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CONVEXITY OF THE MABUCHI FUNCTIONAL IN BIG COHOMOLOGY

CLASSES

ELEONORA DI NEZZA, STEFANO TRAPANI, ANTONIO TRUSIANI

Abstract. We study the Mabuchi functional associated to a big cohomology class. We define an
invariant associated to transcendental Fujita approximations, whose vanishing is related to the Yau-
Tian Donaldson conjecture. Assuming vanishing (finiteness) of this invariant we establish (almost)
convexity along weak geodesics. As an application, we give an explicit expression of the distance dp

in the big setting for finite entropy potentials.

1. Introduction

Let X be a compact Kähler manifold of complex dimension n and fix a Kähler form ω. Let d and
dc be the real differential operators defined as d := ∂ + ∂̄, dc := i

2π

(

∂̄ − ∂
)

. By the ddc-lemma, the
space of Kähler forms cohomologus to ω can be identified with the space

H = {u ∈ C∞(X) : ω + ddcu > 0}/R.

To study canonical Kähler metrics on X, Mabuchi in [52], [53] introduced a natural Riemannian
metric g on H. He defined the Mabuchi functional M (known as well as K-energy) such that its
critical points are constant scalar curvature Kähler (cscK for short) metrics. Furthermore, he demon-
strated that the Mabuchi functional is convex along smooth geodesics of (H, g). However, (H, g) is
an infinite dimensional Fréchet Riemannian manifold, hence the existence of smooth geodesics is
not guaranteed, as shown in [48], [25]. Nevertheless, a natural notion of weak geodesics exists to
connect two points in H. In [3], Berman and Berndtsson proved convexity of the Mabuchi functional
along such weak geodesics and, as a consequence they established the uniqueness of the cscK metric
in a given cohomology class (whenever it exists).

In the 1990’s Tian [57] made an influential conjecture stating that the existence of a cscK metric
is equivalent to the properness of the Mabuchi functional.
There were several attempts by many in this direction. The conjecture was first proven in the (Fano)
Kähler-Einstein case by Darvas and Rubinstein [26]. The fact that the existence of a cscK metric
implies the properness of the K-energy is due to Berman, Darvas and Lu [7], while the reverse
implication was proven more recently by Chen and Cheng [14, 15] (see also [51], [49], [55], [54] for
some results in the singular setting).

Motivated by the classification problem in birational geometry, in [5], the authors studied the
Kähler-Einstein equation as a solution to a similar variational problem, but in the more singular
context of a big cohomology class {θ} ∈ H1,1(X,R). We say that {θ} is big if and only if its volume
Vol(θ) > 0 and we define this notion in Section 2. The notion of big cohomology classes is in fact
invariant under bimeromorphic maps, while this is not the case for Kähler classes, and naturally
arises in algebraic geometry.

In this paper we thus define and study the (relative) Mabuchi functional in a big cohomology
class {θ}. We recall that a function ϕ : X → R ∪ {−∞} is quasi-plurisubharmonic (qpsh) if it can
be locally written as the sum of a plurisubharmonic function and a smooth function. ϕ is called
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θ-plurisubharmonic (θ-psh) if it is qpsh and θϕ := θ + ddcϕ ≥ 0 in the sense of currents. We let
PSH(X, θ) denote the set of θ-psh functions that are not identically −∞. Thanks to [10], given a
θ-psh function ϕ, the non-pluripolar Monge-Ampère measure of ϕ is well defined and denoted by
θnϕ := (θ + ddcϕ)n. In PSH(X, θ) there exists a “best candidate” which is less singular than any
other θ-psh function:

Vθ := sup{u ∈ PSH(X, θ), u ≤ 0}.

We then say that a θ-psh function ϕ has minimal singularities if it is relative bounded with respect
to Vθ, i.e. |Vθ − ϕ| ≤ C, for some C > 0.
Also, we have that Vol(θ) =

∫

X θ
n
Vθ
. Thus, the fact that {θ} is big means that the mass of (the

Monge-Ampère measure associated to) Vθ is strictly positive. The function Vθ is then the less
singular function with “full mass”.
For any other mass 0 < m < Vol(θ), one can consider model potentials φ having that mass,

∫

X θ
n
φ =

m, which are going to play the role of Vθ in a relative setting. We refer to Section 2.1 for a precise
definition.

Taking inspiration from the Kähler setting (and from the big and nef case studied by Di Nezza
and Lu in [36]), we define the Mabuchi functional relative to (X, θϕ), for any closed and positive
(1, 1)-current θϕ with well defined Ricci curvature (see Section 4), as

(1.1) Mθ,ϕ(u) := S̄ϕE(θ;u, ϕ) − nERic(θϕ)(θ;u, ϕ) + Ent(u, ϕ),

for any u with the same singularity type of ϕ, that is |u − ϕ| ≤ C, for some C > 0. We refer
to Sections 3 and 4 for the definitions of the energy terms E,ERic(θϕ) and the entropy term Ent
appearing in (1.1).

The main result of the paper is the (almost)-convexity of Mθ,ϕ along weak geodesic. Our strategy
is to treat this problem as a limiting case of classes with “prescribed singularities”. The latter notion
was introduced in [21], [24], [23] and further developed in [59], [61], [60].

To be more precise, we consider a monotone transcendental Fujita approximation of {θ}, i.e.
a sequence of model potentials (φk)k ⊂ PSH(X, θ), φk ր Vθ such that for any k, there exists a
modification πk : Yk → X, Yk compact Kähler manifold, and

π∗k(θ + ddcφk) = (ηk + ddcφ̃k) + [Fk]

where Fk is an effective R-divisor, φ̃k is a potential with minimal singularities and ηk represents a
big and nef class. The existence of a sequence (φk)k is a consequence of [28] (see Lemma 4.14). We
refer to Section 4.2 for more details.
There is a key quantity associated to a given monotone transcendental Fujita approximation (φk)k:

H(φk) := lim inf
k→+∞

{ηn−1
k } ·KYk/X .

Note that H(φk) ≥ 0 and let us stress that it does not depend on the modifications πk (Lemma
4.17). We then consider

H := inf{H(φk), (φk)k monotone transcendental Fujita approximation}.

Our main result states as follows:

Theorem 1.1. Let u0, u1 ∈ PSH(X, θ) with minimal singularities and let (ut)t∈[0,1] be the weak
geodesic connecting u0 and u1. Let ϕ ∈ E(X, θ) be such that θnϕ = Vol(θ)ωn, supX ϕ = 0. Then ut
has minimal singularities and the function t 7→ Mθ,ϕ(ut) is almost convex in [0, 1], i.e.

(1.2) Mθ,ϕ(ut) ≤ (1− t)Mθ,ϕ(u0) + tMθ,ϕ(u1) +
n‖u0 − u1‖∞

2Vol(θ)
H.

The proof consists in two big steps: first, for any monotone trascendental Fujita approximation
(φk)k and for each k, we prove (almost)-convexity for Mθ,ϕk

where ϕk is a suitable θ-psh function
such that |ϕk − φk| ≤ C; then we perform a limiting procedure.
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Also the inequality in (1.2) is interesting only if the quantity H is finite or equal to zero.
As a consequence of our theorem we get the following:

Corollary 1.2. Assume H = 0. Then the function t 7→ Mθ,ϕ(ut) is convex in [0, 1].

When {θ} is big and nef we find H = 0. The convexity of the Mabuchi functional in the big
and nef case was proved by Di Nezza and Lu in [36] using the fact that a big and nef class can be
approximated by Kähler classes.

In Section 4.4 we examine the condition H = 0. Notably, we observe that H = 0 when {θ} has
a bimeromorphic Zariski decomposition (Theorem 4.23). From this, it follows easily that Mθ,ϕ is
convex in complex dimension 2.

As it was observed in [50], when X is a projective manifold, and α is the cohomology class of
a big Q-divisor, if H = 0 then one can solve the Yau-Tian-Donaldson Conjecture (see Remark
4.24). It is conjectured that H is zero [50, Conjecture 4.7]. This raises the natural question of how
the convexity of the Mabuchi functional for any big integral class is connected to the Yau-Tian-
Donaldson Conjecture.

Once the convexity of the Mabuchi functional is established, we manage to ensure a uniform
control of the entropy along the geodesic segment:

Corollary 1.3. Assume H < +∞. Let C1 > 0 and let u0, u1 ∈ PSH(X, θ) be such that u0 − u1 is
bounded. Assume Ent(u0),Ent(u1) ≤ C1. Then there exists a positive constant C2 such that

Ent(ut) ≤ C2

for any t ∈ [0, 1], where C2 only depends on C1, n,X, {ω}, {θ}, ‖u0 −u1‖∞, H and on a lower bound
of Vol(θ).

This observation is the key to show that the distance d1 admits an explicit expression. Let us
recall that, following [19], the distance d1 (in the big setting) is defined as

d1(u0, u1) := E(θ;u0, Vθ) + E(θ;u1, Vθ)− 2E(θ;Pθ(u0, u1), Vθ),

where E denotes the energy functional as in (1.1) and

Pθ(u0, u1) := sup{v ∈ PSH(X, θ), v ≤ min(u0, u1)}.

Theorem 1.4. Assume H < +∞. Let u0, u1 ∈ Ent(X, θ) and ut be the weak geodesic connecting
u0 and u1. If u0 − u1 is bounded then

(1.3) d1(u0, u1) =

∫

X
|u̇t| θ

n
ut

for any t ∈ [0, 1].

For the purpose of the introduction, we state the above theorem for d1 since the latter can be
more easily defined in the big setting. But we actually can prove the analogous result for all the
Finsler distances dp, p ≥ 1, recently defined in the big setting by Gupta [45] (see Section 6 and
Theorem 6.1).

Let us recall that (1.3) was first proved by Chen [13] for d2 in the Kähler case, specifically for
smooth Kähler potentials. This equality was instrumental in demonstrating that d2 is a genuine
distance, rather than merely a semi-distance.

The distances dp on “extended Mabuchi spaces”, the so called Monge-Ampère energies classes
Ep, were initially introduced by Darvas [18] in the Kähler setting. Since then, they have been
extensively studied by various authors due to their crucial role in the variational approach to finding
Kähler-Einstein or cscK metrics. These distances have been defined in singular contexts through
approximation procedures [32], [19], [35], [63], [45].
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Having an explicit formulation for dp is crucial for several applications. For example, it enables
us to extend the result of [38] and [36] on Monge-Ampère measures on contact sets (see Proposition
5.2 and Corollary 5.3). Knowing the support of the Monge-Ampère measure of a (singular) θ-psh
function is indeed a cornerstone of pluripotential theory.
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2. Preliminaries

We recall results from (relative) pluripotential theory of big cohomology classes. We borrow
notation and terminology from [23].

Let (X,ω) be a compact Kähler manifold of dimension n. Let θ be a smooth closed (1, 1)-form
on X. A function ϕ : X → R ∪ {−∞} is quasi-plurisubharmonic (qpsh) if it can be locally written
as the sum of a plurisubharmonic function and a smooth function. ϕ is called θ-plurisubharmonic
(θ-psh) if it is qpsh and θϕ := θ + ddcϕ ≥ 0 in the sense of currents. We let PSH(X, θ) denote
the set of θ-psh functions that are not identically −∞. In the whole paper we will assume that
{θ} is big, which means that it admits a Kähler current, i.e. there exists ψ ∈ PSH(X, θ) such that
θ + ddcψ ≥ εω for some small constant ε > 0. Here, d and dc are real differential operators defined
as d := ∂ + ∂̄, dc := i

2π

(

∂̄ − ∂
)

.
We say that a θ-psh function ϕ has analytic singularities if there exists a constant c > 0 such

that locally on X,

(2.1) ϕ = c log
N
∑

j=1

|fj|
2 + g,

where g is bounded and f1, . . . , fN are local holomorphic functions.

Demailly regularization’s theorem ensures that there are plenty of Kähler currents with analytic
singularities (see for e.g. [30, Theorem 3.2]).

The ample locus Amp(θ) of {θ} is the set of points x ∈ X such that there exists a Kähler current
T ∈ {θ} with analytic singularity smooth in a neighbourhood of x. The ample locus Amp(θ) is a
Zariski open subset, and it is nonempty [9]. The complement of the ample locus is known as the
non-Kähler locus, EnK(θ).

If ϕ and ϕ′ are two θ-psh functions on X, then ϕ′ is said to be less singular than ϕ, i.e. ϕ � ϕ′, if
they satisfy ϕ ≤ ϕ′ + C for some C ∈ R. We say that ϕ has the same singularity as ϕ′, i.e. ϕ ≃ ϕ′,
if ϕ � ϕ′ and ϕ′ � ϕ. The latter condition is easily seen to yield an equivalence relation, whose
equivalence classes are denoted by [ϕ], ϕ ∈ PSH(X, θ).

A θ-psh function ϕ is said to have minimal singularity type if it is less singular than any other
θ-psh function. Such θ-psh functions with minimal singularity type always exist, one can consider
for example

Vθ := sup {ϕ θ-psh, ϕ ≤ 0 on X} .

Trivially, a θ-psh function with minimal singularity type is locally bounded in Amp(θ). It follows

from [37, Theorem 1.1] that Vθ is C1,1̄ in the ample locus Amp(θ).
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Given θ1 + ddcϕ1, ..., θ
p + ddcϕp positive (1, 1)-currents, where θj are closed smooth real (1, 1)-

forms, following the construction of Bedford-Taylor [2] in the local setting, it has been shown in [10]
that the sequence of currents

1⋂
j{ϕj>Vθj−k}

(θ1 + ddcmax(ϕ1, Vθ1 − k)) ∧ ... ∧ (θp + ddcmax(ϕp, Vθp − k))

is non-decreasing in k and converges weakly to the so called non-pluripolar product

(2.2) 〈θ1ϕ1
∧ . . . ∧ θpϕp

〉.

In the following, with a slight abuse of notation, we will denote the non-pluripolar product simply
by θ1ϕ1

∧ . . . ∧ θpϕp . When p = n, the resulting positive (n, n)-current is a Borel measure that does
not charge pluripolar sets. Pluripolar sets are Borel measurable sets that are contained in some set
{ψ = −∞} (as it follows from [5, Corollary 2.11]).

For a θ-psh function ϕ, the non-pluripolar complex Monge-Ampère measure of ϕ is

θnϕ := (θ + ddcϕ)n.

The volume of a big class {θ} is defined by

Vol(θ) :=

∫

Amp({θ})
θnVθ .

For notational convenience in the following we simply write Vol(θ), but keeping in mind that the
volume is a cohomological constant.
By [10, Theorem 1.16], in the above expression one can replace Vθ with any θ-psh function with
minimal singularity type. A θ-psh function ϕ is said to have full Monge–Ampère mass if

∫

X
θnϕ = Vol(θ),

and we then write ϕ ∈ E(X, θ).
An important property of the non-pluripolar product is that it is local with respect to the plurifine

topology (see [2, Corollary 4.3],[10, Section 1.2]). This topology is the coarsest such that all qpsh
functions on X are continuous. For convenience we record the following version of this result for
later use.

Lemma 2.1. Fix closed smooth real big (1, 1)-forms θ1, ..., θn. Assume that ϕj , ψj , j = 1, ..., n are
θj-psh functions such that ϕj = ψj on an open set U in the plurifine topology. Then

1Uθ
1
ϕ1

∧ ... ∧ θnϕn
= 1Uθ

1
ψ1

∧ ... ∧ θnψn
.

Lemma 2.1 will be referred to as the plurifine locality property. We will often work with sets of the
form {u < v}, where u, v are quasi-psh functions. These are always open in the plurifine topology.

