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SUPER DUALITY FOR WHITTAKER MODULES AND

FINITE W -ALGEBRAS

SHUN-JEN CHENG AND WEIQIANG WANG

Abstract. We establish a super duality as an equivalence between
Whittaker module categories over a pair of classical Lie algebra and
Lie superalgebra in the infinite-rank limit. Building on this result and
utilizing the Losev-Shu-Xiao decomposition, we obtain a super duality
which is an equivalence between module categories over a pair of finite
W -algebras and W -superalgebras at the infinite-rank limit.
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1. Introduction

1.1. Super duality refers to an equivalence of categories between parabolic
BGG categories of modules over a suitable pair consisting of a reductive
Lie algebra and a basic classical Lie superalgebra in the infinite-rank limit
(cf. [CW12, Chapter 6]). This concept was first formulated as a conjecture
in type A [CW08], generalizing the maximal parabolic case in [CWZ08],
and was established in [CL10]; the duality has since been extended to other
classical types in [CLW11] and then to Kac-Moody setting [CKW15]. Super
duality provides character formulas for irreducible or tilting modules in the
suitable parabolic BGG categories of Lie superalgebras. Moreover, it has
led to a proof of Brundan-Kazhdan-Lusztig conjecture for the general linear
Lie superalgebras [Bru03, CLW15] (also cf. [BLW17]) and the development
of a super Kazhdan-Lusztig theory for ortho-symplectic Lie superalgebras
[BW18, Bao17].
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2 CHENG AND WANG

1.2. The goal of this paper is to extend the concept of super duality to the
settings of Whittaker modules as well as finite W -superalgebras.

A finite W -(super)algebra U(g, e) is an associative (super)algebra con-
structed out of a reductive Lie (super)algebra g and an even nilpotent ele-
ment e ∈ g. They can be viewed as generalizations of the universal envelop-
ing algebras of Lie superalgebras as U(g, 0) reduces to U(g). A generalization
of BGG category O for finite W -algebras has been formulated in [BGK08],
with further parabolic generalizations in [BG13, Los12].

On the other hand, Whittaker g-modules are associated with a nilpotent
character ζ in a reductive Lie algebra g [Kos78, McD85]. Suitable cate-
gories of Whittaker g-modules, denoted MS(ζ) or MMS categories [McD85,
MS97], generalize the BGG categories when ζ = 0. Recent work has ex-
tended these constructions to basic Lie superalgebras g [Che21, CCM23,
CC24].

1.3. In this paper, we consider the case when g is either a reductive Lie
algebra or a basic classical Lie superalgebra and ζ : n → C is a character
associated with an even Levi subalgebra l; see (2.9).

The Backelin functor Γζ : OZ → MS(ζ) (see [Bac97] and (2.11)) allows us
to connect the BGG category OZ of integral weight g-modules to the MMS
category of g-modules. Denote by W(ζ) ⊂ MS(ζ) the image category of Γζ .
This category can be identified with a distinguished Serre quotient category
OZ/Iζ . As a superalgebra generalization of the construction in [MS05], a

properly stratified cokernel subcategory Oζ-pres of OZ was formulated in
[CCM23], and it was shown that the restriction of the quotient functor
Γζ : OZ → OZ/Iζ to Oζ-pres induces an equivalence Oζ-pres ∼= OZ/Iζ .

To summarize, we have the following commutative diagram without the
superscript q throughout:

Oq
Z

//

�� $$❏
❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

MS(ζ)q

Oq,ζ-pres
∼= // Oq

Z
/Iq

ζ

∼= // W(ζ)q
?�

OO
(1.1)

In this paper, we formulate a parabolic generalization of such a diagram
by adding a superscript q, resulting in the diagram (1.1). Here q is a par-
abolic subalgebra of g associated with an even Levi subalgebra k such that
the derived subalgebras of k and l commute. In this way, we can define a
parabolic MMS category MS(ζ)q of Whittaker g-modules besides the par-
abolic BGG category Oq and its integral weight subcategory Oq

Z
. We show

that Backelin functor Γζ restricts to a functor Γζ : O
q
Z
−→ MS(ζ)q with fa-

vorable properties (see Proposition 2.2), and we denote by W(ζ)q the image
category of this functor. (Setting q to be the Borel subalgebra b amounts
to dropping the superscript q in (1.1).)



SUPER DUALITY FOR WHITTAKER MODULES AND FINITE W -ALGEBRAS 3

1.4. As in the super duality setting for parabolic BGG categories (cf.
[CLW11], [CW08, Chapter 6]), we introduce two families of Lie algebras
and superalgebras, gn and gn, for n ≥ 1. Namely, starting from the same
head Dynkin diagram and connecting with 2 tail Dynkin diagrams associated
to gl(1 + n) and gl(1|n) give us the Dynkin diagrams for gn and gn, respec-
tively. We consider the parabolic BGG category O+

n,Z of integral weight

gn-modules (and respectively, O
+
n,Z of integral weight gn-modules) which re-

strict to polynomial representations over gl(n). Here, gl(n) is regarded as
subalgebra of the “tail” algebras gl(1|n) and gl(1 + n). We also formulate
MMS categories MS(ζ)+n and MS(ζ)+n of Whittaker modules over gn and
gn which are polynomial over the same subalgebra gl(n).

Specializing the diagram (1.1) to the setting of Lie algebra gn gives us
the following commutative diagram (where the superscript + stands for
“polynomial over gl(n)”):

O+
n,Z

//

�� %%❑❑
❑

❑

❑

❑

❑

❑

❑

❑

❑

MS(ζ)+n

Oζ-pres+
n

∼= // O+
n,Z/I

+
ζ

∼= // W(ζ)+n
?�

OO
(1.2)

On the other hand, specializing the diagram (1.1) to the setting of Lie su-
peralgebra gn gives us the following commutative diagram:

O
+
n,Z

//

�� %%❏❏
❏

❏

❏

❏

❏

❏

❏

❏

❏

MS(ζ)+n

O
ζ-pres+
n

∼= // O
+
n,Z/I

+
ζ

∼= // W(ζ)+n
?�

OO
(1.3)

We can make sense of the above diagrams (1.2)–(1.3) at n = ∞, and
we drop the index n = ∞ for simplicity. By super duality [CW12] (and
also [CL20, Leo20]), we have an equivalence of highest weight categories:

O+
Z
∼= O

+
Z . This equivalence matches the corresponding Serre subcategories

I+
ζ
∼= I

+
ζ , yielding an equivalence of properly stratified categories (see The-

orem 4.10)

W(ζ)+
∼=

−→ W(ζ)+;

This will be referred to as super duality for Whittaker modules.

1.5. A nilpotent element e and a nilpotent character ζ can be chosen in a
compatible way, up to conjugation, via the Killing form, with e = 0 corre-
sponding to ζ = 0. We choose e and ζ to be associated with an even Levi
subalgebra l; cf. (2.9). Finite W -algebra U(g, e) admits a rich representation
theory and has connection to many other areas; see, e.g., [Los10a, Wan11]
for surveys.
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The category of g-modules on which a subalgebra mχ, associated to e
(see (5.5)), acts nilpotently is equivalent to the module category over finite
W -algebra U(g, e) thanks to Skryabin equivalence [Pre02, Appendix]. Losev
developed an approach via Fedosov quantization to establish an equivalence
at the level of (variants of) category O of U(g, e)-modules (for reductive Lie
algebra g). Losev’s approach relies on a fundamental decomposition the-
orem [Los10b, Los12] on a certain completion U(g)∧

m̃
of U(g) with respect

to m̃ in (6.3). Shu-Xiao [SX20] developed an algebraic approach for a su-
per generalization of Losev’s constructions in [Los10b], where g is a basic
classical Lie superalgebra (cf. [Zha14, ZS15]).

We refine Losev-Shu-Xiao decomposition in Theorem 6.7 to suit our pur-
pose for category equivalences below. Following [Los12], we then derive
equivalences of the corresponding categories of MMS Whittaker g-modules
and U(g, e)-modules, for a basic classical Lie superalgebra g (see Theo-
rem 6.11 and (6.8)). This, together with [Che21, CCM23, CC24], implies
that the composition multiplicities of Verma modules in the category O of
the finite W -superalgebra of a basic classical Lie superalgebra are computed
by the super Kazhdan-Lusztig polynomials in the usual BGG category (see
Remark 6.16). When g is a reductive Lie algebra, such a relationship was
conjectured in [BGK08] and proved in [Los10a].

Combining the category equivalences in Theorem 6.11 with the super
duality for Whittaker modules in Theorem 4.10, we arrive at a super duality
result for a pair of finite W -(super)algebras of classical type in the infinite-
rank limit (see Theorem 6.18).

1.6. This paper is organized as follows. In Section 2, we formulate the (par-
abolic) MMS category MS(ζ)q of Whittaker g-modules, for a basic classical
Lie superalgebra g and an even nilpotent character ζ. We review basic
properties of the Backelin functor and consider its parabolic analogue.

In Section 3, we introduce the parabolic cokernel categories Oq,ζ-pres and
complete the commutative diagram (1.1).

Section 4 presents Lie algebras gn and Lie superalgebras gn and formulates
the diagrams (1.2)–(1.3). We describe BGG-type reciprocities and Ringel-

type dualities for the properly stratified categories Oζ-pres+ and O
ζ-pres+

,
and establish super duality for Whittaker modules.

Section 5 contains a review of the construction of finite W -superalgebras.
In Section 6, we formulate Losev-Shu-Xiao decomposition in the superal-
gebra setting, and establish several equivalences of categories of Whittaker
g-modules and U(g, e)-modules. Finally, we derive super duality for finite
W -algebras.
Acknowledgments. We thank Chih-Whi Chen and Volodymyr Mazorchuk
for their very helpful discussions and explanations on parabolic cokernel
categories. We are also grateful to University of Virginia and Academia
Sinica for hospitality and support. SJC is supported by an NSTC grant of
the R.O.C. WW is partially supported by DMS–2401351.
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2. Categories of Whittaker modules

In this section, we formulate several categories including the MMS cate-
gory and its parabolic variants of Whittaker modules over a basic classical
Lie superalgebra g.

2.1. Basic setup. The setup in this subsection will be used throughout the
paper.

Let g = g0̄⊕ g1̄ be a basic classical Lie superalgebra of classical type, i.e.,
of type gl or osp, with a non-degenerate invariant bilinear form (·|·), e.g.,
the super trace form. Let e ∈ g be an even nilpotent element and {e, h, f}
be an sl(2)-triple in g. We let h be a Cartan subalgebra of g such that h ∈ h.

For a subset a ⊆ g, we denote ga = {x ∈ g | [x, y] = 0,∀y ∈ a}. Let

t := he = {a ∈ h | [a, e] = 0}.(2.1)

Recall that a subalgebra r ⊆ t (= he) is called a full subalgebra in [BG13,
§3.1], if the center of gr is equal to r.

Let T be the adjoint group of t. Let θ ∈ t be an integral element, i.e., θ is
an element in the cocharacter of T . The element θ ∈ t determines a minimal
full subalgebra r of t, minimal in the sense that θ ∈ r ⊆ t and θ is regular in
r. We shall assume that

l := gr is an even subalgebra of g,

which is then clearly reductive. (This is all we need in the formulation of
super duality later on.) The inclusion of subalgebras 0 ⊆ r ⊆ t gives rise to
an inclusion of Lie subalgebras gt ⊆ gr ⊆ g. It follows by definition of t in
(2.1) that [e, t] = 0, and hence we have

e ∈ l.(2.2)

We have an ad θ-eigenspace decomposition of g:

g =
⊕

k∈Z

gθ,k,

gθ,k := {x ∈ g | [θ, x] = kx}, with l = gθ,0.

(2.3)

Let Φ be the root system for (g, h), and gα be the root space for α ∈ Φ.
Note that gα ⊆ gθ,α(θ).

