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TROPICAL SUBREPRESENTATIONS OF THE BOOLEAN REGULAR

REPRESENTATION IN LOW DIMENSION

STEFFEN MARCUS AND CAMERON PHILLIPS

1. Introduction

In [GM20], Giansiracusa–Manaker develop the theory of group representations over a fixed
idempotent semifield S, i.e. tropical representation theory. This continues efforts in recent
years to pursue ideas in scheme theoretic tropicalization, including [Fre13, GG16, GG18,
MR18, Jun18, CGM20, Lor23, BB19, FGGM24] among many others. In this theory a linear
representation G −→ GL(Sn) of a group G over S is described by monomial matrices, and a
tropical subrepresentation T ⊆ Sn is a G-invariant tropical linear space in Sn. The constant-
coefficient case features tropical representations over the boolean semifield B = {−∞, 0}
consisting of the tropical additive and multiplicative identities. This setting highlights a
unique interaction between group theory and matroid theory, since tropical representations
T ⊆ Sn correspond to group homomorphisms G −→ Aut(MT ) to the automorphism group
of the corresponding matroid.

Given a finite group G the boolean regular representation B[G] is the tropicalization of the
regular representation C[G] and can be described per usual by considering the B linear span

B[G] =

{

∑

g∈G

cgeg

}

of basis elements indexed by G under the action determined by left-multiplication in G. As
a central example [GM20, Theorem B] the authors begin the study of tropical subrepresen-
tations of B[G] and their realizability, that is, whether they arise as the tropicalization of
a classical subrepresentation of C[G]. In particular when G ∼= Zp is cyclic of prime order
they prove that there is only one realizable subrepresentation in each dimension 1 ≤ d ≤ p
corresponding to the uniform matroid Ud,p. In dimension 2 they show that that there are no
other non-realizable subrepresentations of B[Zp] for a specified infinite collection of primes.
They conjecture [GM20, Conjecture 4.1.6] that there is only one two-dimensional subrepre-
sentation of B[Zn] if and only if n is prime.

The goal of this paper is to continue the classification of tropical subrepresentations of
B[G]. Our main result in two-dimensions classifies all two-dimensional tropical subrepresen-
tations for any finite groupG and provides a direct correspondence with the proper subgroups
of G.

Theorem (Theorem 3.5). Let G be a finite group. Two-dimensional tropical subrepresen-
tations of B[G] correspond bijectively to proper subgroups H ⊂ G. The set of bases of the
corresponding matroids are explicitly presented as a union of G-orbits

⋃

g∈G−H

{{a, ag}|a ∈ G}
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for the induced G-action on subsets of G size 2.

This theorem is proven in Section 3. It completely solves the problem in dimension 2
and confirms conjecture [GM20, Conjecture 4.1.6] as the special case where G ∼= Zp. The
union of G-orbits explicitly describes the set of bases for each matroid on the ground set G
corresponding to a tropical subrepresentation. Our proof generalizes the methods in [GM20,
Section 4] to arbitrary groups, is surprisingly elementary, and demonstrates a direct interplay
between the basis exchange axiom and the group structure of G. In higher dimensions, this
interplay and the combinatorics involved present a more significant challenge.

To this end, in Section 4 we make progress on the dimension 3 case. Our first result
in dimension 3 shows that for any subgroup H ⊆ G of index larger than 2, there exists a
tropical subrepresentation of B[G] with bases of its corresponding matroid identified in a
similar way to Theorem 3.5.

Theorem (Theorem 4.5). Let G be a finite group, and let H be a subgroup of G with
[G : H ] > 2. There exists a three-dimensional tropical subrepresentations of B[G] for which
the set of bases of the corresponding matroid is explicitly presented as a union of G-orbits

⋃

g,h,g−1h∈G−H

{{a, ag, ah}|a ∈ G}

for the induced G-action on subsets of G size 3.

In contrast to dimension 2, this is not an equivalence – the combinatorics in higher di-
mension seem to allow for a wider collection of tropical subrepresentations. In Section 4.3
we investigate this further in the cyclic case. Our first result for cyclic groups identifies a
common subset of the set of bases for every matroid corresponding to a three-dimensional
subrepresentation of B[Zn]. Denote by Z×

n the set of units in Zn.

Theorem (Theorem 4.8). Let G = Zn be a finite cyclic group. The set of bases B of any
matroid corresponding to a three-dimensional subrepresentation contains the union

⋃

u∈Z×

n

{{a, u+ a, 2u+ a}|a ∈ Zn}

of orbits for the induced Zn-action on subsets of Zn of size 3.

Our second result for cyclic groups provides the set of bases for a number of tropical
subrepresentations of B[Zn] not corresponding to subgroups. Denote by

(

[n]
3

)

the set of
subsets of [n] = {1, . . . , n} of size 3. In Theorem 4.9 these sets of bases take the form, for
any unit u ∈ Z×

n ,
(

[n]

3

)

− {{a, u+ a, ku+ a}|a ∈ Zn}

for various values of k determined by the combinatorics of the problem. Here we are simply
excluding one specific orbit of the induced Zn-action. For n > 5 these are the bases of
non-uniform matroids. This confirms that B[Zn] contains non-uniform three-dimensional
tropical subrepresentations for all n > 5, even for n a prime, which directly contrasts with
the two-dimensional case.

In the boolean setting, tropical representation theory can be recast as a question about
group actions on matroids, and this is our approach. Our attention is restricted to the
classification question as it provides a facinating playground in which group theory and
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matroid theory seem to interact deeply with interesting combinatorics. Realizability of the
subrepresentations constructed here, a continuation of the classification in dimensions 3 and
higher, and a comparison with the classical case are all ripe questions that we leave for future
work.

Acknowledgements. We are grateful to Andrew Clifford, Noah Giansiracusa, and Thomas
Hagedorn for interesting and helpful discussions benefiting this project.

2. Background

In this section we briefly summarize the necessary theory from [GM20]. For more detailed
background, we refer the reader to this paper, as well as [CGM20, GG18]. We assume a
familiarity with matroid theory, see [Oxl11] for further reading.

2.1. The tropical booleans. In [GM20] the finite-dimensional representation theory of
groups is developed over an arbitrary idempotent semifield (S,+, ·, 0, 1), meaning additive
inverses may not exist and s+ s = s for all s ∈ S. This is an appropriate generalized setting
for tropical algebra as the tropical numbers

T = (R ∪ {−∞},⊕,⊙,−∞, 0)

form an idempotent semifield consisting of the set R ∪ {−∞} under the operations a⊕ b =
max(a, b) and a ⊙ b = a + b. Note that x ⊕ y = max(x, y) ≥ x for all x, y ∈ T and, aside
from −∞, no element has an additive inverse.

The boolean semifield

B = {0, 1} ⊆ S

consists of the additive and multiplicative identity elements alone and forms the initial object
of the category. We will restrict our attention to the booleans throughout.