The classical Monge-Ampère capacity (see [1], [47], [43]) is defined by

Capω(E) := sup

{
∫

E
(ω + ddcu)n : u ∈ PSH(X,ω), −1 ≤ u ≤ 0

}

.

A sequence uk converges in capacity to u if for any ε > 0 we have

lim
k→+∞

Capω({|u
k − u| ≥ ε}) = 0.

The following extension of [23, Theorem 2.6] will be used several times in the paper.

Theorem 2.2. For j ∈ {1, . . . , n}, let {θjk}k be a sequence of smooth closed real (1, 1)-forms

smoothly converging to smooth forms θj representing big cohomology classes. Suppose that for all

j ∈ {1, . . . , n} we have uj ∈ PSH(X, θ), ukj ∈ PSH(X, θjk) such that ukj → uj in capacity as k → +∞.
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Let χk, χ ≥ 0 be quasi continuous and uniformly bounded functions such that χk → χ in capacity.
Then

(2.3) lim inf
k→+∞

∫

X
χkθ

1
k,uk

1

∧ ∧θ2
k,uk

2

∧ . . . ∧ θnk,ukn
≥

∫

X
χθ1u1 ∧ θ

2
u2 ∧ . . . ∧ θ

n
un .

In addition, if

(2.4) lim sup
k→+∞

∫

X
θ1
k,uk

1

∧ θ2
k,uk

2

∧ . . . ∧ θnk,ukn
≤

∫

X
θ1u1 ∧ θ

2
u2 ∧ . . . ∧ θ

n
un

then

χkθ
1
k,uk

1

∧ θ2
k,uk

2

∧ . . . ∧ θnk,ukn
→ χθ1u1 ∧ ∧θ2u2 ∧ . . . ∧ θ

n
un

in the weak sense of measure on X.

Proof. Fix j and let Tj = θj + ddcϕj be a Kähler current in {θj} with analytic singularities along
the non-Kähler locus of {θj} (such a Tj exists thanks to [9, Theorem 3.17]). Let εj > 0 such that

Tj ≥ 2εjω. For k >> 1 we have θjk ≥ θj − εjω. In particular, ϕj ∈ PSH(X, θjk) and θjk + ddcϕj is

a Kähler current with analytic singularities. It then follows that for k >> 1 we have EnK(θjk) ⊆
EnK(θ

j). Thus (up to take k big enough) we can assume that for any k,

(2.5) Amp(θjk) ⊇ Ω := ∩nj=1Amp(θj).

We then claim that V
θj
k

converges to Vθj in capacity. It follows from the smooth convergence θjk → θj

that for any ε > 0 there exists k0 = k0(ε) >> 1 such that θj − εω ≤ θjk ≤ θj − εω for all k ≥ k0. It
then follows by definition that for all k ≥ k0,

Vθj−εω ≤ V
θj
k

≤ Vθj+εω.

Thus to conclude the claim it is enough to show that Vθj−εω ր Vθj and Vθj+εω ց Vθj as ε ց 0.
Observe that {Vθj−εω}ε and {Vθj+εω}ε are (respectively) increasing/decreasing sequences as εց 0.
We can then consider their point-wise θj-psh limits

φ+ := lim
ε→0

Vθj+εω, φ− :=
(

lim
ε→0

Vθj−εω

)∗
.

We also observe that, by Hartog’s lemma, supX φ
+ = supX φ

− = 0. Now, by construction φ+ ≥ Vθj .
On the other hand, Vθj ≥ φ+ since φ+ is a candidate in the envelope. Hence φ+ = Vθ.
By [38, Corollary 3.4] we know that

(

θj − εω + ddcVθj−εω
)n

= 1{V
θj−εω

=0}

(

θj − εω
)n

= 1{V
θj−εω

=0}

(

(θj)n +O(ε)
)

(2.6)

Since Vθj−εω is increasing to φ− the sets {Vθj−εω = 0} increase as ε decreases to 0, outside of a
pluripolar set. Let

W :=
⋃

ε>0 small

{Vθj−εω = 0}.

Then 1{V
θj−εω

=0} is increasing to 1W ≤ 1{φ−=0} outside of the same pluripolar set. Using the fact

that
(

θj − εω + ddcVθj−εω
)n

converges weakly to
(

θj
φ−

)n
, φ− ≤ Vθj ≤ 0 and that the form (θj)n is

non-negative on the set {Vθj = 0}, from (2.6) we deduce that
(

θj
φ−

)n
= 1W (θj)n ≤ 1{φ−=0}(θ

j)n ≤ 1{V
θj

=0}(θ
j)n =

(

θjV
θj

)n
.

On the other hand by continuity of the volume function,

∫

X
(θj
φ−

)n = lim
ε→0

∫

X

(

θj − εω + ddcVθj−εω
)n

= lim
ε→0

Vol(θj − εω) = Vol(θj) =

∫

X

(

θjVθ

)n
.
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It then follows that
(

θj
φ−

)n
=
(

θjVθ

)n
. By uniqueness of normalized solutions of Monge-Ampère

equations, we infer that φ− = Vθj . The claim is then proved

The proof now proceeds exactly as that in [23, Theorem 2.6] replacing the forms θj by θjk. We give
the details for the reader’s convenience.
Fix an open relatively compact subset U of Ω. By (2.5), we know that the functions V

θj
k

are bounded

on U . Fix C > 0, ε > 0 and consider

fk,C,εj :=
max(ukj − V

θj
k

+ C, 0)

max(ukj − V
θj
k
+ C, 0) + ε

, j = 1, . . . , n, k ∈ N∗

and

uk,Cj := max(ukj , Vθj
k

− C).

Observe that for C, j fixed, the functions uk,Cj ≥ V
θj
k

− C are uniformly bounded in U (since V
θj
k

are uniformly bounded in U) and converge in capacity to uCj := max(uj , Vθj − C) as k → +∞ by
Lemma 2.3 below.

Moreover fk,C,εj = 0 if ukj ≤ V
θj
k
− C. By locality of the non-pluripolar product we can write

fk,C,εχkθ
1
k,uk

1

∧ · · · ∧ θnk,ukn
= fk,C,εχkθ

1
k,uk,C

1

∧ · · · ∧ θn
k,uk,Cn

,

where fk,C,ε = fk,C,ε1 · · · fk,C,εn . For each C, ε fixed the functions fk,C,ε are quasi-continuous, uni-

formly bounded (with values in [0, 1]) and converge in capacity to fC,ε := fC,ε1 · · · fC,εn where fC,εj

is defined by

fC,εj :=
max(uj − Vθj + C, 0)

max(uj − Vθj + C, 0) + ε
.

With the information above we can apply [23, Proposition 2.2] to get that

fk,C,εχkθ
1
k,uk,C

1

∧ · · · ∧ θn
k,uk,Cn

−→ fC,εχθ1
uC
1

∧ · · · ∧ θnuCn as k → +∞,

in the weak sense of measures on U . In particular since 0 ≤ fk,C,ε ≤ 1 we have that

lim inf
k→+∞

∫

X
χkθ

1
k,uk

1

∧ · · · ∧ θnk,ukn
≥ lim inf

k→+∞

∫

U
fk,C,εχkθ

1
k,uk,C

1

∧ · · · ∧ θn
k,uk,Cn

≥

∫

U
fC,εχθ1

uC
1

∧ · · · ∧ θnuCn .

Now, letting ε→ 0 and then C → +∞, we obtain

lim inf
k→+∞

∫

X
χkθ

1
k,uk

1

∧ · · · ∧ θnk,ukn
≥

∫

U
χθ1u1 ∧ · · · ∧ θnun .

Finally, letting U increase to Ω and noting that the complement of Ω is pluripoar, we conclude the
proof of the first statement of the theorem. Note that in the particular case χk = χ ≡ 1, we have

lim inf
k→+∞

∫

X
θ1
k,uk

1

∧ · · · ∧ θnk,ukn
≥

∫

X
θ1u1 ∧ · · · ∧ θnun .

Thus we actually have equality in (2.4) and the lim sup is a lim.
Now, let B ∈ R such that χ, χk ≤ B. By (2.3) we get that

lim inf
k→+∞

∫

X
(B − χk)θ

1
k,uk

1

∧ · · · ∧ θnk,ukn
≥

∫

X
(B − χ)θ1u1 ∧ · · · ∧ θnun .
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Flipping the signs and using (equality in) (2.4), we conclude the following inequality, finishing the
proof:

lim sup
k→+∞

∫

X
χkθ

1
k,uk

1

∧ · · · ∧ θnk,ukn
≤

∫

X
χθ1u1 ∧ · · · ∧ θnun .

�

Lemma 2.3. Let uk, vk be two sequences of quasi-psh functions that converge in capacity respectively
to u, v. Then

max(uk, vk) −→ max(u, v)

in capacity.

Proof. Set ϕk := max(uk, vk), ϕ := max(u, v) and ψk := supj≥k ϕj . Note that ψk ց and ψk ≥ ϕk.

We first observe that ϕk → ϕ in L1. Indeed, as for any two real numbers a, b we have 2max(a, b) =
a+ b+ |a− b|, we get

2‖ϕk − ϕ‖L1 ≤ ‖uk − u‖L1 + ‖vk − v‖L1 + ‖|uk − vk| − |u− v|‖L1

≤ ‖uk − u‖L1 + ‖vk − v‖L1 + ‖uk − u+ vk − v‖L1

≤ 2 (‖uk − u‖L1 + ‖vk − v‖L1) .

We deduce that ϕk → ϕ weakly as uk → u, vk → v weakly.
Thus we infer that ψk ց ϕ, in particular ψk → ϕ in capacity. Let δ > 0. Clearly

(2.7) {|ϕk − ϕ| ≥ δ} ⊂ {ϕk ≥ δ + ϕ} ∪ {ϕ ≥ δ + ϕk}

and

(2.8) {ϕk ≥ δ + ϕ} ⊆ {ψk ≥ δ + ϕ} .

Then we set A := {u ≥ v}, B := {v ≥ u}. On A we have

(2.9) {ϕ ≥ δ + ϕk} = {u ≥ δ + ϕk} ⊆ {u ≥ δ + uk} = {|uk − u| ≥ δ}

as ϕk ≥ uk. Similarly, on B we get

(2.10) {ϕ ≥ δ + ϕk} ⊆ {|vk − v| ≥ δ} .

Combining (2.9) and (2.10) we get

(2.11) {ϕ ≥ δ + ϕk} = ({ϕ ≥ δ + ϕk} ∩A)∪({ϕ ≥ δ + ϕk} ∩B) ⊂ {|uk − u| ≥ δ}∪{|vk − v| ≥ δ} .

Thus (2.7), (2.8) and (2.11) leads to

{|ϕk − ϕ| ≥ δ} ⊆ {ψk − ϕ ≥ δ} ∪ {|uk − u| ≥ δ} ∪ {|vk − v| ≥ δ} .

As uk → u, vk → v, ψk → ϕ in capacity, we conclude that ϕk → ϕ in capacity thanks to the
subadditivity property of the Monge-Ampère capacity. �

2.1. Envelopes and model potentials. If f is a function on X, we define the envelope of f in
the class PSH(X, θ) by

Pθ(f) := (sup{u ∈ PSH(X, θ) : u ≤ f})∗ ,

with the convention that sup ∅ = −∞. Observe that Pθ(f) ∈ PSH(X, θ) if and only if there exists
some u ∈ PSH(X, θ) lying below f . Note also that Vθ = Pθ(0), and that Pθ(f +C) = Pθ(f) +C for
any constant C.
In the particular case f = min(ψ, φ), we denote the envelope as Pθ(ψ, φ) := Pθ(min(ψ, φ)). We
observe that Pθ(ψ, φ) = Pθ(Pθ(ψ), Pθ(φ)), so w.l.o.g. we can assume ψ, φ are two θ-psh functions.

Starting from the “rooftop envelope” Pθ(ψ, φ) we introduce

Pθ[ψ](φ) :=
(

lim
C→∞

Pθ(ψ + C,φ)
)∗
.
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It is easy to see that Pθ[ψ](φ) only depends on the singularity type of ψ. When φ = Vθ, we will
simply write Pθ[ψ] := Pθ[ψ](Vθ), and we refer to this potential as the envelope of the singularity
type [ψ].

Since ψ − supX ψ ≤ Pθ[ψ], we have that [ψ] ≤ [Pθ[ψ]] and typically equality does not happen.
When [ψ] = [Pθ[ψ]], we say that ψ hasmodel singularity type. In the (more particular) case ψ = Pθ[ψ]
we say that ψ is a model potential.
It is worth to mention that given any θ-psh function ψ with positive mass, the associated envelope
Pθ[ψ] is in fact a model potential [23, Theorem 3.14].

From now on, (otherwise stated), φ will denote a model potential with strictly positive mass, i.e.
∫

X θ
n
φ > 0. We say that a θ-psh function ϕ has φ-relative minimal singularities if ϕ ≃ φ.

Remark 2.4. Let ψ ∈ PSH(X, θ) with supX ψ = 0, for N ∈ N we set PN := Pθ(ψ + N,Vθ). On
one hand we have PN ∼ ψ, on the other hand PN is increasing to P [ψ], then by Remark 2.6 θnPN

converges weakly to θnP [ψ], hence
∫

X θ
n
ψ =

∫

X θ
n
P [ψ].

Definition 2.5. Given a model potential φ, the relative full mass class E(X, θ, φ) is the set of all
θ-psh functions u such that u is more singular than φ and

∫

X θ
n
u =

∫

X θ
n
φ. We will denote simply by

E(X, θ) the space E(X, θ, Vθ).

As pointed out in [44], for potential theoretic reasons, it is natural to consider weighted subspaces
of E(X, θ, φ).

A weight is a continuous strictly increasing function χ : [0,+∞) → [0,+∞) such that χ(0) = 0
and χ(+∞) = +∞. Denote by χ−1 its inverse function, i.e. such that χ(χ−1(t)) = t for all t ≥ 0.

We fix φ a model potential and we let Eχ(X, θ, φ) denote the set of all u ∈ E(X, θ, φ) such that

Eχ(u, φ) :=

∫

X
χ(|u− φ|)θnu <∞.

When φ = Vθ, we denote E(X, θ) = E(X, θ, Vθ), Eχ(X, θ) = Eχ(X, θ, Vθ) and Eχ(u) = Eχ(u, Vθ).
Compared to [44], we have changed the sign of the weight, but the weighted classes are the same.
Also, in the special case χ(t) = tp, p > 0, we simply denote the relative energy class with Ep(X, θ, φ)
and the corresponding relative energy Ep(u, φ).

Remark 2.6. Under the assumptions of Theorem 2.2 we further assume that for all j ∈ {1, . . . , n}
and for k large enough, ukj is more singular than uj , then

θ1
uk
1

∧ θ2
uk
2

∧ . . . ∧ θnukn
→ θ1u1 ∧ θ

2
u2 ∧ . . . ∧ θ

n
un

in the weak sense of measures. Indeed, by [62, Theorem 1.2], [23, Theorem 3.3], if ukj is more singular
than uj we have

∫

X
θ1
uk
1

∧ θ2
uk
2

∧ . . . ∧ θnukn
≤

∫

X
θ1u1 ∧ θ

2
u2 ∧ . . . ∧ θ

n
un .

This means that the second statement of Theorem 2.2 above holds with χk = χ ≡ 1.
The same conclusion holds if ukj , uj ∈ E(X, θ, φj) (where φj are model potentials) since by [19,

Proposition 3.1] we know that

∫

X
θ1
uk
1

∧ θ2
uk
2

∧ . . . ∧ θnukn
=

∫

X
θ1u1 ∧ θ

2
u2 ∧ . . . ∧ θ

n
un .
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2.2. Plurisubharmonic geodesics. We next recall the definition/construction in [21] of plurisub-
harmonic geodesics.