We choose a triangular decomposition

g = n− ⊕ h⊕ n(2.4)

to be compatible with (2.3) in the following sense: α(θ) > 0 for α ∈ Φ
implies that α ∈ Φ+, where Π ⊂ Φ+ denote the simple system and positive
root system for g associated to n in (2.4), i.e., n = ⊕α∈Φ+gα. Denote

Φl = Φ ∩ {α ∈ Φ | α(θ) = 0}, Φ+
l = Φ+ ∩ Φl, Πl = Π ∩ Φl.(2.5)

Then l is a Levi subalgebra of g with simple system Πl, and

g = u− ⊕ l⊕ u, l = h⊕
⊕

α∈Φl

gα,(2.6)
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where

u :=
⊕

α(θ)>0

gα, u− :=
⊕

α(θ)>0

g−α.(2.7)

Note that u ⊂ n and u− ⊂ n−. Denote the associated parabolic subalgebra
by

p = l+ n = l⊕ u =
⊕

k≥0

gθ,k.(2.8)

Denote the simple root vectors for g by Eα, for α ∈ Π. Associated to the
root datum (2.5), we define a character ζ of n by requiring

ζ : n −→ C, ζ(Eα) =

{
1, for α ∈ Πl,

0, for α ∈ Π \ Πl.
(2.9)

2.2. McDowell-Milicic-Soergel category. Recall the character ζ : n →
C from (2.9) associated to l. The McDowell-Milicic-Soergel (henceforth
abbreviated MMS) category ([McD85, MS97], [Che21, §3.1]), denoted by
MS(ζ), is the category of finitely generated U(g)-modules on which x−ζ(x),
for x ∈ n, acts locally nilpotently, and furthermore on which the action of
Z(g0̄) is locally finite. Here Z(g0̄) denotes the center of the universal en-
veloping algebra U(g0̄).

We set χl
λ : Z(l) → C to be the central character with kernel equals the

annihilator of Z(l) on the Verma module of highest weight λ ∈ h∗. Let Cζ

denote the one-dimensional n ∩ l-module (as a restriction of ζ). Also let Wl

denote the Weyl group of l. The standard Whittaker module is defined as
follows:

M(λ, ζ) := U(g)⊗U(p) K(l;λ, ζ),

where
K(l;λ, ζ) := U(l)/(Kerχl

λ)U(l)⊗U(n∩l) Cζ

denotes Kostant’s simple Whittaker l-module [Kos78]. One sees from the
eigenvalues of θ that M(λ, ζ) has a unique maximal submodule and hence
a simple head, which we denote by L(λ, ζ). Furthermore, we have [Che21,
Theorem 6]

L(λ, ζ) ∼= L(µ, ζ) ⇔ M(λ, ζ) ∼= M(µ, ζ) ⇔ Wl · λ = Wl · µ,(2.10)

for any µ ∈ h∗, where the dot action of the Weyl group is used. We have
M(λ, ζ) ∈ MS(ζ).

Then the set {L(λ, ζ) | λ ∈ h∗ is Wl-antidominant} is a complete set of
pairwise non-isomorphic simple objects in MS(ζ).

2.3. Backelin functor. Let g be a basic classical Lie superalgebra with
triangular decomposition (2.4) and let O be the BGG category of finitely
generated h-semisimple g-modules on which the action of U(n) is locally fi-
nite. Denote by M(g, λ) and L(g, λ), respectively, the Verma and irreducible
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modules in O of highest weight λ ∈ h∗. When there is no confusion, we write
M(λ) and L(λ) for M(g, λ) and L(g, λ), respectively.

Let ζ : n → C be a character of n as in (2.9).
IfM is a g-module with weight space decomposition M = ⊕µ∈h∗Mµ where

dimMµ < ∞ for each µ, then we let M :=
∏

µ∈h∗ Mµ be its completion. The
vector space M is naturally a g-module, and hence so is

Γζ(M) :=
{
f ∈ M | (x− ζ(x))kf = 0,∀x ∈ n, k ≫ 0

}
.

Then M → Γζ(M) gives rise to an exact functor from the BGG category of
g-modules to the category of MMS Whittaker g-modules, called the Backelin
functor [Bac97, Section 3]:

Γζ : O −→ MS(ζ).(2.11)

The following proposition in the case of simple Lie algebras was proved
in [Bac97, Proposition 6.9]. For Lie superalgebras it follows from [Che21,
Theorem 20] and [CC24, Theorem 6].

Proposition 2.1. The Backelin functor (2.11) satisfies that

Γζ (M(λ)) = M(λ, ζ),

Γζ (L(λ)) =

{
L(λ, ζ), if λ is Wl-antidominant,

0, otherwise.

2.4. Parabolic MMS categories. We shall be interested in certain par-
abolic subcategories of the category MS(ζ) of MMS Whittaker modules,
where ζ : n → C is the character from (2.9).

Suppose that k is another even Levi subalgebra of the Lie superalgebra g

such that the two semisimple subalgebras [l, l] and [k, k] commute. Let

q = k+ n(2.12)

denote the parabolic subalgebra corresponding to k. We define MS(ζ)q to
be the full subcategory of MS(ζ) consisting of g-modules M such that the
action of U(q) is locally finite. In particular, any M ∈ MS(ζ)q is a direct
sum of finite-dimensional irreducible k-modules.

Let
P = l+ k+ n

denote the parabolic subalgebra of g associated with Levi subalgebra L :=
l+ k. Let z ⊆ h be the center of L so that we have h = (h ∩ [L,L])⊕ z. Let
λ ∈ h∗ be such that λ|h∩[k,k] is dominant integral. We have a decomposition

λ = λ|h∩[L,L]+ λ⊥, where λ⊥ ∈ z∗ which vanishes on h∩ [L,L]. We form the
irreducible L-module

K([l, l];λ|h∩[l,l], ζ)⊗ L([k, k];λ|h∩[k,k])⊗ Cλ⊥ ,

where we recall that K([l, l];λ|h∩[l,l], ζ) is the irreducible Kostant Whittaker
module of [l, l], L([k, k];λ|h∩[k,k]) is the irreducible [k, k]-module of highest
weight λ|h∩[k,k], and Cλ⊥ is the one-dimensional module of z corresponding
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to the character λ⊥. This L-module extends trivially to a P-module so that
we can form the parabolic standard Whittaker module

N(λ, ζ) := IndgPK([l, l];λ|h∩[l,l], ζ)⊗ L([k, k];λ|h∩[k,k])⊗ Cλ⊥ .(2.13)

Then N(λ, ζ) ∈ MS(ζ)q. As N(λ, ζ) is a quotient of M(λ, ζ), N(λ, ζ) has
a unique irreducible quotient isomorphic to L(λ, ζ).

Let Oq denote the parabolic subcategory of O consisting of g-modules
which are locally finite over U(n) and k-semisimple, and let N(λ) denote the
parabolic Verma module for λ ∈ h∗ with λ|h∩[k,k] dominant integral. The
following is the parabolic analogue of Proposition 2.1.

Proposition 2.2. The functor Γζ : O → MS(ζ) restricts to an exact func-
tor:

Γζ : O
q −→ MS(ζ)q.

Furthermore, for λ ∈ h∗ such that λ|h∩[k,k] is dominant integral, we have

Γζ (N(λ)) = N(λ, ζ),

Γζ (L(λ)) =

{
L(λ, ζ), if λ is Wl-antidominant

0, otherwise.

Proof. For the first statement it suffices to show that for any M ∈ Oq,
Γζ(M) ∈ MS(ζ)q. Since ζ vanishes on [k, k] ∩ n, from the construction of
the Backelin functor in [Bac97, Section 3] we see that if M is a direct sum
of finite-dimensional modules over k, then so is its image under the Backelin
functor.

As an l-module we have

N(λ) ∼= U(u−)⊗M([l, l] + z;λ|(h∩[l,l])+z)⊗ L([k, k];λ|h∩[k,k]).

Since the Backelin and the restriction functors commute, for λ ∈ h∗, domi-
nant integral on h ∩ [k, k], we have:

Resgl ΓζN(λ) ∼= ΓζRes
g
lN(λ)

∼= Γζ

(
U(u−)⊗M([l, l] + z;λ|(h∩[l,l])+z)⊗ L([k, k];λ|h∩[k,k])

)

∼= U(u−)⊗ Γζ

(
M([l, l] + z;λ|(h∩[l,l])+z)

)
⊗ L([k, k];λ|h∩[k,k])

∼= U(u−)⊗K([l, l] + z;λ|(h∩[l,l])+z, ζ)⊗ L([k, k];λ|h∩[k,k]).

In the penultimate isomorphism above, we have use the fact that the Back-
elin functor commutes with tensoring with finite-dimensional modules, and
that L(λ|h∩[k,k]) is a finite-dimensional [k, k]-module and ζ is trivial on the
simple roots of [k, k]. Thus, as l-modules we have N(λ, ζ) ∼= Γζ(N(λ)).
On the other hand, the above calculation shows that Γζ(N(λ)) has an l-
submodule K([l, l]+ z;λ|(h∩[l,l])+z, ζ)⊗L([k, k];λ|h∩[k,k]) that is annihilated by
u since it does not have any positive θ-eigenvalue. Thus, we obtain, by Frobe-
nius reciprocity, a non-zero homomorphism fromN(λ, ζ) to Γζ(N(λ)), which
maps surjectively onto this l-module. Now, it is known that Γζ(M(λ)) is
generated by its top, and hence so is Γζ(N(λ)). Hence this g-homomorphism
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is surjective. As N(λ, ζ) and Γζ(N(λ)) are isomorphic as l-modules, we con-
clude that they are also isomorphic as g-modules.

The last statement on Γζ(L(λ)) follows by Proposition 2.1. �

3. Parabolic cokernel categories

In this section, we formulate a “parabolic cokernel subcategory” of the
parabolic BGG category Oq

Z
of integral weight g-modules and show it is

a quotient category of Oq
Z
. This parabolic cokernel subcategory admits

favorable homological property known as properly stratified structure.

3.1. Category Oq,ζ-pres. Recall the triangular decomposition g = n−⊕h⊕n

(2.4) and a character ζ : n → C associated with the Levi subalgebra l

(determined by an integral element θ ∈ h). We let OZ ⊂ O be the full
subcategory of integral weight g-modules.

As in §2.4, we take a second even Levi subalgebra k such that the two
semisimple Lie subalgebras [l, l] and [k, k] commute with each other. We
let Oq

Z
⊂ Oq be the full subcategory of integral weight g-modules; recall

q = k+ n from (2.12).
Denote by Λ the set of integral weights in h∗. Denote

Λ(ζ) := {λ ∈ Λ | λ is Wl-antidominant},

Λ(ζ)q := {λ ∈ Λ(ζ) | λ is dominant on h ∩ [k, k]}.
(3.1)

A projective module in OZ (respectively, in Oq
Z
) is said to be ζ-admissible,

if it is a direct sum of projective covers of simple objects of highest weights
in Λ(ζ) (respectively, in Λ(ζ)q); see (3.1).

Define the cokernel subcategory Oζ-pres of OZ (respectively, Oq,ζ-pres of
Oq

Z
) to be the full subcategory consisting of objects M such that there exists

an exact sequence of the form

Q −→ P −→ M −→ 0,

such that Q and P are ζ-admissible projective modules in OZ (respectively,
in Oq

Z
) (c.f., e.g., [MS05, Section 2.3]).

Let Iζ denote the Serre subcategory of OZ generated by simple objects of
the form L(λ) with λ ∈ Λ \Λ(ζ). Similarly, let Iq

ζ be the Serre subcategory

of Oq
Z
generated by simple objects of the form L(λ) with λ ∈ Λ \Λ(ζ)q such

that λ is dominant on h ∩ [k, k].
Associated to Iζ and Iq

ζ we have the corresponding quotient categories

OZ/Iζ and Oq
Z
/Iq

ζ and quotient functors

′π : OZ −→ OZ/Iζ , π : Oq
Z
−→ Oq

Z
/Iq

ζ .

