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ASYMPTOTICS OF FUBINI-STUDY CURRENTS FOR SEQUENCES
OF LINE BUNDLES

MELODY WOLFF

ABSTRACT. We study the Fubini-Study currents and equilibrium metrics of
continuous Hermitian metrics on sequences of holomorphic line bundles
over a fixed compact Kadhler manifold. We show that the difference between
the Fubini-Study currents and the curvature of the equilibrium metric, when
appropriately scaled, converges to 0 in the sense of currents. As a
consequence, we obtain sufficient conditions for the scaled Fubini-Study
currents to converge weakly.

CONTENTS
1
5
5
6
7
8
3.1. Proofs of Theorems [1.1] and 3 8
3.2. Proofs of Proposition and Theorems 8 14
icati 19
25

1. INTRODUCTION

In this paper, we will be working with sequences of holomorphic line
bundles {L,} with continuous Hermitian metrics h,, p > 1, and will be
studying asymptotic properties of the Fubini-Study current first explored in
[CMM]. We restrict our work to compact Kdahler manifolds while allowing
the metrics to have non-positive curvature. Although we won’t require
positivity conditions on our metrics, we will require the existence of positively
curved metrics with growth conditions similar to those used in [CMM].

In 1988 Tian explored the case where (L,, h,,) = (LP, hP), with
(LP, hP) = (L®P, h®P) for some holomorphic line bundle L equipped with a
smooth metric h (see [T]). He showed that if (X, w) is a compact Kahler
manifold with a line bundle (L, h) such that the curvature c;(L, h) is positive
and h is smooth, then the normalized Fubini-Study forms 7,/p (see for
definition) converge to cy(L, h) in C2 Later results showed that the
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convergence was actually in C> [C, R} Z]. We refer to [MM]. As a
consequence of this result, Tian showed that particular Kadhler-Einstein
forms could be approximated by Fubini-Study currents, which answered a
question of Yau [Y].

Also included in [MM] is an asymptotic expansion of the Bergman
kernel (see [MM| Theorem 5.4.10]). This expansion has been shown to
provide information about the underlying Kdahler manifold. In particular, the
asymptotic expansion can be used to prove the Kodaira embedding theorem
(see [MM, section 5.1.2]).

The assumptions of Tian’s results on (L, h) were relaxed by Coman and
Marinescu in [CM]. They worked in the case (L,, h,) = (L?, h?) and showed
that if c;(L, h) was an integrable K&dhler current, then the aforementioned
convergence result holds in the sense of currents. The results were further
generalized by Coman, Ma, and Marinescu (see [CMM]). They showed that if
c1(Lp, hp) > ap,w where a, - oo, and

Apzfci(Lp,hp)/\w”‘i,
X

then
7p —C1(Lp, hp)
Ap

-0

weakly as currents.

Berman’s work in 2009 introduced the notion of an equilibrium metric
hea (See section for definition) corresponding to a smooth metric h on a
holomorphic line bundle L (see [B]). He worked in the setting where
(Lp,hp) = (LP, hP). He showed that for any compact subset 2 of X\B, (L),
where B, (L) is the augmented base locus (definition given in [B]), there
exists Co > 0 such that

Co < log P, (91— ) < CQ+nlogp’

p p p

where ¢ and @®? are the global weights of h and h®4, respectively (see [B
Theorem 1.5]). Another interesting result of his, is the convergence

dimHO(X,LP)_f ¢1(L, hea)n
-~ Juw

lim sup o

p p"
where n =dim(X) and U(L) is the set where the weights of h®? are locally
bounded. He also showed the following weak convergence of measures

’

Pyw™
pn
where P, is the Bergman kernel function (as defined in Section 2.3) and
Xu(r) is the characteristic function.
In 2019, Coman, Marinescu, and Nguyén used the equilibrium metric to
generalize Tian’s work (see [CMN| Cor. 5.7]). Like Tian and Berman, they
worked in the case where (L,, h,) = (LP, hP) and showed

ci(L, heq)“)

—> XU(L) ( ol

¥p
— —»cy(L,h®4
D 1 ( )

weakly as currents.
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The following conditions will serve as the setting for most of our results
in this paper:

(A) (X, w) is a compact (connected) Kdhler manifold of complex
dimension n.

