
ar
X

iv
:2

41
0.

09
26

5v
1 

 [
m

at
h.

C
V

] 
 1

1 
O

ct
 2

02
4

ASYMPTOTICS OF FUBINI-STUDY CURRENTS FOR SEQUENCES

OF LINE BUNDLES

MELODY WOLFF

ABSTRACT. We study the Fubini-Study currents and equilibrium metrics of
continuous Hermitian metrics on sequences of holomorphic line bundles
over a fixed compact Kähler manifold. We show that the difference between
the Fubini-Study currents and the curvature of the equilibrium metric, when
appropriately scaled, converges to 0 in the sense of currents. As a
consequence, we obtain sufficient conditions for the scaled Fubini-Study
currents to converge weakly.
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1. INTRODUCTION

In this paper, we will be working with sequences of holomorphic line
bundles {Lp} with continuous Hermitian metrics hp, p ≥ 1, and will be
studying asymptotic properties of the Fubini-Study current first explored in
[CMM]. We restrict our work to compact Kähler manifolds while allowing
the metrics to have non-positive curvature. Although we won’t require
positivity conditions on our metrics, we will require the existence of positively
curved metrics with growth conditions similar to those used in [CMM].

In 1988 Tian explored the case where (Lp, hp) = (Lp, hp), with
(Lp, hp) = (L⊗p, h⊗p) for some holomorphic line bundle L equipped with a
smooth metric h (see [T]). He showed that if (X, ω) is a compact Kähler
manifold with a line bundle (L, h) such that the curvature c1(L, h) is positive
and h is smooth, then the normalized Fubini-Study forms γp/p (see 2.3 for
definition) converge to c1(L, h) in C2. Later results showed that the
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convergence was actually in C∞ [C, R, Z]. We refer to [MM]. As a
consequence of this result, Tian showed that particular Kähler-Einstein
forms could be approximated by Fubini-Study currents, which answered a
question of Yau [Y].

Also included in [MM] is an asymptotic expansion of the Bergman
kernel (see [MM, Theorem 5.4.10]). This expansion has been shown to
provide information about the underlying Kähler manifold. In particular, the
asymptotic expansion can be used to prove the Kodaira embedding theorem
(see [MM, section 5.1.2]).

The assumptions of Tian’s results on (L, h) were relaxed by Coman and
Marinescu in [CM]. They worked in the case (Lp, hp) = (Lp, hp) and showed
that if c1(L, h) was an integrable Kähler current, then the aforementioned
convergence result holds in the sense of currents. The results were further
generalized by Coman, Ma, and Marinescu (see [CMM]). They showed that if
c1(Lp, hp) ≥ apω where ap →∞, and

Ap = ∫
X
c1(Lp, hp) ∧ωn−1,

then
γp − c1(Lp, hp)

Ap

→ 0

weakly as currents.
Berman’s work in 2009 introduced the notion of an equilibrium metric

heq (See section 2.2 for definition) corresponding to a smooth metric h on a
holomorphic line bundle L (see [B]). He worked in the setting where
(Lp, hp) = (Lp, hp). He showed that for any compact subset Ω of X/B+(L),
where B+(L) is the augmented base locus (definition given in [B]), there
exists CΩ ≥ 0 such that

−CΩ

p
≤ logPp

p
− (φeq −φ) ≤ CΩ +n logp

p
,

where φ and φeq are the global weights of h and heq, respectively (see [B,
Theorem 1.5]). Another interesting result of his, is the convergence

limsup
p

dimH0(X,Lp)
pn

= ∫
U(L)

c1(L,heq)n
n!

,

where n = dim(X) and U(L) is the set where the weights of heq are locally
bounded. He also showed the following weak convergence of measures

Ppωn

pn
→ χU(L) (c1(L,heq)n

n!
) ,

where Pp is the Bergman kernel function (as defined in Section 2.3) and
χU(L) is the characteristic function.

In 2019, Coman, Marinescu, and Nguyên used the equilibrium metric to
generalize Tian’s work (see [CMN, Cor. 5.7]). Like Tian and Berman, they
worked in the case where (Lp, hp) = (Lp, hp) and showed

γp

p
→ c1(L,heq)

weakly as currents.
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The following conditions will serve as the setting for most of our results
in this paper:

(A) (X,ω) is a compact (connected) Kähler manifold of complex
dimension n.

(B) Lp, p ≥ 1, is a holomorphic line bundle on X equipped with a
continuous metric hp and a singular metric gp verifying

(1.1) c1(Lp, gp) ≥ apω on X, where lim
p→∞

ap = ∞.
Set

Ap = ∫
X
c1(Lp, gp) ∧ωn−1.

(B’) Lp, p ≥ 1, is a pseudo-effective holomorphic line bundle equipped
with the continuous metric hp. There exists an open coordinate polydisc
cover {Vα} of X, frames eαp of Lp on Vα, functions φα ∈ C(Vα), and constants
Ap > 0, such that Ap →∞ and

φαp/Ap → φ
α locally uniformly,

where φαp is the local weight of hp corresponding to eαp .

Following Berman, we define heqp to be the equilibrium metric of hp. As
well, we recall that γp is the Fubini-Study current. For definitions refer to
sections 2.2 and 2.3.

For any coordinate polydisc U and p ≥ 1, let ep be a local frame of Lp on
U (see Section 2.2). Let φp ∶ U → R be the continuous function such that

hp(ep, ep) = e−2φp .

Similarly, we define ρp ∶ U → [−∞,∞) by

gp(ep, ep) = e−2ρp .

The functions φp and ρp are called the local weights of hp and gp on U .
Our main results are:

Theorem 1.1. Let (X,ω) and (Lp, hp) be as in (A) and (B). If every x ∈ X
has a neighborhood U with local frames ep of Lp, such that the families of
local weights {φp/Ap} and {ρp/Ap} are uniformly bounded in L1(U), and
there exists M > 0 such that

(1.2) −Mω ≤ c1(Lp, hp)/Ap ≤Mω,

then

(1.3)
γp − c1(Lp, heqp )

Ap

→ 0 weakly as currents.

If hp verifies (1.1), then hp = heqp . In this case, (1.3) becomes

γp − c1(Lp, hp)
Ap

→ 0

weakly as currents. This is a special case of the convergence condition
shown in [CMM]. If in addition we assume that (Lp, hp) = (Lp, hp) and set
Ap = p, our assumptions are automatically satisfied, and we obtain the
convergence shown in [CM].
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Theorem 1.2. Let (X,ω) and (Lp, hp) be as in (A) and (B). If every x ∈ X
has a neighborhood U with local frames ep, such that the collection of
scaled local weights {φp/Ap} is equicontinuous and uniformly bounded,
and {ρp/Ap} is uniformly bounded in L1(U), then (1.3) holds.

When (Lp, hp) = (Lp, hp) equicontinuity is trivial, as in that case we can
take Ap = p, and for particular local frames we have φp/p = φ1. Like Theorem
1.1, this result can be considered a generalization of the convergence in
[CM]. Another case where equicontinuity is automatically satisfied is when(Lp, hp) is a tensor product of powers of several line bundles. That case is
explored further in Section 4. There, as a corollary of this theorem, we show
that (1.3) holds with fewer assumptions.

Theorem 1.3. Let (X,ω) and (Lp, hp) be as in (A) and (B). If every x ∈ X
has a neighborhood U , with local frames ep, such that the family {φp/Ap} is
equicontinuous, and {(φp − ρp)/Ap} is uniformly bounded, then (1.3) holds.

When hp satisfies (1.1), then we may assume hp = gp, and so{(φp − ρp)/Ap = 0} is automatically bounded. In general, the difference(φp − ρp) defines a function on all X (see Section 2.2). In the case where(Lp, gp) = (Lp, gp) and ep = e⊗p, we can take Ap = p, and {(φp − ρp)/p} is
bounded whenever {φp/p} is. In this case, Theorem 4.7 shows that γp/p
converges.

This leads us to the question of under what conditions does γp/Ap

converge? Due to Coman, Ma, and Marinescu, we know if hp = gp and
c1(Lp, hp)/Ap converges, then so does γp/Ap. In the setting of our previous
theorems we also know that if c1(Lp, heqp )/Ap converges, then so does γp/Ap.
So to give a partial answer to our question, we assume c1(Lp, hp)/Ap

converges, and ask under what conditions does c1(Lp, heq)/Ap converge as
well? We will state a theorem with sufficient conditions for such
convergence. Before we do, we introduce a necessary proposition.