Since Oq
Z
is a full abelian subcategory of OZ with compatible abelian struc-

ture, and Iq
ζ = Iζ∩O

q
Z
, we conclude, from the definitions of quotient category

and quotient functor, that ′π|Oq

Z

= π.
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In [CCM23, Lemma 12] it was proved that the restriction of the functor
′π : OZ → OZ/Iζ to Oζ-pres gives an equivalence of categories Oζ-pres ∼=
OZ/Iζ . The arguments therein can be adapted to prove the following para-
bolic analogue.

Proposition 3.1. The restriction of the quotient functor π : Oq
Z
→ Oq

Z
/Iq

ζ

to the subcategory Oq,ζ-pres gives an equivalence of categories:

πq : Oq,ζ-pres ∼=
−→ Oq

Z
/Iq

ζ .

3.2. Properly stratified structure on Oq,ζ-pres. When g is a Lie algebra,
it is known that the category Oζ-pres is a properly stratified category (cf.
[MS05]). In the case when g is a basic classical Lie superalgebra the category
Oζ-pres is properly stratified as well according to [CCM23, Section 5] and
[CC24, Section 4].

The arguments in [MS05, Section 2] can be adapted to prove that the
parabolic subcategory Oq,ζ-pres of Oζ-pres is properly stratified in the case
when g is a Lie algebra. Using this, we can then apply the arguments in
[CCM23, CC24] to prove that the parabolic subcategory Oq,ζ-pres is properly
stratified in the case when g is a basic classical Lie superalgebra as well.
Below we shall give more precise statements.

For λ ∈ Λq(ζ) let P (g, λ) ∈ Oq
Z
denote the projective cover of L(g, λ). We

shall write P (λ) for P (g, λ) when g is clear from the context. We define the
following module in Oq,ζ-pres:

S(λ) := P (λ)/(radP (λ)tr),

where we have denoted by Mtr the sum of all homomorphic images of ζ-
admissible projective modules in Oq

Z
to a module M in Oq

Z
. Furthermore,

we define the following standard and proper standard modules, respectively:

∆(λ) = IndgPP (L, λ),

N(λ) = P (λ)/(Q(λ)tr),

where P (L, λ) ∼= P ([l, l] ⊕ z, λ|h∩[l,l]+z) ⊗ L([k, k], λ|h∩[k,k]) is the projective
cover of the irreducible L-module L(L, λ) in the corresponding parabolic
category of L-modules, and Q(λ) is the kernel of the canonical map P (λ) →
N(λ) → 0. Both ∆(λ) and N(λ) lie in Oq,ζ-pres. The arguments in [MS05,
Section 2] and [CC24, Section 4] can be adapted now to show that Oq,ζ-pres

is properly stratified with indecomposable projective objects P (λ), standard
and proper standard objects ∆(λ) and N(λ), respectively, and simple objects
S(λ), where λ ∈ Λ(ζ)q. In particular, P (λ) has a filtration, subquotients of
which are ∆(µ) with µ � λ. Also, ∆(λ) has a filtration of length |Wl ·λ| with
each subquotient isomorphic to N(λ). We summarize the above discussion
in the following.

Proposition 3.2. The category Oq,ζ-pres is a properly stratified category
with indecomposable projective, standard, proper standard, and simple ob-
jects P (λ), ∆(λ), N(λ) and S(λ), for λ ∈ Λ(ζ)q, respectively. Furthermore,
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the following BGG-type reciprocity holds in Oq,ζ-pres:

(P (λ) : ∆(µ)) = [N(µ) : S(λ)], for λ, µ ∈ Λ(ζ)q.

3.3. Tilting modules in Oq,ζ-pres. It is well known that there exists a
duality functor ·∨ on OZ which restricts to a simple-preserving duality func-
tor on Oq

Z
. We note that for λ ∈ Λ(ζ)q, the projective module P (λ), as

an L-module, is a direct sum of self-dual projective modules. Now, we can
show, following the arguments in [MS05, Propositions 2.8 and 2.9], that if
M ∈ Oq

Z
, such that, as an L-module, M is a direct sum of self-dual projective

modules, then M ∈ Oq,ζ-pres. This in particular implies that

∇(λ) := ∆(λ)∨ ∈ Oq,ζ-pres.

Let F(∆) be the full subcategory of Oq,ζ-pres of modules with finite ∆-
flags. We define similarly F(∇) to be the full subcategory of Oq,ζ-pres of
modules that have finite ∇-flags. A module T ∈ Oq,ζ-pres is called a tilting
module if T ∈ F(∆)∩F(∇). Any tilting module is a direct sum of indecom-
posable tilting modules, and the indecomposable tilting modules in Oq,ζ-pres

are parametrized by Λ(ζ)q. We denote the indecomposable tilting module
corresponding to λ ∈ Λ(ζ)q by T (λ) with λ as its highest weight. Denote
the indecomposable tilting module in Oq

Z
of highest weight λ ∈ Λ, dominant

on h∩ [k, k], by TOq

Z(λ). Denote by wk
0 (respectively, wl

0) the longest element
in the Weyl group of k (respectively, l).

Proposition 3.3. Let λ ∈ Λ(ζ)q. Then

T (λ) = TOq
Z(wl

0 · λ).

Furthermore, the following Ringel-type duality holds:

(T (λ) : ∆(µ)) = [N(−wl
0w

k
0 · µ− ρ) : S(−wl

0w
k
0 · λ− ρ)].

Proof. We shall first establish the proposition for g a Lie algebra. To do

that we will prove that tilting modules in Oq
Z
of the form TOq

Z(wl
0 ·λ) indeed

have ∆-flags by adapting the arguments in [FKM00, Lemma 18].
Let ν ∈ Λ be an anti-dominant weight that is regular on the [k, k]. Let wk

0

be the longest element in Weyl group of the subalgebra [k, k]. We observe
that the parabolic Verma module N(wk

0 · ν) is irreducible (see, e.g., [Jan77,
Lemma 2]). Thus, in particular, L(wk

0 · ν) is the socle of a parabolic Verma
module, and hence, by a classical theorem of Irving [Irv85], its projective
cover P (wk

0 ·ν) is self-dual and hence a tilting module. On the other hand, we
have that P (wk

0 ·ν) = ∆(wk
0 ·ν) by the same argument as [MS05, Proposition

2.9(i)]. Thus, we conclude that ∆(wk
0 ·ν)

∼= TOq

Z(wl
0w

k
0 ·ν) and TOq

Z(wl
0w

k
0 ·ν)

has a ∆- and a ∇-flag.

One sees that every other tilting module TOq

Z(λ), with λ ∈ Λ(ζ)q, can
be obtained as a direct summand of the tensor product of such a tilting
module as above with a finite-dimensional module of g. Since they have ∆-
and ∇-flags, they are indeed tilting module in Oq,ζ-pres. From this it is clear
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that TOq
Z(wl

0 · λ) contains ∆(λ) as a submodule, and hence, by a standard
uniqueness argument, is isomorphic to T (λ).

The Ringel-type duality in the second statement is now a consequence of
the Ringel duality for the parabolic category Oq

Z
(see, e.g, [CCC21, Corollary

3.8]) and the fact that (TOq

Z(wl
0 · λ) : N(µ)) = (TOq

Z(wl
0 · λ) : N(w · µ)), for

any w ∈ Wl. The reader is referred to [CC24, Corollary 18] for more details.
Now suppose that g is a basic classical Lie superalgebra that is not a Lie

algebra. The existence of tilting modules in Oq,ζ-pres can now be derived
using the existence of tilting modules in the parabolic cokernel category for
the Lie algebra g0̄ following the arguments in [CC24, §4.4]. �

3.4. Properly stratified Whittaker categories. Let g be a basic clas-
sical Lie superalgebra with ζ : n → C as in (2.9). Let W(ζ) ⊂ MS(ζ) be
the image category of the Backelin functor Γζ : OZ → MS(ζ), where we
keep the same notation to denote the restriction of the Backelin functor to
OZ. It was shown in [CCM23, Corollary 38] and [CC24, Corollary 28] that
the functor Γζ : OZ → W(ζ) satisfies the universal property of the Serre
quotient functor corresponding to the Serre subcategory Iζ , and hence it
induces an equivalence of categories

′Γζ : OZ/Iζ
∼=

−→ W(ζ).(3.2)

Now, W(ζ) contains the standard Whittaker modules and also all simple
modules of integral central characters in MS(ζ). Furthermore, since Oζ-pres

is properly stratified by Proposition 3.2, it follows that the category W(ζ)
is also properly stratified. In this section we shall give a parabolic analogue
of this result.

Let q is another parabolic subalgebra of g with even Levi subalgebra k

satisfying compatibility condition with p as in previous sections. We consider
the restriction of the Backelin functor Γζ : OZ → W(ζ) to the parabolic
subcategory Oq

Z
. Denote the corresponding image subcategory of W(ζ) by

W(ζ)q so that we have a functor Γq
ζ : O

q
Z
→ W(ζ)q.

Proposition 3.4. The functor Γq
ζ : O

q
Z
→ W(ζ)q induces an equivalence of

categories

′Γq
ζ : O

q
Z
/Iq

ζ

∼=
−→ W(ζ)q,

and the category W(ζ)q inherits a properly stratified structure. Furthermore,
W(ζ)q contains N(λ, ζ) and simple Whittaker module L(λ, ζ), for λ ∈ Λ(ζ)q.

Proof. The functor Γζ vanishes on objects in Iζ and hence vanishes on ob-
jects in Iqζ . Indeed, since we have Iζ ∩ Oq

Z
= Iq

ζ , we conclude that Γq
ζ

vanishes on Iq
ζ . Thus, by the universal property of Serre quotient, [Gab62,

Corollaires III.1.2 and III.1.3], the restriction Γq
ζ induces a quotient functor

′Γq
ζ : Oq

Z
/Iq

ζ → W(ζ)q. Since Oq
Z
is a full abelian subcategory of OZ with

compatible abelian structure, by definition of the morphisms in a quotient
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category (see, e.g., [CCM23, §4.2]), we see that Oq
Z
/Iq

ζ is a full subcategory

of OZ/Iζ and
′Γq

ζ =
′Γζ |Oq

Z
/Iq

ζ
. Now, we have that ′Γζ : OZ/Iζ → W (ζ) is full

and faithful by [CCM23, Theorem 37] and [CC24, Corollary 29]. It follows
that ′Γζ |Oq

Z
/Iq

ζ
is full and faithful. Be definition, it is essentially surjective.

This proves that ′Γq
ζ : O

q
Z
/Iq

ζ → W(ζ)q is an equivalence.

By Propositions 3.1 and 3.2, we have Oq,ζ-pres ∼= Oq
Z
/Iq

ζ and they are

properly stratified. Thus W(ζ)q is also properly stratified by the equivalence
′Γq

ζ .

Now by Proposition 2.2, the modules N(λ, ζ) and their unique irreducible
quotients L(λ, ζ) lie in the category W(ζ)q, for λ ∈ Λ(ζ)q. �

4. Super duality for Whittaker modules

In this section we formulate Lie superalgebras gn and Lie algebras gn of
classical type, for 0 ≤ n ≤ ∞. We apply the results in the prior sections
to obtain an equivalence of certain parabolic categories between Whittaker
modules over gn and gn as n tends to infinity.

4.1. Super duality for parabolic BGG categories. We shall recall the
setup from [CW12, §6.1] below.

We have head diagrams Hx , where x = a, b, c, d, representing Dynkin
diagrams of simple Lie algebras of type A,B,C,D, respectively, and tail

diagrams Tn and Tn , representing Dynkin digrams of Lie superalgebras

gl(1 + n) and gl(1|n), respectively. Connecting the type A end of the head

diagram Hx with the first vertex of the tail diagrams Tn and Tn , we get
Dynkin diagrams of Lie algebras and Lie superalgebras of type A,B,C,D.