(B) Ly, p > 1, is a holomorphic line bundle on X equipped with a
continuous metric h, and a singular metric g, verifying

(1.1) ci(Lp,gp) > apw on X, where lim a, = co.

p—oo
Set
Ap = [XC1(Lp,gp) AWt

(B') Lp, p > 1, is a pseudo-effective holomorphic line bundle equipped
with the continuous metric h,. There exists an open coordinate polydisc
cover {V,} of X, frames ey of L, on V,, functions ¢* ¢ C(V,), and constants
Ap >0, such that A, — oo and

¢y /Ap — ¢ locally uniformly,
where ¢5 is the local weight of h, corresponding to ef.

Following Berman, we define h;? to be the equilibrium metric of h,. As
well, we recall that v, is the Fubini-Study current. For definitions refer to
sections 2.2 and

For any coordinate polydisc U and p > 1, let e, be a local frame of L, on
U (see Section 2.2). Let ¢, : U - R be the continuous function such that

hy(ep, ep) = e72%.

Similarly, we define p, : U — [-o0, 0) by

gp(ep,€p) = e,

The functions ¢, and p, are called the local weights of h, and g, on U.
Our main results are:

Theorem 1.1. Let (X,w) and (L, h,) be as in (A) and (B). If every x € X
has a neighborhood U with local frames e, of L,, such that the families of
local weights {¢,/A,} and {p,/A,} are uniformly bounded in L'(U), and
there exists M >0 such that

(1.2) -Mw <ci(Lp, hp)/Ap < Mw,
then
7p —c1(Lp, hgq)
Ap
If h, verifies (L1), then h, = h;?. In this case, (I.3) becomes

¥» —C1(Lp, hp)
Ap
weakly as currents. This is a special case of the convergence condition
shown in [CMM]. If in addition we assume that (L,, h,) = (LP, hP) and set
Ap, = p, our assumptions are automatically satisfied, and we obtain the
convergence shown in [CM].

(1.3) — 0 weakly as currents.

-0
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Theorem 1.2. Let (X,w) and (Lp, hp) be as in (A) and (B). If every x € X
has a neighborhood U with local frames e,, such that the collection of
scaled local weights {¢,/A,} is equicontinuous and uniformly bounded,
and {p,/A,} is uniformly bounded in L'(U), then (L.3) holds.

When (L,, h,) = (LP, h?) equicontinuity is trivial, as in that case we can
take A, = p, and for particular local frames we have ¢,/p = ¢1. Like Theorem
[L.1] this result can be considered a generalization of the convergence in
[CM]. Another case where equicontinuity is automatically satisfied is when
(Lp, hp) is a tensor product of powers of several line bundles. That case is
explored further in Section [4l There, as a corollary of this theorem, we show
that (1.3) holds with fewer assumptions.

Theorem 1.3. Let (X,w) and (L, h,) be as in (A) and (B). If every x € X
has a neighborhood U, with local frames e, such that the family {¢,/A,} is
equicontinuous, and {(¢, - pp)/Ap} is uniformly bounded, then (L.3) holds.

When h,, satisfies (1), then we may assume h, = g,, and so
{(¢p —pp)/Ap = 0} is automatically bounded. In general, the difference
(¢p — pp) defines a function on all X (see Section 2.2). In the case where
(Lp,gp) = (LP,gP) and e, = e®P, we can take A, =p, and {(¢, —pp)/pP} is
bounded whenever {¢$,/p} is. In this case, Theorem [£.7] shows that 7, /p
converges.