Proposition 1.4. Let X,Vα, and φα be as in (A) and (B′), then for all α,β
there exist pluriharmonic functions ψαβ on Vα ∩ Vβ such that

φα = φβ +ψαβ.
In this case, there exists a real closed (1,1)-current T on X defined by

(1.4) T ∣Vα = ddcφα,
where dc = 1

2πi
(∂ − ∂). Let {T} denote the cohomology class of T , and fix a

smooth form θ ∈ {T}. From the definition, we have

T = θ + ddcφ,
where φ ∈ L1(X). Since φα is continuous, it follows that φ is continuous.

Theorem 1.5. Let (X,ω), (Lp, hp), and Ap be as in (A) and (B′). Suppose
the following conditions hold:

(a) There exist δp ≥ 0 with δp → 0 such that

T − δpω ≤ c1(Lp, hp)
Ap

on Vα for all α.
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(b) There exist ρ ∈ PSH(X,θ) and some c > 0 such that

θ + ddcρ ≥ cω.
Then

(1.5)
γp

Ap

→ θ + ddcφeq and
c1(Lp, heqp )

Ap

→ θ + ddcφeq
weakly as currents, where

φeq ∶= sup{ψ ∈ PSH(X,θ) ∣ ψ ≤ φ}.
Moreover,

(1.6) φeq = [limsup
p
(φeqp −φp

Ap

)]∗ +φ,
where φp and φeqp are the global weights of hp and heqp (see section 2.3).

Here PSH(X,θ) denotes the class of θ−plurisubharmonic functions (see
section 2.1) Note that (1.5) and condition (b) are both independent of our
choice of θ. The independence of (1.5) is shown in the proof of Theorem 1.5.
In the case of (b), if θ̃ ∈ {T}, then θ and θ̃ are in the same cohomology class,

so clearly there exists ρ̃ ∈ L1(X) with θ̃ + ddcρ̃ = θ + ddcρ.
We said we were interested in cases where c1(Lp, hp)/Ap converges, and

this is one of them, as if φαp/Ap → φα uniformly, then

c1(Lp, hp)
Ap

→ T weakly as currents, where T is as in (1.4).
The function φ

eq
p is defined with respect to a smooth metric h0

p in
section 2.2. One can show using the C∞ version of the first Cousin Problem,
that for particular choices of h0

p and θ, equation (1.6) reduces to
φeq = [limsupp(φeqp /Ap)]∗.

In Lemma 3.4 we will show directly that there exists ψ ∈ PSH(X,θ) with
ψ ≤ φ, hence φeq /= ∞.

The purpose of conditions (a) and (b) is to allow us to apply Demailly’s

L2 estimates for ∂, which requires some degree of positivity.
In Section 4 we will look at the case where there exists a continuous(1,1)−form Φ such that c1(Lp, hp)/Ap → Φ uniformly. This assumption

implies the convergence in (B′). It is examined in Corollaries 4.3 and 4.6. If
we make the additional assumption Lp = Lp, then (b) is automatically satisfied
whenever L is big, a fact which can be used to prove a special case of
Theorem 4.7.

This paper has the following structure. In Section 2, we discuss the
necessary information about quasi-plurisubharmonic functions, define global
weights for our metrics, and give a construction of heqp . Section 3 is devoted
to proofs of the theorems above. In Section 4, we present applications of our
main results.

2. PRELIMINARIES

2.1. Quasi-plurisubharmonic functions. Recall that a
quasi-plurisubharmonic (qpsh) function on X is a function, f ∶ X → [−∞,∞),
that is locally the sum of a plurisubharmonic (psh) function and a smooth
function. Given a real closed smooth (1,1)−form θ, a θ−plurisubharmonic
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(θ−psh) function is a qpsh function f ∶ X → [−∞,∞) such that θ + ddcf ≥ 0. We
denote by PSH(X,θ) the class of all θ−psh functions.

In the setting of Theorem 1.1, note the condition
−Mω ≤ c1(Lp, hp)/Ap ≤Mω implies −Mω ≤ ddcφp/Ap ≤Mω on any contractible
Stein open set V where ddcφp = c1(Lp, hp). In this case
±φp/Ap ∈ PSH(V,Mω). This is one of the reasons we are interested in the
notion of qpsh functions. Another is that they are necessary for us to define
the equilibrium metrics heqp .

One property will we need to note about θ-psh functions, is that two are
equal almost everywhere, then they are equal. We will use this fact
throughout this paper.

2.2. Global weights and the equilibrium metric. We first observe that if Ω
is a contractible Stein open set in Cn, then a result of Oka tells us
H1(Ω,O∗) ≅H2(Ω,Z), hence line bundles over Ω are trivial (see [Hu, p.201]
and [O]). In particular, if V ⊂ X is a coordinate polydisc, then Lp is trivialized
on V for all p ≥ 1.

We fix a finite open cover {Uα} of X by coordinate polydiscs, such that
for all α, there exists a coordinate polydisc Vα with Uα ⋐ Vα. Fix local frames
eαp . Let φαp and ραp denote the local weights of hp and gp on Vα. As X is
compact, we assume that the Vα are the neighborhoods referred to in our
theorems.

In order to define global weights for our given metrics, as well as give a
definition of heqp , we fix a smooth metric h0

p on Lp. Define ξαp ∈ C∞(Vα) to be
the local weights of h0

p, which are given by

(2.1) h0
p(eαp , eαp) = e−2ξαp .

The global weights of hp and gp are the functions φp ∶ X → R and
ρp ∶ X → [−∞,∞), defined by

(2.2) hp = h0
pe
−φp and gp = h0

pe
−2ρp .

Note that (φαp − ραp) = (φp − ρp), which is a global function.
In order to define heqp , we first set

θp = c1(Lp, h0
p).

Let φeqp ∶ X → [−∞,∞) be the θp−psh upper envelope

(2.3) φeqp = sup{ψ ∈ PSH(X,θp) ∣ ψ ≤ φp}.
Observe that φp is continuous and ρp is bounded above (it is psh), so
ρp −C ≤ φp for some C ≥ 0. This tells us

ρp −C ∈ sup{ψ ∈ PSH(X,θp) ∣ ψ ≤ φp},
so φeqp ∈ PSH(X,θp) and φeqp ≤ φp. We define

heqp = h0
pe
−2φ

eq
p .

The global weight of heqp is φeqp . A local construction of the equilibrium
metric is given by Berman in [B]. His definition is clearly equivalent to ours.
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2.3. Fubini-Study currents and Bergman kernels. Let H0
(2)(X,Lp) denote

the Bergman space of square integrable sections of Lp relative to hp and ω,
that is,

H0
(2)(X,Lp, hp) = {S ∈H0(X,Lp) ∣ ∥S∥2hp < ∞} ,

where

∥S∥2hp ∶= ∫
X
∣S∣2hpωnn!

.

When the metric is clear, the notation is shortened to H0
(2)(X,Lp). This space

will be endowed with the inner product

⟨S1, S2⟩ = ∫
X
hp(S1, S2)ωn

n!
.

Let Pp be the Bergman kernel function of the space H0
(2)(X,Lp). For all

p ≥ 1, a global definition is given by fixing an orthonormal basis, {Spj }, of

H0
(2)(X,Lp). We then define d(p) ∶= dimH0

(2)(X,Lp) and

Pp(x) ∶= d(p)∑
j=1

∣Spj (x)∣2hp .
The following is a well-known variational characterization of the Bergman
kernel, which will be useful in our work,

Pp = sup
S∈H0

(2)
(X,Lp)

⎛⎝
∣S∣2hp∥S∥2hp

⎞⎠ .
We recall that γp was the Fubini-Study current of H0

(2)(X,Lp). To define

it explicitly, we let U ⊂ X be a contractible Stein open set. Let spj ∈ O(U) be

defined by Spj = spj ep. Then

γp∣U ∶= 1

2
ddc log

⎛⎝
d(p)

∑
j=1

∣spj ∣2⎞⎠.
Note, that the equation above defines a global current on X. One way to see
that is the following equivalent definition. We consider the Kodaira map
Ψp ∶ X ⇢ CP

k−1 defined by

x ↦ [sp
1
(x) ∶ . . . ∶ sp

d(p)(x)], ∀x ∈ U/V(sp1 , . . . spd(p)),
where V(sp

1
, . . . , spk) is the analytic variety. It is well known that this map is

independent of our choice of U. We then define

γp = Ψ∗pωFS,

where ωFS is the Fubini-Study form on CP
k−1.