(We remark that our Hx here is denoted by kx in [CW12, Chapter 6].)
We denote by (gn, gn) a pair consisting of a Lie algebra gn and a Lie

superalgebra gn, where gn is the Lie algebra corresponding the Dynkin di-

agram Hx — Tn and gn is the Lie superalgebra corresponding the Dynkin

diagram Hx — Tn , respectively.

Example 4.1. (1) Let Ha be the Dynkin diagram for gl(m). Then we
have gn ∼= gl(m+ n) and gn

∼= gl(m|n).

(2) Let Hb be the Dynkin diagram for so(2m + 1). Then we have
gn ∼= so(2m+ 2n+ 1) and gn

∼= osp(2m+ 1|2n).

We have natural embeddings gn ⊂ gn+1 and gn ⊂ gn+1, and hence the
respective direct limits g∞ and g∞ are valid. In the cases of x = b, c, d
we recall that to deal with g∞ and g∞ and truncations to gn and gn for
finite n, it is more convenient and conceptual to introduce trivial central
extensions of gn and gn by a one-dimensional central element and work
with these instead. But we shall ignore this issue as much as possible to
keep subsequent notation and presentation simpler, the reader is referred
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to [CW12, §6.1.6] for the precise details. We let On and On denote the
corresponding BGG categories of gn- and gn-modules, respectively. Denote
the corresponding Verma modules of highest weight λ ∈ h∗ by Mn(λ) and
Mn(λ), and their simple heads by Ln(λ) and Ln(λ), respectively. Here, h
denotes the Cartan subalgebra of either gn or gn.

Let k be the Levi subalgebra of gn with semisimple summand [gl(n), gl(n)],
where gl(n) ⊂ gl(1|n) and gl(1|n) is the Lie superalgebra corresponding to

the Dynkin diagram Tn . We also regard the same k as a Levi subalgebra

of gn, where gl(n) ⊂ gl(1 + n) for gl(1 + n) corresponding to the Dynkin

diagram Tn . We shall use k denote this copy of gl(n). Let b and b denote
the standard Borel subalgebras containing h corresponding to the Dynkin
diagrams of gn and gn, respectively. Denote the associated parabolic sub-

algebras by q = b + k and q = b + k, respectively. We let O+
n and O

+
n be

the full subcategories of Oq
n and O

q

n, respectively, consisting of objects M
on which the action of k is polynomial. The corresponding parabolic Verma

modules in O+
n and O

+
n of highest weight λ ∈ h∗ are denoted by Nn(λ) and

Nn(λ), respectively. We note that if {Eii|1 ≤ i ≤ n}, is the standard basis
for the Cartan subalgebra h of k, and {ǫi|1 ≤ i ≤ n} is its dual basis, then

λ|h =
∑n

i=1 λiǫi for a partition (λ1, . . . , λn). The subset of such weights in

h∗ will be denoted by h∗,+. For λ ∈ h∗,+, we let λ♮ ∈ h∗,+ be obtained
from λ by replacing λ|h =

∑n
i=1 λiǫi by

∑
i=1 λ

′
iǫi, where (λ′

1, λ
′
2, . . .) is the

conjugate partition of (λ1, λ2, . . .). Furthermore, the categories O+
n and O

+
n

have indecomposable tilting modules of highest weight λ ∈ h∗,+, denoted by
Tn(λ) and T n(λ), respectively.

The relationships between O+
n , for various n, between O

+
n , for various

n, are given by the truncation functors, which we shall recall below. The
reader is referred to [CW12, §6.2.5] for more details.

Let M ∈ O+
n . The k-module ResgkM is a direct sum of finite-dimensional

irreducible polynomial k-modules. Thus we have a weight space decomposi-
tion:

M =
∑

µ∈h∗

Mµ,

such that µ|h =
∑n

i=1 µiǫi, with µi ∈ N. For m < n, we define

Trnm(M) :=
∑

µj=0,∀j>m

Mµ.

Then it is easy to see that Trnm(M) ∈ O+
m.

Proposition 4.2. For 1 ≤ m < n ≤ ∞, Trnm : O+
n → O+

m defines an exact
functor. Furthermore, for X = N,L, T , and λ ∈ h∗,+ with λ|h =

∑n
i=1 λiǫi,
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we have

Trnm(Xn(λ)) =

{
Xm(λ), if λm+1 = 0,

0, otherwise.

We remark that we can define analogously an exact truncation functor

Tr
n
m : O

+
n → O

+
m, for n > m, and have a super-analogue of Proposition 4.2.

Proposition 4.3. Let 1 ≤ m < n ≤ ∞. For X = N,L, T , and λ ∈ h∗,+

with λ|h =
∑n

i=1 λiǫi, we have

Tr
n
m(Xn(λ)) =

{
Xm(λ), if λm+1 = 0,

0, otherwise.

A relationship between O+
n and O

+
n is given by the so-called super duality

[CW12, Chapter 6], which holds only at n = ∞. In the sequel we shall
make it a convention of notation to sometimes drop the subscript n when
considering n = ∞.

Theorem 4.4. [CW08, CL10, CLW11] We have an equivalence of the BGG
categories for g∞ and g∞:

O+ ∼= O
+
,

under which N(λ), L(λ) and T (λ) correspond to N(λ♮), L(λ♮) and T (λ♮),
respectively, for λ ∈ h∗,+.

Let H denote the Lie subalgebra of gn and gn whose Dynkin diagram is

Hx . Let N be a nilradical of the standard Borel of H and ζ : N → C be
a character of N. Let nn and nn be the nilradicals of the standard Borel
subalgebras of gn and gn, respectively. Thanks to N ⊂ nn and N ⊂ nn, we
can extend ζ trivially to a character of nn and nn, respectively. We shall
again denote them by ζ by abuse of notation.

Recall the MMS categories introduced in §2.2. Denote the categories of
MMS Whittaker modules of gn and gn by MS(ζ)n and MS(ζ)n, respec-
tively. Denote by MS(ζ)+n (and respectively, MS(ζ)+n ) the full subcategory
of MS(ζ)n (and respectively, MS(ζ)n) consisting of objects on which the
gl(n)-action is polynomial. We recall the construction of parabolic stan-
dard Whittaker modules from (2.13). We denote the corresponding par-
abolic standard Whittaker modules of gn and gn by N(λ, ζ) and N(λ, ζ),
respectively. Similarly, we have the self-explanatory notations of L(λ, ζ) and
L(λ, ζ).

We shall denote the Backelin functor for gn and gn by Γζ and Γζ , respec-
tively.

Lemma 4.5. The functors Γζ and Γζ restrict to the following functors:

Γ+
ζ : O+

n −→ MS(ζ)+n , Γ
+
ζ : O

+
n −→ MS(ζ)+n .
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Furthermore, for λ ∈ h∗,+, we have

Γζ (N(λ)) = N(λ, ζ),

Γζ (L(λ)) =

{
L(λ, ζ), if λ is Wl-antidominant

0, otherwise;

Γζ

(
N(λ)

)
= N(λ, ζ),

Γζ

(
L(λ)

)
=

{
L(λ, ζ), if λ is Wl-antidominant

0, otherwise.

Proof. By Proposition 2.2 if M is a direct sum of finite-dimensional irre-
ducible gl(n)-modules, then so is Γ+

ζ (M). The double dual construction in

the proof of [Bac97, Lemma 3.2] also shows that if M is polynomial, then
so is the image under the Backelin functor. �

4.2. Properly stratified categories Oζ-pres+
n and O

ζ-pres+
n . We shall

now apply the results in §3.2 to our setting of gn- and gn-modules. We let
On,Z ⊂ On (and respectively, On,Z ⊂ On ) denote the full subcategory of
integral weight gn-modules (and respectively, gn-modules).

The set Λ of integral weights will be denoted by Λn and Λ(ζ)q from (3.1)
will be denoted by Λ(ζ)qn in our current setting for gn and gn. Denote further

Λ+
n := {λ ∈ Λn | λ|h is polynomial},

Λ(ζ)+n := {λ ∈ Λ(ζ)qn | λ|h is polynomial}.
(4.1)

Recall from §3.1 the parabolic cokernel categories of gn- and gn-modules,

which we shall denote by Oq,ζ-pres
n and O

q,ζ-pres
n , respectively. We define

subcategories

Oζ-pres+
n ⊆ Oq,ζ-pres

n and O
ζ-pres+
n ⊆ O

q,ζ-pres
n

consisting of modules M in the respective categories on which the gl(n)-
action is polynomial.

The same arguments in §3.1 gives us equivalences of categories

Oζ-pres+
n

∼= O+
n,Z/I

+
ζ , O

ζ-pres+
n

∼= O
+
n,Z/I

+
ζ ,

where O+
n,Z/I

+
ζ and O

+
n,Z/I

+
ζ denote the Serre quotient categories by the

respective Serre subcategories I+
ζ = Iq

ζ ∩ O+
n,Z and I

+
ζ = I

q
ζ ∩ O

+
n,Z.

Furthermore, the arguments in §3.2 show that Oζ-pres+
n and O

ζ-pres+
n are

both properly stratified, with standard, proper standard, projective and
simple objects given by the same ∆(λ), N(λ), P (λ) and S(λ) as in §3.2,
now with λ ∈ Λ(ζ)+n in (4.1). To continue to distinguish between gn- and
gn-modules, we shall denote the gn-counterparts by ∆(λ), N(λ), P (λ) and
S(λ) accordingly. We remark that the existence of projective covers in these
categories in the limit n → ∞ is established in [CL20, Theorem 3.5] and
[Leo20, Theorem 3.12]. We summarize the above discussion in the following.
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Proposition 4.6. For n ≤ ∞, the categories Oζ-pres+
n and O

ζ-pres+
n are

categories with properly stratified structures with indecomposable projective,
standard, proper standard, and simple objects described above. Furthermore,
for λ, µ ∈ Λ(ζ)+n , we have the following BGG-type reciprocity:

(P (λ) : ∆(µ) = [N(µ) : S(λ)],

(P (λ) : ∆(µ) = [N(µ) : S(λ)].

We denote the indecomposable tilting module corresponding to λ ∈ Λ(ζ)+n
in Oζ-pres+

n by T (λ). Denote the indecomposable tilting module in O+
n,Z of

highest weight λ ∈ Λ+ by TO+
Z (λ). Similarly, we have the notations T (λ)

and T
O

+

Z (λ).

Proposition 4.7. Let λ, µ ∈ Λ(ζ)+n . For n ≤ ∞, we have

T (λ) ∼= TO+
Z (wl

0 · λ) and T (λ) ∼= T
O

+

Z (wl
0 · λ).

Furthermore, for n < ∞, the following Ringel-type dualities hold:

(T (λ) : ∆(µ)) = [N(−wl
0w

n
0 · µ− ρ) : S(−wl

0w
n
0 · λ− ρ)],

(T (λ) : ∆(µ)) = [N(−wl
0w

n
0 · µ− ρ) : S(−wl

0w
n
0 · λ− ρ)],

where wn
0 is the longest element in Weyl group of the subalgebra gl(n).

Proof. The case n < ∞ is a direct consequence of Proposition 3.3. So it
remains to prove the first statement for n = ∞.

For n = ∞, we observe that, by Proposition 4.2, the tilting modules

of the form TO+

Z (wl
0 · λ) truncate to the corresponding tilting modules of

the same highest weight for n ≫ 0 having the same parabolic Verma flag
length. Furthermore, since the ∆- and ∇-flags are also compatible under
the truncation functors, these tilting modules have ∆- and ∇-flags as well,
and thus, they are indeed tilting modules T (λ) for Oζ-pres+ at n = ∞.

Similarly, we have the identity for T (λ) ∼= T
O

+

Z (wl
0 · λ) for n = ∞ using

Proposition 4.3. �

4.3. Categories W(ζ)+n and W(ζ)+n of Whittaker modules. Following
§3.4, we let W(ζ)+n and W(ζ)+n denote the image categories of Γ+

ζ : O+
n,Z →

MS(ζ)+n and Γ
+
ζ : O

+
n,Z → MS(ζ)+n , respectively.