For a curve (0, 1) ∋ t 7→ ut ∈ PSH(X, θ) we define

(2.12) X ×A ∋ (x, z) 7→ U(x, z) := ulog |z|(x),

where A = {z ∈ C, 1 < |z| < e} and π : X ×A→ X is the projection on the first factor.

Definition 2.7. We say that t 7→ ut is a subgeodesic if (x, z) 7→ U(x, z) is a π∗θ-psh function on
X ×A.

Definition 2.8. For ϕ0, ϕ1 ∈ PSH(X, θ), we let S[0,1](ϕ0, ϕ1) denote the set of all subgeodesics
(0, 1) ∋ t 7→ ut such that lim supt→0+ ut ≤ ϕ0 and lim supt→1− ut ≤ ϕ1.

Let ϕ0, ϕ1 ∈ PSH(X, θ). For (x, z) ∈ X ×A we define

Φ(x, z) := sup{U(x, z) : U ∈ S[0,1](ϕ0, ϕ1)}.

The curve t 7→ ϕt constructed from Φ via (2.12) is called the plurisubharmonic (psh) geodesic
segment connecting ϕ0 and ϕ1.

Geodesic segments connecting two general θ-psh functions may not exist. If ϕ0, ϕ1 ∈ Ep(X, θ), it
was shown in [21, Theorem 2.13] that P (ϕ0, ϕ1) ∈ Ep(X, θ). Since P (ϕ0, ϕ1) ≤ ϕt, we obtain that
t→ ϕt is a curve in Ep(X, θ). Also, each subgeodesic segment is convex in t:

ϕt ≤ (1− t)ϕ0 + tϕ1, ∀t ∈ [0, 1].

Consequently the upper semicontinuous regularization (with respect to both variables x, z) of Φ is
again in S[0,1](ϕ0, ϕ1), hence so is Φ. If ϕ0, ϕ1 have the same singularities then the geodesic ϕt is
Lipschitz on [0, 1] (see [21, Lemma 3.1]):

(2.13) |ϕt − ϕs| ≤ |t− s| sup
X

|ϕ0 − ϕ1|, ∀t, s ∈ [0, 1].

3. Entropy

We recall that given two positive probability measures µ, ν, the relative entropy Ent(µ, ν) is
defined as

Ent(µ, ν) :=

∫

X
log

(

dµ

dν

)

dµ,

if µ is absolutely continuous with respect to ν, and +∞ otherwise.

Remark 3.1. Let µ, ν positive probability measure with µ := fν absolutely continuous with respect
to ν. Then Ent(µ, ν) < +∞ if and only if f log f ∈ L1(X, ν), in fact if f < 1, f log f is bounded,
and if f ≥ 1, f log f ≥ 0.

Once for all, we normalize the Kähler form ω such that
∫

X ω
n = 1. We consider u ∈ PSH(X, θ)

such that θnu = fωn, 0 ≤ f and mu :=
∫

X θ
n
u > 0. Then u ∈ E(X, θ, φ), where φ is the model

potential with
∫

X θ
n
φ =

∫

X θ
n
u , and m

−1
u θnu s a probability measure. We then define the θ-entropy of

u as

(3.1) Entθ(u) := Ent(m−1
u θnu , ω

n) =

∫

X
log

(

m−1
u θnu
ωn

)

m−1
u θnu = m−1

u

∫

X
f log fωn − logmu.

By Jensen inequality we have Entθ(u) ≥ 0. Also, observe that the definition of the θ-entropy does
depend on the chosen volume form ωn but its finiteness does not.
Also, the expression in (3.1) coincides with the definition of entropy in [34] when P [u] = Vθ, i.e.
when u ∈ E(X, θ). The definition in (3.1) is indeed a generalisation that allows to consider any
θ-psh function not necessarily of full mass.
More generally, given two θ-psh functions u, v with mu,mv > 0 we define



CONVEXITY OF THE MABUCHI FUNCTIONAL IN THE BIG SETTING 11

Entθ(u, v) := Ent(m−1
u θnu ,m

−1
v θnv ).

Also, if no confusion can arise, we simply write Ent(u) and Ent(u, v).

Definition 3.2. We say that u ∈ PSH(X, θ) with mu > 0 has finite θ-entropy if Entθ(u) < +∞.
We denote by Ent(X, θ) the set of all θ-psh functions having finite θ-entropy.

By (3.1), Entθ(u) < +∞ if and only if
∫

X f log fω
n < +∞ or equivalently

∫

X(f +1) log(f +1)ωn <
+∞.

We recall the following result from [39] which will be useful in the following:

Lemma 3.3. Let π : Y → X a bimeromorphic and holomorphic map and assume that ω̃ is Kähler
form on Y normalized with volume equal to 1. Then

(i) Ent(µ, ν) = Ent(π∗µ, π∗ν), for any two non-pluripolar probability measures µ, ν.
(ii) If Entθ(ϕ) < +∞, then Ent(m−1

ϕ π∗θnϕ, ω̃
n) < +∞. In particular Entπ∗θ(π

∗ϕ) < +∞.

By π∗µ we mean the pushforward by π−1 of 1X\Zµ where Z is the indeterminacy locus of π−1

(see also [4, lines after Definition 1.3]). We refer to [39, Lemma 2.11] for a proof.

4. Convexity of the Mabuchi functional in big classes

Assume θ to be a smooth form such that {θ} is big. W.l.o.g. we normalize the Kähler form ω such
that

∫

X ω
n = 1. Following [6, Section 2], given a θ-psh function ϕ, we say that θϕ has well-defined

Ricci curvature if its Monge-Ampère measure θnϕ corresponds to a singular metric on KX , i.e. if
locally

θnϕ = e−f in
2

Ω ∧ Ω̄

with f ∈ L1
loc and where Ω is any nowhere zero local holomorphic section of KX . The Ricci curvature

is then locally given by

Ric(θϕ) := Ric(θnϕ) = ddcf.

The local currents ddcf glue together and define a (global) closed real (1, 1)-current Ric(θϕ), which
recovers the usual definition of the Ricci curvature when θϕ is Kähler. With this choice of norma-
lization, if θ and θϕ have well-defined Ricci curvature we have

Ric(θϕ) = Ric(θ)− ddc log

(

θnϕ
θn

)

.

Moreover for every current θϕ with well defined Ricci curvature the cohomology class of Ric(θϕ)
is always the first Chern class. We say that θϕ has good Ricci curvature if it has well-defined Ricci
curvature and there exists real closed positive (1, 1)-currents T1, T2 such that

Ric(θϕ) = T1 − T2.

Note that if θϕ has good Ricci curvature then
∫

X θ
n
ϕ > 0 and θnϕ = egωn where g is difference of

quasi-plurisubharmonic functions. In particular, [42, Theorem 1.1] implies that θnϕ has Lp density
for p > 1. Hence [20, Theorem 1.4] gives that ϕ has φ := Pθ[ϕ]-relative minimal singularities, where
φ is the model type envelope such that ϕ ∈ E(X, θ, φ).

Let now ϕ be a θ-psh function with good Ricci curvature and let φ = Pθ[ϕ] be the model potential
associated to ϕ.

For u, v ∈ PSH(X, θ) with |u− v| bounded, we then consider

(4.1) E(θ;u, v) :=
1

(n + 1)mφ

n
∑

k=0

∫

X
(u− v) θku ∧ θ

n−k
v
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and

(4.2) ERic(θϕ)(θ;u, v) :=
1

nmφ

n−1
∑

k=0

∫

X
(u− v) θku ∧ θ

n−k−1
v ∧ Ric(θϕ),

where each integral in the left-hand side is defined as

(4.3)

∫

X
(u− v) θku ∧ θ

n−k−1
v ∧ T1 −

∫

X
(u− v) θku ∧ θ

n−k−1
v ∧ T2.

Similarly, given α = T1 − T2, with Ti closed positive (1, 1)-currents, we set

Eα(θ;u, v) :=
1

nmφ

n−1
∑

k=0

(

∫

X
(u− v) θku ∧ θ

n−k−1
v ∧ T1 −

∫

X
(u− v) θku ∧ θ

n−k−1
v ∧ T2

)

.

To avoid any ambiguity, we recall that the wedge products between positive currents has to be
understood as the non-pluripolar product. We observe that the above definition is independent of
the choice of the two positive currents T1, T2. Note also that thanks to [23, Lemma 5.6] if φ is a
model potential and u ∈ E(X, θ, φ) then E(θ, u, φ) is finite if and only if u ∈ E1(X, θ, φ).

Taking inspiration from the Kähler setting (see also [36]), we define the Mabuchi functional
relative to a (X, θϕ) as

(4.4) Mθ,ϕ(u) := S̄ϕE(θ;u, ϕ) − nERic(θϕ)(θ;u, ϕ) + Ent(u, ϕ), u ≃ ϕ

for any u ∈ E(X, θ, φ) with φ-relative minimal singularities where Ent(u, ϕ) := Ent(θnum
−1
φ , θnϕm

−1
φ )

and

S̄ϕ :=
n

mφ

∫

X
Ric(θϕ) ∧ θ

n−1
ϕ .

We start with a Proposition which generalizes [21, Theorem 3.12]:

Proposition 4.1. Let u0, u1 ∈ E1(X, θ) and let ut be the psh geodesic joining u0, u1. Then t →
E(θ;ut, Vθ) is linear.

Proof. For i = 0, 1 and C > 0, we set uCi := max(ui, Vθ − C). Let uCt be the psh geodesic joining
uC0 and uC1 . Observe that uCt has minimal singularities.
We claim that uCt decreases to ut. Indeed, since u

C
i ≥ ui, by comparison principle, uCt is a decreasing

sequence such that uCt ≥ ut. Hence u
C
t ց wt for some θ-psh function wt ≥ ut joining u0 and u1. By

maximality of the geodesic we infer that wt = ut. By [21, Theorem 3.12], t→ E(θ;uCt , Vθ) is linear.
Moreover by [23, Lemma 5.7] we know that E(θ;uCt , Vθ) converges to E(θ;ut, Vθ). It then follows
that t→ E(θ;ut, Vθ), as limit of a linear function, is linear as well. �

The next statement slightly generalizes the cocycle property in [23, Theorem 5.3]:

Proposition 4.2. Let φ be a model potential. Then for any u, v ∈ E1(X, θ, φ), we have

(4.5) E(θ;u, φ) −E(θ; v, φ) = E(θ;u, v).

For the proof we adapt the arguments in [21, Proposition 2.5] We will refer to (4.5) as the cocycle
property.

Proof. By [23, Corollary 3.16] for k ∈ {0, . . . , n},
∫

X
θku ∧ θ

n−k
φ =

∫

X
θkv ∧ θ

n−k
φ

so we can assume that max(u, v) ≤ φ ≤ 0. For C > 0, we set uC := max(u, φ − C), vC :=
max(v, φ− C). By locality we have {0,. . . ,n}

1{u>φ−C}θ
n
uC = 1{u>φ−C}θ

n
u ,
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and more generally, for any k ∈ {0, ..., n}

(4.6) 1{min(u,v)>φ−C}θ
k
uC ∧ θn−k

vC
= 1{min(u,v)>φ−C}θ

k
u ∧ θ

n−k
v .

Since
∫

X θ
n
u =

∫

X θ
n
uC

we can write

lim
C→+∞

C

∫

{u≤φ−C}
θnuC = lim

C→+∞
C

∫

{u≤φ−C}
θnu(4.7)

≤ lim
C→+∞

∫

{u≤φ−C}
(φ− u)θnu =

∫

{u=−∞}
(φ− u)θnu = 0.

By [23, Theorem 5.3] we have that

E(θ;uC , φ)− E(θ; vC , φ) = E(θ;uC , vC).

By [20, Lemma 4.12] we already know that E(θ;uC , φ) and E(θ; vC , φ) decrease to E(θ;u, φ) and
E(θ; v, φ), respectively. We want to prove that E(θ;uC , vC) decreases to E(θ;u, v), i.e. that for any
k ∈ {0, ..., n},

(4.8) lim
C→+∞

∫

X
(uC − vC)θkuC ∧ θn−k

vC
=

∫

X
(u− v)θku ∧ θ

n−k
v .

Clearly, it suffices to check that

(4.9) lim
C→+∞

∫

X
(uC − φ)θkuC ∧ θn−k

vC
=

∫

X
(u− φ)θku ∧ θ

n−k
v

and that

(4.10) lim
C→+∞

∫

X
(φ− vC)θkuC ∧ θn−k

vC
=

∫

X
(φ− v)θku ∧ θ

n−k
v .

In the following we prove (4.9). The same arguments will give (4.10).
We decompose the integral into two parts

∫

{min(u,v)>φ−C} and
∫

{min(u,v)≤φ−C}, by the locality prop-

erty (4.6) we have
∫

{min(u,v)>φ−C}
(uC − φ)θkuC ∧ θn−k

vC

=

∫

{min(u,v)>φ−C}
(u− φ)θku ∧ θ

n−k
v →

∫

X
(u− φ)θku ∧ θ

n−k
v

as C → +∞. Noting that {min(u, v) ≤ φ− C} ⊆ {u ≤ φ− C} ∪ {v ≤ φ− C}, we see that proving
(4.9) boils down to showing that

(4.11) lim
C→+∞

C

∫

{u≤φ−C}
θkuC ∧ θn−k

vC
= 0, and lim

C→+∞
C

∫

{v≤φ−C}
θkuC ∧ θn−k

vC
= 0, ∀k.

We will prove the first equality and the same arguments apply to prove the second one. Observing
that φ− C ≤ vC ≤ φ we have the inclusion

{u ≤ φ− C} ⊂

{

uC ≤
vC + φ− C

2

}

⊂ {u ≤ φ− C/2}.

Using the partial comparison principle [23, Proposition 3.22] and that

2k−nθn−k
vC

≤

(

θ

2
+ ddc

vC

2

)n−k

≤ θn−k
vC+φ−C

2
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we get

C

∫

{u≤φ−C}
θkuC ∧ θn−k

vC
≤ 2n−kC

∫

{

uC≤ vC+φ−C
2

}

θkuC ∧ θn−k
vC+φ−C

2

≤ 2n−kC

∫

{

uC≤
vC+Vθ−C

2

} θnuC

≤ 2n−kC

∫

{u≤φ−C/2}
θnuC

From the above and (4.7) we obtain (4.11), completing the proof. �

4.1. From model to divisorial singularities. We introduce a set of model potentials with which
we will work through the paper.

Definition 4.3. Let Nθ ⊂ PSH(X, θ) be the set of all model potential φ such that there exists a
modification (i.e. bimeromorphic holomorphic map) π : Y → X from Y a compact Kähler manifold
of dimension n such that

π∗θφ = [F ] + S

for an effective R-divisor F and a closed, positive current S with minimal singularities, representing
a big and nef class.

Remark 4.4. In the definition above we restrict our attention to model potentials since if a θ-psh
function u admits a modification π : Y → X such that π∗θu = [F ] + S, for an effective R-divisor F
and a closed, positive current S with minimal singularities, representing a big and nef class, then u
is of model type.
Indeed, since π∗θu = [F ] + S and {S} is big, we have

∫

X θ
n
u =

∫

Y S
n > 0. By [20, Theorem 1.3]

u ∈ E(X, θ, P [u]). Moreover, by [23, Lemma 5.1] we infer that u and P [u] have the same multiplier
ideal sheaf and in particular u ◦ π and P [u] ◦ π have the same Lelong numbers [11, Theorem
A]. Thus π∗θP [u] − [F ] is a positive and closed (1, 1)-current in the cohomology class {S}. Thus

π∗θP [u] = [F ] + S̃, where {S̃} = {S}. Since P [u] is less singular than u, S̃ is less singular than S,
hence it has minimal singularities.