Note, the following is a well-known identity which will be helpful in our
work:

(2.4) γp = dd
c logPp

2
+ c1(Lp, hp).



ASYMPTOTICS OF FUBINI-STUDY CURRENTS FOR SEQUENCES OF LINE BUNDLES 8

3. MAIN RESULTS

3.1. Proofs of Theorems 1.1, 1.2, and 1.3. We use the notation and
definitions introduced in Sections 1 and 2. We start by stating and proving
two lemmas necessary for our proof of Theorem 1.1.

Lemma 3.1. If V ⊆ Cn is a polydisc and v ∈ L1(V) such that for some M ≥ 0
we have

−Mω ≤ ddcv ≤Mω,

then there exists ṽ ∈ C(V) with ṽ = v a.e. and ddcṽ = ddcv.
Proof. Let ζ be a smooth potential for Mω on V . Since −Mω ≤ ddcv ≤Mω it
follows that ζ + v and ζ − v are both equal a.e. to psh functions on V. Let u,w
be psh functions with ζ + v = u and ζ − v = w a.e. Note that 2ζ = u +w a.e.
Since both sides are psh we have 2ζ = u +w everywhere. Then, 2ζ −u = w, so
as 2ζ −u is lower semicontinuous, and w is as well. We see that w is both
upper and lower semicontinuous, so it is continuous, and v = w a.e.

♥

Lemma 3.2. Let U,V ⊂ X be open coordinate polydiscs with U ⋐ V . Assume
vp ∈ C(V) and v ∈ L1(V) such that vp → v in L1,

−Mω ≤ ddcvp ≤Mω.

Then, for all ε > 0 there exists p0 = p0(ε) and δ = δ(ε) such that if z ∈ U,
r < δ, and p > p0, then

sup
B(z,r)

vp(z) − inf
B(z,r)

vp(z) < ε.
Proof. By Lemma 3.1 we can and do assume v is C. Let ζ be a smooth real
potential for Mω on V . By [Hö, Theorem 3.2.12], if ζ is a real smooth
potential for Mω, then we can and do assume ζ ± v ∈ PSH(V).

From Hartog’s lemma (see [Hö, Theorem 3.2.13]) applied to vp and v it
follows that for all K ⋐ V we have

(3.1) limsup
p→∞

[sup
K

vp] ≤ sup
K

v.

Let B1, . . . ,Bm be a finite cover of U by balls such that 2Bj ⋐ V for all j ,
where 2Bj is the dilation of Bj by a factor of 2. Using (3.1), since there are
finitely many Bj , we can choose p0 large enough so that

(3.2) sup
2Bj

vp ≤ sup
2Bj

v + ε
for all j and p > p0. Similarly, we may assume for such p we have

sup
2Bj

(−vp) ≤ sup
2Bj

(−v) + ε,
thus

(3.3) − inf
2Bj
vp ≤ − inf

2Bj
v + ε.

Let δ > 0 be the minimum of the radii of the Bj . Additionally, assume

r < δ and z ∈ U. Since the sets B1, . . . ,Bm cover U , we deduce z ∈ Bj for some
j, therefore B(z, r) ⊂ 2Bj , and if p ≥ p0, then by (3.2) and (3.3) we have
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sup
B(z,r)

vp − inf
B(z,r)

vp ≤ sup
2Bj

vp − inf
2Bj
vp ≤ sup

2Bj

v − inf
2Bj
v + 2ε.

As v is continuous, by letting the radii of Bj go to zero we have our desired
upper bound.

♥

Proof of Theorem 1.1. Recall that {Uα} is a finite cover of X by coordinate
polydiscs. Moreover, for all α there exists a coordinate polydisc Vα such that
Uα ⊆ Vα.

Notice that for p ≥ 1, the sets Vα and local frames eα satisfy the
assumptions of our theorem. That is, the local weights φαp and ραp defined by

hp(eαp , eαp) = e−2φαp and gp(eαp , eαp) = e−2ραp ,

form a family {φαp/Ap, ραp/Ap} which is uniformly bounded in L1(Vα).
Additionally, for each p ≥ 1, we recall that h0

p is a smooth metric on Lp with
global weights ξαp with respect to eαp . The global weights φp and ρp are then
defined by

hp = h0
pe
−2φp and gp = hpe−2ρp .

Furthermore, the equilibrium metric heqp is given by heqp = h0
pe
−2φ

eq
p .

For a fixed p, let {Sj} be an orthonormal basis of H0
(2)(X,Lp)

represented locally by Sj = sαj eαp . Observe that by (2.4) we have

(3.4)
γp − c1(Lp, heqp )

Ap

= ddc [((logPp)/2 +φp
Ap

) − φeqp
Ap

] .
Define

βp = (logPp)/2 +φp
Ap

.

It follows that
γp − c1(Lp, heqp )

Ap

= ddc (βp − φeqp
Ap

) ,
so if we show βp −φeqp /Ap → 0 in L1 we will prove our claim. This happens if
every subsequence has a subsequence where the convergence holds, so it
suffices to show a single subsequence where convergence holds.

Let ζα ∈ C∞(Vα,R) be a real smooth potential for Mω. By (1.2), it follows
that φαp/Ap + ζα ∈ C(Vα) is psh. For all α define

δ = δ(α) = dist(∂Vα,Uα),
where dist is the distance induced by ω on X.
For any ε ≥ 0, let

Uε
α = {x ∈ Vα ∣ dist(x,Uα) < ε}.

By the subaveraging property of psh functions and the L1(Vα) uniform
boundedness of {φαp/Ap}, it follows that {φαp/Ap + ζα} is uniformly upper

bounded on U
δ/2
α . The same logic tells us {ζα −φαp /Ap} is uniformly upper

bounded on U
δ/2
α . Since ζα is continuous, putting these two bounds together

allows us to conclude that {φαp/Ap + ζα} is a uniformly bounded family of psh

functions on U
δ/2
α . From [Hö, Theorem 3.2.12], there exists a psh function φ̂α

and a subsequence {φαpj/Apj + ζα} such that
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φαpj /Apj + ζα → φ̂α in L1(Uδ/2
α ).

Since there are finitely many α, by passing to a further subsequence, if
necessary, we may assume

φαpj /Apj + ζα → φ̂α in L1(Uδ/2
α ) and a.e.

for all α simultaneously. This subsequence is the one where we will show
convergence holds.

Let ε > 0. By Lemma 3.2 it follows that we can choose r = r(α,ε) ∈ R
satisfying

δ/8 > r > 0

small enough and j0 > 0 large enough so that

(3.5) sup
B(z,r)

(φαpj /Apj) − inf
B(z,r)

(φαpj /Apj) < ε
for all j > j0 and z ∈ Uα. As there are finitely many α, WLOG we may assume
the above holds for all α.

Let x ∈ Uα. By our choice of r, it follows that V ∶= B(x,2r) ⊂ Uδ/4
α . Let

U = B(x, r) and z ∈ U . Suppose S ∈Hp

(2)(X,Lp) and define sα ∈ O(Vα) by

S = sαeαp on Vα. Since sα is holomorphic, it follows from subaveraging that

∣S(z)∣2p = ∣sα(z)∣2e−2φαp(z) ≤ e−2φαp(z)

λ(B(z, r)) ∫B(z,r) ∣sα∣2dλ
where λ is the Lebesgue measure. It follows that there exists C1 > 0 such that

∣S(z)∣2p ≤ C1e
−2φαp(z)

λ(B(z, r)) ∫B(z,r) ∣sα∣2ω
n

n!

≤ C1e
−2φαp(z)+max

B(z,r)
2φαp

λ(B(z, r)) ∫
B(z,r)

∣sα∣2 (e−2φαp) ωn
n!

= ∥S∥2hpC1e
−2φαp(z)+max

B(z,r)
2φαp

λ(B(z, r)) .

By the variational characterization of the Bergman kernel, we have

Pp(z) ≤ C1e
−2φαp(z)+2 max

B(z,r)
φαp

λ(B(z, r)) ,

therefore

logPpj(z)
2Apj

≤ logC1 − 2n logr −n logπ + logn!