This leads us to the question of under what conditions does y,/A,
converge? Due to Coman, Ma, and Marinescu, we know if h, = g, and
c1(Lp, hp)/Ap converges, then so does v,/A,. In the setting of our previous
theorems we also know that if ¢;(L,, hy?)/A, converges, then so does y,/A,.
So to give a partial answer to our question, we assume c(L,, hp)/Ap
converges, and ask under what conditions does c;(L,, h®?)/A, converge as
well? We will state a theorem with sufficient conditions for such
convergence. Before we do, we introduce a necessary proposition.

Proposition 1.4. Let X, V,, and ¢* be as in (A) and (B’), then for all a,
there exist plurtharmonic functions ¥*# on V, n Vg such that

¢ = ¢ + 9.

In this case, there exists a real closed (1,1)-current T on X defined by

(1.4) T|y, =dd°¢?,

where d¢ = ;1-(8-9). Let {T} denote the cohomology class of T, and fix a
smooth form 0 € {T}. From the definition, we have

T=0+ddp,
where ¢ € L'(X). Since ¢* is continuous, it follows that ¢ is continuous.

Theorem 1.5. Let (X, w), (Lp, hy), and A, be as in (A) and (B’). Suppose
the following conditions hold:

(a) There exist 6, > 0 with 6, - 0 such that

< Ci(Lp' hp)

A, on V, for all a.

T - 6pw
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(b) There exist o € PSH(X,0) and some c >0 such that
0+dd°o > cw.

Then

?/P (eI C1 (LP’ hgq)
15 —— > 0+dd°¢@®? and ———=
weakly as currents, where

- 0 +dd°ep™

@°1:=sup{Y e PSH(X,0) | ¥ < @}.
Moreover,

eq _ *
(1.6) @°9 = [limsup (u)] + @,
p Ap

where @, and @, are the global weights of h, and h,? (see section [2.3).

Here PSH(X, 0) denotes the class of 6—plurisubharmonic functions (see
section [2.1) Note that [IL.5) and condition (b) are both independent of our
choice of 6. The independence of (1.5) is shown in the proof of Theorem
In the case of (b), if 6 ¢ {T}, then 6 and 6 are in the same cohomology class,
so clearly there exists g € L1(X) with 0 +dd°g = 0 + dd°g.

We said we were interested in cases where c;(L,, h,)/A, converges, and
this is one of them, as if ¢5/A, -~ ¢* uniformly, then

c1(Lp, hp)
Ap

The function ¢;? is defined with respect to a smooth metric hg in
section One can show using the C* version of the first Cousin Problem,
that for particular choices of hg and 60, equation (1.6) reduces to
@1 = [limsup, (" /Ap)]"

In Lemma [3.4 we will show directly that there exists ¥ € PSH(X, 0) with
Y < @, hence ¢°1 # .

The purpose of conditions (a) and (b) is to allow us to apply Demailly’s
L? estimates for 8, which requires some degree of positivity.

In Section l4 we will look at the case where there exists a continuous
(1,1)-form & such that c4(L,, hp)/Ap, » ® uniformly. This assumption
implies the convergence in (B’). It is examined in Corollaries [£.3 and If
we make the additional assumption L, = LP, then (b) is automatically satistied
whenever L is big, a fact which can be used to prove a special case of
Theorem [£7

This paper has the following structure. In Section [2] we discuss the
necessary information about quasi-plurisubharmonic functions, define global
weights for our metrics, and give a construction of hy?. Section [3] is devoted
to proofs of the theorems above. In Section [4] we present applications of our
main results.

— T weakly as currents, where T is as in (I.2]).

2. PRELIMINARIES

2.1. Quasi-plurisubharmonic functions. Recall that a

quasi-plurisubharmonic (gpsh) function on X is a function, f : X - [-oc0, 00),
that is locally the sum of a plurisubharmonic (psh) function and a smooth
function. Given a real closed smooth (1,1)-form 6, a 6—plurisubharmonic
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(6-psh) function is a qpsh function f : X - [-00, 00) such that 6 + dd°f > 0. We
denote by PSH(X, 6) the class of all 0—psh functions.