The following lemma lists some properties of Nθ.

Lemma 4.5. The followings hold:

i) For φ ∈ Nθ we have

mφ = Vol(S)

where Vol(S) is the volume of the nef and big class {S}. In particular mφ > 0, and letting
η be a smooth and closed form representing {S} we have mφ =

∫

Y η
n.

ii) if ψ ∈ PSH(X, θ) is a function with analytic singularities such that
∫

X θ
n
ψ > 0, then φ :=

Pθ[ψ] ∈ Nθ and any associated big and nef class admits bounded potentials.

Proof. We start proving (i). As the non-pluripolar product does not charge pluripolar sets such as
divisors we have

mφ =

∫

X
θnφ =

∫

Y
Sn = Vol(S)

where the last equality follows from the fact that S has minimal singularities. As the class {S}
is big we deduce that mφ > 0 and the equality Vol(S) =

∫

Y η
n for a smooth and closed form η
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representing {S} follows from the fact that the class is nef.
We now prove (ii). The local holomorphic functions f1, . . . , fN such that

ψ = c log
N
∑

j=1

|fj|
2 + g

as in (2.1) generates a coherent ideal sheaf I. Taking a log resolution of (X,I) yields a modification
π : Y → X such that

π∗θψ = T + c[F ]

where F is an effective divisor such that OY (−F ) = π−1I and T = η + ddcψ̃ for a smooth and

closed form η and for ψ̃ ∈ PSH(Y, η) ∩ L∞(Y ).
Indeed,

ψ◦π = c log
N
∑

j=1

|fj ◦π|
2+g◦π = c log





M
∏

l=1

|ul|
2
N
∑

j=1

|vj |
2



+g◦π = c
M
∑

l=1

log|ul|
2+c log

N
∑

j=1

|vj |
2+g◦π

where ul, l = 1, · · · ,M are the holomorphic functions which divides all the fj ◦ π and which define
the divisor F . Note that vj , j = 1, · · · , N , do not any common zeros by construction, and so
log
∑

j |vj |
2 is bounded.

Next, by [23, Proposition 5.24], we can infer that ψ has model type singularities, i.e. |Pθ[ψ]−ψ| ≤
C, C > 0. Set φ := Pθ[ψ]. By [23, Lemma 5.1] we infer that ψ and φ have the same multiplier ideal
sheaf and in particular ψ ◦ π and φ ◦ π have the same Lelong numbers [11, Theorem A]. Thus
π∗θφ− c[F ] is a positive and closed (1, 1)-current in the cohomology class {T}. Since ψ ◦π and φ◦π
have the same singularities, we have

π∗θφ = S + c[F ]

for a closed and positive current S with the same singularities of T , i.e. S = η + ddcφ̃ for φ̃ ∈
PSH(Y, η)∩L∞(Y ). In particular S is a current with minimal singularities, hence by combining [9,
Propositions 3.2 and 3.6] we find that the class η is nef. Finally we have

0 <

∫

X
θnψ =

∫

X
θnφ =

∫

Y
Sn = Vol(S)

by the same calculation performed in the proof of (i). Hence {S} is big, which concludes the
proof. �

Now, suppose φ ∈ Nθ, and consider π : Y → X a modification such that

(4.12) π∗θφ = ηφ̃ + [F ]

for an effective R-divisor F , for η closed smooth (1, 1)-form such that {η} is big and nef, and for

φ̃ ∈ PSH(Y, η) normalized such that supY φ̃ = 0. Let also ω̃ be a fixed Kähler form on Y normalized
such that

∫

Y ω̃ = 1.

Let E1, . . . , Em be the exceptional divisors of π : Y → X, aj > 0 such that KY/X =
∑m

j=1 ajEj.
Recall that at the level of cohomology classes we have

(4.13) KY = π∗KX +KY/X .

Let hj be smooth metrics on OY (Ej) such that the curvature form Θ :=
∑m

j=1 aj Θ(hj) satisfies

Θ = π∗Ric(ω)− Ric(ω̃).

Then there exist holomorphic sections sj of OY (Ej) such that

(4.14) Ric(π∗ω) = π∗Ric(ω)−Θ−
m
∑

j=1

ajdd
c log|sj|

2
hj = Ric(ω̃)−

m
∑

j=1

ajdd
c log|sj|

2
hj .
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Set f :=
∑m

j=1 aj log|sj|
2
hj
. Then Θ + ddcf =

∑m
j=1 aj [Ej] and π∗ωn = ef ω̃n. Also, observe that

π|Y \∪jEj
is a biholomorphism.

The goal of this section is to prove the following result:

Theorem 4.6. Let ϕ ∈ E(X, θ, φ) such that θnϕ = mφ ω
n, let u0, u1 ∈ PSH(X, θ) with φ-relative

minimal singularities and let (ut)t∈[0,1] be the psh geodesic connecting u0 and u1. Then

(4.15) Mθ,ϕ(ut) ≤ tMθ,ϕ(u1) + (1− t)Mθ,ϕ(u0) +
n‖u0 − u1‖∞

2mφ
{ηn−1} ·KY/X

for any t ∈ [0, 1].

In this first Lemma we show how to go from (X, θ, φ) to (Y, η) and back.

Lemma 4.7. There exists a unique map

L : PSH(X, θ, φ) → PSH(Y, η)

such that for u ∈ PSH(X, θ) we have

u ◦ π + φ̃ = L(u) + φ ◦ π

where the function φ̃ is defined in (4.12), (Sometimes for convenience we will simply write L(u) :=

(u − φ) ◦ π + φ̃; note however that this equality makes sense only at points where φ ◦ π 6= −∞).
Moreover:

(i) L is a bijection;
(ii) if t→ ut is a psh geodesic joining u0, u1 ∈ E1(X, θ, φ) then t→ vt := L(ut) is a psh geodesic

in E1(Y, η) joining v0 := L(u0), v1 := L(u1);
(iii) The map L produces a bijection between E(X, θ, φ) and E(Y, η) (resp. Ep(X, θ, φ) and Ep(Y, η)

for any p ≥ 1);
(iv) E(θ;u,w) = E(η;L(u),L(w)) for any u,w ∈ E1(X, θ, φ);
(v) Entθ(u,w) = Entη(L(u),L(w)) for any u,w ∈ E(X, θ, φ).
(vi) Let uX ∈ PSH(X, θ, φ) and vY := L(uX). If the current ηvY has good Ricci curvature then

θuX does too. Furthermore

(4.16) Ric(ηvY ) = π∗(Ric(θuX ))− [KY/X ],

and

(4.17) ERic(θuX )(θ;u,w) = ERic(ηvY )

(

η;L(u),L(w)
)

for any u,w with φ-relative minimal singularities.

In the above statement the energy functionals in (iv) and in (4.17) are defined in (4.1) and (4.2).

Proof. The proof of the first three points proceeds as in the Kähler case ([60, Lemma 4.6] and [58,
Proposition 3.10]). We give nevertheless some details for the reader’s convenience.

We start proving that L is well defined. In fact, set ṽ := (u− φ) ◦ π + φ̃, then by (4.12)

η + ddc((u− φ) ◦ π + φ̃) = ηφ̃ + π∗θu − π∗θφ = π∗θu − [F ].

The above means that the restriction of ηṽ to Y \ F is positive, moreover, since u is more singular
than φ, we infer that ṽ is bounded from above on Y \F . Hence there exists a unique η-psh function
v on Y which equals ṽ almost everywhere with respect to the Lebesgue measure. Therefore the
quasi-psh functions u ◦ π + φ̃ and v + φ ◦ π coincide almost everywhere on Y, hence they coincide
everywhere.

By construction L is clearly injective. We now show the surjectivity. For any v ∈ PSH(Y, η) we

claim that v+φ◦π−φ̃ coincides almost everywhere with a π∗θ-psh. Indeed by (4.12), π∗θ+ddc(v+φ◦
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π− φ̃) = ηv+[F ]. Thus, since the fibers of π are connected and compact, there exists u ∈ PSH(X, θ)

such that u ◦π := v+φ ◦π− φ̃ almost everywhere on X (see for instance [8, Proposition 1.2.7.(ii)]),
Using the same arguments as above we see that we must have L(u) = v. This concludes the proof
of (i).
As the non-pluripolar product does not put mass on pluripolar sets, we have

(4.18) π∗(θju ∧ θ
n−j
w ) = (π∗θu)

j ∧ (π∗θw)
n−j = ηj

L(u) ∧ η
n−j
L(w)

for any j = 0, . . . , n and any u ∈ PSH(X, θ, φ). Thus
∫

X
(u−w)θju∧θ

n−j
w =

∫

Y \F
((u−φ)◦π+φ̃−(w−φ)◦π−φ̃) ηj

L(u)∧η
n−j
L(w) =

∫

Y
(L(u)−L(w)) ηj

L(u)∧η
n−j
L(w).

Similarly, for any p ≥ 1 we have
∫

X
|u− φ|p θnu =

∫

Y
|L(u)− L(φ)|p ηn

L(u).

Then (iii) and (iv) follow.
Let us prove (ii). Let pX : X × A → X and pY : Y × A → Y be the projections on the first

factors, and consider

U(x, z) := ulog |z|(x) ∈ PSH
(

X×A, p∗Xθ
)

, V (y, z) := vlog |z|(y) = (ulog |z|(x)−φ(x))◦π+φ̃(y) ∈ PSH
(

Y×A, p∗Y η).

Then we find:

(4.19) (π × Id)∗
(

p∗Xθ + ddc(x,z)U
)

= p∗Y η + ddc(y,z)V + p∗Y [F ].

On the other hand, by assumption there exists M > 0 such that max(u0, u1) ≤ φ +M ; then by
convexity ulog |z| ≤ φ+M for all z ∈ A. It follows that the function V is bounded from above and it

is p∗Y η-psh on Y ×A \ p−1
Y (F ). Then V extends to an p∗Y η-psh function on Y ×A, i.e. t→ vt (with

t = log |z|) is a psh subgeodesic. Note that the argument above says that L produces a injective
map from psh subgeodesics joining u0, u1 and psh subgeodesics joining v0, v1. Such map is actually
a bijection as the surjectivity follows reading (4.19) backwards, using the fact that F is effective and
taking the pushforward by π× Id. Moreover, this correspondence between psh subgeodesics respects
the partial order ≤. Namely, for any couple of psh subgeodesics U1, U2 joining u0, u1 such that
U1 ≤ U2, the corresponding psh subgeodesics V1(y, z) = (π × Id)∗(U1(x, t)− φ(x))+φ̃(y), V2(y, z) =

(π× Id)∗(U2(x, t)−φ(x))+φ̃(y) clearly satisfy V1 ≤ V2, and vice-versa. The proof of (ii) follows from
the maximality of psh geodesics.

As seen above, for any θ-psh function u ∈ PSH(X, θ, φ) we have π∗θnu = ηn
L(u). Also, we already

observed that mφ = Vol(η). Then for any u,w ∈ E(X, θ, φ) we have mu = mw = mφ = Vol(η). The
entropy formula in (v) then follows from the first item of Lemma 3.3.

We now prove (vi). Let p ∈ Y, and Ω a nowhere zero holomorphic section of KY near p, and Ω′ a
nowhere zero local holomorphic section of KX near π(p). Note that π∗Ω′ = hΩ for some holomorphic

function vanishing on each Ej . If η
n
vY = g in

2

Ω ∧ Ω̄ for some function g ≥ 0, then on X \ π(∪jEj)

(4.20) π∗η
n
vY

= θnuX = (g ◦ π−1) in
2

π∗(Ω ∧ Ω) = (g ◦ π−1) |h ◦ π−1|−2 in
2

Ω′ ∧ Ω′.

We then observe that log(g ◦ π−1) ∈ L1(ωn) since
∫

X
| log(g ◦ π−1)|ωn =

∫

Y
| log g| ef ω̃n

and the latter integral is finite since log g ∈ L1(ω̃n) and ef is bounded.
Therefore θuX has well defined Ricci if so does ηvY . Moreover, from the identity in (4.20) we find

that on X \ π(∪jEj)

Ric(θuX ) = π∗Ric(ηvY ) + π∗dd
c log |h|2.
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Note that, since ddc log |h|2 = 0 on Y \ ∪jEj and π is a biholomorphism there, we obtain that
π∗Ric(θuX ) − Ric(ηvY ) = 0 on Y \ ∪jEj , or equivalently π∗Ric(θuX ) − Ric(ηvY ) is a (1, 1)-current
supported on the singular locus. Since KY = π∗KX +

∑

j ajEj, π
∗{Ric(θuX )} = −π∗c1(KX) and

{Ric(ηvY )} = −c1(KY ) we obtain (4.16). Observe that the last claim holds since the information
on the cohomology transfers at the level of forms since Ej are numerically independent. Indeed
by Hironaka [46] any modification π : Y → X can be dominated by a map p : Z → X given by
a sequence of blow-ups along smooth centers, i.e. there exists τ : Z → Y such that p = π ◦ τ . In
particular any linear combination of (classes of) π-exceptional divisors becomes a linear combination
of p-exceptional divisors after pulling-back through τ , thus the numerical independence follows from
[41, Page 605].
Also, since the non-pluripolar product does not put mass on the pluripolar sets, we deduce that for
any k = 0, · · · , n− 1

∫

X
(u− w) θku ∧ θ

n−k−1
w ∧ Ric(θuX ) =

∫

Y
(L(u) − L(w)) ηk

L(u) ∧ η
n−k−1
L(w) ∧ Ric(ηvY )

for any u,w ∈ E(X, θ, φ) with φ-relative minimal singularities. This yields (4.17) and concludes the
proof. �

Remark 4.8. It is worth to mention that given two positive real closed (1, 1)-currents T (on X)
and S (on Y ) whose cohomology classes are big and such that π∗T n = Sn, the same arguments in
the above lemma ensure that T has good Ricci curvature if so does S.

Proposition 4.9. Let ϕ ∈ E(X, θ, φ) such that θnϕ = mφ ω
n, and let ηw be such that ηnw = mφ ω̃

n.
Using the same notations of Lemma 4.7, we set ϕ̂ := L(ϕ) and v := L(u) for u ∈ E(X, θ, φ) with
φ-relative minimal singularities. If Entθ(u) < +∞, then
(4.21)

Mθ,ϕ(u) = Mη,w(v)−Mη,w(ϕ̂) +
n

Vol(η)

∑

Ej 6⊂EnK(η)

ajVol(η|Ej
)
{

E(η; v, ϕ̂)− EEj
(η|Ej

; v|Ej
, ϕ̂|Ej

)
}

where

EEj
(η|Ej

; v|Ej
, ϕ̂) :=

1

nVol(η|Ej
)

n−1
∑

k=0

∫

Ej

(v − ϕ̂) ηkv ∧ η
n−k−1
ϕ̂

is the energy relative to the smooth submanifold Ej.
Here Mθ,ϕ and Mη,w denote the Mabuchi functionals relative to ϕ, ϕ̂ defined in (4.4).

Observe that Mη,w(ϕ̂) < +∞ since ηnϕ̂ = π∗ωn = ef ω̃n has Lp density for p > 1 with respect to

ηnw = Vol(η) ω̃n.

