α1 − 2α2).

Thus M is multiplicity-free.

• If λ ∈ C4, let λ3 := sα1+α2,2p·λ ∈ C3, δ3 := δ3(λ3) and δ4 := δ4(λ). By Proposition
1.47, Lemma 6.4 and the previous case, we have

chM = χ(µ)(χ(λ) − chL(λ3))

= χ(λ+ µ) + χ(λ+ µ− α2) + χ(λ+ µ− α1 − α2) + χ(λ+ µ− α1 − 2α2)

− chL(λ3 + µ) − chL(λ3 + µ− α2) − chL(λ3 + µ− α1 − α2)

− δ3 · chL(λ3 + µ− α1 − 2α2)
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= (χ(λ+ µ) − chL(λ3 + µ− α1 − α2))

+ (χ(λ+ µ− α2) − δ3 · chL(λ3 + µ− α1 − 2α2))

+ (χ(λ+ µ− α1 − α2) − chL(λ3 + µ))

+ (χ(λ+ µ− α1 − 2α2) − chL(λ3 + µ− α2))

= chL(λ+ µ) + chL(λ+ µ− α2) + δ4 · chL(λ+ µ− α1 − α2)

+ δ4 · chL(λ+ µ− α1 − 2α2).

Thus M is multiplicity-free.

The classification of multiplicity-free tensor products of simple modules with p-restricted
highest weight for an algebraic group of type B2 is not completed in this thesis. In the
previous sequence of propositions, we fully treated the following cases:

• λ = (a, b), µ = (c, d) with a · b = 0 and c · d = 0,

• λ = (a, b), µ = (0, 1).

It remains to consider the following cases:

• λ = (a, b), µ = (0, d) with a 6= 0, b 6= 0 and d ≥ 2,

• λ = (a, b), µ = (c, 0) with a 6= 0, b 6= 0 and c 6= 0,

• λ = (a, b), µ = (c, d) with a · b · c · d 6= 0.
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7 SLn for p = 2

In this section, we classify multiplicity-free tensor products of simple SLn-modules with
p-restricted highest weight when p = 2. To that end, we will use the classification of com-
pletely reducible tensor products of simple SLn-modules with p-restricted highest weight for
p = 2 ([Gru21, Theorem 7.12]).

Theorem 7.1. Let G be of type An and p = 2. Let λ, µ ∈ X+ be nonzero 2-restricted
dominant weights. Up to the reordering of λ and µ, L(λ) ⊗ L(µ) is completely reducible if
and only if one of the following holds:

(1) λ = ω1 and µ = ωi1 + . . .+ ωir for even numbers 1 < i1 < . . . < ir ≤ n,

(2) λ = ωn and µ = ωi1 + . . . + ωir for certain i1 < . . . < ir < n such that n + 1 − ij is
even for all j ∈ {1, . . . , r},

(3) λ = ω2 and µ = ωj for some 2 < j ≤ n with j − 2 ≡ 3 mod 4,

(4) λ = ωn−1 and µ = ωj for some 1 ≤ j < n− 1 with n− 1 − j ≡ 3 mod 4.

Theorem 7.2 ([Ste03, Theorem 1.1.A]). Let G be of type An, λ ∈ X+ and i ∈ {1, . . . , n}.
Then LC(ωi) ⊗ LC(λ) is multiplicity-free.

Theorem 7.3. Let G be of type An and p = 2. Let λ, µ ∈ X+ be nonzero 2-restricted domi-
nant weights. Up to the reordering of λ and µ and up to duality, L(λ) ⊗L(µ) is multiplicity-
free if and only if one of the following holds:

(1) λ = ω1 and µ = ωi1 + . . .+ ωir for even numbers 1 < i1 < . . . < ir ≤ n,

(2) λ = ωn and µ = ωi1 + . . . + ωir for certain i1 < . . . < ir < n such that n + 1 − ij is
even for all j ∈ {1, . . . , r},

(3) λ = ω2 and µ = ωj for some 2 < j ≤ n with j − 2 ≡ 3 mod 4,

(4) λ = ωn−1 and µ = ωj for some 1 ≤ j < n− 1 with n− 1 − j ≡ 3 mod 4.

Proof. Suppose that λ and µ do not satisfy the conditions. Then L(λ)⊗L(µ) is not completely
reducible by Theorem 7.1, and hence it has multiplicity by Lemma 2.5.

Now suppose that λ, µ verify the condition of the theorem. By Theorem 7.1,
L(λ) ⊗ L(µ) is completely reducible. Moreover, LC(λ) ⊗ LC(µ) is multiplicity-free by
Theorem 7.2. Therefore, L(λ) ⊗ L(µ) is multiplicity-free by Theorem 3.6.
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