2Apj

+max
B(z,r)

(φαpj
Apj

) − φαpj(z)
Apj

.

By (3.5) and by enlarging j0, if necessary, it follows that if j ≥ j0, then on
B(x, r) we have

logPpj
2Apj

≤ −2n logr

2Apj

+ ε.
By covering X with finitely many such B(x, r), we may assume WLOG that
the above inequality holds on X.

Note that

(3.6)
logPpj

2
+φpj −Apjε + 2n logr

2
≤ φpj ,
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and

ddc ( logPpj
2
+φpj − εApj + 2n logr

2
) = γpj − θpj ,

so the L.H.S. of (3.6) is θpj−psh. By the definition of φeqp , we have

logPpj
2
+φpj − εApj + 2n logr

2
≤ φeqpj ,

so
logPpj
2Apj

+ φpj
Apj

≤ −2n logr

2Apj

+ ε + φ
eq
pj

Apj

,

and

(3.7) βpj − φ
eq
pj

Apj

≤ −2n log r

2Apj

+ ε.
This is the upper bound we shall use.

To show the lower bound, we first define tp = 1/√ap and set

h̃p = h0
pe
−2(1−tp)φeqp −2tpρp .

We compute

c1(Lp, h̃p) = θp + (1 − tp)ddcφeqp + tpddcρp
= (1 − tp) (θp + ddcφeqp ) + tp (θp + ddcρp) ≥ tp (θp + ddcρp)

≥ ap√
ap
ω =√apω.

Here,
√
ap →∞ as p →∞. This shows that h̃p satisfies the assumptions of

Demailly’s L2 estimates for ∂ (see [CMM, Theorem 2.5]). As in the proof of
[CMM, Theorem 1.1], for all p large enough, we use the Ohsawa-Takegoshi

Extension Theorem and Demailly’s estimates for ∂ (see [OT] and [D], resp.)
to show the following. There exists C2 > 0 such that for all z ∈ Uα with
ραp(z) /= −∞, there exists Sz,p ∈ H0(X,Lp) such that Sz,p(z) /= 0 and

(3.8) ∥Sz,p∥2h̃p ≤ C2∣Sz,p(z)∣2h̃p .
We compute

h̃p = h0
pe
−2(1−tp)φeqp −2tpρp = hpe2φp−2(1−tp)φeqp −2tpρp

= hpe2(1−tp)(φp−φeqp )e2tp(φp−ρp) ≥ hpe2tp(φp−ρp) = hpe2tp(φαp−ρ
α
p ).

Since {ραp/Ap} is a family of psh functions uniformly bounded in L1(Vα) it is
locally uniformly bounded above. Then, as {φαp/Ap} is locally uniformly
bounded, it follows that {(φαp − ραp)/Ap} is bounded below on Uα for all α.
Since (φαp − ραp)/Ap forms a global function, there exists D ∈ R with

(φαp − ραp)/Ap ≥ D,
for all p,α. Therefore,

(3.9) h̃p ≥ hpe2tp(φαp−ρ
α
p ) ≥ hpe2tpDAp .

From above and (3.8), we deduce that Sz,p ∈H0
(2)(X,Lp) for all p large enough.

From (3.9) and (3.8) we obtain
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∥Sz,p∥2hpe2tpDAp ≤ C2∣Sz,p(z)∣2hp exp [2φp(z) − 2(1 − tp)φeqp (z) − 2tpρp(z)] ,
so

exp [2tpDAp − 2φp(z) + 2(1 − tp)φeqp (z) + 2tpρp(z)]
C2

≤ ∣Sz,p(z)∣2hp∥Sz,p∥2hp ≤ Pp(z).
We compute

tpDAp + (1 − tp)φeqp (z) + tpρp(z) − log(C2)
2

≤ logPp(z)
2

+φp(z)
tpD + −tpφ

eq
p (z) + tpρp(z) − log(C2)/2

Ap

≤ (βp − φeqp
Ap

)(z).
As φp ≥ φeqp we get

tpD + tp (ρp −φp)(z)
Ap

− logC2

2Ap

≤ (βp − φeqp
Ap

)(z).
This serves as our lower bound.

Combining the above inequality with that of (3.7), it follows that for j
large enough, we have

tpD + tp (ρp −φp)(z)
Ap

− logC2

2Ap

≤ (βpj − φ
eq
pj

Apj

)(z) ≤ −2n log r

2Apj

+ ε
for a.e. z ∈ U . By compactness it holds for a.e. z ∈ X. Then,

∣βpj − φeqpjApj

∣ (z) ≤ ∣tpD + tp (ρp −φp)(z)
Ap

− logC2

2Ap

∣ + ∣2n logr

2Apj

∣ + ε,
Recall that (φαp − ραp) = (φp − ρp)∣Vα is bounded in L1(Uα) for all α. So, (φp − ρp)
is bounded in L1(X). As well, tp → 0, so by integrating and letting j →∞, we
find

0 ≤ limsup
j
∫
X
∣βpj − φeqpjApj

∣ ωn
n!
≤ ε ∫

U

ωn

n!
.

By letting ε → 0 we see that

βpj − φ
eq
pj

Apj

→ 0

in L1(X).
♥

Proof of Theorem 1.2 Like in Theorem 1.1, the family {Uα} forms a finite
cover of X by coordinate polydiscs, Vα is a coordinate polydisc containing Uα,
and eαp is a local frame of Lp on Vα. Here the global weights φαp and ραp of hp
and gp satisfy the property that {φαp/Ap} is uniformly bounded and
equicontinuous, and {ραp/Ap} is uniformly bounded in L1.

Define

βp = (logPp) /2 +φp
Ap

.

As we established in the preceding proof, if we show βp −φeqp /Ap → 0 in L1,
then the proof is completed.



ASYMPTOTICS OF FUBINI-STUDY CURRENTS FOR SEQUENCES OF LINE BUNDLES 13

Let ε > 0 and x ∈ X. Using our subaveraging argument from the proof
of Theorem 1.1 and the equicontinuity argument in the proof of [CMM,
Proposition 4.4], it follows that

(3.10) Apβp − logC1 − 2n logr

2
−Apε ≤ φp,

for some C1 ∈ R. The L.H.S. is θp−psh, hence by our arguments in the proof
of Theorem 1.1, the upper bound φp may be replaced by φeqp . Therefore,

(βp − φeqp
Ap

) ≤ logC1 − 2n logr

2Ap

+ ε.
This serves as our upper bound.

For the lower bound, we apply the same argument as in the proof of
Theorem 1.1, which only required {φαp/Ap} to be locally uniformly bounded
and {ραp/Ap} to be bounded in L1. These methods allow us to deduce that for
some neighborhood U of x, if z ∈ U , then

tpC2 + tp(ρp −φp)(z) − log(C3)/2
Ap

≤ (βp − φeqp
Ap

)(z) ≤ logC1 − 2n logr

2Ap

+ ε
for some C2,C3 > 0. This is the same situation we had at the end of our proof
of Theorem 1.1, so we deduce βp −φeqp /Ap → 0 in L1.

♥

Proof of Theorem 1.3. Here Uα, Vα, eαp and the global weights φαp , ρ
α
p are

defined as in the previous two theorems. The conditions imposed on the
weights by our assumptions are that {φp/Ap} is equicontinuous and{(φp − ρp)/Ap} is uniformly bounded. We define βp as in the previous two
proofs. As before, it suffices to show βp −φeqp /Ap → 0 in L1.

As in the proof of Theorem 1.2, (3.10) holds. For the lower bound, we
first fix z ∈ X, then proceed as in our proof of Theorem 1.1. Set tp = 1/√Ap

and

h̃p = h0
pe
−2(1−tp)φeqp −2tpρp .

This definition is the same as in Theorem 1.1, hence it satisfies

c1(Lp, h̃p) ≥√apω.
In exactly the same fashion as in our proof of Theorem 1.1, for p large
enough, we conclude there exists C2 > 0 such that for all z ∈ Uα with
ραp(z) /= −∞, there exists Sz,p ∈ H0(X,Lp) such that Sz,p(z) /= 0 and

(3.11) ∥Sz,p∥2h̃p ≤ C1∣Sz,p ∣2h̃p(z).
As we have computed in our previous proofs, we have

h̃p ≥ hpe2tpφp−2tpρp .