It is crucial to stress that
∫

Ej
ηn−1 > 0 if and only if Ej 6⊂ EnK(η) by the main result in [16]. In

particular for such j, {η|Ej
} is a big and nef class on Ej and Vol(η|Ej

) =
∫

Ej
ηn−1. Moreover, in this

case any v ∈ PSH(Y, η) with minimal singularities restricts to a function v|Ej
∈ PSH(Ej , η|Ej

) with
full Monge-Ampère mass as a consequence of the following Lemma.

Lemma 4.10. Let η be a smooth and closed (1, 1)-form representing a big and nef class and let
v ∈ PSH(Y, η) with minimal singularities. Assume also that Z ⊂ Y is a positive dimensional
connected submanifold (we also allow Z = Y ) such that Z 6⊂ EnK(η) and let Γ be a semipositive
smooth and closed (p, p)-form, 0 ≤ p ≤ dimZ. Then v|Z ∈ PSH(Z, η|Z) satisfies

∫

Z
〈Γ|Z ∧ (η|Z + ddcv|Z)

dimZ−p〉 =

∫

Z
Γ|Z ∧ ηdimZ−p

|Z ,

where at the LHS we have the non-pluripolar product on Z, while at the RHS we consider the usual
wedge product between smooth forms on Z.
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Proof. To lighten notations, we merely write 〈Γ ∧ (η + ddcv)dimZ−p〉 instead of 〈Γ|Z ∧ (η|Z +

ddcv|Z)
dimZ−p〉. More generally, we drop the notation for the restriction over Z.

By [9, Theorem 3.17] there exists a function ψ ∈ PSH(Y, η) with analytic singularities along the
non-Kähler locus EnK(η) such that T := η + ddcψ ≥ εω̃ where ω̃ is a fixed Kähler form on Y .
By nefness of {η}, for any δ > 0 there exists also a Kähler form η + δω̃ + ddcϕδ. Then we set
uδ :=

ε
δ+εϕδ +

δ
δ+εψ. Such a function is η-psh as

η + ddcuδ =
ε

δ + ε
(η + δω̃ + ddcϕδ) +

δ

δ + ε
(η − εω̃ + ddcψ) ≥ 0.

Since by assumption Z 6⊂ EnK(η), the function uδ|Z is a well-defined η|Z-psh function. Thus as
v ∈ PSH(Y, η) has minimal singularities we have v|Z ≥ uδ|Z − C and from [20, Theorem 1.1] it
follows that

∫

Z
〈Γ ∧ (η + ddcv)dimZ−p〉 ≥

∫

Z
〈Γ ∧ (η + ddcuδ)

dimZ−p〉

≥

(

ε

δ + ε

)dimZ−p ∫

Z
Γ ∧ (η + δω̃ + ddcϕδ)

dimZ−p

≥

(

ε

δ + ε

)dimZ−p ∫

Z
Γ ∧ ηdimZ−p

where the last equality follows from Stokes’ theorem and the positivity of ω̃. Letting δ → 0, we find
that

∫

Z
〈Γ ∧ (η + ddcv)dimZ−p〉 ≥

∫

Z
Γ ∧ ηdimZ−p.

For the reverse inequality we observe that for any ε > 0, ϕδ is with minimal singularities in η + εω̃
so, again from [20, Theorem 1.1] and Stokes’ Theorem, it follows that

∫

Z
〈Γ ∧ (η + ddcv)dimZ−p〉 ≤

∫

Z
〈Γ ∧ (η + εω̃ + ddcv)dimZ−p〉

≤

∫

Z
Γ ∧ (η + εω̃ + ddcϕδ)

dimZ−p

=

∫

Z
Γ ∧ (η + εω̃)dimZ−p

Letting ε→ 0 then concludes the proof.
�

We are now ready to prove Proposition 4.9.

Proof of Proposition 4.9. We first assume that θnu has bounded density, i.e. θnu = gωn with g
bounded.
Step 1: A first formula connecting Mθ,ϕ(u) and Mη,w(v).
Lemma 4.7 gives

E(θ;u, ϕ) = E(η; v, ϕ̂).

Moreover, as π∗Ric(ω) = Ric(ω̃) + Θ by (4.14), Ric(ω) = Ric(θϕ),Ric(ω̃) = Ric(ηw) we similarly
have

ERic(θϕ)(θ;u, ϕ) = Eπ∗Ric(ω)(η; v, ϕ̂)

= ERic(ω̃)(η; v, ϕ̂) + EΘ(η; v, ϕ̂)

= ERic(ηw)(η; v, ϕ̂) + EΘ(η; v, ϕ̂).
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Furthermore, since ηnϕ̂ = mφe
f ω̃n for f =

∑m
j=1 aj log|sj|

2
hj
, by Lemma 4.7 and the definition of the

entropy we have

Entθ(u, ϕ) = Entη(v, ϕ̂) = Entη(v)−
1

Vol(η)

∫

Y
f ηnv .

Combining all the above and using the cocycle property for the energies (e.g. E(η; v, ϕ̂) = E(η; v,w)−
E(η; ϕ̂, w)), we obtain

(4.22) Mθ,ϕ(u) = S̄ϕE(η; v, ϕ̂)− nERic(ηw)(η; v, ϕ̂)− nEΘ(η; v, ϕ̂) + Entη(v)−
1

Vol(η)

∫

Y

f ηnv

= Mη,w(v) −Mη,w(ϕ̂) + (S̄ϕ − S̄w)E(η; v, ϕ̂)− nEΘ(η; v, ϕ̂) + Entη(ϕ̂)−
1

Vol(η)

∫

Y

f ηnv .

Step 2: The twisted energy EΘ(η; v, ϕ̂).
Using the same ideas in the proof of [36, Theorem 4.2], we approximate v, ϕ̂ by decreasing sequences
vj, ϕ̂j of bounded (η+ εj ω̃)-psh functions such that the respective entropy converges and vj − ϕ̂j is
uniformly bounded.
Observe that ηnϕ̂ = mφe

f ω̃n and ηnv = π∗θnu = (g ◦ π)π∗ωn = g ◦ πef ω̃n. In particular, the measures
ηnϕ̂, η

n
v both have bounded density.

We set ηj := η+ 1
j ω̃, and let α > 0 be small enough so that supw∈PSH(Y,η)

∫

Y e
−2α(w−supY w)ω̃n <∞.

We then define vj ∈ E(Y, ηj), ϕ̂j ∈ E(Y, ηj) as the unique bounded solutions of

(4.23) (ηj + ddcvj)
n = eα(vj−v)(η + ddcv)n = eα(vj−v)g ◦ πef ω̃n

(ηj + ddcϕ̂j)
n = eα(ϕ̂j−ϕ̂)(η + ddcϕ̂)n = eα(ϕ̂j−ϕ̂)mφe

f ω̃n.

Note that, since {ηj} is a Kähler class, the existence of bounded vj , ϕ̂j follows from [10] since

e−α(v−supX v)g ◦ πef and e−α(ϕ̂−supX ϕ̂)ef are in L2.
From the comparison principle (see for instance [21, Lemma 2.5]) we obtain that vj, ϕ̂j are

decreasing sequences converging respectively to v and ϕ̂. Moreover [33, Theorem 1.9] implies that
vj and ϕ̂j are uniformly bounded, from which we deduce that vj − ϕ̂j is uniformly bounded.

As the functions vj, ϕ̂j are bounded, and v, ϕ̂ have minimal singularities, it follows from Lemma
4.10 that for any smooth closed semipositive (1, 1)-form Γ and for any k = 0, . . . , n− 1 we have

(4.24)

∫

Y
〈Γ ∧ ηkj,vj ∧ η

n−k−1
j,ϕ̂j

〉 =

∫

Y
Γ ∧ ηn−1

j −→

∫

Y
Γ ∧ ηn−1 =

∫

Y
〈Γ ∧ ηkv ∧ η

n−k−1
ϕ̂ 〉,

as j → +∞. In the above, we emphasized by 〈· · · 〉 the use of the non-pluripolar product vs the
usual wedge product between smooth forms.
Thus, writing Θ as difference of two semipositive closed smooth (1, 1)-forms it follows from Theorem
2.2 that for any k = 0, . . . , n− 1,

(4.25)

∫

Y
(vj − ϕ̂j)Θ ∧ ηkj,vj ∧ η

n−k−1
j,ϕ̂j

−→

∫

Y
(v − ϕ̂)Θ ∧ ηkv ∧ η

n−k−1
ϕ̂

as j → +∞.
It also follows from Lemma 4.10 that if El 6⊂ EnK(η), for any k = 0, . . . , n− 1 we have

∫

El

〈ηkj,vj ∧ η
n−k−1
j,ϕ̂j

〉 =

∫

El

ηn−1
j −→

∫

El

ηn−1 =

∫

El

〈ηkv ∧ η
n−k−1
ϕ̂ 〉.

Therefore, Theorem 2.2 ensures that for any El 6⊂ EnK(η) and any k = 0, . . . , n− 1

(4.26)

∫

El

(vj − ϕ̂j)η
k
j,vj ∧ η

n−k−1
j,ϕ̂j

−→

∫

El

(v − ϕ̂)ηkv ∧ η
n−k−1
ϕ̂
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as j → +∞. If instead El ⊂ EnK(η) then

(4.27)

∣

∣

∣

∣

∫

El

(vj − ϕ̂j)η
k
j,vj ∧ η

n−k−1
j,ϕ̂j

∣

∣

∣

∣

≤ ‖vj − ϕ̂j‖∞Vol(ηj|El
) −→ 0

as j → +∞ since vj− ϕ̂j is uniformly bounded while Vol(ηj|El
) → 0. The last claim is a consequence

of the fact that EnK(η) =
⋃
{

V ⊂ X :
∫

V η
dimV = 0

}

by [16].

Next, we recall that for any j, as vj, ϕ̂j are bounded, the non-pluripolar product coincides with
the Bedford-Taylor wedge product. So, since Θ + ddcf = [KY/X ] =

∑m
l=1 al[El], we obtain

(4.28) 〈Θ∧ηkj,vj ∧η
n−k−1
j,ϕ̂j

〉 = Θ∧ηkj,vj ∧η
n−k−1
j,ϕ̂j

=

m
∑

l=1

al[El]∧η
k
j,vj ∧η

n−k−1
j,ϕ̂j

−ddcf ∧ηkj,vj ∧η
n−k−1
j,ϕ̂j

,

where the products [El]∧ η
k
j,vj

∧ ηn−k−1
j,ϕ̂j

, ddcf ∧ ηkj,vj ∧ η
n−k−1
j,ϕ̂j

make sense thanks to [27, Section 2].

Observe also that by definition we have

ddcf ∧ ηkj,vj ∧ η
n−k−1
j,ϕ̂j

:= ddc
(

f ηkj,vj ∧ η
n−k−1
j,ϕ̂j

)

.

The above is a (n, n)-current which acts on smooth functions. However [27, Theorem 2.2] implies
that such action can be extended to bounded quasi-psh functions. It then follows (basically) by
definition that

∫

X
(vj − ϕ̂j)dd

cf ∧ ηkj,vj ∧ η
n−k−1
j,ϕ̂j

=

∫

X
fddc(vj − ϕ̂j) ∧ η

k
j,vj ∧ η

n−k−1
j,ϕ̂j

=

∫

X
fηk+1

j,vj
∧ ηn−k−1

j,ϕ̂j
−

∫

X
fηkj,vj ∧ η

n−k
j,ϕ̂j

.(4.29)

Finally, by (4.23) and Monotone Convergence Theorem

(4.30)

∫

Y
fηnj,vj =

∫

Y
feα(vj−v)ηnv −→

∫

Y
fηnv

and
∫

Y
fηnj,ϕ̂j

=

∫

Y
feα(ϕ̂j−ϕ̂)ηnϕ̂ −→

∫

Y
fηnϕ̂.

Note also that the integrals at the RHS are finite since ηnv , ηϕ̂ have bounded density and f ∈ L1(ω̃n).
Combining all the above we have

nVol(η)EΘ(η; v, ϕ̂)
(4.25)
= lim

j→+∞

n−1
∑

k=0

∫

X

(vj − ϕ̂j)〈Θ ∧ ηkj,vj ∧ η
n−k−1
j,ϕ̂j

〉

(4.28)
= lim

j→+∞

(

m
∑

l=1

al

n−1
∑

k=0

∫

El

(vj − ϕ̂j)η
k
j,vj

∧ ηn−k−1
j,ϕ̂j

−
n−1
∑

k=0

∫

Y

(vj − ϕ̂j)dd
cf ∧ ηkj,vj ∧ η

n−k−1
j,ϕ̂j

)

(4.29)
= lim

j→+∞

(

m
∑

l=1

al

n−1
∑

k=0

∫

El

(vj − ϕ̂j)η
k
j,vj

∧ ηn−k−1
j,ϕ̂j

−

∫

Y

f ηnj,vj +

∫

Y

f ηnj,ϕ̂j

)

=
∑

Ej 6⊂EnK(η)

al

n−1
∑

k=0

∫

El

(v − ϕ̂)ηkv ∧ ηn−k−1
ϕ̂ −

∫

Y

f ηnv +

∫

Y

f ηnϕ̂

=
∑

Ej 6⊂EnK(η)

nalVol(η|El
)E|El

(η|El
; v|El

, ϕ̂|El
)−

∫

Y

f ηnv +Vol(η)Entη(ϕ̂).

where in the fourth equality we used (4.26), (4.27) and (4.30); in the last equality we also used
that Entη(ϕ̂) =

1
Vol(η)

∫

Y f η
n
ϕ̂.



22 ELEONORA DI NEZZA, STEFANO TRAPANI, ANTONIO TRUSIANI

Thus, (4.22) writes as

(4.31) Mθ,ϕ(u) = Mη,w(v)−Mη,w(ϕ̂)+
(

S̄ϕ− S̄w

)

E(η; v, ϕ̂)−
n

Vol(η)

m
∑

j=1

ajVol(η|Ej
)E|Ej

(η|Ej
; v|Ej

, ϕ̂|Ej
).

Step 3: Computing S̄ϕ − S̄w.
Since π∗Ric(ω) = Ric(ω̃) +Θ, by linearity, the proof of Lemma 4.7 and again Lemma 4.10 we have

S̄ϕ =
n

mφ

∫

X
〈Ric(ω) ∧ θn−1

ϕ 〉

=
n

Vol(η)

∫

Y
〈
(

Ric(ω̃) + Θ
)

∧ ηn−1
ϕ̂ 〉

=
n

Vol(η)

∫

Y
〈Ric(ω̃) ∧ ηn−1

w 〉+
n

Vol(η)

∫

Y
Θ ∧ ηn−1

= S̄w +
n

Vol(η)
{Θ} · {ηn−1}

= S̄w +
n

Vol(η)

m
∑

El 6⊂EnK(η)

alVol(η|El
)

where in the above we used several times that ϕ̂ and w have minimal singularities and {Θ} =
∑m

l=1 al{El}.
Plugging this into (4.31) concludes the proof for u ∈ E(X, θ, φ) with φ-relative minimal singularities
such that θnu has bounded density with respect to ωn.

Step 4: General case.
Let u ∈ E(X, θ, φ) with φ-relative minimal singularities such that Entθ(u) < +∞ and let g ≥ 0 such
that θnu = gωn. We fix α > 0 small enough so that e−αu ∈ L2(ωn) and we define uk ∈ E(X, θ, φ) to
be the solution of

θnuk = eα(uk−u)min(g, k)ωn

(see [20, Theorem 1.4] for the existence of such potentials). Observe that uk has φ-relative minimal
potential by [22, Theorem A].