2.2. Exterior powers. Let Bn be a free Bmodule with basis elements e1, . . . , en. In [GG18],

an exterior algebra formalism for semirings introduces free modules
∧d

Bn for d = 1, . . . , n
given by a basis of the form ei1 ∧· · ·∧eid where each eik are basis elements of Bn. Recall the
two standard properties or wedge product: v ∧ v = 0 and v ∧w = −w ∧ v. In this context
the second property becomes v ∧w = w ∧ v.

For any positive integer n, set [n] = {1, . . . , n}. For any finite set A denote by
(

A

d

)

the set

of subsets of A of cardinality d. The basis of
∧d

Bn corresponds to the set
(

[n]
d

)

by taking

indices, and vectors in
∧d

Bn simply indicate a subset of the basis vectors of
∧d

Bn. This

gives a correspondence betwen vectors v ∈
∧d

Bn and subsets of
(

[n]
d

)

. More generally given
any finite group G as an index set, the same correspondence can be formed between vectors
v ∈

∧d
B|G| and subsets of

(

G

d

)

. Moreover, the effect of projectivization on
∧d

Bn disappears

since B∗ = B− 0 = {1}, so P(
∧d

Bn) ∼=
∧d

Bn.

2.3. Tropical Linear Spaces and Matroids. A nonzero vector

v =
∑

I∈([n]
d )

vIeI ∈
d
∧

B
n
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is a tropical Plücker vector over B of rank d if it satisfies the Tropical Plücker Relations over
B, that is, for all A ∈

(

[n]
d+1

)

, B ∈
(

[n]
d−1

)

, j ∈ A− B,
∑

i∈A−B

vA−{i}vB∪{i} =
∑

i∈A−B−j

vA−{i}vB∪{i}.

Formally, a vector will satisfy the tropical Plücker relations if whenever vA−ivB+i = 1 for
some i, then for some j 6= i we must have vA−jvB+j = 1. Indeed, tropical Plücker vectors

in
∧d

Bn are precisely the vectors which correspond to choices of subsets in
(

[n]
d

)

that satisfy
the strong basis exchange axiom, which we recall here: for all X, Y ∈ B, i ∈ X − Y, there is
some j ∈ Y −X with X− i+j, Y −j+ i ∈ B. Thus v is a tropical Plücker vector if and only
if it is the basis indicator vector of a matroid over the ground set [n], i.e. B = {I | VI = 1}
is the basis set of a matroid.

The set of all tropical Plücker vectors are in a bijective correspondence with submodules
L ⊆ Bn. These submodules are the tropical linear spaces in Bn. In the boolean setting this
correspondence takes a satisfying form. A tropical Plücker vector v ∈

∧d
Bn corresponds to

a matroid M
v
= ([n],Bv) with bases Bv indicated by the vector v, and this data corresponds

to a tropical linear subspace L
v
⊆ Bn given by the B-linear span of the vectors

∑

i wiei
indicating the cocircuits of M

v
. Thus

v ∈
d
∧

B
n ⇐⇒ M

v
= ([n],Bv) ⇐⇒ L

v
⊆ B

n.

See [GG18] for a more thorough discussion.

2.4. Linear representations and G-fixed Plücker vectors. Let G be an arbitrary group
and let V ∼= Bn be a free module of rank n and let [n] be the index set for the chosen basis of
V . A (linear) tropical representation of G over B is a group homomorphism ρ : G −→ GL(V ).
Note that GL(V ) consists solely of permutation matrices, so over the booleans the theory
boils down to permutation representations. A tropical subrepresentation of ρ is given by
restricting the G−action to a G−invariant tropical linear subspace L ⊆ V . The dimension
of a tropical subrepresentation is the rank of the tropical linear subspace L. This also equals
the rank of the corresponding matroid under the correspondence described in Section 2.3.

For each 1 ≤ d ≤ n, a given tropical representation ρ : G −→ GL(V ) induces a repre-

sentation G −→ GL(
∧d V ) which restricts to a G-action on the Dressian Dr(d, n) ⊆

∧d V ,
that is, the subset consisting of tropical Plücker vectors of rank d. We also have a com-
patability of G-actions: whevever Lv ⊆ V is a tropical linear space in V associated to the
tropical Plücker vector v ∈

∧d V then for all g ∈ G we have Lg·v = g · L
v
. Thus tropical

subrepresentations of dimension d correspond to G fixed tropical Plücker vectors v ∈
∧d V .

This crucial observation from [CGM20] is shown for all idempotent semifields and is central
to our approach. We highlight it here in the Boolean case.

Theorem 2.1 ([GM20] Theorem A(1)). For any 1 ≤ d ≤ n, the induced linear representation

on
∧d

Bn restricts to a linear action on the Dressian Dr(d, n) ⊆
∧d

Bn, and d-dimensional
tropical subrepresentations in Bn are equivalent to G-fixed points in Dr(d, n).

Thus the problem of classifying d-dimensional tropical subrepresentation of ρ is equivalent
to identifying all rank d tropical Plücker vectors fixed by the induced G-action. Moreover,
this reduces further to a problem in matroid theory. We recall that an automorphism of a
matroid is a permutation of the ground set sending independent sets to independent sets, and
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thus bases to bases and cocircuits to cocircuts. Tropical linear subspaces L
v
⊆ V correspond

to matroids M
v
over the ground set [n]. A tropical representation ρ : G −→ GL(V ) induces

a G-action on [n], and ρ factors through the automorphism group of M
v
if and only if L

v
is

G-invariant. Since a tropical Plücker vector is the basis indicator vector for M
v
, a G-fixed

tropical Plücker vector v corresponds to a set of bases B
v
invariant under the G-action on

[n]. Thus to classify d-dimensional tropical subrepresentation of ρ, it is enough to classify

matroids rank d matroids ([n],B) for which B ⊆
(

[n]
d

)

is invariant under the induced G-action.

2.5. The regular representation. Let G be a finite group. For each g ∈ G we write eg
for a basis element represented by the group element g and denote by

B[G] =

{

∑

g∈G

cgeg

}

the B-linear span of these basis elements. The regular representation is given by taking the
G action by left multiplication on the basis elements of B[G]:

g · ea = ega, g, a ∈ G.

Fix 1 ≤ d ≤ n. We can extend this action to the basis of
∧d

B[G] in the following manner:

g · (ea1 ∧ · · · ∧ ead) = ega1 ∧ · · · ∧ egad , g ∈ G, {a1, . . . , ad} ∈

(

G

d

)

.

This extends linearly to an action on
∧d

B[G].
In parallel, consider the G action on itself by left multiplication:

g · a = ga, g, a ∈ G.

This extends to
(

G

d

)

in the following manner:

g · {a1, . . . , ad} = {ga1, . . . , gad}, g ∈ G, {a1, . . . , ad} ∈

(

G

d

)

.