Since {(φp − ρp)/Ap} is uniformly bounded, it follows that there exists D
independent of p such that

h̃p ≥ hpe2AptpD,

and so Sz,p ∈ H0
(2)(X,Lp, hp). From this and (3.11), we deduce

exp [2AptpD − 2φp(z) + 2(1 − tp)φeqp (z) + 2tpρp(z)]
C1

≤ Pp(z).
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Here z ∈ X was arbitrary, so the above holds on all X, and we deduce

tpD + −tpφ
eq
p + tpρp − logC1

Ap

≤ βp − φ
eq
p

Ap

.

Since φp ≥ φeqp , we find

tpD + −tpφp + tpρp − logC1

Ap

≤ βp − φ
eq
p

Ap

.

By the uniform boundedness of {(φp − ρp)/Ap}, it follows that there exists
D2 > 0 such that

tpD2 + − logC1

Ap

≤ βp − φ
eq
p

Ap

.

Using our lower bound and (3.10), one concludes as in the proof of Theorem
1.1 that

βp − φ
eq
p

Ap

→ 0 in L1(X).
♥

3.2. Proofs of Proposition 1.4 and Theorems 1.5. We start with the proof
of Proposition 1.4.
Proof. Let kαβp be the transition functions for Lp with respect to the open

cover {Vα}. Set ψαβp = log ∣kαβp ∣. Then, we have the formula ψαβp = φαp −φβp. Since

φαp/Ap converges uniformly for all p, so does ψαβp /Ap. Let the limit be ψαβ. It
follows that

(3.12) ψαβ = lim
p

⎛⎝φ
α
p −φβp
Ap

⎞⎠ = φα −φβ.
Moreover, kαβp is holomorphic and non-vanishing, hence ψαβp = elog ∣kαβp ∣ is

pluriharmonic, and so is the uniform limit ψαβ = limp(ψαβp /Ap). This shows
that ψαβ satisfies the desired conclusions.

♥

The following lemmas will be used to prove Theorem 1.5.

Lemma 3.3. If (X,ω) and (Lp, hp) satisfy (A) and (B′), and ψαβ are
functions such that φα = φβ +ψαβ, then there exists ξα ∈ C∞ with

ξα = ξβ +ψαβ.
Proof. Note that (3.12) implies

ψαβ = −ψβα and ψαβ +ψβγ +ψγα for all α,β,γ.

By the C∞ version of the first Cousin Problem [Kr, Proposition 6.1.7] there
exist functions ξα ∈ C∞(Vα) for all α such that

ξα = ξβ +ψαβ for all α,β.

This is what we desired to show.

♥
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Recall that the local weights ρp, φp of gp and hp were defined in Section
2.2 (see (2.2)). As were φeqp and ξαp (see (2.3) and (2.1)). We also recall that
φp = ξαp +φαp . In general, similar relationships exist for the local and global
weights of any metric.

In the following lemmas and the proof of Theorem 1.5, we let θ be the(1,1)−form such that θ∣Vα = ddcξα, where ξα are as in the previous lemma.
Also, we will set φ = φα − ξα.

Lemma 3.4. Let (X,ω) and (Lp, hp) satisfy (A) and (B′), and suppose the
following conditions hold.

(a) There exist δp ≥ 0 with δp → 0 such that

ddcφα − δpω ≤ c1(Lp, hp)
Ap

on Vα.

(b) There exist ρ ∈ PSH(X,θ) and some c > 0 such that

θ + ddcρ ≥ cω.
Then there exists a subsequence {(φeqpj −φpj)/Apj} such that

(φeqpj −φpj
Apj

)→ φ̃eq −φ in L1(X),
where

(3.13) φ̃eq ∶= [limsup
j→∞

(φeqpj −φpj
Apj

)]∗ +φ ∈ {ψ ∈ PSH(X,θ) ∣ ψ ≤ φ}.
Proof. First, since φp is continuous we may assume, by subtracting a
constant, that Ap(ρ −φ) ≤ 0. We compute

ddc(Ap(ρ −φ) +φαp) = Ap (ddcρ + θ) + ddc(φαp −Apφ
α) ≥ Apcω −Apδpω,

hence for p large enough it follows that [Ap(ρ −φ) + φαp ] is psh.
Let p be large enough such that [Ap(ρ −φ) + φαp ] is psh. Since

Ap(ρ −φ) +φp ∈ PSH(X,θp) and Ap(ρ −φ) +φp ≤ φp, it follows from the
definition of φeqp that Ap(ρ −φ) +φαp ≤ ξαp +φeqp ≤ φαp , therefore

(ρ −φ) +φαp /Ap ≤ (ξαp +φeqp )/Ap ≤ φαp /Ap.

By the local uniform convergence φαp /Ap → φα, the L.H.S. and R.H.S. of the

previous equation are uniformly bounded in L1
loc(Vα), thus {(ξαp +φeqp )/Ap} is

as well. As a consequence, there exists a subsequence {(ξαpj +φeqpj )/Apj} which

converges in L1(Uα) and a.e. to a function φ̃eq,α ∈ PSH(Vα) (see [Hö,
Theorem 3.2.12]). As there are finitely many α, we may assume the
convergence holds for all α simultaneously.

We claim that

(3.14) φ̃eq,α − φα = [limsup
j→∞

(φeqpj −φpj
Apj

)]∗ ,
To prove the claim, note that from [Kl, Theorem 2.6.3] we can deduce

φ̃eq,α = [limsup
j→∞

(ξαpj +φeqpj
Apj

)]∗ .
Due to the uniform convergence φαp/Ap → φα and the continuity of φα, it
follows that
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φ̃eq,α − φα = [limsup
j→∞

(ξαpj +φeqpj
Apj

)]∗ − φα = [limsup
j→∞

(ξαpj +φeqpj
Apj

− φα)]∗

= [limsup
j→∞

(ξαpj +φeqpj −φαpj
Apj

)]∗ = [limsup
j→∞

(φeqpj −φpj
Apj

)]∗ .
Which gives us (3.14).

By definition

φ̃eq = φ̃eq,α − ξα
is θ−psh. Moreover, by (3.14), since φeqp ≤ φp for all p, we have φ̃eq ≤ φ which
gives us (3.13). To finish off the computation we note that

φ
eq
pj −φpj
Apj

= (ξαpj +φeqpj ) − φαpj
Apj

→ φ̃eq,α − φα = φ̃eq −φ,
where the convergence is in L1(Uα). Since this holds on all Uα, it follows that(φeqpj −φpj)/Apj → φ̃

eq −φ in L1(X). This completes the proof.

♥

For the following proof we will use the definition of φ̃eq from the
previous Lemma.
Proof of Theorem 1.5. Let ε > 0 and x ∈ X. Although we are working with
currents, it still suffices to show the claim holds for a subsequence.
Since {φαp/Ap} is uniformly convergent on Vα it is equicontinuous on Uα,
hence by our arguments in the proof of Theorem 1.2, (3.10) holds. That is,
there exists a C1 ∈ R such that

(3.15)
logPp
2Ap

− (φeqp −φp
Ap

) ≤ logC1 − 2n logr

2Ap

+ ε.
From the above and Lemma 3.4, it follows that there exists a subsequence{pj} such that for all j , we have

logPpj
2Apj

− (φ̃eq −φ) ≤ logC1 − 2n logr

2Apj

+ ε + [(φeqpj −φpj
Apj

) − (φ̃eq −φ)] .
By the definition of φeq , it follows that

(3.16)
logPpj
2Apj

− (φeq −φ) ≤ logC1 − 2n logr

2Apj

+ ε + [(φeqpj −φpj
Apj

) − (φ̃eq −φ)] .
This shall serve as our upper bound.