In the setting of Theorem [I.1] note the condition
-Mw <ci(Lp, hp)/Ap < Mw implies ~-Mw < dd®¢,/A, < Mw on any contractible
Stein open set V where dd¢¢, = c((Ly,, hp). In this case
+¢p /A, € PSH(V, Mw). This is one of the reasons we are interested in the
notion of gpsh functions. Another is that they are necessary for us to define
the equilibrium metrics hy?.

One property will we need to note about 6-psh functions, is that two are
equal almost everywhere, then they are equal. We will use this fact
throughout this paper.

2.2. Global weights and the equilibrium metric. We first observe that if 2
is a contractible Stein open set in C#, then a result of Oka tells us

H'(Q2,0*) 2 H%(2,Z), hence line bundles over  are trivial (see [Hu, p.201]
and [Q]). In particular, if V c X is a coordinate polydisc, then L, is trivialized
on V for all p > 1.

We fix a finite open cover {U,} of X by coordinate polydiscs, such that
for all a, there exists a coordinate polydisc V, with U, € V,. Fix local frames
ep. Let ¢ and py denote the local weights of h, and g, on V,. As X is
compact, we assume that the V, are the neighborhoods referred to in our
theorems.

In order to define global weights for our given metrics, as well as give a
definition of h;?, we fix a smooth metric h} on L,. Define £5 ¢ C*(V,) to be
the local weights of h?, which are given by

(2.1) ho(ed,el) = e 5.

The global weights of h, and g, are the functions ¢, : X - R and
Qp : X = [-00, x0), defined by

(2.2) h, = h)e™® and g, = hje .
Note that (¢ - p5) = (¢, — Qp), which is a global function.
In order to define h,?, we first set
0 = c1(Lp, hY).
Let ¢p?: X — [-00,0) be the 6,-psh upper envelope
(2.3) @p! =sup{yY e PSH(X,0,) | Y < @p}.

Observe that ¢, is continuous and g, is bounded above (it is psh), so
0p — C <@, for some C > 0. This tells us

op - Cesup{Y e PSH(X,6,) | ¥ < @p},
so ¢p? e PSH(X,6,) and ¢p? < ¢,. We define

eq _ 1,0 2957
h,* = hye ™% .

The global weight of h;? is ;. A local construction of the equilibrium
metric is given by Berman in [B]. His definition is clearly equivalent to ours.
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2.3. Fubini-Study currents and Bergman kernels. Let H(Q)(X, L,) denote

the Bergman space of square integrable sections of L, relative to h, and w,
that is,

(X, Ly, hp) = {Se HY(X, L,) | |S|2, < oo},

ISty = [ 1%, %

When the metric is clear, the notation is shortened to H (2)(X, L,). This space
will be endowed with the inner product

(2)
where

wn
(S1,S5) = [th(si,sg)m.

Let P, be the Bergman kernel function of the space Hp), (X, L,). For all
p > 1, a global definition is given by fixing an orthonormal basis, {S]P }, of

Hpy (X, Lp). We then define d(p) := dim Hp, (X, L) and

d(p)
Py(x): Z 1S ()|, -

The following is a well-known vamatlonal characterization of the Bergman
kernel, which will be useful in our work,

s
Po=_ Su (|s|2p |
SeH, (X.Lp) hp

We recall that y, was the Fubini-Study current of H?Q)(X, L,). To define

it explicitly, we let U c X be a contractible Stein open set. Let sf eO(U) be
defined by S} = s’e,. Then

1 d(p) b2
Yolu = 5 dd° log Z s |-
j=1

Note, that the equation above defines a global current on X. One way to see
that is the following equivalent definition. We consider the Kodaira map
¥, : X -» CP*! defined by

= [sY(x) o sh i (0)], Y e U\V(sP,...s] ),

where V(s},...,s}) is the analytic variety. It is well known that this map is
independent of our choice of U. We then define

?/p = \I/;)wFSI

where wrs is the Fubini-Study form on CP*.
Note, the following is a well-known identity which will be helpful in our
work:

ddclog P, .