There is an obvious bijection from the basis of
∧d

B[G] to the set of subsets of G of size d

along which these two actions are equivalent. The bijection extends to one between
∧d

B[G]
and the power set of

(

G

d

)

, by sending the d-vector

∑

I∈(Gd)

vIeI ∈
d
∧

B[G]

to the set of subsets {I|vI = 1} it indicates. Hence terms in the tropical Plücker vector
v =

∑

I∈(Gd)
vIeI associated with the matroid M

v
= (G,B

v
) will have

vI = 1 ⇐⇒ I ∈ B

and thus can be written as v =
∑

I∈Bv

eI .
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3. 2-dimensional Subrepresentations of B[G]

In this section we classify all 2-dimensional tropical subrepresentations of B[G] for an
abritrary finite group G and provide some examples. By [GM20, Theorem A(1)] these
correspond to rank 2 tropical Plücker vectors fixed by the induced action of G on

∧2
B[G].

They are studied by taking unions of orbits of the equivalent action on
(

G

2

)

. This amounts

to searching for unions of orbits of the G action on
(

G

2

)

satisfying the strong basis exchange
axiom.

3.1. Orbits and their properties. To identify the orbits of the G action on
(

G

2

)

note that

for any subset {a, b} ∈
(

G

2

)

, the product a−1b is preserved under the G action on
(

G

2

)

since

(ga)−1gb = a−1g−1gb = a−1b.

We think of a−1b as a generalized “difference” (see the example of Zn in Section 3.2 below).
Moreover, we have that every pair with the same generalized difference is in the same orbit.
To see this, let {a1, b1}, {a2, b2} ∈

(

G

2

)

with

a−1
1 b1 = a−1

2 b2,

giving

a2a
−1
1 b1 = b2.

Then a2a
−1
1 acting on {a1, b1} gives

a2a
−1
1 · {a1, b1} = {a2a

−1
1 a1, a2a

−1
1 b1} = {a2, b2}.

Thus the orbits are given by the sets

fg = {{a, ag}|a ∈ G} = {{a, b}|a, b ∈ G, a−1b = g}

consisting of pairs {a, b} with a fixed difference g = a−1b between the two elements. Note

that g = e gives fe = ∅ and each orbit fg determines a G fixed vector fg ∈
∧2

B[G]. Denote

by OG the set of orbits of the G action on
(

G

2

)

. Each orbit determines a G fixed vector in
∧2

B[G], denoted

fg =
∑

a∈G

ea ∧ eag.

We now highlight salient properties of the orbits fg.

Proposition 3.1. For all g ∈ G, fg = fg−1.

Proof. To show fg ⊆ fg−1, let {a, b} be an arbitrary set in fg. Then g = a−1b by definition
and {a, b} = {b, a} ∈ fb−1a = f(a−1b)−1 = fg−1 . The containment in the other direction is
similar. �

For reference, the matroid basis axioms are:

(1) B 6= ∅
(2) if A,B ∈ B then |A| = |B|
(3) if A,B ∈ B and x ∈ A−B, then there is some y ∈ B−A with A−x+ y ∈ B (strong

basis exchange).

Let A = {a1, a2} and B = {b1, b2} be bases. There are three cases:

Case 1: A = B. In this case there is no x in A− B and basis exchange succeeds.
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Case 2: A,B are unequal but not disjoint, so they share exactly one element since they both
have size 2. Without loss of generality, let a1 = b1. Then x = a2, y = b2, and this
forces A− a2 + b2 to be in B. However, this set is {a1, b2}, but since a1 = b1 the set
is just {b1, b2} = B.

Case 3: A,B are disjoint. Without loss of generality, pick x = a2; since the sets are disjoint,
y could be either b1 or b2. Then we have {a1, b1} or {a1, b2} is in B.

Since only the third case results in including sets not already in B, we will only consider basis
exchange between disjoint subsets of size 2 when dealing with dimension 2. The following
proposition shows how basis exchange can be applied to the orbits of the G action on

(

G

2

)

.

Proposition 3.2. Let B be the set of bases of a matroid M
v
= (G,B) corresponding to a

G-fixed tropical Plücker vector v ∈
∧2

B[G]. Then

fgh ⊆ B =⇒ fg ⊆ B or fh ⊆ B.

Proof. We note that {e, gh}, {g−1, h} ∈ fgh. These sets are disjoint as long as g−1, h 6= e,
gh 6= g−1 and gh 6= h. In any of these cases, fgh = fg or fh and the proposition is true.
Otherwise, the sets are disjoint and we can use basis exchange to deduce

{e, g−1} ∈ B or {e, h} ∈ B.

But {e, g−1} ∈ fg−1 = fg by Proposition 3.1 and {e, h} ∈ fh. Therefore we have fgh ⊆ B
implies fg ⊆ B or fh ⊆ B as desired since B must be a union of orbits. �

For any subset S ⊆ G of indices we introduce the notation

fS =
⋃

g∈S

fg

for a union of orbits. In the proofs below we may sometimes only consider cases where
S ⊆ G− {e}, but since fe = ∅ this will never be an issue when quantifying over all possible
nonempty unions. Each subset S determines in this way a candidate set of bases of a
matroid corresponding to a 2-dimensional tropical subrepresentation. A nonempty union fS
will satisfy the matroid basis exchange axioms if and only if the corresponding 2-vector

fS =
∑

g∈S

fg

satisfies the tropical Plücker relations.

3.2. Example: Zn. The case G = Zn is studied in part in [GM20, Section 4]. Here the
action on subsets of size 2 becomes

g · {a, b} = {g + a, g + b}, g ∈ Zn, {a, b} ∈

(

Zn

2

)

.

Note that the difference b − a is preserved under the Zn-action, and the distinct orbits are
precisely the sets

fi = {{a mod n, a+ i mod n}|a ∈ Zn}

consisting of subsets of Zn of size 2 with a fixed difference i modulo n between the two
elements. It is clear from the definition that fi = fj whenever i and j are congruent modulo
n and fi = f−i for all i. With n odd, the distinct Zn-orbits are

OZn
=

{

f1, . . . , fn−1
2

}
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since n− n+1
2

= n−1
2
. With n even, the distinct orbits are

OZn
=

{

f1, . . . , fn
2

}

.

Denote by Z×
n ⊆ Zn the multiplicative group of units, and let p be a prime. In [GM20,

Theorem 4.1.3], Giansiracusa & Manaker prove that the only subrepresentation of B[Zp] in
dimension two is uniform when 2 is a primitive root mod p or p ∼= 7 mod 8 and 2 has
order p−1

2
mod p. Their argument appeals to studying when 2 generates the multiplicative

quotient group Z×
n /〈p−1〉, and applying a weaker version of Proposition 3.2 to build a chain

of inclusions for the set of bases of a matroid. They conjecture [GM20, Conjecture 4.1.6] that
p is prime if and only if the only subrepresentation of B[Zp] in dimension two corresponds to
the uniform rank 2 matroid on [n]. We prove this conjecture as a special case of Theorem 3.5
in Section 3.3, but as a brief example we can obtain one direction by showing that every
two-dimensional tropical subrepresentation of B[Zn] contains fZ×

n
in its set of bases.