Proposition 4.8. Let n ≤ ∞. The functor Γ+
ζ : O+

n,Z → W(ζ)+n induces an
equivalence of categories

′Γ+
ζ : O+

n,Z/I
+
ζ

∼=
−→ W(ζ)+n .

Furthermore, Γζ(N(λ)) = N(λ, ζ), for λ ∈ Λ+
n , and

Γζ (L(λ)) =

{
L(λ, ζ), if λ ∈ Λ(ζ)+n ;

0, otherwise.
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Hence W(ζ)+n contains N(λ, ζ) and the simple Whittaker modules L(λ, ζ),
for λ ∈ Λ(ζ)+n .

Proof. The case of n < ∞ is a direct consequence of Proposition 3.4
Now suppose that n = ∞. The same type of arguments as Proposition

2.2 also shows that the Backelin functor sends the parabolic Verma and
irreducible modules in O+ to parabolic standard Whittaker and irreducible
modules, respectively, in the case as well. So, it remains to prove the first
statement for n = ∞.

Suppose that P,Q are two projective modules in Oζ-pres+ ⊆ O+
Z
, which

exist and have finite (parabolic) Verma flags by [CL20, Theorem 3.5] and
[Leo20, Theorem 3.12]. That is, both P,Q are direct sums of indecomposable
projective covers of irreducible modules of Wl-antidominant highest weights.
Furthermore, by [CL20, Theorem 3.2] for n ≫ 0, we have

HomO+
Z

(P,Q) ∼= HomO+
n,Z

(TrnP,TrnQ).(4.2)

Note that ΓζP and ΓζQ are projective modules in W(ζ)+ and have finite
flags of standard Whittaker modules, since Γζ is exact and sends parabolic
Verma modules to the corresponding standardWhittaker modules. It follows
from (4.2) that HomW (ζ)+(ΓζP,ΓζQ) < ∞. Since Γζ is compatible with Trn,
we have for n ≫ 0

HomW(ζ)+(ΓζP,ΓζQ) ∼= HomW(ζ)+n
(ΓζTrn(P ),ΓζTrn(Q))

∼= Hom
Oζ-pres+

n
(Trn(P ),Trn(Q))

∼= HomO+
n,Z

(Trn(P ),Trn(Q))

∼= HomO+
Z

(P,Q) ∼= HomOζ-pres+(P,Q)

It follows, e.g., from [BG80, Proposition 5.10], Oζ-pres+ is equivalent to
the cokernel category with projective objects ΓζP , where P ∈ Oζ-pres+.
However, this category is W(ζ)+. This completes the proof. �

Analogously, we have the following super counterpart.

Proposition 4.9. Let n ≤ ∞. The functor Γ
+
ζ : O

+
n,Z → W(ζ)+n induces an

equivalence of categories

′Γ
+
ζ : O

+
n,Z/I

+
ζ

∼=
−→ W(ζ)+n .

Furthermore, Γζ

(
N(λ♮)

)
= N(λ♮, ζ), for λ ∈ Λ+

n , and

Γζ

(
L(λ♮)

)
=

{
L(λ♮, ζ), if λ ∈ Λ(ζ)+n ;

0, otherwise.

Hence W(ζ)+ contains N(λ♮, ζ) and simple Whittaker module L(λ♮, ζ), for
λ ∈ Λ(ζ)+n .
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Theorem 4.10 (Super duality for Whittaker modules). There exists an
equivalence of properly stratified categories

W(ζ)+
∼=

−→ W(ζ)+,

which maps N(ζ, λ) and L(ζ, λ) to N(λ♮, ζ) and L(λ♮, ζ), respectively, for
λ ∈ Λ(ζ)+.

Proof. By Theorem 4.4 we have an equivalence of categories between the

highest weight categories O+
Z

and O
+
Z under which N(λ) and L(λ) corre-

spond to N(λ♮) and L(λ♮), respectively. Now the simple objects in the Serre
subcategory I+

ζ correspond to the simple objects in the Serre subcategory

I
+
ζ . Thus, we have O+

Z
/I+

ζ
∼= O

+
Z /I

+
ζ .

Now, by Propositions 4.8 and 4.9 the categories W(ζ)+ (and respectively,
W(ζ)+) of MMSWhittaker modules are equivalent, respectively, to the Serre

quotient category O+
Z
/I+

ζ (and respectively, O
+
Z /I

+
ζ ). Summarizing we have

the following commutative diagrams:

O+
Z

//

∼=
��

O+
Z
/I+

ζ

∼= //

∼=
��

W(ζ)+

��

O
+
Z

// O
+
Z /I

+
ζ

∼= // W(ζ)+

Thus, the equivalence W(ζ)+ ∼= W(ζ)+ follows.
The correspondence of the standard and simple objects follows from the

fact that the quotient functors are isomorphic to the respective Backelin
functors and according to Propositions 4.8–4.9 the corresponding Backelin
functors send the parabolic Verma modules and simple modules in O+

Z
and

O
+
Z to the standard Whittaker and simple modules (if nonzero) in W(ζ)+

and W(ζ)+, respectively. �

Remark 4.11. In case when ζ = 0, Theorem 4.10 reduces to the super duality
between parabolic BGG categories modules over g∞ and g∞ (see [CWZ08,
CW08, CL10] for type A and [CLW11] for type BCD; also cf. [CW12, Chap-
ter 6]). Our proof of Theorem 4.10 uses the super duality in this special
case when ζ = 0, and so does not yield a new proof of this speical case.

4.4. Categorification of Fock spaces. Let us be specific by setting gn =

gl(m + n) and gn = gl(m|n), i.e., the head diagram Ha is the Dynkin

diagram of gl(m). Denote by [O+
n,Z] and [O

+
n,Z] the Grothendieck groups of

the categories O+
n,Z and O

+
n,Z, respectively. It was shown in [CLW15] (as

a parabolic version of Brundan-Kazhdan-Lusztig conjecture [Bru03]) that
there exists a U(gl∞)Z-module isomorphism

[O+
n,Z]

∼= V
⊗m ⊗ ∧n

V,

[O
+
n,Z]

∼= V
⊗m ⊗ ∧n

W,
(4.3)
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where V (respectively, W) is the natural representation (respectively, its
restricted dual) of the integral form U(gl∞)Z of U(gl∞). Here and below ∧k

V

and Sk
V denote the kth exterior and symmetric powers of V, respectively.

The isomorphisms (4.3) at n = ∞ become

[O+
Z
] ∼= V

⊗m ⊗ ∧∞
V,

[O
+
Z ]

∼= V
⊗m ⊗ ∧∞

W.
(4.4)

Indeed, one first constructs q-versions of the right-hand side (4.3)–(4.4) as
modules over the (Lusztig integral form of) quantum group U(gl∞)Z[q,q−1]

(cf. [Lus10]) and then specialize them at q = 1. In this case, one constructs
the standard basis, canonical and dual canonical bases on (a completion
of) V

⊗m ⊗ ∧n
V and other variants of tensor spaces. Similar remarks on

q-deformation and canonical bases apply to (4.5) below.
On the other hand, by the results in this section we have, for n ≤ ∞,

[W(ζ)+n ]
∼= SmζV⊗ ∧n

V,

[W(ζ)+n ]
∼= SmζV⊗ ∧n

W,
(4.5)

which is a parabolic variant of the categorification in [CCM23, Theorem 44].
Here SmζV = Sm1V⊗ . . .⊗ SmrV, where m = m1 + . . .+mr is the Jordan
block type of ζ corresponding to a Levi subalgebra of gl(m). (SmζV was
denoted as T

m
ζ in [CCM23].) One can view (4.3)–(4.4) as a special case of

(4.5) for ζ = 0, since in this case W(ζ)+ reduces to O
+
, SmζV reduces to

V
⊗m, and so on, and we are back to the setting. Indeed, one shows, as in

[CCM23] (generalizing [CLW15]), that the standard Whittaker, tilting and
simple modules inW(ζ)+ correspond to proper standard, canonical and dual
canonical bases for SmζV ⊗ ∧∞

W, respectively. (There are two versions of
standard bases.)

As noted in [CWZ08], there is a natural isomorphism

∧∞
V ∼= ∧∞

W,

both as the basic representation of U(gl∞)Z-module of level one. This in-
duces a natural isomorphism between the two right-hand sides in (4.4) (and
respectively, in (4.5) for n = ∞) and an identification of standard, (dual)
canonical bases between them. Building on [CCM23], such an isomorphism
in the setting of (4.5) for n = ∞ is a main motivation behind the super
duality in Theorem 4.4.

Similarly, for gn and gn with head diagrams of type BCD, we have iso-
morphisms (as modules over certain ıquantum group of type AIII) as in
(4.3), (4.4) and (4.5), and all discussions above remain valid once we replace
Lusztig (dual) canonical bases of type A by Bao-Wang (dual) ıcanonical
bases of type AIII; see [BW18, CC24] for an ıcanonical basis formulation of
Kazhdan-Lusztig theories for BGG module category and Whittaker module
category over gn and gn.
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We conclude this section by remarking that one can construct more gen-
eral parabolic variants of the categorification of [CCM23, Theorem 44] than
the ones discussed above for the Fock spaces in (4.5). In fact, arbitrary tensor
products of symmetric and exterior powers of V and W can be categorified
by parabolic Whittaker categories of gl(m|n)-modules, with appropriately
chosen simple system Π and compatible parabolic subalgebras p and q. A
similar remark applies to the ıquantum group versions in [CC24] as well.

5. Module categories for finite W -superalgebras

In this section, we formulate the finiteW -superalgebras U(g, e) associated
to a basic classical Lie superalgebra g and an even nilpotent element e which
lies in an even Levi subalgebra l of g. Then we formulate a parabolic category
O of U(g, e)-modules with “Levi subalgebra” U(l, e).

5.1. Finite W -superalgebras. We continue the setup in §2.1. Recall the
Z-grading (2.3) of a basic classical Lie superalgebra g given by ad θ for an
integral element θ ∈ h, whose degree 0 component is an even Levi subalgebra
l = gθ,0. Recall the triangular decomposition (2.4) and (2.6).

Recall the sl(2)-triple {e, h, f} in g. The eigenspace decomposition of adh
gives rise to a Dynkin grading of g:

g =
⊕

j∈Z

g(j), where g(j) := {x ∈ g | [h, x] = jx}.

Note that e ∈ g(2). The element e defines a linear map

χ : g −→ C, χ(x) = (e|x).(5.1)

This leads to an even super-skewsymmetric bilinear form

ωχ : g× g −→ C, ωχ(x, y) = χ([x, y]).(5.2)

This form restricts to a non-degenerate super-symplectic bilinear form ωχ :
g(−1) × g(−1) → C. Note that dim g(−1)0̄ is even. Throughout we shall
assume that

dim g(−1)1̄ is even.(5.3)

(This will be automatically satisfied in the setup for super duality later on.)
One checks by (2.1) that t preserves the super-symplectic form ωχ|g(−1).

Hence we can choose a t-invariant Lagrangian subspace l of g(−1) with
respect to ωχ and define

m := l ⊕
⊕

j<−1

g(j).(5.4)

Note that χ is a character of m which vanishes on m1̄. Set

mχ := {m− χ(m) | m ∈ m}(5.5)

and let Iχ be the left ideal of U(g) generated by mχ. Also let Qχ denote
the left U(g)-module U(g)/Iχ. The finite W -superalgebra associated to e is
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defined to be the associative superalgebra

U(g, e) = Endg(Qχ)
opp.

Therefore, Qχ is a
(
U(g), U(g, e)

)
-bimodule. It is well known (cf., e.g.,

[Wan11]) that we can identify

U(g, e) = (U(g)/Iχ)
adm

= {u+ Iχ ∈ U(g)/Iχ | [m,u] ∈ Iχ,∀m ∈ m}.