(2.4) p = >

C1(Lp,hp).
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3. MAIN RESULTS

3.1. Proofs of Theorems [L.1] and We use the notation and
definitions introduced in Sections [I] and [2l We start by stating and proving
two lemmas necessary for our proof of Theorem [1.11

Lemma 3.1. If V c C" is a polydisc and v € L'(V) such that for some M >0
we have
-Mw<dd°v<Muo,

then there exists Ve C(V) with Vv =v a.e. and dd°V =dd°v.

Proof. Let € be a smooth potential for Mw on V. Since ~-Mw <dd®v < Mw it
follows that € + v and € — v are both equal a.e. to psh functions on V. Let u,w
be psh functions with ¢+ v=u and £ -v =w a.e. Note that 2€ =u + w a.e.
Since both sides are psh we have 2¢ = u + w everywhere. Then, 2€ -u = w, so
as 2¢ — u is lower semicontinuous, and w is as well. We see that w is both
upper and lower semicontinuous, so it is continuous, and v = w a.e.

v

Lemma 3.2. Let U,V c X be open coordinate polydiscs with U € V. Assume
vp € C(V) and v € L' (V) such that v, » v in L?,

~-Mw <dd°v, < Mw.

Then, for all € > 0 there exists pyo = po(€) and 6 = 6(¢) such that if z< U,
r <6, and p > po, then

sup vp(z) - inf v,(z) <e.
B(z,r) B(zr)

Proof. By Lemma [3.1] we can and do assume v is C. Let ¢ be a smooth real

potential for Mw on V. By [H6l Theorem 3.2.12], if € is a real smooth

potential for Mw, then we can and do assume ¢ +v e PSH(V).

From Hartog’s lemma (see [H6, Theorem 3.2.13]) applied to v, and v it
follows that for all K € V we have

(3.1) lim sup [sup Vp] <supv.
K K

p%OO

Let By,..., B, be a finite cover of U by balls such that 2B; € V for all j,
where 2B; is the dilation of B; by a factor of 2. Using (3.1), since there are
finitely many B;, we can choose py large enough so that

(3.2) SUpV, <SUpV +€
2B 2B

for all j and p > py. Similarly, we may assume for such p we have

sup(-vp) <sup(-v) +¢€,
j 2B;

(3.3) —-infyv, <-infv+e.
2B; 2B;

Let 6 > 0 be the minimum of the radii of the B;. Additionally, assume

r <6 and z € U. Since the sets By,..., By, cover U, we deduce z ¢ B; for some
j, therefore B(z,r) c 2B;, and if p > po, then by (3.2) and (3.3) we have
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sup v, — inf v, <supv, —-infv, <supv -infv + 2e.

B(z,r) B(zr) 2B; 2B; 2B; 2B;
As v is continuous, by letting the radii of B; go to zero we have our desired
upper bound.

v

Proof of Theorem [L.1l Recall that {U,} is a finite cover of X by coordinate
polydiscs. Moreover, for all a there exists a coordinate polydisc V, such that
Uqg € V.

Notice that for p > 1, the sets V, and local frames e, satisfy the
assumptions of our theorem. That is, the local weights ¢ and pg defined by

hy(ef, ed) = e™% and g,(e}, ef) = e 2%,
form a family {¢g/A,, p5/A,} which is uniformly bounded in L*(V,).
Additionally, for each p > 1, we recall that hJ is a smooth metric on L, with
global weights £ with respect to ef. The global weights ¢, and g, are then

defined by
h, = h)e ™% and g, = hye *®.

o1 . . . . _9%4
Furthermore, the equilibrium metric hy? is given by h;? = hle 2% .