Proposition 3.3. Let B be the set of bases of a matroid M
v
= ([n],B) corresponding to a

Zn-fixed tropical Plücker vector v ∈
∧2

B[Zn]. Let m be a positive integer.

(1) fmi ⊆ B =⇒ fi ⊆ B.
(2) Let d | n and k ∈ Zn with k 6= 0. Then fkd ⊆ B =⇒ fdZ×

n
⊆ B.

Proof. We prove (1) by induction. It is a tautology in the case m = 1. Assume f(m−1)i ⊆
B =⇒ fi ⊆ B. Then by Proposition 3.2,

fmi = f(m−1)i+i ⊆ B =⇒ f(m−1)i ⊆ B or fi ⊆ B.

The latter case is immediate. In the former case, we know fi ⊆ B by the inductive hypothesis.
For (2), we have by (1) that fkd ⊆ B =⇒ fd ⊆ B. Then for any u ∈ Z×

n we must have

fd = fu−1ud ⊆ B =⇒ fud ⊆ B.

Thus fdZ×

n
⊆ B �

In the setting of the above proposition, since B must be a non-empty union of orbits, we
know that for some k ∈ Zn, fk ⊆ B. Taking d = 1 in (2) gives f

Z
×

n
⊆ B. We get the following

Corollary.

Corollary 3.4. Every two-dimensional tropical subrepresentation of B[Zn] contains f
Z
×

n
in

its corresponding set of bases. When n is prime then f
Z
×

n
= f[n] =

(

[n]
2

)

and the only 2-
dimensional tropical subrepresentation corresponds to the uniform rank 2 matroid U2,n on
the ground set [n].

3.3. Classification in dimension 2. Our first theorem classifies all two-dimensional trop-
ical subrepresentations of B[G].

Theorem 3.5. The two-dimensional tropical subrepresentations of B[G] correspond to the
Plücker vectors fG−H for H a proper subgroup of G.

Proof. We begin by showing that, for any proper subgroup H of G, the union of orbits fG−H

forms the bases of a matroid. Since H is proper, we know fG−H is a non-empty subset of
(

G

2

)

.
Let {a1, a2} and {b1, b2} in fG−H . Without loss of generality, it is enough to show {a1, b1}
or {a1, b2} is in fG−H . Assume on the contrary {a1, b1} and {a1, b2} 6∈ fG−H . Notice that
since H is a subgroup, both H and G−H are closed under taking inverses so fG−H ∩fH = ∅
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and fG−H ∪ fH =
(

G

2

)

, giving a disjoint union. Thus {a1, b1} ∈ fH and {a1, b2} ∈ fH . Then

a−1
1 b1, a

−1
1 b2 ∈ H , so

(a−1
1 b1)

−1a−1
1 b2 = b−1

1 a1a
−1
1 b2 = b−1

1 b2 ∈ H.

Thus {b1, b2} ∈ fH contradicting our assumption that {b1, b2} ∈ fG−H .
For the converse, we will now show that orbit unions of the form fG−H with H a proper

subgroup of G are the only G-fixed matroidal subsets of
(

G

2

)

. Let S ⊆ G − {e} with S
nonempty and assume the union of orbits fS =

⋃

i∈S fi is the set of bases indicated by a G
fixed Plücker vector, and thus matroidal. Our goal is to show the complement SC = G− S
is a proper subgroup of G.

In the case S = G−{e} we have SC = {e}, which is a proper subgroup as desired. In this
case, fS =

(

G

2

)

and thus fS corresponds to the uniform matroid.
Assume now S is a proper nonempty subset of G−{e}. Let a, b ∈ SC . Then fa, fb ⊆ fSC .

We will use the subgroup test to show that SC is a subgroup of G. Assume on the contrary
that ab−1 6∈ SC . Then ab−1 ∈ S giving fab−1 ⊆ fS. Thus fa or fb−1 = fb ⊆ fS by
Proposition 3.2. So a or b ∈ S which contradicts our assumption a, b ∈ SC . Thus SC is a
subgroup of G. �

Remark 3.6. The uniform matroid corresponds to choosing H = {e}.

In the cyclic case G = Zn, setting n to be a prime gives f
Z
×

n
=

(

[n]
2

)

and confirms Giansir-
acusa & Manaker’s Conjecture.

Corollary 3.7. [GM20, Conjecture 4.1.6] For B[Zn], n is prime if and only if the only
two-dimensional subrepresentation corresponds to the uniform matroid.

3.4. Examples.

Example 3.8 (B[Q8]). We use the usual presentation

Q8 = 〈−1, i, j, k|(−1)2 = 1, i2 = j2 = k2 = ijk = −1〉

of the quaternions. There are 4 orbits of the action of Q8 on subsets of Q8 of size 2 by left
multiplication:

f−1 ={{1,−1}, {i,−i}, {j,−j}, {k,−k}},

fi ={{1, i}, {−1,−i}, {i,−1}, {−i, 1}, {j,−k}, {−j, k}, {k, j}, {−k,−j}},

fj ={{1, j}, {−1,−j}, {i, k}, {−i,−k}, {j,−1}, {−j, 1}, {k,−i}, {−k, i}},

fk ={{1, k}, {−1,−k}, {i,−j}, {−i, j}, {j, i}, {−j,−i}, {k,−1}, {−k, 1}}.

By Proposition 3.2, f−1 ⊆ B =⇒ fi ⊆ B since i2 = −1. Combining this with similar
statements for j and k, we obtain f−1 ⊆ B =⇒ fi ∪ fj ∪ fk ⊆ B.

We can write i = jk, so by Proposition 3.2 we know that fi ⊆ B =⇒ fj or fk ⊆ B.
Similarly for fj and fk, we obtain

fj ⊆ B =⇒ fi or fk ⊆ B,

and

fk ⊆ B =⇒ fi or fj ⊆ B.
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Combining all of these statements together, it can be checked that the only matroidal sums
of orbits are the following:

fQ8−〈k〉 =fi ∪ fj

fQ8−〈j〉 =fi ∪ fk

fQ8−〈i〉 =fj ∪ fk

fQ8−〈−1〉 =fi ∪ fj ∪ fk

fQ8−〈1〉 =f−1 ∪ fi ∪ fj ∪ fk

These correspond to the subgroups of Q8.

Example 3.9 (B[Dn]). We use the presentation Dn = 〈ρ, σ|ρn = σ2 = e, σρσ = ρ−1〉. The
orbits of the left action of Dn on

(

Dn

2

)

are as follows:

(1) fρi = {{e, ρi}, {ρ, ρi+1}, · · · , {ρn−1, ρi−1}, {σ, σρi}, {σρ, σρi+1}, · · · , {σρn−1, σρi−1}} for
0 < i < n

2
,

(2) f
ρ
n
2
= {{e, ρ

n
2 }, {ρ, ρ

n
2
+1}, · · · , {ρ

n
2
−1, ρn−1}, {σ, σρ

n
2 }, {σρ, σρ

n
2
+1}, · · · , {σρ

n
2
−1, σρn−1}}

if n is even,
(3) fσρi = {{e, σρi}, {ρ, σρi−1}, · · · , {ρn−1, σρi+1}}, for 0 ≤ i < n.