Set vk := L(uk). Our goal is to prove that for any Ej 6⊂ EnK(η) we have

Mθ,ϕ(uk) → Mθ,ϕ(u),

Mη,w(vk) → Mη,w(v),

E(η; vk, ϕ̂) → E(η; v, ϕ̂),

EEj
(η|Ej

; vk |Ej
, ϕ̂|Ej

) → EEj
(η|Ej

; v|Ej
, ϕ̂|Ej

)

as k → +∞. By Lemma 4.7 we have

(4.32) ηnvk = eα(vk−v)min(g ◦ π, k)ef ω̃n

and vk ∈ E(Y, η). Then it follows from the comparison principle in [21, Lemma 2.5] that vk ց ṽ
and ṽ ≥ v. We claim that ṽ = v. This is indeed the case since from (4.32) we find that

ηnṽ = eα(ṽ−v)g ◦ πef ω̃n = eα(ṽ−v)ηnv .

The comparison principle once again gives ṽ = v. By construction, the previous fact is equivalent
to uk ց u. As u has φ-relative minimal singularities, we deduce that any difference uk − ũ for
ũ ∈ E(X, θ, φ) with φ-relative minimal singularities is uniformly bounded in k, and the analogous
holds for vk − ṽ, ṽ = L(u). In particular, since ϕ has φ-relative minimal singularities and since
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ϕ̂, w have minimal singularities, combining Lemma 4.10 with Theorem 2.2 we infer the following
convergences of energies:

E(θ;uk, ϕ) −→ E(θ;u, ϕ), E(η; vk, ϕ̂) −→ E(η; v, ϕ̂), E(η; vk, w) −→ E(η; v,w),

ERic(θϕ)(θ;uk, ϕ) −→ ERic(θϕ)(θ;u, ϕ), ERic(ηw)(η; vk, w) −→ ERic(ηw)(η; v,w)

EEj
(η|Ej

; vk|Ej
, ϕ̂|Ej

) −→ EEj
(η|Ej

; v|Ej
, ϕ̂|Ej

)

for any Ej 6⊂ EnK(η). Note that we also used that Ric(θϕ) = Ric(ω),Ric(ηw) = Ric(ω̃) are smooth.
It remains to prove that

Entθ(uk) → Entθ(u), Entη(vk) → Entη(v).

In order to do so, we observe that if 0 ≤ h ≤ g, an elementary calculation gives

|h log h| ≤ 1{h<1}(−h log h) + 1{h≥1}h log h

≤ e−1 + 1{g≥1}g log g

≤ e−1 + g log g + 1{g<1}(−g log g)

≤ 2e−1 + g log g

as the function R≥0 ∋ x → x log x is non-positive on [0, 1] with a minimum at x = e−1 while it is

positive on {x > 1}. Set hk := m−1
φ eα(uk−u)min(g, k) and note that hk ≤ m−1

φ eCg for a uniform
constant C > 0. By the above we have

Entθ(uk) =

∫

X
hk log(hk)ω

n

≤ 2e−1 +

∫

X
log

(

eCg

mφ

)

eCg

mφ
ωn

= 2e−1 + eC
(
∫

X
log(g m−1

φ )
gωn

mφ
+ C

∫

X

gωn

mφ

)

= 2e−1 + eC (Entθ(u) + C1) < +∞.

Thanks to Lebesgue Dominated Convergence Theorem we can infer that

Entθ(uk) =

∫

X
hk log(hk)ω

n −→ Entθ(u) =

∫

X
g log(g)ωn.

Very similar arguments show the convergence Entη(vk) → Entη(v). This concludes the proof �

We can now prove Theorem 4.6.

Proof of Theorem 4.6. Let (ut)t∈[0,1] be the psh geodesic connecting u0, u1 ∈ PSH(X, θ), functions
with φ-relative minimal singularities. As ut ≥ Pθ(u0, u1), ut is with φ-minimal singularities for all
t ∈ [0, 1]. Set vt = L(ut), t ∈ [0, 1]. By construction vt is an η-psh function with minimal singularities
on Y . Moreover, Lemma 4.7(ii) ensures that vt is a psh geodesic in Y joining v0 and v1. By [36,
Theorem 4.2] we know that t → Mη,w(vt) is convex in t, while [21, Theorem 3.12] ensures that
t→ E(η; vt, ϕ̂) = E(η; vt, 0)− E(η; ϕ̂, 0) is linear. Thus from Proposition 4.9 it follows that

(4.33) Mθ,ϕ(ut)− tMθ,ϕ(u1)− (1− t)Mθ,ϕ(u0) ≤
n

Vol(η)

∑

Ej 6⊂EnK(η)

ajVol(η|Ej
)
(

tEEj
(η|Ej

; v1|Ej
, ϕ̂|Ej

)+(1−t)EEj
(η|Ej

; v0|Ej
, ϕ̂|Ej

)−EEj
(η|Ej

; vt|Ej
, ϕ̂|Ej

)
)

.

Set Et :=
(

tEEj
(η|Ej

; v1|Ej
, ϕ̂|Ej

) + (1 − t)EEj
(η|Ej

; v0|Ej
, ϕ̂|Ej

) − EEj
(η|Ej

; vt|Ej
, ϕ̂|Ej

)
)

. By the

cocycle property of the Monge-Ampère energy (see e.g. Proposition 4.5), we then have for any
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j = 1, . . . ,m,

EEj
(η|Ej

; v1|Ej
, ϕ̂|Ej

)− EEj
(η|Ej

; vt|Ej
, ϕ̂|Ej

) = EEj
(η|Ej

; v1|Ej
, vt|Ej

) ≤ ‖v1 − vt‖∞

and similarly replacing v1 by v0. Therefore, as ‖vs− vt‖∞ = ‖us−ut‖∞ ≤ |s− t|‖u0 −u1‖∞, we get

(4.34) Et ≤ 2t(1− t)‖u0 − u1‖∞.

Since t(1− t) ≤ 1/4, combining (4.33) with (4.34) yields

Mθ,ϕ(ut) ≤ tMθ,ϕ(u1) + (1− t)Mθ,ϕ(u0) +
n‖u0 − u1‖∞

2Vol(η)

∑

Ej 6⊂EnK(η)

ajVol(η|Ej
).

The proof is finished since
∑m

j=1 aj[Ej ] = [KY/X ]. �

We conclude this subsection with the following important consequence of Theorem 4.6.

Corollary 4.11. Let C1 > 0 and let u0, u1 ∈ PSH(X, θ) with φ-relative minimal singularities such
that Entθ(u0),Entθ(u1) ≤ C1. Then there exist positive constants C2, C3 such that

Entθ(ut) ≤ C1 + C2 + C3{η
n−1} ·KY/X

for any t ∈ [0, 1]. Moreover C2, C3 only depend on n,X, {ω}, {θ}, ‖u0 − u1‖∞ and on a lower bound
of mφ.

Proof. Using (4.15) we obtain

Entθ(ut) ≤ (1− t)Entθ(u0) + tEntθ(u1) +
n‖u0 − u1‖∞

2mφ
{ηn−1} ·KY/X +

+S̄ϕ(1− t) (E(θ;ut, ϕ) −E(θ;u0, ϕ)) + S̄ϕ t (E(θ;ut, ϕ) − E(θ;u1, ϕ))

+n(1− t)
(

ERic(ω)(θ;ut, ϕ)− ERic(ω)(θ;u0, ϕ)
)

+ nt
(

ERic(ω)(θ;ut, ϕ) − ERic(ω)(θ;u1, ϕ)
)

.

By the cocycle property [23, Theorem 5.3]

E(θ;ut, ϕ) − E(θ;ui, ϕ) =
1

(n+ 1)mφ

n
∑

k=0

∫

X
(ut − ui)θ

k
ut ∧ θ

n−k
ui

≤
‖ut − ui‖∞

mφ

∫

X
θnϕ ≤ ‖ut − ui‖∞.

Again by the cocycle property and the fact that Ric(ω) ≤ Cω we get

ERic(ω)(θ;ut, ϕ) − ERic(ω)(θ;ui, ϕ)

=
1

nmφ

n−1
∑

k=0

∫

X
(ut − ui)Ric(ω) ∧ θ

k
ut ∧ θ

n−k−1
ui

≤ C
‖ut − ui‖∞

mφ

∫

X
ω ∧ θn−1

ϕ ≤ C ′‖ut − ui‖∞.

As ‖ut − us‖∞ ≤ |t− s|‖u1 − u0‖∞ for any s, t ∈ [0, 1], the conclusion follows. �

4.2. Transcendental Fujita Approximation. We give the following transcendental definition of
the well-known Fujita approximation of big line bundle on projective varieties [40].

Definition 4.12. We say that a sequence of model type envelopes (φk)k ⊂ PSH(X, θ) is a tran-
scendental Fujita approximation of {θ} if

i) φk ∈ Nθ for any k ∈ N;
ii)
∫

X θ
n
φk

→ Vol(θ) as k → +∞.

We also say that a transcendental Fujita approximation (φk)k is monotone if φk ր Vθ.
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We note that as an immediate consequence of Theorem 2.2, any (φk)k such that φk ր Vθ satisfies
the condition in (ii).

The following result gives another interpretation of such transcendental Fujita approximation:

Lemma 4.13. There exists a transcendental Fujita approximation of {θ} if and only if there exists a
sequence of data (πk, βk, Fk), where πk : Yk → X is a modification from Yk compact Kähler manifold
od complex dimension n, βk is a big and nef class, Fk is an effective R-divisor, such that

i) π∗k{θ} = βk + {Fk} for any k ∈ N;
ii) Vol(βk) → Vol(θ) as k → +∞.

Proof. By definition of Nθ if (φk)k is a transcendental Fujita approximation then there exist mod-
ifications πk : Yk → X, currents with minimal singularities Sk representing big and nef classes βk
and effective R-divisors Fk such that π∗kθφk = Sk + [Fk] for any k ∈ N. Thus one implication follows
simply observing that

∫

X θ
n
φk

=
∫

Yk
Snk = Vol(βk).

Vice-versa, assume to have a sequence of data (πk, βk, Fk)k as in the statement. Since Fk is effective,
for any Sk current with minimal singularities in βk there exists a unique current Tk = θ + ddcuk
such that

π∗k(θ + ddcuk) = Sk + [Fk]

(see [8, Proposition 1.2.7.(ii)]). Set φk := Pθ[uk]. By [23, Lemma 5.1] we know that φk and uk
have the same multiplier ideal sheaf and in particular they have the same Lelong numbers on any
modification of X. Thus, since Sk has minimal singularities and φk is less singular than uk, we infer
that

π∗k(θ + ddcφk) = S̃k + [Fk]

for a positive and closed current with minimal singularities S̃k in βk, i.e. φk ∈ Nθ. Moreover, as
noticed above,

∫

X θ
n
φk

=
∫

Y S
n
k = Vol(βk). �

The existence of a monotone trascendental Fujita approximation is basically a consequence of
[28]:

Lemma 4.14. There exists a monotone transcendental Fujita approximation of {θ}.

Proof. By Lemma 4.5(ii) and the lines below Definition 4.12 it is enough to produce a sequence

of θ-psh functions with analytic singularities ψ̂k such that
∫

X θ
n
ψ̂k

> 0 and such that φk := Pθ[ψ̂k]

increases to Vθ.
An immediate consequence of the proof of Demailly’s approximation theorem [28, Proposition

3.7] is that for any θψ Kähler current there exists ψ′ ≥ ψ such that θψ′ is a Kähler current with
analytic singularities (each element of the approximating sequence satisfies this property). Moreover
observe that if θψ1

, θψ2
are Kähler currents, then θmax(ψ1,ψ2) is a Kähler current as well since by [23,

Lemma 2.9]

θmax(ψ1,ψ2) ≥ 1{ψ2≤ψ1}θψ1
+ 1{ψ1<ψ2}θψ2

.

Now let θψ be a Kähler current and let ψk :=
1
kψ +

(

1− 1
k

)

Vθ. Then

θψk
=

1

k
θψ +

(

1−
1

k

)

θVθ

is a Kähler current and
∫

X θ
n
ψk

→
∫

X θ
n
Vθ

as k goes to +∞.

Let ψ̂1 be a θ-psh function such that θψ̂1
is a Kähler current with analytic singularities and

ψ̂1 ≥ ψ1. Inductively let ψ̂k+1 be a θ-psh function such that θψ̂k+1
is a Kähler current with analytic

singularities and ψ̂k+1 ≥ max(ψ̂k, ψk+1). Then by construction we have that ψ̂k is an increasing

sequence, ψ̂k ≥ ψk and θψ̂k
is a Kähler current with analytic singularities.
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By [62, Theorem 1.2] we know that
∫

X θ
n
ψk

≤
∫

X θ
n
ψ̂k

≤ Vol(θ). Thus
∫

X θ
n
ψ̂k

→
∫

X θ
n
Vθ

as k goes

to +∞. We then consider φk := Pθ[ψ̂k]. This sequence is increasing, it has analytic singularity type

and |φk − ψ̂k| ≤ Ck, for some Ck > 0. Moreover, by construction, supX φk = 0 and φk ≤ Vθ.
Let φ = (supk φk)

∗ ∈ PSH(X, θ), where ∗ is the upper semicontinuous regularization. Then supX φ =
0 and by [23, Remark 2.4] we have

∫

X
θnφk =

∫

X
θn
ψ̂k

→

∫

X
θnVθ

as k → +∞. Hence,
∫

X
θnVθ =

∫

X
θnφ .

On the other hand φ is an increasing limit of model type envelopes, hence by [24, Corollary 4.7]
it is a model type envelope, therefore φ = Vθ, concluding the proof. �

4.3. (Almost) Convexity of the Mabuchi functional. Let {φk}k∈N be a monotone transcen-
dental Fujita approximation of {θ} (see Definition 4.12) and set Vk :=

∫

X θ
n
φk
, V := Vol(θ). We note

that by definition we have Vk > 0 for any k. Let u ∈ E(X, θ) and let us consider the function

uk := Pθ[φk](u).

We wish to collect some properties of the correspondence u→ uk.

Lemma 4.15. Let u ∈ E(X, θ), then the correspondence u→ uk has the following properties:

(i) uk ∈ E(X, θ, φk).

(ii) The sequence uk increases to u as k goes to +∞ outside of a pluripolar set.

(iii) The set

S := {x ∈ X : uk(x) = u(x) for some k ≥ 1}

= {x ∈ X : for some k ≥ 1, and for all l ≥ k we have ul(x) = u(x) }

has full mass with respect to θnu .

(iv) If u, v ∈ PSH(X, θ) satisfy |u− v| ≤ C then |uk − vk| ≤ C for all k ≥ 1.

(v) We have θnuk = gkθ
n
u with 0 ≤ gk ≤ 1 and gk increasing almost everywhere with respect to

θnu to the constant function 1 as k → +∞. In particular if Entθ(u) is finite, then Entθ(uk)
is uniformly bounded independent of k ≥ 1.

(vi) Assume u0, u1 ∈ E1(X, θ) have the same singularity type. Let t → ut be the psh geodesic
defined in the interval [0, 1] joining u0, u1, and let t → ut,k be the psh geodesic joining
u0,k, u1,k. Then for all t ∈ [0, 1] the sequence ut,k is increasing to ut outside of a pluripolar
set as k goes to +∞.