Since, by choice, the Lagrangian subspace l is t-invariant, we have that m

is t-invariant, and thus, χ([t, x]) = 0, for all t ∈ t and x ∈ m. Therefore, we
conclude that

t ⊆ U(g, e).(5.6)

Thus, Sk := Qχ ⊗U(g,e) − defines a functor from the category of U(g, e)-
modules to the category of g-modules on which mχ acts locally nilpotently.

Proposition 5.1. [Zha14, SX20] The functor Sk is an equivalence of cate-
gories from the category of U(g, e)-modules to the category of g-modules on
which mχ acts locally nilpotently. (It remains an equivalence when restricting
to subcategories of finitely generated modules.)

Proof. The equivalence Sk for a reductive Lie algebra g was due to Skryabin
([Pre02, Appendix]). For a Lie superalgebra g with g(−1) even-dimensional
(which is assumed throughout this paper), it was observed in [Zha14, Re-
mark 3.10] that Skryabin’s proof can be “superized”. For Lie algebras, Losev
in [Los10b, Theorem 1.1.4] gave a very different proof from Skryabin’s using
his decomposition theorem, see §6.2 below. This proof was then generalized
to the superalgebra setting in [SX20, Theorem 4.1].

Since U(g) is Noetherian, we have that finitely generated modules over
U(g) are Noetherian. From this, it follows that Skryabin’s equivalence Sk re-
stricts to an equivalence of the respective subcategories of finitely generated
modules. �

Remark 5.2. Finite W -superalgebras are usually defined starting with a
more general grading called good grading ([EK05, §0]) instead of a Dynkin
grading, as we have done here. However, for our main purpose, the ones
constructed from Dynkin gradings will be sufficient. Hence we shall restrict
ourselves to this case.

5.2. Categories of U(g, e)-modules. Denote the centralizer of e in g by

ge := {x ∈ g | [e, x] = 0}.(5.7)

By [BGK08, Theorem 3.8] and its straightforward super variant, we have a
(non-unique) t-module isomorphism:

U(ge) ∼= U(g, e).(5.8)
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By the t-module isomorphism (5.8) we have an ad θ-eigenspace decompo-
sition

U(g, e) = U(g, e)0 +
∑

k∈Z

U(g, e)k.(5.9)

Set U(g, e)≥0 =
∑

k≥0 U(g, e)k and U(g, e)>0 =
∑

k>0 U(g, e)k. Furthermore
let

U(g, e)# = U(g, e)≥0 ∩ U(g, e)U(g, e)>0,

which is a two-sided ideal of U(g, e)≥0. We have by [Los12, Theorem 4.1]
(or by Remark 6.8 below)

U(g, e)≥0/U(g, e)# ∼= U(l, e).(5.10)

Denote by Õ(θ, e) the category of finitely generated U(g, e)-modules M such
that for any x ∈ M there exists kx ∈ Z with U(g, e)kx = 0 for all k ≥ kx.

Now, given a U(l, e)-module V , we can regard it as a U(g, e)≥0-module
via the isomorphism (5.10). Thus, we can define the induced module

Mθ,e(V ) = U(g, e)⊗U(g,e)≥0
V.(5.11)

This gives rise to a functor Mθ,e from the category of finitely generated

U(l, e)-modules to Õ(θ, e).

On the other hand, for M ∈ Õ(θ, e) we let

F(M) = {x ∈ M | ux = 0,∀u ∈ U(g, e)>0}

so that F(M) is naturally a U(l, e)-module by (5.10) again. The functor F
is right adjoint to Mθ,e.

Let O(θ, e) be the subcategory of Õ(θ, e) of U(g, e)-modules M for which
dimF(M) < ∞. The functor Mθ,e restricts to a functor from the category
of finite-dimensional U(l, e)-modules to O(θ, e) with right adjoint being the
restriction of the functor F above:

U(l, e) -mod
Mθ,e

// O(θ, e), U(l, e) -mod O(θ, e).
Foo

Also, we let Or(θ, e) be the full subcategory of O(θ, e) consisting of objects
on which r acts semisimply.

Now if V is a finite-dimensional irreducible U(l, e)-module, then Mθ,e(V )
has a composition series and a unique irreducible quotient, denoted by
Lθ,e(V ) according to [BGK08, Corollary 4.11] (see also [Los12, Corollary 3.6,
Proposition 3.7]). Note that if V is finite dimensional and semisimple over
r, then the module Mθ,e(V ) lies in Or(θ, e).

Suppose that we have two integral elements θ, θ′ ∈ t that give rise to
two minimal full subalgebras r, r′ such that r ⊆ r′ ⊆ t. Since the parabolic
subalgebras (2.8) determined by θ and θ′ are assumed to be compatible with
the same triangular decomposition (2.4) we conclude that O(θ, e) ⊆ O(θ′, e)

and Or(θ, e) ⊆ Or′(θ′, e).
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Example 5.3. When r = t the category Ot(θ, e) is the original category O
for finite W -algebra defined in [BK08]. In this case e is principal nilpotent
in the Levi subalgebra l, and hence the irreducible U(l, e)-modules are one-
dimensional according to [Kos78]. If V is a one-dimensional U(l, e)-module,
then Mθ,e(V ) ∈ Ot(θ, e) is the Verma module of [BK08].

5.3. An example. Let g = gl(7) and let e be the nilpotent element associ-
ated with the following pyramid, see, e.g., [BK08, §3.1].

1

2 3 4

5 6 7

(5.12)

The corresponding nilpotent element is e = E23 +E34 +E56 +E67 with the
grading operator h = 2E22+2E55−2E44−2E77. Together with the element
f = 2 (E32 + E43 + E65 + E76) they form an sl(2)-triple inside g = gl(7).
Here we have used Eij to denote the usual elementary matrix of gl(n). The
eigenvalues of adh give rise to the Dynkin grading g = ⊕j∈Zg(j). Note that
g(0) is the subalgebra corresponding to the columns, i.e., g(0) ∼= gl(2) ⊕
gl(3) ⊕ gl(2), generated by the root vectors corresponding to the roots

{±(ǫ2 − ǫ5),±(ǫ1 − ǫ3),±(ǫ3 − ǫ6),±(ǫ4 − ǫ7)}.

This grading determines aW -algebra U(g, e). The subalgebra t is 3-dimensional
and spanned by the following basis

{E11, E22 + E33 + E44, E55 + E66 + E77}.

We have a t-module isomorphism between U(g, e) and U(ge). An “integral
element” θ ∈ t is of the form

θ = θ1E11 + θ2 (E22 +E33 +E44) + θ3 (E55 + E66 + E77) ,

where θi ∈ Z. The eigenvalues of θ gives rise to a Z-gradation g = ⊕k∈Zgk
with l = g0.

In the case when all θi are the same, θ is a multiple of the identity element
I, and hence it gives the eigenvalue decomposition g = g0 = l and hence
g(0) ∩ g0 = g(0). The “Levi subalgebra” U(l, e) of U(g, e) is U(g, e) itself.

Now consider the case when all θi are distinct, i.e., θ is regular (e.g.,
θ1 = 1, θ2 = 0, θ3 = −1). In this case l = g0 is the subalgebra corresponding
to the rows, i.e., l ∼= gl(1)⊕gl(3)⊕gl(3), generated by the Cartan subalgebra
and the root vectors corresponding to the roots

{±(ǫ2 − ǫ3),±(ǫ3 − ǫ4),±(ǫ5 − ǫ6),±(ǫ6 − ǫ7)}.

The “Levi subalgebra” U(l, e) of U(g, e) in this case is commutative and
isomorphic to the center of U(l).

6. Losev-Shu-Xiao decomposition and finite W -superalgebras

In this section, we set up (in a slightly extended form which we need)
Shu-Xiao’s super generalization of Losev’s approach to finite W -algebras.



SUPER DUALITY FOR WHITTAKER MODULES AND FINITE W -ALGEBRAS 25

As consequences we formulate equivalences between categories of Whit-
taker g-modules and module categories for finite W -superalgebras. Then
we formulate the super duality between a finite W -algebra and a finite W -
superalgebra at infinite-rank limit.

6.1. Super Darboux-Weinstein decomposition. Recall the sl(2)-triple
{e, h, f} in a basic classical Lie superalgebra g as in §2.1, the linear map
χ : g → C from (5.1) given by (e|−). We have a vector space decomposi-
tion: g = ge ⊕ [f, g], and the super-skewsymmetric bilinear form ωχ from
(5.2) restricted on [f, g] is non-degenerate. Recall our assumption (5.3) that
dimC g(−1) is even. Let m be as in (5.4), which is a Langragian subspace
of [f, g] lying in the negative degree component of g, and let m∗ ⊆ [f, g]
be a “dual” of m with respect to ωχ. Let V := mχ ⊕ m∗. We note that h
acts on both V and ge via the Kazhdan grading, which is the grading on g

determined by the eigenvalues of adh shifted by 2.
Write gχ = {g − χ(g)|g ∈ g} so that we have:

gχ = ge ⊕ V.

Note that S(g) has a Poisson structure given by the Lie super bracket. On
the other hand, since V is a symplectic superspace it has a Poisson structure
given by the super-symplectic form.

The adjoint action of t×Ch on S(g) integrates to an action of the adjoint
group T ×C

×, where C× corresponds to a subgroup in the adjoint group of
g0̄ that gives rise to the Kazhdan grading.

The following is an equivariant version of super Darboux-Weinstein the-
orem [SX20, Theorem 1.3]. The version stated and proved in loc. cit. is a
C
×-equivariant version, but the same proof works in the T ×C

×-equivariant
version below (cf. the proof of [Los10b, Theorem 3.3.1]).

Proposition 6.1. We have a T × C
×-equivariant isomorphism of Poisson

algebras

S(g)∧χ
∼= S(ge)

∧
χ⊗̂S(V )∧0 .

The notation ·∧χ denotes completion with respect to the maximal ideal cor-
responding to the point χ. Furthermore, S(ge) and S(V ) Poisson commute
with each other.

Remark 6.2. Though not explicitly addressed in [SX20], the notation ⊗̂
in Proposition 6.1 (and similarly in Theorem 6.5 below) means taking the
completion of the tensor product with respect to the maximal ideal corre-
sponding to the point (χ, 0) ∈ g∗e × V ∗ (see [Los12, Proposition 2.1]). Here,
as a vector superspace, this “completed” tensor product is isomorphic to
S(ge × V )∧(χ,0). Note also that S(V )∧0 is just the formal power series in the

variables of V .

6.2. A super setting for Losev’s decomposition. For applications to
finite W -(super)algebras we need a quantum version of Proposition 6.1. The
quantum analogue of a Poisson structure is given by a star product.
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Given a Poisson superalgebra (A, {·, ·}) over C, a star product on A is an
associative product ∗ on A[[~]] = A⊗C C[[~]] of the form:

f ∗ g = fg +
∞∑

i=1

Di(f, g)~
2i

where ~ is a formal parameter and Di(f, g) ∈ A. Furthermore, it needs to
satisfy among others the following condition:

f ∗ g − (−1)|f |·|g|g ∗ f − {f, g} ∈ ~
3A[[~]],

where f, g ∈ A are assumed to be Z2-homogeneous of degree |f |, |g|. We
will not list the other so-called continuity conditions which can be found
in [Los12, Section 2]. They are in place to assure that the star product
is homogeneous with respect to the Kazhdan grading and that it can be
extended to various completions, and also makes sense when we set ~ = 1.

Example 6.3. Let g be a Lie superalgebra. As the standard quantization of
the Poisson superalgebra (S(g), [·, ·]), we have (S(g)[[~]], ∗) := T (g)[[~]]/I,

where I is the ideal generated by a⊗ b− (−1)|a|·|b|b⊗a− [a, b]~2, for a, b ∈ g

Z2-homogeneous. By a PBW-type argument we see that the T (g)[[~]]/I is
an associative superalgebra isomorphic to S(g)[[~]] as a vector space, and
hence gives rise to a star product on S(g), called the Gutt star product.