If n is odd, there are n−1
2

of the first type of orbit, each of which has order 2n, while there are

n of the third type of orbit, each of which has order n. This gives a total of 2n(n−1
2
)+n(n) =

n(2n − 1) =
(

2n
2

)

elements. If n is even, there are n
2
− 1 of the first type of orbit, each of

which has order 2n, one of the second type of orbit of order n, and n of the third type of
orbit, which has order n. This gives us a total of 2n(n

2
−1)+1(n)+n(n) = n(2n−1) =

(

2n
2

)

elements.
By Theorem 3.5, matroidal unions of orbits correspond to subgroups of Dn. Subgroups of

Dn are classified as follows (see for instance [Con19, Theorem 3.1] or [Cav75]):

(i) 〈ρd〉, d | n,
(ii) 〈ρd, σρi〉, d | n 0 ≤ i < d.

Since the subgroups depend on the factorization of n, we restrict our example to the case
Dp where p is prime for simplicity. The corresponding unions of orbits are:

d = 1: 〈ρ〉 corresponds to fDp−〈ρ〉 = fσ ∪ fσρ ∪ · · · ∪ fσρn−1 ;
d = p: 〈e〉 corresponds to the uniform matroid, fDp−〈e〉 = fDp

, and
〈σρi〉, 0 ≤ i < p, corresponds to fDp−〈σρi〉 = fDp

− fσρi .
For a specific example of the composite case, we turn to D4:
d = 1: 〈ρ〉 corresponds to fD4−〈ρ〉 = fσ ∪ fσρ ∪ fσρ2 ∪ fσρ3 ;
d = 2: 〈ρ2〉 corresponds to fD4−〈ρ2〉 = fρ ∪ fσ ∪ fσρ ∪ fσρ2 ∪ fσρ3 ;

〈ρ2, σ〉 corresponds to fD4−〈ρ2,σ〉 = fρ ∪ fσρ ∪ fσρ3 ;
〈ρ2, σρ〉 corresponds to fD4−〈ρ2,σρ〉 = fρ ∪ fσ ∪ fσρ2 ;

d = 4: 〈e〉 corresponds to fD4−〈e〉 = fρ ∪ fρ2 ∪ fσ ∪ fσρ ∪ fσρ2 ∪ fσρ3 (uniform);
〈σ〉 corresponds to fD4−〈σ〉 = fρ ∪ fρ2 ∪ fσρ ∪ fσρ2 ∪ fσρ3 ;
〈σρ〉 corresponds to fD4−〈σρ〉 = fρ ∪ fρ2 ∪ fσ ∪ fσρ2 ∪ fσρ3 ;
〈σρ2〉 corresponds to fD4−〈σρ2〉 = fρ ∪ fρ2 ∪ fσ ∪ fσρ ∪ fσρ3 ;
〈σρ3〉 corresponds to fD4−〈σρ3〉 = fρ ∪ fρ2 ∪ fσ ∪ fσρ ∪ fσρ2 .
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4. 3-dimensional Subrepresentations

The problem in dimension 3 offers more combinatorial complexity. We present in this
section some properties of orbits and computations of three dimensional subrepresntations
of B[G]. We identify tropical subrepresentations of B[G] corresponding to subgroups of index
larger than 2. In the cyclic case we find additional tropical subrepresentations of B[Zn] that
do not fit into this correspondence. We also identify a specific collection of orbits, indexed by
Z
×
n , that are contained in the set of bases of any matroid corresponding to a subrepresentation

of B[Zn].

4.1. Orbits and their properties. As in dimension 2, the G action on B[G] extends to

the basis of
∧3

B[G] as

g · ea ∧ eb ∧ ec = ega ∧ egb ∧ egc, g ∈ G, {a, b, c} ∈

(

G

3

)

and extends linearly to an action on
∧3

B[G]. The equivalent G action on
(

G

3

)

is similar.
Following the approach in dimension 2, G-orbits in this setting are given by sets of the form

fg,h = {{a, ag, ah}|a ∈ G} = {{a, b, c}|a−1b = g and a−1c = h}

for any g, h 6= e with g 6= h. It is obvious from the definition that fg,h = fh,g. We write

fg,h ∈
∧3

B[G] for the correspinding Plücker vector. We will investigate similar properties
of the orbits that can be deduced in the 3-dimensional setting. The first is analogous to
Proposition 3.1.

Proposition 4.1. For all g, h ∈ G, fg,h = fg−1,g−1h = fh−1,h−1g.

Proof. To show fg,h ⊆ fg−1,g−1h, let {a, b, c} ∈ fg,h be given. Then g = a−1b and h = a−1c.
Notice g−1 = b−1a and

g−1h = (b−1a)(a−1c)

= b−1c

thus {a, b, c} = {b, a, c} ∈ fg−1,g−1h. The other containment is similar. Finally, a similar
proof gives the third equality. �

Let A = {a1, a2, a3} and B = {b1, b2, b3} in B be bases of a matroid (G,B). There are now
four cases when analyzing basis exchange to replace a3:

Case 1: A = B. In this case A− B is empty and basis exchange succeeds.
Case 2: A,B share two elements, none of which are a3. Without loss of generality, let a1 = b1

and a2 = b2. Then x = a3, y = b3, and this forces A− a3 + b3 to be in B. However,
this set is {a1, a2, b3}, but since a1 = b1 and a2 = b2 the set is just {b1, b2, b3} = B.

Case 3: A,B share a single element that isn’t a3. Without loss of generality, let a1 = b1.
Then replacing a3 gives {a1, a2, b2} or {a1, a2, b3} ∈ B.

Case 4: A,B are disjoint. Then replacing a3 gives{a1, a2, b1}, {a1, a2, b2} or {a1, a2, b3} ∈ B.

Note that only cases 3 and 4 result in the inclusion of new bases. The following proposition
shows how basis exchange in this setting interacts with the orbits of the G-action.

Proposition 4.2. Let B be the set of bases of a matroid M
v
= (G,B) corresponding to a

G-fixed tropical Plücker vector v ∈
∧3

B[G]. Then fg,h ∪ fg′,h′ ⊆ B =⇒ fg,g′ or fg,h′ ⊆ B.
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Proof. First consider the case where g, h, g′, and h′ are distinct. We know {0, g, h} ∈ fg,h
and {0, g′, h′} ∈ fg′,h′. Basis exchange gives {0, g, g′} or {0, g, h′} ∈ B and fg,g′ or fg,h′ ⊆ B.
In the case where g, h, g′, h′ are not distinct, there are 6 cases:

• the cases g = h and g′ = h′ aren’t possible based on how the orbits are defined,
• g = g′ =⇒ fg′,h′ = fg,h′,
• g = h′ =⇒ fg′,h′ = fg,g′,
• h = g′ =⇒ fg,h = fg,g′,
• h = h′ =⇒ fg,h = fg,h′.