For a fixed p, let {S;} be an orthonormal basis of H, (X, L)

represented locally by S; = sf'eg. Observe that by ©@.4) we have

(3.4) ?/P_C1(Lp’hle7q) :ddc (logpp)/2+(pp _ (pgq .
AP AP AP
Define
B — (logpp)/2+(pp
p Ap :

It follows that

Yo —ci(lp hy?) @y’
S |
so if we show B, — ¢;/A, - 0 in L' we will prove our claim. This happens if
every subsequence has a subsequence where the convergence holds, so it
suffices to show a single subsequence where convergence holds.
Let % € C~(V,, R) be a real smooth potential for Mw. By ({1.2), it follows
that ¢35 /A, + £* € C(V,) is psh. For all a define

6 =6(a) =dist(0Vy, Uy),
where dist is the distance induced by w on X.
For any € >0, let
Us ={x € Vy | dist(x, Uy) < €}.

By the subaveraging property of psh functions and the L'(V,) uniform
boundedness of {¢5/A,}, it follows that {$5/A, + €%} is uniformly upper

bounded on US?. The same logic tells us {€* - ¢5/A,} is uniformly upper

bounded on Ug/ %, Since €* is continuous, putting these two bounds together
allows us to conclude that {¢5/A, + £} is a uniformly bounded family of psh

functions on Ug/ %, From [H6) Theorem 3.2.12], there exists a psh function o
and a subsequence {¢g /A + €%} such that
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&% JAp, + € > % in LY(US).

Since there are finitely many a, by passing to a further subsequence, if
necessary, we may assume

&g [Ap, +C* % in LY(US?) and a.e.

for all a simultaneously. This subsequence is the one where we will show
convergence holds.

Let € >0. By Lemma it follows that we can choose r =r(a,e) e R
satisfying

6/8>r>0
small enough and j, > 0 large enough so that
(3.5) Bs(IZJE) ((bp}, /Api) - Bi(l;l,ﬁ ) ((bp}, /Api) <e

for all j > j, and z € U,. As there are finitely many a, WLOG we may assume
the above holds for all a.

Let x € U,. By our choice of r, it follows that V := B(x,2r) c U;S/[‘. Let
U=B(x,r)and z € U. Suppose S ¢ H(I’Q)(X, L,) and define s* € O(V,) by
S =s%y on V,. Since s* is holomorphic, it follows from subaveraging that

S(2)P2 2g-205(z) ¢ _© 0 *da
_ |s@ 20 < ¢
[S(2)[; = [s*(2)"e™'* < M(B(z,r)) -/B(zrr) 1

where A is the Lebesgue measure. It follows that there exists C; > 0 such that

wn

C e_2¢g(z)
92 1
@) < -

2 < |sa 2
MB(z,r)) JBzr)

. Cie—2¢§(z)+max§(zlr) 24 f | a|2( _2¢a) o
- S e ) —
A(B(z,r)) B(z.r) l
“S”%1 Cie—2¢g(z)+max1—3(zlr) 26
p

A(B(z,r))
By the variational characterization of the Bergman kernel, we have

Cie—2¢g(z)+2 maxg, . qbg

P < ,
P2 < =3B
therefore
log P, (z) . log C1 —2nlogr —nlogs +logn! | nax AN <f>§‘,-(z)-
2Apj QAPJ' E(z"”) Apj Apj

By (3.5) and by enlarging jo, if necessary, it follows that if j > j,, then on
B(x,r) we have

log Pp. -2nlogr
L < +€
0A, - 2A,
j j

By covering X with finitely many such B(x,r), we may assume WLOG that
the above inequality holds on X.
Note that

log Py,
2

2nlogr
5 < Doy

(3.6) + @p, — Ap €+
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and

log P,
dde (% + Pp; — €AP1’ 4 M) = Z}/Pi - QPi’

so the L.H.S. of (3.6) is 6,,—psh. By the definition of ¢,?, we have

log P,
it/ @Qp, — €A, + 2nlogr < @pl,
2 ] ] 2 ]
SO
logPy ¢p -2nlogr Pp;
+—X + €+ )
24, Ay, 24, Ap,
and
eq
(3.7) B, - Lo enlogr

A, 24,

This is the upper bound we shall use.
To show the lower bound, we first define ¢, =1/,/a, and set

Hp = hgef2(1ffp)<p5q721pep A

We compute
e1(Lp, Bp) = 6, + (1~ t,)dd"gf" + tyddce,

= (1= t,) (0, + dd°@S?) + t, (6, + dd°gp) > t, (6, +dd°gp)

ap

2

w=./Apw.