Example 6.4. Suppose that (V, ω) is a symplectic superspace so that S(V )
is naturally a Poisson superalgebra with Poisson bracket determined by
{v,w} := ω(v,w), v,w ∈ V . It has a standard quantizaton (S(V )[[~]], ∗)

satisfying the relation v ∗ w − (−1)|v|·|w|w ∗ v = ω(v,w)~2. The correspond-
ing star product is a Moyal-Weyl star product associated with a constant
nondegenerate bivector on V .

Recall the action of the group T ×C
× on S(g), where C× is a subgroup in

the adjoint group of g0̄ determining the Kazhdan grading. Letting t · ~ = t~
for t ∈ C

×, we see that star product of (S(g)[[~]], ∗) is homogeneous and
T × C

×-equivariant. Furthermore, as mentioned above, the “continuity”
conditions of the star product allows us to extend the quantum algebra
structures in Examples 6.3–6.4 to their respective completions as defined in
Proposition 6.1.

We are now ready to state a slight upgrade of [SX20, Theorem 1.6], which
was formulated as a C

×-equivariant version only. However, the proof in
loc. cit. extends to the T ×C

×-version that we shall need for our application
to the category O of W -superalgebras. We note that in the case when g is
a reductive Lie algebra an even stronger equivariant version of the theorem
was proved in [Los12, Proposition 2.1] derived from the earlier results in
[Los10b].

Theorem 6.5. (cf. [SX20, Theorem 1.6]) We have a T × C
×-equivariant

isomorphism of the quantum algebras

S(g)∧χ [[~]]
∼= S(ge)

∧
χ [[~]]⊗̂C[[~]]S(V )∧0 [[~]].(6.1)
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Example 6.6. The isomorphism in Theorem 6.5 is equivariant with respect
to the Kazhdan grading. Now, suppose that the Dynkin grading on g is
even (i.e., g =

⊕
j∈2Z g(j)) so that the subalgebra mχ consists precisely of

the non-positively graded components of g in the Kazhdan grading. The
isomorphism in Theorem 6.5 restricts to an isomorphism of the correspond-
ing C

×-finite part (with respect to the Kazhdan grading). Setting ~ = 1,
we get the following isomorphism of associative superalgebras: The left-
hand side is precisely U(g)∧mχ

, while the right-hand side is the tensor prod-

uct of the Weyl algebra of mχ ⊕ m∗ (completed with respect to mχ) and
S(ge)[[~]]/(~− 1), since ge is positively graded with respect to the Kazhdan
grading. From the representation theory of Weyl algebra, it follows that the
category of g-modules on which mχ acts locally nilpotently is equivalent to
the S(ge)[[~]]/(~ − 1)-module category. Now, we observe that

U(g, e) = (U(g)/U(g)mχ)
adm ∼=

(
U(g)∧mχ

/U(g)∧mχ
mχ

)adm ∼= S(ge)[[~]]/(~−1).

Therefore, the S(ge)[[~]]/(~− 1)-module category above is just the category
of U(g, e)-module. Thus, in the case when the Dynkin grading is even,
Theorem 6.5 readily implies the Skryabin equvalence in Proposition 5.1.

For the case when the Dynkin grading is not even, and especially in order
to make connection between categories of Whittaker modules over Lie super-
algebras of Section 4 and categories modules over finite W -(super)algebras,
we need to extend the isomorphism in Theorem 6.5 between the C

×-finite
parts which we shall explain below.

Let θ ∈ t be an integral element giving rise to a parabolic decomposition
of g = u− ⊕ l ⊕ u as in (2.7). Let d be the maximal eigenvalue of adh. Let
m > 2d + 2, and consider the element h −mθ ∈ t⊕ Ch. The eigenvalue of
this element gives rise to a Z-gradation on gχ = ⊕i∈Zgχ(i), where we recal
that h acts by the Kazhdan grading. That is

gχ(i) := {x ∈ gχ | [h−mθ, x] = (i− 2)x}.(6.2)

Let

m̃ := mχ + u,(6.3)

where mχ is the Levi l analogue of mχ in (5.5) for g. Observe that, since
θ ∈ t, the subspace m̃ ∩ V is Langragian in V . Again, if θ = 0, this is just
the Kazhdan grading, and m̃ = mχ.

Let C
× → T × C

× be the diagonal embedding such that the pull-back
C
×-action induces the grading (6.2), i.e., the differential of the embedding at

1 equals (h,−mθ). The following theorem follows from [SX20, Lemma 3.7],
adapted to our new C

×-equivariant setting and [Los12, Proposition 5.1]. We
observe that the theorem below in the special case θ = 0 is precisely [SX20,
Theorem 1.7].

Theorem 6.7. The new C
×-equivariant isomorphism induced from the one

in (6.1) restricts to an isomorphism of the corresponding C
×-finite parts.
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This C×-finite part isomorphism in turn extends uniquely to an isomorphism
of algebras

U(g)∧m̃
∼= U(g, e)∧m̃∩ge

⊗A(V )∧m̃∩V ,(6.4)

where A(V ) is the Weyl superalgebra of the supersympectic space V .

Remark 6.8. Following [Los12, (5.6)] we can take the subalgebras of non-
negative ad θ-eigenspaces divided by their left ideals generated by positive
ad θ-eigenspaces in both sides of the isomorphism (6.4). Since the subspace
consisting of ad θ-positive eigenspaces is a two-sided ideal in the algebra of
non-negative ad θ-eigenspaces, we see that these left ideals are indeed two-
sided ideals, and hence the quotients are indeed algebras. Thus, we obtain
an isomorphism of algebras

U(l)∧m
∼= U(g, e)≥0/U(g, e)# ⊗A(V ∩ l)∧m.

Now dividing by the left ideal generated by mχ and then taking m-invariants
on both sides, we obtain the isomorphism (5.10).

6.3. Categories of generalized Whittaker modules. We continue the
setup in §2.1 with h ⊂ l ⊂ g and an sl(2)-triple {e, h, f}. Since h ∈ h and
h ⊂ l by (2.6), adh preserves l. Thus l inherits a Z-gradation from the
Dynkin grading (with respect to adh) g = ⊕j∈Zg(j):

l = ⊕j∈Zl(j), where l(j) := l ∩ g(j).

Recall from (2.2) that e ∈ l. From now on, we further assume that

e is of standard Levi type,(6.5)

that is, it is principal nilpotent in a Levi subalgebra of l (or of g).
As in §5.1 (with l in place of g), we have the finite W -algebra U(l, e) as-

sociated to the nilpotent element e ∈ l. By Skryabin equivalence in Propo-
sition 5.1, the category of U(l, e)-modules is equivalent to the category of
U(l)-modules on which a corresponding subalgebra m in l transforms by the
character χ, i.e., the algebra mχ = {x−χ(x)|x ∈ m} acts locally nilpotently.

Definition 6.9. A finitely generated U(g)-module is called a generalized
Whittaker module corresponding to the pair (θ, e), if the subalgebra mχ + u

acts locally nilpotently.

Denote the category of generalized Whittaker g-modules by W̃h(θ, e), cf.
[Los12, Section 4].

Given a finite-dimensional U(l, e)-module V , we have by Proposition 5.1
a U(l)-module Sk(V ), which we can extend trivially to a U(p)-modules and
then parabolically induce to a U(g)-module

Mθ,e(V ) := IndgpSk(V ).

Then Mθ,e(V ) is a generalized Whittaker module associated with (θ, e). In
this way, Mθ,e defines a functor from finitely generated U(l, e)-modules to

W̃h(θ, e). On the other hand, given a generalized Whittaker g-module M
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we can define F (M) := {m ∈ M | xm = 0,∀x ∈ mχ + u}. Then F (M) is a

U(l, e)-module. The functor F is right adjoint to Mθ,e.

The subcategory Wh(θ, e) of W̃h(θ, e) is the category of generalized Whit-
taker modules M associated with (θ, e) such that dimF (M) < ∞. Further-
more, we define Whr(θ, e) to be the full subcategory of Wh(θ, e) on which
r acts semisimply. In the superalgebra setting, it is convenient to consider
the full subcategory Wh′(θ, e) of Wh(θ, e) consisting of objects M such that
dimMu0̄+mχ < ∞; see Lemma 6.10 below in the case when θ is regular in t

(i.e., e is a principal nilpotent element in the Levi subalgebra l).
In the case when θ is regular in t, we shall sometimes drop θ, i.e., we write

M e(V ), W̃h(e), Wh(e), Wh′(e) etc.

Lemma 6.10. Suppose that e is principal nilpotent in l, i.e., θ ∈ t is regular.

(1) Let M ∈ W̃h(e). Then (Mu0̄)mχ is finite dimensional if and only if
M ∈ MS(ζ).

(2) We have an equivalence of categories MS(ζ) ∼= Wh′(e).

Proof. When g is a Lie algebra it is shown in [Los12, Lemma 4.2] that
M ∈ MS(ζ) if and only if dimF (M) < ∞.

Suppose that g is a basic classical Lie superalgebra and M ∈ Wh′(e).
By definition (Mu0̄)mχ is finite dimensional. Thus, by [Los12, Lemma 4.2]
the Noetherian g0̄-module Resgg0̄M lies in the MMS category of Whittaker
modules of g0̄, and hence is Z(g0̄)-finite. Therefore, it lies in MS(ζ).

Conversely, if M ∈ MS(ζ), then, by definition, the Noetherian g0̄-module
Resgg0̄M is Z(g0̄)-finite, and hence by [Los12, Lemma 4.2] again, (Mu0̄)mχ is
finite dimensional. Hence M ∈ Wh′(e). �

6.4. Several category equivalences. Now we shall interpret the Losev-
Shu-Xiao decomposition in Theorem 6.7 from the viewpoints of Whittaker
modules and U(g, e)-modules.

Recall from parabolic decomposition determined by an integral element
θ: g = u− ⊕ l⊕ u. Recall the subalgebra m̃ = mχ + u from Theorem 6.7. So

the category of U(g)∧
m̃
-modules above is precisely W̃h(θ, e).

On the other hand, we have m̃ ∩ ge = u ∩ ge. Also, recall that for α ∈ Φ
we have α(θ) > 0 if and only if α is a root in u. Therefore, the category of
finitely generated U(g, e)m̃∩ge-modules consists precisely of U(g, e)-modules

on which U(g, e)>0 acts locally nilpotently, i.e., the category Õ(θ, e) in §5.2.
Finally, we have already observed earlier that the space m̃ ∩ V is a La-

grangian subspace of V . Hence A(V ) is just the Weyl superalgebra of
(m̃∩ V )⊕ (m̃∩ V )∗. Thus, the category of A(V )m̃∩V -modules is semisimple
with a unique simple object.

Thus we have obtained a functor

K : W̃h(θ, e) −→ Õ(θ, e),(6.6)

which is an equivalence.
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Recall the subcategory O(θ, e) ⊂ Õ(θ, e) from §5.2 and the subcategory

Wh(θ, e) ⊂ W̃h(θ, e) from §6.3. By restriction, we obtain a category equiv-
alence

Wh(θ, e)
∼=
−→ O(θ, e).(6.7)

Now consider the case when e is principal nilpotent in l. Up to conjugation
we can assume that e =

∑
α∈Πl

E−α, where the simple root vectors are

normalized so that (E−α|Eβ) = δα,β, for even simple roots α, β. Since
e is principal nilpotent in l, we see that the algebra m̃ = m + u in this
case is a maximal nilpotent subalgebra of g, and so b := h + m̃ is a Borel
subalgebra of g with simple system Π. Note that for α ∈ Π, we have that
ζ(Eα) := (e|Eα) = 1, if and only α ∈ Πl. This determines a unique character
ζ of the nilradical [b, b] ⊆ b and hence the category of U(g)∧

m̃
in this case

is the category g-modules on which x− ζ(x) acts locally nilpotently for all
x ∈ [b, b]. In particular, if we further restrict to the subcategory of Z(g0̄)-
finite modules, then we obtain precisely the category of Whittaker modules
MS(ζ), considered in [McD85, MS97] in the case when g is a Lie algebra,
and in [Che21] in the case when g is a Lie superalgebra.