�

As an immediate corollary, we have a property of orbits that is analogous to the product
property of Proposition 3.2.

Corollary 4.3. Let B be the set of bases of a matroid M
v
= (G,B) corresponding to a

G-fixed tropical Plücker vector v ∈
∧3

B[G]. Then fg,gh ⊆ B =⇒ fg,g−1 or fg,h ⊆ B.

Proof. By Proposition 4.1, we know fg,gh = fg−1,h. The result follows directly from applying
Proposition 4.2. �

A straightforward application this basis exchange property provides an important reduc-
tion of exponents in the indices of the orbits.

Proposition 4.4. Let B be the set of bases of a matroid M
v
= (G,B) corresponding to a

G-fixed tropical Plücker vector v ∈
∧3

B[G]. Then fg,gk ⊆ B =⇒ fg,g2 ⊆ B for k ≥ 2.

Proof. We proceed by induction. The case k = 2 is a tautology. Assume for induction
hypothesis that fg,gk−1 ⊆ B =⇒ fg,g2 ⊆ B. Then

fg,gk ⊆ B =⇒ fg,g−1 or fg,gk−1 ⊆ B

by Corollary 4.3. In the first case, we know fg,g−1 = fg−1,g and

fg−1,g = fg,g2

using Proposition 4.1. The second case follows immediately from the induction hypothesis.
�

4.2. Subrepresentations in dimension 3. Recall that we defined a notation fS =
⋃

g∈S fg
for the union of orbits in dimension 2 indexed by a subset S ⊆ G. We adopt a similar notation
in dimension 3:

fS =
⋃

g,h,g−1h∈S

fg,h.

Our main theorem in dimension 3 gives an attempt to extend our dimension 2 classification
to three dimensional tropical subrepresentations of B[G] coming from proper subgroups of
G.

Theorem 4.5. Let G be a finite group, and let H be a subgroup of G with [G : H ] > 2.
Then there is a matroid M

v
= (G, fG−H) corresponding to a G-fixed tropical Plücker vector

v ∈
∧3

B[G].
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Proof. We prove this by contradiction. Assume on the contrary for someX = {x1, x2, x3}, Y =
{y1, y2, y3} ∈ B we can apply basis exchange to force the inclusion of an orbit containing a
difference in H . Note that by definition, x−1

1 x2, x
−1
1 x3, x

−1
2 x3, y

−1
1 y2, y

−1
1 y3, y

−1
2 y3 must be

in G−H . Their inverses must also be in G−H , since it’s closed under taking inverses.
Note that neither X nor Y contains a difference in H by our assumption. The case where

[G : H ] = 2 is impossible here. If H has index 2, the there are two cosets: H and aH .
Assume on the contrary that x−1

1 x2, x−1
1 x3, x−1

2 x3 in G−H = aH . Then x−1
1 x2 = ah1 and

x−1
1 x3 = ah2 with h1, h2 ∈ H . Then, x−1

2 x3 = x−1
2 x1x

−1
1 x3 = (x−1

1 x2)
−1x−1

1 x3 = (ah1)
−1ah2 =

h−1
1 h2 ∈ H .
Now, we assume [G : H ] > 2.

(1) X and Y share one element, x1 = y1. {x1, x2, x3}, {y1, y2, y3} ∈ B =⇒ {x1, x2, y2}
or {x1, x2, y3} ∈ B. Since we’ve assumed we can force the inclusion of an orbit
containing a difference in H , there must be a difference in H in both sets. So the
first set must include a difference in H . There are three possibilities:
(a) x−1

1 x2 ∈ H is a contradiction;
(b) x−1

1 y2 ∈ H is also a contradiction since x−1
1 y2 = y−1

1 y2 ∈ H
(c) x−1

2 y2 ∈ H is the only remaining case.
Similarly we can show that x−1

2 y3 ∈ H . However, then y−1
2 y3 = y−1

2 x2x
−1
2 y3 =

(x−1
2 y2)

−1x−1
2 y3 ∈ H giving a contradiction.

(2) X and Y are disjoint. {x1, x2, x3}, {y1, y2, y3} ∈ B =⇒ {x1, x2, y1} or {x1, x2, y2}
or {x1, x2, y3} ∈ B. Since d must divide a difference in each set, it must divide a
difference in the first set; there are again three possibilities:
(a) x−1

1 x2 ∈ H is a contradiction;
(b) if x−1

1 y1 ∈ H , note that x−1
1 y2 or x−1

1 y3 ∈ H would give a contradiction as in
case (c) above, so it must be the case that x−1

2 y2 and x−1
2 y3 ∈ H , which gives us

the contradiction we were trying to avoid; and finally
(c) the case where x−1

2 y1 ∈ H gives a similar contradiction.

�

Unlike in Theorem 3.5, this is not an equivalence. Indeed there exist matroids in dimen-
sion three that do not come from complements of subgroups, suggesting the theory is more
involved. In Section 4.3 we will study the cyclic case to identify some of these subrepresen-
tations.

4.3. Results in the cyclic case. Our final theorems in dimension 3 are restricted to the
cyclic case G = Zn. We classify a number of tropical subrepresentations that appear and
give a collection of orbits indexed by the generators of the group that will be always be
subsets of the bases of a matroid corresponding to a tropical subrepresentations. While
not a complete classification, these results make apparent the combinatorics that appear in
higher dimension and hopefully provide a path for further results in higher dimensions.

As in the dimension 2 example given in Section 3.2, we will work using additive notation.
The orbits take the form

fi,j = {{a, a+ i, a+ j}|a ∈ Zn} = {{a, b, c}|b− a = i and c− a = j}

for 0 < i < j < n. We begin with two lemmas to aid in the proof of Theorem 4.8. This first
lemma provides a useful bound on the indices of fi,j.
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Lemma 4.6. Let G = Zn be a cyclic group and u ∈ Z×
n a unit. Let fi,j be an orbit of the G

action on
(

G

3

)

, with 0 < i < j < n. Let I = {k | fku,lu = fi,j, 0 < k < l < n}. Then I has an
element s with 3s ≤ n.

Proof. Recall fi,j = f−i,j−i = f−j,i−j by Proposition 4.1. Note also that f−i,j−i = fj−i,−i since
we can switch the order of indices.

Write i = au, j − i = bu, −j = cu. We know 0 < a, b < n since 0 < i < j < n. We
also know −n < c < 0 since 0 < j < n, so we let c′ = c + n to ensure 0 < c′ < j. Then,
a, b, c′ ∈ I.