By continuity of φp , we assume WLOG that ρ ∈ PSH(X,θ) and(ρ −φ) ≤ 0. From (b), we have

−δpω ≤ c1(Lp, hp)/Ap − ddcφα = ddc(φαp /Ap −φα).
Define tpj =√δpj + 1/√Apj , and set h̃pj = hpje−2(1−tpj )Apj (φ

eq−φ)−2tpjApj (ρ−φ). We
compute

c1(Lpj , h̃pj) = ddcφαpj + (1 − tpj)Apjdd
c(φeq −φ) + tpjApjdd

c(ρ −φ)
= ddc(φαpj −Apjφ

α) + (1 − tpj)Apjdd
c(φeq + ξα) + tpjApjdd

c(ρ + ξα)
≥ −δpjApjω +

√
δpjApjcω + c

√
Apjω ≥ c

√
Apjω.
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Since c
√
Apj →∞ as j →∞, h̃pj satisfies the assumptions of Demailly’s L2

estimates for ∂. By our arguments from Theorem 1.1 using
Ohsawa-Takegoshi extension and Demailly’s estimate for ∂, there is a C2 > 0
such that for all z ∈ Uα with ραp(z) /= −∞, there exists Sz,j ∈H0(X,Lpj) satisfying
Sz,j(z) /= 0 and

(3.17) ∥Sz,j∥2h̃pj ≤ C2∣Sz,j(x)∣2h̃pj .
Since (φeq −φ) and (ρ −φ) are negative, we have h̃pj ≥ hpj , and so

Sz,j ∈H0
(2)(X,Lpj , hpj). From this and (3.17) it follows that

∥Sz,j∥hpj ≤ C2∣Sz,j(x)∣hpje−2(1−tpj )Apj (φ
eq−φ)(x)−2tpjApj (ρ−φ)(x),

thus

e2(1−tpj )Apj (φ
eq−φ)(x)+2tpjApj (ρ−φ)(x)

C2

≤ ∣Sz,j(x)∣2hpj∥Sz,j∥2hpj .

By the variational characterization of the Bergman kernel, it follows that

(1 − tpj)(φeq −φ)(x) + tpj(ρ −φ)(x) − logC2

2Apj

≤ logPpj(x)
2Apj

,

hence

−tpj(φeq −φ)(x) + tpj(ρ −φ)(x) − logC2

2Apj

≤ logPpj(x)
2Apj

− (φeq −φ)(x).
As (φeq −φ) is negative, we have

tpj(ρ −φ)(x) − logC2

2Apj

≤ logPpj(x)
2Apj

− (φeq −φ)(x).
Combining with (3.16) yields

(3.18) tpj(ρ −φ)(x) − logC2

2Apj

≤ logPpj(x)
2Apj

− (φeq −φ)(x)
≤ logC1 − 2n logr

2Apj

+ ε + [(φeqpj −φpj
Apj

) − (φ̃eq −φ)] .
Note, by Lemma 3.4 we have (φeqpj −φpj)/Apj → (φ̃eq −φ) in L1(X) and by
definition tpj → 0, so from computations similar to those in the proof of
Theorem 1.1 we have

limsup
j

∥ logPpj
2Apj

− (φeq −φ)∥
L1(X)

≤ ε ∫
X

ωn

n!
.

Letting ε → 0, we find that

logPpj
2Apj

− (φeq −φ)→ 0

in L1(X). Therefore

(3.19)
γpj

Apj

→ T + ddcφeq − ddcφ = θ + ddcφeq
weakly as currents.
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Now, we address the second half of (1.5). By the definition of φeq and
Lemma 3.4 we have

(φeqpj −φpj
Apj

) − [(φeqpj −φpj
Apj

) − (φ̃eq −φ)] = (φ̃eq −φ) ≤ (φeq −φ).
With this and (3.18) we can deduce

tpj(ρ−φ)(x)− logC2

Apj

−[(φeqpj −φpj
Apj

) − (φ̃eq −φ)] (x)−ε ≤ logPpj(x)
2Apj

−(φeqpj −φpj
Apj

)(x).
Note tpj(ρ −φ)→ 0 by definition and [(φeqpj −φpj)/Apj − (φeq −φ)] → 0 in L1(X)
by Lemma 3.4. So, it follows from (3.15) and the inequality above that

limsup
j

∥ logPpj
2Apj

− (φeqpj −φpj
Apj

)∥
L1(X)

≤ ε ∫
X

ωn

n!
.

Letting ε → 0 tells us that

logPpj
2Apj

− (φeqpj −φpj
Apj

)→ 0

in L1(X), hence by (3.4) in the proof of Theorem 1.1 we have

γpj − c1(Lpj , heqpj )
Apj

→ 0 as currents.

From this and (3.19) it follows that

c1(Lpj , heqpj )
Apj

→ θ + ddcφeq,
as desired.

Next, we prove (1.6). Since

( logPpj
2Apj

− (φeq −φ)) ,( logPpj
2Apj

− φ
eq
pj −φpj
Apj

)→ 0

in L1(X), we also have

(φeqpj −φpj
Apj

)→ (φeq −φ)
in L1(X). Then, from Lemma 3.4 we deduce that (φeq −φ) = (φ̃eq −φ) a.e., and
φ̃eq = φeq a.e. Since φeq and φ̃eq are qpsh and equal a.e., they are equal
everywhere. Since φeq is independent of the subsequence {pj}, it follows
from Lemma 3.4 that every subsequence of (φeqp −φp)/Ap +φ has a
subsequence converging to φeq almost everywhere. Then(φeqp −φp)/Ap +φ → φeq a.e., and (1.6) holds, that is,

φeq = [limsup
p
(φeqp −φp

Ap

)]∗ +φ.
Lastly, we only proved the theorem for a particularly smooth θ ∈ {T},

and we must show it holds for all. Let θ̃ ∈ {T} be smooth and choose φ̃ ∈ C(X)
such that θ̃ + ddcφ̃ = T . Set φ̃eq = sup{ξ ∈ PSH(X, θ̃) ∣ ψ ≤ φ̃}. Define σ = φ − φ̃.
We see that σ ∈ C(X) and ddcσ = ddc(φ − φ̃) = θ̃ − θ, hence φeq = φ̃eq + σ, and

θ + ddcφeq = (θ̃ − ddcσ) + ddc(φ̃eq + σ) = θ̃ + ddcφ̃eq.
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It follows that
γpj

Apj

→ θ̃ + ddcφ̃eq,
which shows the result is independent of our choice of θ as desired.

♥

4. APPLICATIONS

Applying Theorem 1.2 to tensor products of powers of line bundles yields the
following:

Corollary 4.1. Assume Fj , 1 ≤ j ≤ k, are holomorphic line bundles on X
equipped with continuous metrics hFj and singular metrics gFj such that
c1(Fj , gFj) ≥ 0 and c1(F1, gF1) ≥ εω, for some ε > 0. Let {mj,p} be a sequence
of natural numbers with m1,p →∞, as p →∞. Let γp, p ≥ 1, be the
Fubini-Study currents associated with H0

(2)(X,Lp) where

Lp = Fm1,p

1 ⊗ . . .⊗ Fmk,p

k , hp = (hF1)m1,p ⊗ . . .⊗ (hFk)mk,p .

Let heqp be the equilibrium metric of hp. Then

γp − c1(Lp, heqp )
∑kj=1mj,p

→ 0

weakly as currents.

Proof. Set

gp = (gF1)m1,p ⊗ . . .⊗ (gFk)mk,p .

Let x ∈ X and suppose U,V ⊂ X are open polydisc neighborhoods of x with

U ⋐ V . For 1 ≤ j ≤ k, let φ
Fj
p and ρ

Fj
p denote the local weights of hFj and gFj on

V , respectively. Then the local weights of hp and gp are given by

φp ∶=
k∑
j=1

mj,pφ
Fj and ρp ∶=

k∑
j=1

mj,pρ
Fj .

Set

Ap ∶= ∫
X
c1(Lp, gp) ∧ωn−1 = k∑

j=1

mj,p ∫
X
c1(Fj , gFj) ∧ωn−1.

Note there exists c > 0, such that cAp ≤ ∑kj=1mj,p and

c1(Lp, gp) ≥m1,pc1(F1, g
Fj) ≥m1,pεω.

By Theorem 1.2, it suffices to show that {φp/∑kj=1mj,p} is equicontinuous and

uniformly bounded in L1(U), and {ρp/∑kj=1mj,p} is uniformly bounded in
L1(U).

Observe that

φp

∑kj=1mj,p

= ∑
k
j=1mj,pφ

Fj

∑kj=1mj,p

= k∑
j=1

( mj,p

∑kℓ=1mℓ,p

)φFj ,
so as {mj,p/∑kℓ=1mℓ,p} is bounded for all j, and φFj is continuous on U, it

follows that {φp/∑kj=1mj,p} is equicontinuous and uniformly bounded in
L1(U). Similarly,

ρp

∑kj=1mj,p

= k∑
j=1

( mj,p

∑kℓ=1mℓ,p

)ρFj ,
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hence {ρp/∑kj=1mj,p} is uniformly bounded in L1(U). This completes the
proof.