Proof. Observe that u+C ∈ E(X, θ) for all C ∈ R. Since
∫

X θ
n
φk
> 0, φk = Pθ[φk] and Pθ(Vθ) = Vθ, if

we apply [24, Proposition 5.3] with Φ = φk, and Ψ = Vθ we obtain that Pθ(u+C,φk) ∈ E(X, θ, φk).
By definition Pθ[φk](u) ≤ φk and it is the increasing limit of Pθ(u+ C,φk), hence

∫

X
θnφk =

∫

X
θnPθ(u+C,φk)

≤

∫

X
θnPθ[φk](u)

≤

∫

X
θnφk ,

this proves (i).
Let û be the upper semi-continuous regularization of the limit of the increasing sequence uk, then
û ≤ u and the set E = {x ∈ X : supk uk < û(x) or û(x) = −∞} is pluripolar, hence it has θnu
measure 0. Now θnû is the weak limit of θnuk by Remark 2.6. By (i),

∫

X θ
n
uk

=
∫

X θ
n
φk

→ Vol(θ) as k

goes to +∞. Since û ≤ u, it follows that
∫

X θ
n
û =

∫

X θ
n
u = Vol(θ). By [20, Theorem 3.8] we have

θnuk ≤ 1{uk=u}θ
n
u ,
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therefore
θnû ≤ 1Sθ

n
u .

Since u and û have the same mass,
θnû = θnu

and S has full mass with respect to θnu . Therefore û and u differ by a constant (see for example [23,
Theorem 3.13]. Now if x0 ∈ S \E, we have u(x0) = û(x0) > −∞, hence u = û. This proves (ii) and
(iii). The map u → Pθ[φk](u) is monotone and Pθ[φk](u+ C) = Pθ[φk](u) + C for all C ∈ R. Then
(iv) follows. Now, the inequality θnuk ≤ 1{uk=u}θ

n
u also says that

θnuk = gkθ
n
u ,

with 0 ≤ gk ≤ 1. Moreover for j ≤ k we have φj ≤ φk and

P [φj ](uk) = P [φj ](P [φk](u)) = P [φj ](u) = uj .

[20, Theorem 3.8] implies that gk is increasing in k since

gjθ
n
u = θnuj ≤ 1{uj=uk}θ

n
uk

≤ θnuk = gkθ
n
u .

Now by the above θnuk converges weakly to θnu , hence gk converges to the constant function 1 almost
everywhere with respect to θnu . Moreover since log(mφk) is uniformly bounded we derive (v).

In order to prove (vi) we note that ui,k−1 ≤ ui,k, i = 0, 1, hence ut,k−1 is a subgeodesic with
respect to the end points u0,k, u1,k. This means that the sequence ut,k is increasing in k. Moreover
by the t-convexity of the geodesic and (iv) we have ut,k ≤ φk + C ≤ Vθ + C for some positive
constant C (indipendent of k), hence ut,k increases to a psh subgeodesic segment t → vt that by
(ii) is joining u0 and u1. Now by maximality ut ≥ Pθ(u0, u1), then each ut has the same singularity
type of u0 and u1. We claim that vt = ut.
Combining Lemma 4.7(iv), Propositions 4.1 and 4.2 we find that

t→ E(θ;ut,k, φk)

is linear. Again by the cocycle property (Proposition 4.2) we have E(θ;ut,k, φk) = E(θ;ut,k, u0,k) +
E(θ;u0,k, φk). We then infer that t → E(θ;ut,k, u0,k) is linear. Moreover, since ut,k is increasing to
ut, u0,k is increasing to u0 and by (iv) we know that (ut,k − u0,k) is uniformly bounded, thanks to
Theorem 2.2 we ensure that

E(θ;ut,k, u0,k) =
1

n+ 1

n
∑

j=0

∫

X
(ut,k−u0,k)θ

j
ut,k

∧θn−ju0,k
−→

1

n+ 1

n
∑

j=0

∫

X
(vt−u0)θ

j
vt∧θ

n−j
u0 = E(θ; vt, u0)

as k → +∞. Thus t → E(θ; vt, u0) is linear. Using the cocycle property (4.5) we deduce that
t→ E(θ; vt, Vθ) is linear. On the other hand t→ E(θ;ut, Vθ) is linear as well thanks to Proposition
4.1. Thus, for any t ∈ [0, 1] we have

E(θ;ut, Vθ) = (1− t)E(θ;u0, Vθ) + tE(θ;u1, Vθ) = E(θ; vt, Vθ).

By maximality of the psh geodesic, we have ut ≥ vt. Hence ut = vt by [24, Lemma 2.9]. This proves
(vi). �

Now we want to apply the results of the previous subsection 4.1 to any monotone transcendental
Fujita approximation (φk)k. For each k we set πk : Yk → X a modification from Yk compact Kähler
manifold (of complex dimension n) such that

π∗kθφk = (ηk + ddcφ̃k) + [Fk]

where for each k, ηk is a smooth and closed form representing a big and nef class while φ̃k is a
ηk-psh function with minimal singularities normalized by supYk φ̃k = 0.
Let E1,k, . . . , Emk ,k be the exceptional divisors of πk, and aj,k > 0 such that KYk/X =

∑mk

j=1 aj,kEj,k.
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Definition 4.16. Given a monotone transcendental Fujita approximation (φk)k we define

H(φk) := lim inf
k→+∞

{ηn−1
k } ·KYk/X .

and
H := inf{H(φk), (φk)k monotone transcendental Fujita approximation}.

We start by proving that these quantities are well defined.

Lemma 4.17. H(φk) only depend on the choice of the transcendental Fujita approximation (φk)k.

Proof. Let φ ∈ Nθ and let π1 : Y1 → X, π2 : Y2 → X be two modifications where Y1, Y2 are compact
Kähler manifolds such that for each i = 1, 2

π∗i θφ = ηi,φ̃i + [Fi]

where Fi is an effective R-divisor, ηi is a closed and smooth form representing a big and nef class,
and φ̃i is a ηi-psh function with minimal singularities normalized by supYi φ̃i = 0. The goal is to
prove that

{ηn−1
1 } ·KY1/X = {ηn−1

2 } ·KY2/X .

Resolving the graph of the bimeromorphic map π−1
2 ◦ π1 : Y1 99K Y2, yields modifications ρ1 : Z →

Y1, ρ2 : Z → Y2 such that the diagram

Z

Y1 Y2

X

ρ2ρ1

π1 π2

is commutative. In particular

(4.35) ρ∗1η1,φ̃1 + [ρ∗1F1] = (π1 ◦ ρ1)
∗θφ = (π2 ◦ ρ2)

∗θφ = ρ∗2η2,φ̃2 + [ρ∗2F2].

It follows from [9, Propositions 3.2, 3.6] that the positive and closed currents ρ∗i ηi,φ̃i have zero Lelong

numbers everywhere as they are currents with minimal singularities in the big and nef class ρ∗i {ηi}.
Thus, (4.35) gives two decompositions of the same positive and closed current T := (π1 ◦ ρ1)

∗θφ =
(π2 ◦ ρ2)

∗θφ into a sum of a current with zero Lelong number and of a current of integration along
a divisor. By uniqueness of the Siu’s Decomposition [56] (see also [29, §8.(8.16)]) we infer that
ρ∗1η1,φ̃1 = ρ∗2η2,φ̃2 . In particular {ρ∗1η1} = {ρ∗2η2}.
Moreover, by formula 4.13 applied to ρi, πi and their compositions, we haveKZ/X = KZ/Yi+ρ

∗
iKYi/X

and KZ/Yi is ρi-exceptional. It then follows that

{η1}
n−1 ·KY1/X = (ρ∗1{η1})

n−1 · ρ∗1KY1/X

= {ρ∗1η1}
n−1 ·

(

KZ/X −KZ/Y1

)

= {ρ∗1η1}
n−1 ·KZ/X ,

since KZ/Y1 is ρ1-exceptional.
An analogous formula holds for ρ2, η2, Y2. Since {ρ∗1η1} = {ρ∗2η2}, we are done. �

In the following we will work under one of these two conditions:

(Condition A) H < +∞

(Condition B) H = 0.
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We refer to subsection 4.4 for some examples when these conditions hold and for a digression on
how they are related to the uniform version of Yau-Tian-Donaldson conjecture in the algebraic case.

Our main theorem states as follows:

Theorem 4.18. Let u0, u1 ∈ PSH(X, θ) with minimal singularities and let (ut)t∈[0,1] be the psh
geodesic connecting u0 and u1. Let also ϕ ∈ E(X, θ) be such that θnϕ = Vol(θ)ωn, supX ϕ = 0. Then
ut has minimal singularities and the function t 7→ Mθ,ϕ(ut) is almost convex in [0, 1], i.e.

(4.36) Mθ,ϕ(ut) ≤ (1− t)Mθ,ϕ(u0) + tMθ,ϕ(u1) +H‖u0 − u1‖∞.

In particular, if (Condition B) holds, then Mθ,ϕ is convex along ut.

Proof. We can assume that Entθ(ui, ϕ) is finite. Indeed otherwise either Mθ,ϕ(u0) or Mθ,ϕ(u1)
would be equal to +∞ and the requested inequality would be trivial. Without loss of generality,
we can consider (φk)k be a monotone transcendental Fujita approximation with H(φk) < +∞.
Consider

u0,k := Pθ[φk](u0), u1,k := Pθ[φk](u1).

By Lemma 4.15, ui,k has φk-relative minimal singularities with a constant independent of k and ui,k
converges to ui for i = 0, 1.
For k ∈ N, let ϕk be the unique solution in E(X, θ, φk) of

(θ + ddcϕk)
n =

(

∫

X
θnφk

)

ωn, sup
X
ϕk = 0.

Thanks to the stability result in [24, Theorem 1.4] (that can be applied thanks to [24, Lemma 4.1])
we have that ϕk converges in capacity to ϕ.
Also, we claim that |ϕk − φk| ≤ C, for C > 0 independent of k. Indeed, by [22, Theorem 4.7]

|ϕk − φk| ≤ Ck, where Ck =
A(θ,ω,n)
V 2
k

. Since Vk is increasing we get that Ck ≤ C1. The claim is then

proved.
Thanks to Theorem 4.6 we have the almost convexity of the Mabuchi functional Mθ,ϕk

along psh
geodesic segments joining functions with φk-relative minimal singularities:

Mθ,ϕk
(ut) ≤ tMθ,ϕk

(u1,k) + (1− t)Mθ,ϕk
(u0,k) +

n‖u0,k − u1,k‖∞
2Vk

{ηn−1
k } ·KYk/X

≤ tMθ,ϕk
(u1,k) + (1− t)Mθ,ϕk

(u0,k) +
n‖u0 − u1‖∞

2Vk
{ηn−1
k } ·KYk/X

where the last inequality follows from ‖u0,k − u1,k‖∞ ≤ ‖u0 − u1‖∞.
By assumption we know that θnui = fiθ

n
ϕ = fiV ω

n. By Lemma 4.15(v) θnui,k has finite entropy w.r.t.

θnϕk
. Let t → ut,k denote the psh geodesic segment joining u0,k, u1,k. Then Corollary 4.11 together

with H(φk) < +∞ and Lemma 4.15(v) ensure that θnut,k has finite entropy as well for any t ∈ [0, 1]

and

θnut,k = Vkft,k ω
n = ft,kθ

n
ϕk
,

∫

X
ft,k log ft,k ω

n ≤ C,

for some C independent of t and k.
As mentioned above, ui,k has φk-relative minimal singularities with uniform constants, thus by the
Lipschitz property of psh geodesics we have that

(4.37) φk ≥ ut,k ≥ φk − C

with C > 0 independent of k and of t.

We now claim that to get (4.36) it is enough to show that

(4.38) Mθ,ϕk
(ui,k) −→ Mθ,ϕ(ui), i = 0, 1
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and

(4.39) lim inf
k→+∞

Mθ,ϕk
(ut,k) ≥ Mθ,ϕ(ut), ∀t ∈ (0, 1).

Indeed, (4.38) and (4.39), together with the almost convexity of Mθ,ϕk
, imply

Mθ,ϕ(ut) ≤ (1− t)Mθ,ϕ(u0) + tMθ,ϕ(u1) +
n‖u0 − u1‖∞

2V
lim inf
k→+∞

{ηn−1
k } ·KYk/X

= (1− t)Mθ,ϕ(u0) + tMθ,ϕ(u1) +
n‖u0 − u1‖∞

2V
H(φk).

Taking the infimum over all monotone transcendental Fujita approximations we conclude.

We now prove (4.38) and (4.39).

Step 1: Convergence of the energies. Since ut,k−ϕk is uniformly bounded, ut,k ր ut, ϕk → ϕ
in capacity, ut,k and ϕk are more singular than ut and ϕ, respectively Remark 2.6 and Theorem 2.2
ensure that for any j = 0, · · · , n, we have

∫

X
(ut,k − ϕk)θ

j
ut,k

∧ θn−jϕk
−→

∫

X
(ut − ϕ)θjut ∧ θ

n−j
ϕ

and
∫

X
(ut,k − ϕk)θ

j
ut,k

∧ θn−j−1
ϕk

∧ Ric(ω) −→

∫

X
(ut − ϕ)θjut ∧ θ

n−j−1
ϕ ∧ Ric(ω).

We then deduce that E(θ;ut,k, ϕk) → E(θ;ut, ϕ) and ERic(ω)(θ;ut,k, ϕk) → ERic(ω)(θ;ut, ϕ), for any
t ∈ [0, 1],

Step 2: Lower semicontinuity of the entropy. As V −1
k θnϕk

= ωn, it follows from [4, Propo-
sition 2.10] that for any θ-psh function v we have

Entθ(v, ϕk) = Ent(m−1
v θnv , V

−1
k θnϕk

) = Ent(m−1
v θnv , ω

n) = sup
g∈C0(X)

(

∫

X
g
θnv
mv

− log

∫

X
egωn

)

.

In particular the functional Entθ(·, ϕk) = Ent(·, ωn) is lower semicontinuous on the space of pro-
bability measures on X with respect to the weak convergence. Since ut,k ր ut, θ

n
ut,k

converges

weakly to θnut and

lim inf
k→+∞

Entθ(ut,k, ϕk) = lim inf
k→+∞

Ent(V −1
k θnut,k , ω

n) ≥ Entθ(V
−1θnut, ω

n) = Entθ(ut, ϕ).

Next, for i = 0, 1, we write θnui,k = gi,kθ
n
ui where 0 ≤ gi,k ≤ 1 and gi,k ր 1 almost everywhere

with respect to θnui by Lemma 4.15. Since

Vk =

∫

X
θnui,k =

∫

X
gi,kθ

n
ui −→ V =

∫

X
θnui

and θnui = V fiω
n we obtain that ‖fi(1 − gi,j)‖L1(ωn) → 0 as j → +∞. By Lemma 4.15 and by the

dominated convergence theorem we deduce that

Entθ(ui,k, ϕk) =
V

V 2
k

∫

X
gi,kfi log

(

V

Vk
gi,kfi

)

θnϕk
=
V

Vk

∫

X
gi,kfi log

(

V

Vk
gi,kfi

)

ωn

converges as k → +∞ to
∫

X
fi log fi ω

n =
1

V

∫

X
fi log fi θ

n
ϕ = Entθ(ui, ϕ).
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Step 3: Conclusion of the proof. Since ϕk ≃ φk and ϕ ≃ Vθ, after re-writing Ric(ω) = T2−T1
for some smooth Kähler forms, [20, Proposition 2.1] ensures that

S̄ϕk
=

n

Vk

∫

X
Ric(ω)∧θn−1

ϕk
=

n

Vk

∫

X
Ric(ω)∧θn−1

φk
, S̄ϕ =

n

V

∫

X
Ric(ω)∧θn−1

ϕ =
n

V

∫

X
Ric(ω)∧θn−1

Vθ
.