We also know that i+(j− i)− i = 0, so a+ b+ c = 0. Then a+ b+ c′ = a+ b+ c+n = n.
Let s be the smallest element of {a, b, c′} ⊆ I. Note that 0 < s. Then, 0 < 3s ≤ a+b+c′ =

n. �

In the proof of Theorem 4.8 we will need to split into even and odd cases for n. The next
lemma will help us deal with the even case.

Lemma 4.7. Let B be the set of bases of a matroid M
v
= ([n],B) corresponding to a Zn-fixed

tropical Plücker vector v ∈
∧3

B[Zn]. If n = 2k, k > 2, and u ∈ Z×
n , then

fu,ku ⊆ B ⇐⇒ fu,(k+1)u ⊆ B.

Proof. Assuming fu,ku ⊆ B, we know by Proposition 4.1 that

fu,ku = f−u,(k−1)u = fku,(k+1)u

and
fu,(k+1)u = f−u,ku = f(k−1)u,ku

(using the assumption that n = 2k and working modulo n in the indices). When k > 2,
u 6= ku 6= −u 6= (k − 1)u, and we can use basis exchange in the following way:

fu,ku ∪ f−u,(k−1)u ⊆ B =⇒ f−u,ku or f(k−1)u,ku ⊆ B

Notice the orbits on the left are fu,ku and the ones on the right are fu,(k+1)u, so we know

fu,ku ⊆ B =⇒ fu,(k+1)u ⊆ B

The other direction is similar. �

Theorem 4.8. Let G = Zn be a cyclic group, and let B be the set of bases of a matroid
M

v
= ([n],B) corresponding to a Zn-fixed tropical Plücker vector v ∈

∧3
B[Zn]. Then, for

any u ∈ Z×
n , fu,2u ⊆ B.

Proof. Let I = {k | fku,lu ⊆ B for 0 < k < l < n}. Since I must be non-empty as the set of
bases is nonempty and contains at least one orbit, we know that I must have a least element
s. We will show that s = 1. Assume on the contrary s > 1.

We know 3s ≤ n by Lemma 4.6. Since 1 < s we have 2s + 1 < 3s ≤ n. Since s ∈ I there
is an orbit fsu,tu ⊆ B for some t > s > 1, so we can simply long divide t = sq + r for some
1 ≤ q, 0 ≤ r < s.

In the case r = 0, we have t = sq and thus fsu,(sq)u ⊆ B for some 2 ≤ q. Proposition 4.4
gives fsu,(2s)u ⊆ B, so we must have basis elements

{0, su, (2s)u}, {u, (s+ 1)u, (2s+ 1)u} ∈ fsu,(2s)u ⊆ B.

Since 2s+ 1 < n these are disjoint. Basis exchange gives

{0, u, (s+ 1)u} ∈ B or {u, su, (s+ 1)u} ∈ B or {u, (s+ 1)u, (2s)u} ∈ B.
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If {0, u, (s+1)u} ∈ B then fu,(s+1)u ⊆ B and 1 ∈ I. If {u, su, (s+1)u} ∈ B then f(s−1)u,su ⊆ B.
By Proposition 4.1, f(s−1)u,su = f(1−s)u,u = fu,(1−s)u ⊆ B and again 1 ∈ I. Finally, if
{u, (s+ 1)u, (2s)u} ⊆ B, then fsu,(2s−1)u ⊆ B. By Proposition 4.1,

fsu,(2s−1)u = f−su,(s−1)u = f(s−1)u,−su ⊆ B

and s− 1 ∈ I. In all three cases of basis exchange, we obtain a contradiction since s is not
the least element of I.

In the case r 6= 0, we know fsu,(sq+r)u ⊆ B. Thus by Corollary 4.3 we must have fsu,(−sq)u

or fsu,ru ⊆ B. If fsu,(−sq)u, we can again use Proposition 4.4 to show fsu,(2s)u ⊆ B and the
logic in the previous case to arrive at a contradiction. Otherwise, we know r < s ∈ I, again
giving a contradiction.

So it must be the case that s = 1, and fu,tu ⊆ B for some t > 1. Thus fu,2u ⊆ B by
Proposition 4.4.

�

In particular, When n = p is a prime this theorem tells us that all orbits of the form fa,a2
for a = 1, . . . , p − 1 are contained in the set of bases for every matroid corresponding to a
fixed tropical Plücker vector v ∈

∧3
B[Zn]. However, not all orbits are of this form. Our

next two result provides the full set of bases in several cases for tropical subrepresentations
of B[Zn].

Theorem 4.9. For a tropical Plücker vector v ∈
∧3

B[Zn], write B
v
for the set of bases of

its corresponding matroid.

(1) For any u ∈ Z×
n , if n is odd, there exists a tropical Plücker vector v ∈

∧3
B[Zn] with

B
v
=

(

[n]
3

)

− fu,ku if and only if k 6= −1, 2, n+1
2
;

(2) For any u ∈ Z
×
n , if n is even, there exists a tropical Plücker vector v ∈

∧3
B[Zn] with

B
v
=

(

[n]
3

)

− fu,ku if and only if k 6= −1, 2, n
2
, n
2
+ 1.

Proof. To begin, assume on the contrary B =
(

[n]
3

)

− fu,ku form the bases of a matroid for

at least one of the cases k = −1, k = 2, or k = n
2
, k = n

2
+ 1 for n even, or k = n+1

2
, |G|

for n odd. First, k = −1, k = 2 give an immediate contradiction since fu,−u = fu,2u ⊆ B
by Proposition 4.4. When n is even, either of k = n

2
, k = n

2
+ 1 give a contradiction since

fu,(n
2
)u ⊆ B ⇐⇒ fu,(n

2
+1)u ⊆ B by Lemma 4.7. Finally when n is odd, if k = n+1

2
, then

2(n+1
2
)u is congruent to u modulo n. Since n+1

2
∈ Z×

n , we know by Proposition 4.4 that
fu,(n+1

2
)u = f(n+1

2
)u,u = f(n+1

2
)u,2(n+1

2
)u ⊆ B.

In the opposite direction, we need to show
(

[n]
3

)

− fu,ku is a matroid provided k 6= −1, k 6=
2; k 6= n

2
and k 6= n

2
+ 1 for n even; and k 6= n+1

2
for n odd. We assume on the contrary

that
(

[n]
3

)

− fu,ku is not a matroid, and show that k has to be one of the above values. Since
(

[n]
3

)

− fu,ku is nonempty, by the strong basis exchange axiom
(

[n]
3

)

− fu,ku is not a matroid

if and only if for some X = {x1, x2, x3}, some Y = {y1, y2, y3} ∈
(

[n]
3

)

− fu,ku, and some
i ∈ X − Y, we have that for all j ∈ Y −X , X − i+ j ∈ fu,ku.