♥

Remark 4.2. If hFj = gFj , 1 ≤ j ≤ k, then heqp = hp, and

c1(Lp, hp)
∑kℓ=1mℓ,p

= k∑
j=1

( mj,p

∑kℓ=1mℓ,p

)c1(Fj , hFj).
If additionally mj,p/∑kℓ=1mℓ,p converges for all j , then

γp

∑ℓmℓ,p

→

k∑
j=1

(lim
p

mj,p

∑ℓmℓ,p

)c1(Fj , hFj).
The following results are corollaries of Theorem 1.5:

Corollary 4.3. Let (X,ω) be as in (A) and for p ≥ 1, let Lp be a holomorphic
line bundle on X equipped with the metric hp with C2 local weights φαp for
all α. As well, let Ap > 0 with Ap →∞. Suppose the following conditions hold.

(a) There exists a continuous (1,1)−form Φ such that

c1(Lp, hp)
Ap

→ Φ

uniformly.
(b) There exists ρ ∈ L1(X) such that

ddcρ +Φ ≥ cω
Then for any θ ∈ {Φ}, and φ ∈ C(X) such that ddcφ =Φ − θ, we have

γp

Ap

→ θ + ddcφeq and
c1(Lp, heqp )

Ap

→ θ + ddcφeq
weakly as currents, where φeq = sup{ψ ∈ PSH(X,θ) ∣ ψ ≤ φ}.

To prove the above Corollary, we will show that the given conditions
imply the conditions stated in Lemma 1.5. To do this, we first prove the
following lemma.

Lemma 4.4. Let U be a coordinate polydisc. Assume {φp ∶ U → R} is a
family of C2 functions bounded in L1, and there exists a continuous(1,1)−form Φ such that

ddcφp → Φ uniformly.

Then, there exists φ ∈ C1(U) and a subsequence {φpk} such that

φpk → φ locally uniformly.

Proof. Let K ⋐ U and ε > 0. Choose r0 > 0 such that

K̂ = {x ∈ U ∣ dist(x,K) ≤ r0} ⋐ U.
Since ddcφp →Φ uniformly it follows that there exists M > 0 such that

−Mω ≤ ddcφp ≤Mω.

Let ζ ∶ U → R be a smooth real potential for ω. As {φp +Mζ} is a family of
psh functions bounded in L1, it follows from [Hö, Theorem 3.2.12] that there
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exists φ̃U ∈ PSH(U) and a subsequence {φpk +Mζ} such that φpk +Mζ → φ̃U in

L1
loc. We define φU = φ̃U −Mζ. We claim φU is continuous differentiable.

To see that φU is C1 smooth we note that ∆φU = Tr(Φ) is continuous. If
K ⋐ U is a ball, then ∆φU is bounded on K, so by [GT, Lemma 4.1] there
exists ψK ∈ C1(K) with ψK = φU a.e. on K. Then, ψK +Mζ = φU +Mζ a.e. and
both sides are psh, so they’re equal everywhere. It follows that φU ∈ C1(K).
As K ⊆ U was an arbitrary ball we have φU ∈ C1(U).

Next, as ddcφpk →Φ uniformly, it follows that for k large enough, we
have

−ω ≤ ddc(φpk −φU) ≤ ω.
From this and subaveraging, we find

(φpk − φU + ζ)(x) < n!

πnr2n ∫B(x,r)(φpk − φU + ζ)dλ,
for all x ∈K and 0 < r < r0, where dλ is the Lebesgue measure. It follows that

(φpk −φU)(x) ≤ n!

πnr2n ∫B(x,r)(φpk − φU)dλ + n!

πnr2n ∫B(x,r) (ζ − ζ(x))dλ.
By the uniform continuity of ζ on K̂, it follows that we can choose r small
enough so that

(φpk − φU)(x) ≤ n!

πnr2n ∫B(x,r)(φpk − φU)dλ + ε
for all x ∈K. By applying similar arguments to (φU − φpk), it follows that by
shrinking r, if necessary, we may assume

(φU − φpk)(x) ≤ n!

πnr2n ∫B(x,r)(φU −φpk)dλ + ε.
Combining these inequalities gives

n!

πnr2n ∫B(x,r)(φpk − φU)dλ − ε ≤ (φpk − φU)(x) ≤ n!

πnr2n ∫B(x,r)(φpk −φU)dλ + ε,
so

∣φpk − φU ∣(x) ≤ n!

πnr2n ∫B(x,r) ∣φpk − φU ∣dλ + ε ≤ n!

πnr2n ∫K̂ ∣φpk−φU ∣dλ + ε.
As φpk → φU in L1(K̂), it follows that if k is large enough, then

∣φpk − φU ∣(x) ≤ n!ε

πnr2n
+ ε.

As x was arbitrary, we see φpk → φU uniformly on K̂, therefore {φp} has a
subsequence converging uniformly to φU on K.

To see that {φp} has a subsequence converging locally uniformly on U,
we let {Kn} be an exhaustion of U by compact sets, and then apply a
diagonalization argument to construct a sequence converging uniformly on
each Kn, and hence, locally uniformly on K.

♥

Proof of Corollary 4.3: As ddcφαp /Ap → Φ uniformly on Vα it follows that
there exists M > 0 such that

−Mω ≤ ddcφαp /Ap ≤Mω.

Hence, there exists a smooth function ζ such that {φαp/Ap + ζ} is
plurisubharmonic for all p,α. By [DS, Proposition A.16], it follows that there
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exists a c > 0 and φ̂αp ∈ PSH(Uα) for all p,α such that ddcφ̂αp = ddc(φαp +Apζ)
and ∥φ̂αp /Ap∥L1(Uα) ≤ c∫

Vα

ddc(φαp /Ap + ζ) ∧ωn−1.

Define φ̃αp/Ap = φ̂αp /Ap − ζ. From above it is clear that {φ̃αp/Ap} is bounded in

L1(Uα). As ddcφ̃αp = ddcφαp , it follows that φ̃αp = φαp + kαp almost everywhere for

some pluriharmonic function kαp ∈ C∞(Uα). Hence, φ̃αp is C2, and φ̃αp = φαp + kαp
everywhere.

Since kαp is pluriharmonic, it is the real part of a holomorphic function

fαp . Let ẽαp = eαpe−fαp . We find

hp(ẽαp , ẽαp) = e−fαp e−fαphp(eαp , eαp) = e−2Refαp e−2φαp = e−2(φαp+kαp) = e−2φ̃αp ,

so φ̃αp are C2 local weights of hp with respect to the local frames ẽαp , and the

family {φ̃αp/Ap} is bounded in L1(Uα).
Suppose {pj} is a subsequence. By condition (a) and Lemma 4.4, it

follows that for all α, there exists φα ∈ C1(Uα) and a subsequence {pjk} such

that φ̃αpjk
/Apjk

→ φα locally uniformly on Uα. We will start by showing that the

claim holds for this subsequence.
We shall apply Theorem 1.5 to the subsequence {pjk} with open cover{Uα} and local frames ẽαp . Given φ̃αpjk

/Apjk
→ φα , conditions (A) and (B′) are

satisfied for our subsequence. To see that (b) of Theorem 1.5 holds, we first
note that ddc(ρ + φα) = ddcρ +Φ∣Vα = ddcρ + T ∣Vα. Next, we define ρ′ by
ρ′ = ρ +φ. Then,

ddc(ρ +φα) = ddcρ + T ∣Vα = ddcρ + θ + ddcφ = ddcρ′ + θ,
so ddcρ′ + θ ≥ cω, and (b) is satisfied. It remains to show that condition (a) of
Theorem 1.5 holds for the subsequence.