Also, since φk increases to Vθ, Theorem 2.2 gives that Ti ∧ θ
n−1
φk

weakly converges to Ti ∧ θ
n−1
Vθ

for

i = 1, 2. As Vk ր V , we have that S̄ϕk
converges to S̄ϕ. Then Step 2 and 3 give the required

convergences (4.38), (4.39). �

As a corollary we obtain:

Corollary 4.19. Let C1 > 0 and let u0, u1 ∈ PSH(X, θ) such that |u0 − u1| ≤ C, C > 0. Assume
Entθ(u0),Entθ(u1) ≤ C1. Then there exists positive constants C2, C3 such that

Entθ(ut) ≤ C1 + C2 + C3H

for any t ∈ [0, 1]. Moreover C2, C3 only depends on n,X, {ω}, {θ}, ‖u0−u1‖∞, and on a lower bound
of Vol(θ).

Proof. When u0, u1 have minimal singularities, the same arguments in the proof of Corollary 4.11
give the conclusion. In the general case we can adapt the arguments in [36, Proposition 4.3]. We
observe indeed that in the proof [36, Proposition 4.3] the authors use the distance d1 on the space
E1(X, θ) when θ is big and nef. However this distance has been defined in the big case as well
and all the relevant properties have been proved [19]. Another key ingredient in the proof of [36,
Proposition 4.3] is the convexity of the Mabuchi functional, but the almost convexity in our case
(Theorem 4.18) suffices. �

4.4. On the Condition B and the Yau-Tian-Donaldson Conjecture. In this subsection we
prove that if Vθ ∈ Nθ then (Condition B) is satisfied. In particular, thanks to Theorem 4.18
the Mabuchi functional Mθ,ϕ is convex along geodesic segments joining potentials with minimal
singularities.

We recall that, by [9], any pseudoeffective cohomology class α ∈ H1,1(X,R) admits a divisorial
Zariski decomposition. When the class α is big such decomposition can be described as the Siu
Decomposition of a positive and closed current with minimal singularities.

Proposition 4.20. Let α ∈ H1,1(X,R) be a big class, θ be a smooth closed (1, 1)-form in α and let
Tmin := θVθ . Then the divisorial Zariski decomposition of α is given as

α = P(α) +N (α)

where the negative and positive parts N (α),P(α) are given as follows:

i) The negative part N (α) is the cohomology class of
∑

D ν(Tmin,D)[D] where the sum is over
all prime divisors on X and where there is only a finite number of prime divisors D for
which ν(Tmin,D) > 0.

ii) The positive part P(α) is defined as the difference α − N (α), and the current Tmin −
∑

D ν(Tmin,D)[D] has minimal singularities in the class P(α). In particular Vol(P(α)) =
Vol(α).

Proof. (i) follows from [9, Proposition 3.6, Definition 3.7, Theorem 3.12]. To prove (ii) we observe
that if Smin is a positive current with minimal singularities in P(α), then Smin +

∑

D ν(Tmin,D)[D]
is more singular than Tmin. Thus Tmin −

∑

D ν(Tmin,D)[D] is a positive and closed current less
singular than Smin, so they have the same singularities. �

Since α = {Tmin}, as direct consequence of Siu’s Decomposition we have that P(α) is the coho-
mology class of a positive and closed current with zero Lelong numbers along any prime divisor on
X. The class P(α) is said to be nef in codimension 1 or also modified nef.
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Definition 4.21. 1 Let α be a big cohomology class. We say that α admits a Zariski decomposition
if P(α) is nef. Moreover we say that α admits a bimeromorphic Zariski decomposition if there exists
a modification µ : Y → X from Y compact Kähler manifold of complex dimension n, such that µ∗α
admits a Zariski decomposition.

If dimX = 2 then it is well-known that any big class (actually any pseudoeffective class) admits a
Zariski decomposition, generalizing the pioneering work of Zariski [64]. However there are example
of big classes that do not admit a bimeromorphic Zariski decomposition: see for instance [9, Section
A.2].

We are now ready to observe the following:

Proposition 4.22. Vθ ∈ Nθ if and only if {θ} admits a bimeromorphic Zariski decomposition.

Proof. Set α = {θ}. Assume that µ : Y → X is a modification from Y compact Kähler manifold
such that µ∗α admits a Zariski decomposition µ∗α = P(α) + N (α). Again from [8] we know that
any positive closed real (1, 1) current in µ∗(α) is the pull-back of a positive closed real (1, 1) current
in α, so µ∗(θVθ ) is a current with minimal singularities in µ∗(α). From Proposition 4.20 we know
that

(4.40) µ∗θVθ = S + [F ]

where S is a current with minimal singularities in P(α) while F is an effective R-divisor in N (α).
Since by assumption P(α) is nef we conclude that Vθ ∈ Nθ.
Vice-versa suppose that Vθ ∈ Nθ, i.e. there exist a modification µ : Y → X from Y compact
Kähler manifold, a current with minimal singularities S representing a big and nef class and an
effective R-divisor F such that (4.40) holds. Then since, µ∗(θVθ) is with minimal singularities and
the non-pluripolar product does not charge pluripolar sets, we obtain that

Vol(µ∗α) =

∫

Y
µ∗θVθ =

∫

Y
Sn = Vol(S).

Hence it follows from [31, Main Theorem] that {S} is the positive part in the Zariski decomposition
of µ∗α, i.e. µ∗α admits a Zariski decompositon as {S} is nef. �

We are now ready to prove the main result of this subsection.

Theorem 4.23. Let α = {θ} be a big cohomology class that admits a bimeromorphic Zariski
decomposition. Assume ϕ ∈ E(X, θ) such that θnϕ = Vol(θ)ωn. Then Mθ,ϕ is convex along psh
geodesics joining potentials with minimal singularities.

It then follows that Mθ,ϕ is convex when dimCX = 2.

Proof. By Proposition 4.22 we know that Vθ ∈ Nθ. Let µ : Y → X be a modification from Y
compact Kähler manifold such that

µ∗θVθ = ηφ̃ + [F ]

where ηφ̃ is a positive and closed current with minimal singularities representing a big and nef class

and F is an effective R-divisor. By Theorem 4.6 it is enough to check that

{ηn−1} ·KY/X = 0.

However as observed in the proof of Proposition 4.22, {η} = P(µ∗α) and by [17, Lemmas 4.3, 6.1]
it follows that EnK(µ

∗α) = EnK(P(µ∗α)). Thus by the main result in [16], Vol(η|E) = 0 for any

exceptional divisor E. As KY/X =
∑m

j=1 ajEj, we infer that {ηn−1} ·KY/X = 0, which concludes
the proof. �

1Such definition can be given for pseudoeffective classes but for the purposes of the paper we only consider big
classes.
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Remark 4.24. We claim that if X is a projective manifold, α is the cohomology class of a big
Q-divisor and there exists a birational morphism π : Y → X such that π∗α admits a Zariski
decomposition then it is possible to produce a Fujita approximation in the sense of [40], and such
that {ηn−1

k } ·KYk/X → 0.
Indeed, as explained in [50, Lemma 4.13], we can perturb the class {η} = P(π∗α) and construct
a sequence of ample classes {ηk}k∈N on Yk = Y such that π∗α − {ηk} = {Dk} for a decreasing
sequence of effective Q-divisors Dk and such that {ηk}k converges to P(π∗α).
In this situation, the proof of Lemma 4.13 then ensures that we have a sequence of model potentials
φk ∈ Nθ. One can check that φk is an increasing sequence. Moreover, its limit is a model potential
as well thanks to [24, Corollary 4.7] and

∫

X θ
n
φk

= VolY (ηk) → VolX(θ) =
∫

X θ
n
Vθ
. We can then infer

that φk ր Vθ.
We thus get {ηn−1

k } ·KY/X → {ηn−1} ·KY/X = 0 where the latter equality follows as in the proof
of Theorem 4.23. As observed in [50, Lemma 4.5] (and before in [12, Conjecture 2.5]), producing a
Fujita approximation (for the so-called big models) such that (Condition B) holds for semiample
classes {ηk} implies a resolution to the Yau-Tian-Donaldson Conjecture.
In the general case of big classes on compact Kähler manifolds, clearly (Condition B) can be seen
as a trascendental extension of [50, Conjecture 4.7].

5. Monge-Ampère measures on contact sets

The following result extends [36, Theorem 1.2] to big classes.

Theorem 5.1. Assume (Condition A). Let u0, u1 ∈ E(X, θ) such that u0, u1 ∈ Ent(X, θ). Let ut
be the psh geodesic connecting u0 and u1. Fix p ≥ 1. If u0 − u1 is bounded then u̇+t , and u̇

−
t and

|ut−u0| are uniformly bounded, and u̇+t = u̇−t := u̇t almost everywhere with respect to θnut . Moreover
∫

X
|u̇t|

p θnut

is independent of 0 ≤ t ≤ 1.

Proof. First of all recall that each geodesic is convex in t, moreover as |u0−u1| is uniformly bounded

by a positive constant C, so is each derivative u̇+t and u̇−t as well as each incremental ratio
ut+h−ut

h

and
ut−h−ut

−h with h > 0 (see (2.13)). In particular |ut − u0| ≤ Ct ≤ C.

By Lemma 4.15 (items (iv) and (v)) we know that |u1,k − u0,k| ≤ supX |u1 − u0| ≤ C, and
u0,k, u1,k ∈ Ent(X, θ) for any k ∈ N. Let ut,k be the psh geodesic connecting u0,k and u1,k. It then
follows that | ˙uk,t

+|, | ˙uk,t
−|, |u̇t

+|, |u̇t
−| are uniformly bounded independently of k ∈ N, t ∈ [0, 1], and

x ∈ X.
We now let φk be a monotone transcendental Fujita approximation of {θ} (whose existence is

ensured by Lemma 4.14) and consider Lk : PSH(X, θ, φk) → PSH(Yk, ηk) be the map given by
Lemma 4.7. We denote v0,k := Lk(u0,k), v1,k := Lk(u1,k). Then by Lemma 4.7 we know that
vt,k := Lk(ut,k) is the psh geodesic segment joining v0,k and v1,k.

Since, for any t ∈ [0, 1), the sets Exc(πk), πk
(

Exc(πk)
)

, {ut,k = −∞}, {ut,k◦πk = −∞}, are pluripolar
we obtain that

u̇+t,k ◦ πk = v̇+t,k, outside a pluripolar set

and

(5.1)

∫

X
|u̇+t,k|

p θnut,k =

∫

Yk

|v̇+t,k|
p (ηk + ddcvt,k)

n.

The same identity holds for the left derivatives for any t ∈ (0, 1].

By Lemma 3.3 we have u0,k ◦ πk, u1,k ◦ πk ∈ Ent(Yk, π
∗
kθ). Hence, thanks to Lemma 4.7(v) we

infer that v0,k, v1,k ∈ Ent(Yk, ηk).
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Now, [36, Theorem 4.4] ensures that v̇+t,k = v̇−t,k =: v̇t,k almost everywhere with respect to (ηk +

ddcvt,k)
n and that

∫

Yk
|v̇t,k|

p (ηk + ddcvt,k)
n is constant in t ∈ [0, 1]. We then deduce that u̇+t,k = u̇−t,k

almost everywhere with respect to θnut,k and from (5.1) that
∫

X
|u̇t,k|

p θnut,k

is constant in t ∈ [0, 1].
On the other hand, by [36, Lemma 3.1] we can conclude that u̇+t = u̇−t := u̇t almost everywhere
with respect to θnut. The latter lemma is proved when the reference form is Kähler. Nevertheless,
the arguments in [36, Lemma 3.1] work in the big setting as well since:

• by [39, Theorem 2.8] we know that u0, u1 ∈ E1(X, θ). Hence ut ≥ Pθ(u0, u1) ∈ E1(X, θ)
thanks to [21, Theorem 2.13];

• the Monge-Ampère energy E(θ; ·, Vθ) is linear along psh geodesic by Theorem 4.1 and con-
cave along affine paths [23, Corollary 5.9];

• Ent(Vol(θ)−1θnut , ω
n) is uniformly bounded in t thanks to Corollary 4.19.

Next, we use the sequence ut,k (which has uniformly bounded entropy and weakly converges to
θnut thanks to Lemma 4.15 and Remark 2.6) to implement the arguments in [36, pages 14-15]. This
gives that for t ∈ [0, 1]

(5.2)

∫

X
|u̇t,k|

p θnut,k →

∫

X
|u̇t|

p θnut

as k → +∞. Since, by the above, the quantity at the left hand side is constant in t, so are the
quantities at the right hand side. The proof is then complete. �

Repeating word by word the arguments in [36, Theorem 5.1] we have the following result which
generalizes [36, Theorem 5.1] and the main theorem in [38].

Proposition 5.2. Assume (Condition A). Assume u ∈ PSH(X, θ), v ∈ Ent(X, θ) and u ≤ v.
Then

1{u=v}θ
n
u = 1{u=v}θ

n
v .

Following again word by word the proof of [36, Corollary 5.2] we obtain:

Corollary 5.3. Assume (Condition A). Assume u ∈ PSH(X, θ), v ∈ Ent(X, θ) and u = v θnv -
almost everywhere, then u = v.

6. Geodesic Distance

In [45], Gupta showed how Ep(X, θ) is naturally endowed with a complete distance dp. We briefly
recall how such distance is constructed. Let φk be a monotone transcendental Fujita approximation
of {θ} (Lemma 4.14) and consider Lk : PSH(X, θ, φk) → PSH(Yk, ηk) be the map given by Lemma
4.7. Then each Ep(X, θ, φk) can be endowed with a metric dp. More precisely,

(6.1) dp(u0, u1) := dp (Lk(u0),Lk(u1))

for any u0, u1 ∈ Ep(X, θ, φk) where the dp-distance on Ep(Yk, ηk) is defined in [35]. Moreover, as
proved in [45, Theorem 7.4] the dp distance on Ep(X, θ) satisfies

dp(u0, u1) = lim
k→+∞

dp (Pθ[φk](u0), Pθ [φk](u1))

for any u0, u1 ∈ Ep(X, θ).

We prove here that the dp distance on Ep(X, θ) has an explicit expression when the potentials
have the same singularity type and finite entropy. The following result extends [36, Theorem 1.2]
to the case of big cohomology classes.
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Theorem 6.1. Assume (Condition A). Fix p ≥ 1. Let u0, u1 ∈ Ent(X, θ) ∩ Ep(X, θ) and ut be
the psh geodesic connecting u0 and u1. If u0 − u1 is bounded then

(6.2) dpp(u0, u1) =

∫

X
|u̇t|

p θnut

for any t ∈ [0, 1].

We recall that the right term in (6.2) is independent of 0 ≤ t ≤ 1 thanks to Theorem 5.1.

Proof. Using the same notations of above we set ui,k := Pθ[φk](ui) for i = 0, 1 and vi,k := Lk(ui,k).
We also denote by ut,k, vt,k the psh geodesics joining u0,k, u1,k and v0,k, v1,k respectively. Combining
[36, Theorem 1.2] with (5.1) we have

dpp(u0,k, u1,k) = dpp(v0,k, v1,k) =

∫

Yk

|v̇t,k|
p(ηk + ddcvt,k)

n =

∫

X
|u̇t,k|

pθnut,k ,

where we observe that the first identity follows from the definition given in (6.1). It follows from
(5.2) that

dpp(u0, u1) = lim
k→+∞

dpp(u0,k, u1,k) = lim
k→+∞

∫

X
|u̇t,k|

pθnut,k =

∫

X
|u̇t|

pθnut .

This concludes the proof. �

References

[1] E. Bedford and B. A. Taylor. A new capacity for plurisubharmonic functions. Acta Math., 149(1-2):1–40, 1982.
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[54] C.-M. Pan and T. D. Tô. Singular weighted csck metrics on Kähler varieties. in preparation, 2024.
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