COMPACTIFICATIONS OF \mathbb{C}^n and the projective space

THOMAS PETERNELL

1. INTRODUCTION

In his famous problem list [\[Hi54\]](#page-2-0), Hirzebruch asked to classifiy all (smooth) compactifications X of \mathbb{C}^n with $b_2(X) = 1$. The condition on $b_2(X)$ is equivalent to saying that the divisor at ∞ is irreducible. For an overview on this problem, see [\[PS89\]](#page-2-1). In any case, without additional assumptions, such a classification seems to be possible only in low dimensions.

A particularly interesting case is when X is Kähler and the divisor at infinity is smooth. A folklore conjecture states that then X must be projective space. In this paper, we confirm this conjecture. Somehow more generally, we show

1.1. Theorem. Let X be a compact Kähler manifold of dimension n and $Y \subset X$ a smooth connected hypersurface such that

 $H_p(Y, \mathbb{Z}) \to H_p(X, \mathbb{Z})$

is bijective for all $0 \le p \le 2n-2$. Then $X \simeq \mathbb{P}_n$ and Y is a hyperplane.

1.2. Corollary. Let X be a compact Kähler manifold of dimension n and $Y \subset X$ a smooth connected hypersurface such that $X \setminus Y$ is biholomorphic to \mathbb{C}^n . Then $X \simeq \mathbb{P}_n$ and Y is a hyperplane.

These results had been proved for $n \leq 5$ by van de Ven [\[vdV62\]](#page-2-2) and for $n \leq 6$ by Fujita [\[Fu80\]](#page-2-3).

2. Proof of Theorem [1.1](#page-0-0)

We fix X and Y as in Theorem [1.1](#page-0-0) and first collect some basic properties of X and Y and refer to Fujita [\[Fu80\]](#page-2-3) and Sommese [\[So76\]](#page-2-4).

2.1. Proposition.

- a) The cohomology ring $H^*(X, \mathbb{C})$ is isomorphic as graded ring to $H^*(\mathbb{P}_n, \mathbb{C})$.
- b) The cohomology ring $H^*(Y, \mathbb{C})$ is isomorphic as graded ring to $H^*(\mathbb{P}_{n-1}, \mathbb{C})$.
- c) The restrictions $H^q(X,\mathbb{C}) \to H^q(Y,\mathbb{C})$ are bijective for $0 \leq q \leq 2n-2$.
- d) X is a Fano manifold. Further Pic(X) $\simeq \mathbb{Z}$, with ample generator $\mathcal{O}_X(Y)$.

Thus we may regard all Chern numbers of X and Y as numbers and intersection is just multiplication. Further let r denote the index of X, so that $-K_X = \mathcal{O}_X(rY)$. In other words,

$$
c_1(X)=r.
$$

Note that it is not necessary to assume Y to be ample, since Pic $(X) \simeq \mathbb{Z}$ holds actually for any smooth compactification with $b_2 = 1$ as well as (1) and (2) in the proposition.

By Corollary 2.5 of Libgober-Wood [\[LW90\]](#page-2-5), we have

Date: October 11, 2024.

2.2. Proposition.

(1)
$$
r \cdot c_{n-1}(X) = c_1(X) \cdot c_{n-1}(X) = \frac{1}{2} n(n+1)^2
$$

and

(2)
$$
(r-1) \cdot c_{n-2}(Y) = c_1(Y) \cdot c_{n-1}(Y) = \frac{1}{2} (n-1)n^2.
$$

We now start the proof of Theorem [1.1](#page-0-0) and observe first that $r \neq 1$ by Equation [\(2\)](#page-1-0). The tangent bundle sequence

$$
0 \to T_Y \to T_X|Y \to N_{Y/X} \to 0
$$

yields (in terms of numbers!)

$$
c_{n-1}(X) = c_{n-1}(T_X|Y) = c_{n-1}(Y) + c_{n-2}(Y) \cdot c_1(N_{Y/X}) = c_{n-1}(Y) + c_{n-2}(Y).
$$

Since

$$
c_{n-1}(Y) = \chi_{\text{top}}(Y) = \chi_{\text{top}}(\mathbb{P}_{n-1}) = n,
$$

it follows

(3)
$$
c_{n-1}(X) = n + c_{n-2}(Y).
$$

Replacing $c_{n-1}(X)$ by $n + c_{n-2}(Y)$ in Equation [\(1\)](#page-1-1) and putting in

$$
c_{n-2}(Y) = \frac{1}{2(r-1)}(n-1)n^2
$$

by virtue of Equation [\(2\)](#page-1-0), we obtain

(4)
$$
r\left(1+\frac{1}{2(r-1)}(n-1)n\right) = \frac{1}{2}(n+1)^2.
$$

Fixing r, we obtain a quadratic equation for n with solutions

$$
n = r - 1
$$

and

$$
n=2r-1.
$$

In the first case $X \simeq \mathbb{P}_n$ and we are done.

Thus the second case has to be ruled out. So assume $n = 2r - 1$, in particular n is odd.

Assume first that $r = \frac{n+1}{2}$ is even and write $r = 2m$ so that $n = 4m - 1$. By Equation [\(1\)](#page-1-1), $n-1$ divides $n(n+1)^2$. In other words, $4m-2$ divides $(4m-1)(4m)^2$. Thus $4m-2$ divides 4, so that $m=1$ and $n=3$. This case is already settled by [\[vdV62\]](#page-2-2).

If r is odd, write $r = 2m + 1$ so that $n = 4m + 3$. By Equation [\(2\)](#page-1-0), $n - 3$ divides $(n-1)n^2$, hence 4m divides $(4m+2)(4m+3)^2$. Hence 4m divides 18 which is impossible.

2.3. Remark. Theorem [1.1](#page-0-0) actually holds for compact manifolds which are bimeromorphic to a Kähler manifold. In fact, the result of Libgober-Wood rests on Hodge decomposition which is valid in this class. The only thing to observe that in Equation [\(3\)](#page-1-2) we might have a change in sign, so that either Equation [\(3\)](#page-1-2) holds or

$$
c_{n-1}(X) = -n + c_{n-2}(Y).
$$

The latter case leads to a contradiction by analogous computations as above.

Of course it is expected that Theorem [1.1](#page-0-0) remains true without any Kähler assumption. This is true in dimension three, see [\[PS89\]](#page-2-1), but seems out of reach in general. E.g., the divisor Y could be homologous to 0.

REFERENCES

- [Fu80] Fujita, T.: On topological characterizations of complex projective spaces and affine linear spaces. Proc. Japan Acad. Ser. A Math. Sci. 56 (1980, 231-234
- [Hi54] Hirzebruch, F.: Some problems on differentiable and complex manifolds. Ann. of Math. (2), 60 (1954), 213-236
- [LW90] Libgober, A.S. and Wood, J.W.: Uniqueness of the complex structure on Kähler manifolds of certain homotopy types. J. Differential Geom. 32 (1990), 139–154
- [PS89] Peternell, T. and Schneider, M.: Compactifications of \mathbb{C}^n : a survey. Proc. Sympos. Pure Math. 52, Part 2 (1991), 455–466
- [So76] Sommese, A.J.: On manifolds that cannot be ample divisors. Math. Ann. 221 (1976), 55–72
- [vdV62] van de Ven, A.: Analytic compactifications of complex homology cells. Math. Ann. 147 (1962), 189–204

Thomas Peternell, Mathematisches Institut, Universität Bayreuth, 95440 Bayreuth, **GERMANY**

Email address: thomas.peternell@uni-bayreuth.de