We define O′(θ, e) to be the full subcategory of O(θ, e) which is the image
category of MS(ζ) under the equivalence K. Summarizing we have obtained
the following.

Theorem 6.11. We have the following commutative diagram:

MS(ζ)

∼=

��

� � // Wh(θ, e)

∼=

��

� � // W̃h(θ, e)

K ∼=
��

O′(θ, e) �
� // O(θ, e) �

� // Õ(θ, e)

(6.8)

Proof. The equivalence K follows from the isomorphism of superalgebras
in Theorem 6.7 and the discussion above. The remaining two equivalences
follow by restriction. �

Remark 6.12. When g is a reductive Lie algebra, the equivalence (6.7) was
first conjectured in [BGK08, Conjecture 5.3], and then established, along
with (6.6), in [Los12, Theorem 4.1]. In this case, MS(ζ) ∼= Wh(θ, e); see
Lemma 6.10.

Remark 6.13. Setting θ = 0, K gives Skryabin equivalence for finite W -
superalgebras associated with a general not necessarily even grading [SX20,
Theorem 4.1], which extends the case considered in Example 6.6.

Corollary 6.14. Assume that θ is regular so that e is principal nilpotent
in l. The U(g, e)-Verma module lies in O′(θ, e), and so does its irreducible
quotient.
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Proof. For M ∈ W̃h(θ, e), we have the following isomorphism of U(l, e)-
modules by Theorem 6.7:

F (K(M)) ∼= G(M).

Thus, these two functors are isomorphic, and hence so are their left adjoints
K◦Mθ,e and Mθ,e. Taking N to be the irreducible one-dimensional U(l, e)-
module, we conclude that

K
(
Mθ,e(N)

)
∼= Mθ,e(N).

That is, the standard Whittaker modules of g under K correspond to the
Verma modules of U(g, e). But we have seen earlier that the abelian category
MS(ζ) contains all standard Whittaker modules of g. �

Remark 6.15. The Grothendieck groups of MS(ζ) and Wh(θ, e) coincide
as these two categories have the same simple objects. It follows by Theo-
rem 6.11 that the Grothendieck groups of O′(θ, e) and O(θ, e) coincide as
well.

Remark 6.16. Let g be a basic classical Lie superalgebra and e an even
nilpotent element that is principal nilpotent in an even Levi subalgebra of
g. Suppose that the corresponding integral element θ is regular so that
we have the corresponding category O(e) of U(g, e)-modules. Let ζ be
the nilcharacter corresponding to e, and consider the corresponding cat-
egory MS(ζ) of MMS Whittaker modules so that we have, as in Theo-
rem 6.11, MS(ζ) ∼= O′(e) ⊂ O(e). Now by [CC24, Theorem 1] (which
extends [Che21, Theorem 20]), the multiplicities of composition factors of
standard Whittaker modules are given by the corresponding super Kazhdan-
Luszig polynomials for the BGG category O of g-modules. Together with
Theorem 6.11, it now follows that these same Kazhdan-Lusztig polynomials
also compute the multiplicities of composition factors of the Verma modules
in O(e). When g is a reductive Lie algebra such a relationship was first con-
jectured in [BGK08, Conjecture 5.3] and proved in [Los10a, Theorem 4.1].
So, combining Theorem 6.11 with [CC24, Theorem 1] indeed establishes the
analogue of the Brundan-Goodwin-Kleshchev-Losev result for basic classical
Lie superalgebras.

Let θ and θ′ be compatible as in §5.2. Assume that θ is regular so that e is
principal nilpotent in the Levi subalgebra l in the parabolic subalgebra de-
termined by θ. Then the abelian subcategory O′(θ′, e) := O(θ′, e) ∩O′(θ, e)
of O′(θ, e) contains all Verma modules in O(θ′, e), since they are quotient of
the Verma modules of O(θ, e), which by Corollary 6.14 are all contained in
O′(θ, e). Hence all simple objects in O(θ′, e) are also contained in O′(θ′, e).
Under the equivalence of categories the corresponding category of general-
ized Whittaker modules, which we denote by Wh′(θ′, e), is a full subcategory
of MS(ζ). Namely, the category Wh′(θ′, e) is the full subcategory of MS(ζ)

consisting of modules M with dimMu′+m′
χ < ∞, where u′ and m′

χ are the re-

spective subalgebras defined for the integral element θ′. In particular when



32 CHENG AND WANG

θ′ = 0 so that u′ = 0, the condition becomes dimMmχ < ∞, i.e., the Whit-
taker modules in MS(ζ) which, under the Skryabin equivalence, correspond
to finite-dimensional modules of U(g, e).

6.5. Super duality for finite W -algebras. In this last subsection, we are
back to the setting of §4.1, where we introduced a pair of Lie algebra gn and
Lie superalgebra gn, for n ≥ 1.

Now, we can combine our results to establish a super duality between
categories of modules over the finite W -algebra U(gn, e) and U(gn, e) in
the limit n → ∞. Recall that H and k ∼= gl(n) denote the Lie algebras
corresponding to the head and tail diagrams, respectively, of the Dynkin
diagrams of gn and gn that form a super duality pair when n → ∞. We
have that e is of standard Levi type in H, and hence in gn and gn.

Lemma 6.17. The algebra U(gl(n)) is a subalgebra of both U(gn, e) and
U(gn, e), for n ≤ ∞.

Proof. We prove for U(gn, e) only; the proof for U(gn, e) is the same. To
simplify notation, for the remainder of the proof, we let g stand for gn.

In the case when the Dynkin grading is even, we have g(0)e ⊆ U(g, e),
which follows from the fact that χ([X,Y ]) = 0, for X ∈ g(0)e and Y ∈ m.
Since the [e, gl(n)] = 0 and gl(n) ⊆ g(0), the lemma follows in this case.

In the case when the Dynkin grading is not even, in light of the previous
discussion, it therefore suffices to prove that, in the construction of the W -
(super)algebra, we may choose the Lagrangian subspace in l ⊆ g(−1) so
that it is gl(n)-invariant. This in indeed can be accomplished, and can be
seen as follows. From the classification of good gradings (which includes all
the Dynkin gradings) of these Lie (super)algebras in [EK05, BG07, Hoy12]
one sees that g(−1), as a gl(n)-module, is a direct sum of copies of Cn, Cn∗

or the trivial representation. Now, the action of t on g(−1) preserves the
symplectic form ωχ, and hence g(−1)∗ ∼= g(−1) as a t-module. As t contains
a Cartan of gl(n), it follows that g(−1)∗ ∼= g(−1) as a gl(n)-module. As the
space g(−1) is even dimensional, this allows us to choose the subspace l to
be gl(n)-invariant. �

Let e be of standard Levi type in H as above and suppose that it gives
rise to the nilcharacter ζ : n → C. That is, e is principal nilpotent in a
Levi subalgebra of H, and hence in a Levi subalgebra l of gn and gn, and ζ
is defined to take value 1 on the simple root vectors in l and 0 elsewhere,
see (2.9). Recall our equivalence of categories for Whittaker categories of
gn-modules W(ζ)+n and of gn-modules W(ζ)+n in Theorem 4.10. In the case
of finite n, they are subcategories of W(ζ)n and W(ζ)n, which, in turn,
are subcategories of MMS categories MS(ζ) ⊆ W(θ, e), respectively. The
proof of the super analogue of Losev’s decomposition theorem in [SX20,
Theorem 1.6] works in the setting of these Lie superalgebras gn and gn in the
limit n → ∞, as the (super)symplectic spaces V = [f, gn] and V = [f, gn] are
both finite-dimensional. Thus, we can restrict the equivalence of categories
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K in (6.8) to the subcategories W(ζ)+n and W(ζ)+n . Therefore, Theorem
4.10 and Theorem 6.11 imply the following equivalence of categories in the
limiting case n → ∞.

Theorem 6.18. There exists an equivalence of categories between the cat-
egory K(W(ζ)+) of U(g, e)-modules and the category K(W(ζ)+) of U(g, e)-
modules under which the parabolic Verma modules correspond.

Below, we shall provide additional detail on the correspondence between
the parabolic Verma modules in Theorem 6.18. For the sake of concrete-
ness, we take an integral element θ satisfying the following: (1) θ is non-
negative on all simple roots, (2) θ is regular on H and singular on k, and
(3) θ is positive on all positive roots not lying in H and k. Recall the

categories O′(θ, e) and O
′
(θ, e) of U(g, e)- and U(g, e)-modules. For M ∈

O′(θ, e) and M ∈ O
′
(θ, e), Res

U(g,e)
U(k) M and Res

U(g,e)
U(k) M are direct sums of

finite-dimensional irreducible k-modules. We define the full subcategories

O(θ, e)+ ⊂ O′(θ, e) and O(θ, e)+ ⊂ O
′
(θ, e) consisting of objects M such

that the k-action is polynomial. We then have K(W(ζ)+) ⊂ O(θ, e)+ and
K(W(ζ)+) ⊂ O(θ, e)+. As we have observed in the proof of Corollary 6.14,
we have K ◦Mθ,e ∼= Mθ,e, and hence we conclude that the parabolic stan-
dard Whittaker modules in W(ζ)+ (respectively, W(ζ)+) correspond to the
parabolic Verma modules in O′(θ, e) (respectively, O(θ, e)) such that the
k-action is polynomial. They are parabolically induced as in (5.11), where
V therein is now replaced by a tensor product of an irreducible polynomial
k-module and a one-dimensional U(l ∩ H, e)-module (corresponding, under
Sk, to an irreducible Kostant (l∩H)-module). Since the parabolic standard
Whittaker modules in W(ζ)+ and W(ζ)+ correspond under super duality,
it follows that the parabolic Verma modules correspond as well.

Remark 6.19. Via the equivalences of categories K in (6.8), we can reformu-
late (4.5) as

[K(W(ζ)+)] ∼= SmζV⊗ ∧∞
V, [K(W(ζ)+)] ∼= SmζV⊗ ∧∞

W.

Remark 6.20. For integral central characters, the Grothendieck groups of
K(W(ζ)+) and O(θ, e)+ coincide as these two categories have the same sim-
ple objects. A parallel statement holds for K(W(ζ)+) ⊂ O(θ, e)+.
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[Gab62] Pierre Gabriel. Des catégories abéliennes. Bull. Soc. Math. France, 90:323–448,
1962.



SUPER DUALITY FOR WHITTAKER MODULES AND FINITE W -ALGEBRAS 35

[Hoy12] Crystal Hoyt. Good gradings of basic Lie superalgebras. Israel J. Math.,
192(1):251–280, 2012.

[Irv85] Ronald S. Irving. Projective modules in the category OS : Loewy series. Trans.
Amer. Math. Soc., 291(2):733–754, 1985.

[Jan77] Jens C. Jantzen. Kontravariante Formen auf induzierten Darstellungen halbe-
infacher Lie Algebren. Math. Ann., 226:53–65, 1977.

[Kos78] Bertram Kostant. On Whittaker vectors and representation theory. Invent.
Math., 48(2):101–184, 1978.

[Leo20] C. Leonard. Graded super duality for general linear Lie superalgebras. Trans-
form. Groups, 25(1):149–175, 2020.

[Los10a] Ivan Losev. Finite W-algebras. In Proceedings of the International Congress of
Mathematicians. Volume III, pages 1281–1307. Hindustan Book Agency, New
Delhi, 2010.

[Los10b] Ivan Losev. Quantized symplectic actions and W -algebras. J. Amer. Math. Soc.,
23(1):35–59, 2010.

[Los12] Ivan Losev. On the structure of the category O for W -algebras. In Geometric
methods in representation theory. II, volume 24 of Sémin. Congr., pages 353–
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