IfX and Y share more than one element, no new bases must be included (see the discussion
in Section 4.1). Thus two cases remain:

(1) X and Y share one element; without loss of generality set x1 = y1. In this case, basis
exchange is not satisfied if and only if {x1, x2, y2}, {x1, x2, y3} ∈ fu,ku.
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(2) X and Y are disjoint. In this case, basis exchange is not satisfied if and only if
{x1, x2, y1}, {x1, x2, y2}, {x1, x2, y3} ∈ fu,ku.

In the first case, we know

{x1, x2, y2}, {x1, x2, y3} ∈ fu,ku = f−u,(k−1)u = f−ku,(1−k)u

by Proposition 4.1. Notice that the difference x2 − x1 is in at least two of the following 3
sets: {u, ku}, {−u, (k − 1)u}, {−ku, (1 − k)u}. Since u ∈ Z×

n , we can divide out by u and
write the 12 possibilities in the following way:

• 1 = −k and k = −1 give k = −1.
• 1 = −k + 1 and −1 = k − 1 give k = 0, which isn’t possible.
• 1 = k and −1 = −k give k = 1, which isn’t possible.
• 1 = k − 1 and −1 = −k + 1 give k = 2.
• k = −k gives 2k = 0; since k 6= 0 this case only occurs when n is even and k = n

2
.

• k = −k + 1 and k − 1 = −k give 2k = 1, which only occurs when n is odd and
k = n+1

2
.

• k − 1 = −k + 1 gives 2k = 2; since k 6= 1 this case only occurs when n is even and
k = n

2
+ 1.

Thus these are the only possible values of k:

• k = −1
• k = 2
• k = n

2
, |G| even

• k = n+1
2
, |G| odd

• k = n
2
+ 1, |G| even

In the second case case, we know

{x1, x2, y1}, {x1, x2, y2}, {x1, x2, y3} ∈ fu,ku = f−u,(k−1)u = f−ku,(1−k)u

by Proposition 4.1. Notice that the difference x2 − x1 ∈ {u, ku}, {−u, (k − 1)u}, and {(1−
k)u,−ku}. This is a special case of the first case, so no new values of k arise.

�

Remark 4.10. This guarantees non-uniform matroids but does not proclude there from being
other types of non-uniform matroids. Based on SAGE computations, the first example of a
prime with matroids excluding more than one orbit is B[Z13].

4.4. Examples. We will examine some groups of small order using our results to find all
dimension 3 subrepresentations.

Example 4.11 (B[Z6]). This example was included in [GM20]. We arrive at the same result
using our methods. There are four orbits:

f1,2 = f1,5 = f4,5 ={{0, 1, 2}, {1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {0, 4, 5}, {0, 1, 5}}

f1,3 = f2,5 = f3,4 ={{0, 1, 3}, {1, 2, 4}, {2, 3, 5}, {0, 3, 4}, {1, 4, 5}, {0, 2, 5}}

f1,4 = f2,3 = f3,5 ={{0, 1, 4}, {1, 2, 5}, {0, 2, 3}, {1, 3, 4}, {2, 4, 5}, {0, 3, 5}}

f2,4 ={{0, 2, 4}, {1, 3, 5}}.

We know by Theorem 4.8 that f1,2 = f4,5 ⊆ B for every matroid. By Proposition 4.2,
f1,2 ⊆ B =⇒ f1,4 or f2,4 ⊆ B. Furthermore, by Lemma 4.7, f1,3 ⊆ B ⇐⇒ f1,4 ⊆ B. It can
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be checked that the following are the only matroidal unions of orbits.

f1,2 ∪ f2,4

f1,2 ∪ f1,3 ∪ f1,4

f1,2 ∪ f1,3 ∪ f1,4 ∪ f2,4

Note that the first matroid corresponds to the subgroup with index 3 in Z6 as in Theo-
rem 4.5.

Example 4.12 (B[Z7]). The orbits in this example are:

f1,2 = f1,6 = f5,6 = {{0, 1, 2}, {1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {4, 5, 6}, {0, 5, 6}, {0, 1, 6}}

f1,3 = f2,6 = f4,5 = {{0, 1, 3}, {1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {0, 4, 5}, {1, 5, 6}, {0, 2, 6}}

f1,4 = f3,4 = f3,6 = {{0, 1, 4}, {1, 2, 5}, {2, 3, 6}, {0, 3, 4}, {1, 4, 5}, {2, 5, 6}, {0, 3, 6}}

f1,5 = f2,3 = f4,6 = {{0, 1, 5}, {1, 2, 6}, {0, 2, 3}, {1, 3, 4}, {2, 4, 5}, {3, 5, 6}, {0, 4, 6}}

f2,4 = f2,5 = f3,5 = {{0, 2, 4}, {1, 3, 5}, {2, 4, 6}, {0, 3, 5}, {1, 4, 6}, {0, 2, 5}, {1, 3, 6}}.

By Theorem 4.8, f1,2, f2,4 = f3,5, and f3,6 = f1,4 ⊆ B. Again, basis exchange can be used to
show that f1,2 and f2,4 ⊆ B =⇒ f1,3 or f1,5 ⊆ B. It can be checked that the following are
the only matroidal unions of orbits.

f1,2 ∪ f1,3 ∪ f1,4 ∪ f2,4

f1,2 ∪ f1,4 ∪ f1,5 ∪ f2,4

f1,2 ∪ f1,3 ∪ f1,4 ∪ f1,5 ∪ f2,4

Example 4.13 (B[S3]). We use the presentation S3 = 〈ρ, σ|ρ3 = σ2 = e, σρσ = ρ−1〉. The
orbits of the left action of S3 on

(

S3

3

)

are as follows.

fρ,ρ2 ={{e, ρ, ρ2}, {σ, σρ, σρ2}}

fρ,σ = fρ2,σρ = fσ,σρ ={{e, ρ, σ}, {ρ, ρ2, σρ2}, {e, ρ2, σρ}, {e, σ, σρ}, {ρ2, σρ, σρ2}, {ρ, σ, σρ2}}

fρ,σρ = fρ2,σρ2 = fσρ,σρ2 ={{e, ρ, σρ}, {ρ, ρ2, σ}, {e, ρ2, σρ2}, {ρ, σ, σρ}, {e, σρ, σρ2}, {ρ2, σ, σρ2}}

fρ,σρ2 = fρ2,σ = fσ,σρ2 ={{e, ρ, σρ2}, {ρ, ρ2, σρ}, {e, ρ2, σ}, {ρ2, σ, σρ}, {ρ, σρ, σρ2}, {e, σ, σρ2}}

Based on SAGE computations, there are 5 matroidal sums of orbits.

fρ,ρ2 ∪ fρ,σ = fS3−<σρ2>

fρ,ρ2 ∪ fρ,σρ = fS3−<σ>

fρ,ρ2 ∪ fρ,σρ2 = fS3−<σρ>

fρ,σ ∪ fρ,σρ ∪ fρ,σρ2

fρ,ρ2 ∪ fρ,σ ∪ fρ,σρ ∪ fρ,σρ2 (uniform)
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