As c1(Lp, hp)/Ap is uniformly convergent to Φ = ddcφα, it follows that
there exists δp ≥ 0 with δp → 0 such that

ddcφα − δpω ≤ c1(Lp, hp)
Ap

,

which gives us (a) of Theorem 1.5.
It follows from Theorem 1.5 that for any θ ∈ {Φ} and φ ∈ C(X) such that

ddcφ =Φ − θ, we have

γpjk
Apjk

→ θ + ddcφeq and
c1(Lpjk , heqpjk )

Apjk

→ θ + ddcφeq ,
where

φeq = sup{ψ ∈ PSH(X,θ) ∣ ψ ≤ φ}.
Since this convergence holds for an arbitrary subsequence, it holds for the
entire sequence.

♥

Remark 4.5. In the above scenario, we do get for all α that φαp/Ap has a
subsequence converging uniformly to some φα ∈ C1(Uα). Unlike the φeq in
our proof above, the function φα is dependent on the subsequence. However,
in the case where Lp = Lp, the function φα is unique up to constant addition.
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Before stating our next corollary, we let {Vα} be an open cover of X as
in Section 2.2, and define φαp , ρ

α
p to be the local weights of hp and gp on Vα.

Corollary 4.6. Let (X,ω) and Lp be as in (A) and (B). Assume the local
weights φαp of hp are C2 and {φαp/Ap} is bounded in L1(Vα). Suppose the
following conditions hold.

(a) There exists a continuous (1,1)−form Φ such that

c1(Lp, hp)
Ap

→ Φ

uniformly.
(b) For all α the family {ραp/Ap} is uniformly bounded in L1(Vα), and

there exists C ≥ 0 such that Ap/ap ≤ C.
Then for any real smooth closed θ ∈ {Φ}, and φ ∈ C(X) such that
ddcφ =Φ − θ, we have

γp

Ap

→ θ + ddcφeq and
c1(Lp, heqp )

Ap

→ θ + ddcφeq
weakly as currents, where φeq = sup{ψ ∈ PSH(X,θ) ∣ ψ ≤ φ}.
Proof: Note that, since (B) is assumed, our setup is stronger than the one in
Corollary 4.3, so (a) implies condition (a) of Corollary 4.3. It suffices to show
that condition (b) of Corollary 4.3 holds, i.e., there exists a ρ ∈ L1(X) such that
Φ + ddcρ > cω for some c > 0.

By Lemma 4.4, there exists φα ∈ C1(Vα) and a subsequence {φαpj} such

that φαpj /Ap → φα locally uniformly. Let ζ be a real smooth potential for ω on

Vα. As Ap/ap is bounded, it follows that for some c > 0 we have

ddc(ραp /Ap − cζ) = c1(Lp, gp)/Ap − cω ≥ (ap/Ap)ω − cω ≥ 0,

so (ραp/Ap − cζ) is psh for all α. Since (ραp/Ap − cζ) is uniformly bounded in

L1
loc(Vα), it follows from [Hö, Theorem 3.2.12] that (ραpj /Apj − cζ) has a

subsequence converging to a function ρ̃α ∈ PSH(Uα) in L1(Uα). By refining
our original subsequence, we may assume WLOG that the convergence
holds for all α simultaneously.

We define ρα = ρ̃α + cζ, and set ρα = ρα − φα. We compute

Φ + ddcρα =Φ + ddcρα − ddcφα = ddc(ρ̃α) + ddccζ ≥ cω.
Next, notice that

ραpj − φαpj
Apj

→ ρα −φα = ρα
in L1(Uα) for all α. The left-most function glues to a global function, hence
ρα = ρβ almost everywhere for all α,β. Since ρα is qpsh for all α, the equality
holds everywhere. Then, the function ρ ∶ X → [−∞,∞) defined by ρ∣Vα = ρα is
well defined and satisfies

Φ + ddcρ ≥ cω.
Clearly, ρ ∈ L1(x), so condition (b) of Corollary 4.3 holds.

♥

Before stating the next theorem we recall than in (B′), the functions φα

were the local uniform limits of the scaled local weights φαp/Ap.
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Theorem 4.7. Let (X,ω) be as in (A) and L be a big line bundle on X.
Suppose (Lp, hp) are as in (B′), where Lp = Lp, eαp = (eα1 )⊗p , and Ap = p. Then,
there is a metric h on L with local weights φα on Vα, and

(4.1)
γp

p
→ c1(L,heq) and

c1(Lp, heqp )
p

→ c1(L,heq) weakly as currents,

where heq is the equilibrium metric determined by h, as defined in Section
2.2.

The convergence (4.1) is a special case of (1.5), and one can formulate a
statement similar to (4.1) whenever the φα are local weights of a metric. This
isn’t the only similarity to Theorem 1.5. In fact, the only condition from
Theorem 1.5 which we can’t show holds here is the assumption that
c1(Lp, hp)/Ap ≥ ddcφα − δpω. This property isn’t needed here, as g handles the
positivity requirement. Despite the similarities, Theorem 4.7 is proved using
Theorem 1.2 and not Theorem 1.5.

The following lemma will be needed in our proof of Theorem 4.7.

Lemma 4.8. If θ is a real smooth closed (1,1)−form on X with
PSH(X,θ) /= ∅, and σp ∈ C(X) converges uniformly to σ ∈ C(X), then
τp, τ ∈ PSH(X) with τp → τ uniformly, where

τp ∶= sup{ψ ∈ PSH(X,θ) ∣ ψ ≤ σp} and τ ∶= sup{ψ ∈ PSH(X,θ) ∣ ψ ≤ σ}.
Proof. Define

Fp = {ψ ∈ PSH(X,θ) ∣ ψ ≤ σp} and F = {ψ ∈ PSH(X,θ) ∣ ψ ≤ σ}.
Let ψ ∈ Fp. We see

ψ − ∥σp − σ∥L∞ ≤ σ and ψ − ∥σp − σ∥L∞ ∈ PSH(X,θ),
so ψ − ∥σp − σ∥L∞ ∈ F. Taking the supremum over all such ψ we obtain
τp − ∥σp − σ∥L∞ ≤ τ. Similarly, τ − ∥σ − σp∥L∞ ≤ τp, thus ∥τ − τp∥L∞ ≤ ∥σp − σ∥L∞ ,
and so τp → τ uniformly as desired.

♥

For the following proof, we fix a smooth metric h0 on L with curvature
θ = c1(L,h0). Recall definition (1.4), that is, T is the current satisfying
T ∣Vα = ddcφα. By definition, the global weight of heq is given by
φeq = sup{ψ ∈ PSH(X,θ) ∣ ψ ≤ φ}.
Proof of Theorem 4.7. As in the proof of Proposition 1.4, there exist
pluriharmonic functions ψαβp ∈ C∞(Vα ∩ Vβ) for all α,β, and p, which are

defined by ψαβp = log ∣kαβp ∣, where kαβp denotes the transition function of Lp.
These have the property that

φαp = φβp +ψαβp .
Since eαp = (eα)⊗p , it follows that ψβαp = pψβα1 , thus

φα = lim
p
(φαp
p
) = lim

p
(φβp + pψβα1

p
) = φβ +ψβα1 ,

hence h is well defined, and φαp /p − φα glue to a global potential for
c1(Lp, hp)/p −T.
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Let g be a metric on L with strictly positive curvature current and local
weights ρα. The family of bounded local weights of gp is {p ⋅ ρα/AP} = {ρα},
which is clearly bounded in L1(Vα). Since φαp/p → φα locally uniformly on Vα,
it follows that {φαp/p} is equicontinuous and uniformly bounded on Uα. This
shows the hypothesis of Theorem 1.2 hold with gp = gp, hence

γp − c1(Lp, heqp )
p

→ 0.

Since c1(L,heq) = θ + ddcφeq , we’ll be done if we show

c1(Lp, heqp )
p

→ θ + ddcφeq .

As
c1(Lp, heqp )

p
= θ + ddcφ

eq
p

p
,

our desired convergence will hold provided

φeqp

p
→ φeq locally uniformly.

We show this now.
Let φ and φp denote the global weights of h and hp with respect to h0

and hp0 , respectively. If ψα denotes the local weight of h0 on Vα, then

φp

p
= φαp − pψα

p
= φαp
p
−ψα.

Then φp/p → φα −ψα = φ uniformly. By definition we have

φeqp

p
= sup{ψ ∈ PSH(X,θ) ∈ ψ ≤ φp/p} and φeq = sup{ψ ∈ PSH(X,θ) ∈ ψ ≤ φ},

hence by Lemma 4.8 it follows that φeqp /p → φeq locally uniformly, which
completes the proof

♥
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