Here, , /@, - oo as p — oo. This shows that h, satisfies the assumptions of
Demailly’s L2 estimates for 0 (see [CMM, Theorem 2.5]). As in the proof of
[CMM| Theorem 1.1], for all p large enough, we use the Ohsawa-Takegoshi
Extension Theorem and Demailly’s estimates for 9 (see [OT] and [D], resp.)

to show the following. There exists C, > 0 such that for all z € U, with
p3(z) # —oo, there exists S, , € HY(X, L,) such that S, ,(z) # 0 and

(3.8) [Sz.p H%{p < ColS;p(2)

NG

2
hp’
We compute

Hp — hge—Q(i—tP)(qu—Qthp — hp62<l’p—2(1—tp)<l’gq—2thp

— hPGQ(i—fp)((Pp—q’gq)GQtp((Pp—Qp) > hp62tp(<l’p—@p) — hpe%p(d’g—ﬁ)g).

Since {pg/A,} is a family of psh functions uniformly bounded in L!(V,) it is
locally uniformly bounded above. Then, as {¢g/A,} is locally uniformly
bounded, it follows that {(¢5 - p%)/A,} is bounded below on U, for all a.
Since (¢% - pg)/A, forms a global function, there exists D € R with

(65 -p5)/Ap > D,
for all p,a. Therefore,
(39) Hp 2 hpemp(dﬁifpg) > hpthPDAp-

From above and (3.8), we deduce that S, , € H?Q) (X, Lp) for all p large enough.
From (3.9) and (3.8) we obtain
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Hsz,pH%pe%DAp < C2|Sz,p(z)|%1p exp [2¢5(2) - 2(1 - 1) 9y’ (2) - 2t,0,(2)] .

SO
exp [QtpDAp_2<Pp(z)+2(1_ p)(qu(Z)JFQthp(Z)] < |SZ'P(Z) %lp <D, (2)
Co B Hsz,pH%p P
We compute
o log(C logP,(z
t,DA, + (1 - t,)@S(2) + 0y (z) - 9(Cp) _ log Pp( )+(pp(z)

2 2

_t. % _ eq

t,D+ thp (z) + 1,0,(2) —log(Cy)/2 < (BP _%p )(z)
Ap A,

As @, > @1 we get

(@p —9p)(z) log Cy ( (qu )
t,D +t - <|(Bp - (z).
P P Ap 2A, P Ap

This serves as our lower bound.
Combining the above inequality with that of (3.7), it follows that for j
large enough, we have

(@ —9p)(z) logCy

eq
Pp; )(z) . 2nlogr

t,D+t <| By -
PETTTA 27, (B P, oA,
for a.e. z € U. By compactness it holds for a.e. z € X. Then,
@p; (0p —9p)(z) logCy| [2nlogr
- <|t,bD+t - ,
BP; Apj (Z) =P + p Ap 2Ap + 2Ap,~ +e

Recall that (¢% - p5) = (¢, — Qp)|v, is bounded in L'(U,) for all a. So, (¢, - Q)
is bounded in L!(X). As well, t, —» 0, so by integrating and letting j — oo, we
find

eq
. @p; | W w"
0 <limsu f - | —< —.
RN TR =y
By letting € — 0 we see that
Pp,
By, — == -0

Dj Apj

in L1(X).

A4
Proof of Theorem Like in Theorem [I.1] the family {U,} forms a finite
cover of X by coordinate polydiscs, V, is a coordinate polydisc containing U,,
and ey is a local frame of L, on V,. Here the global weights ¢5 and pg of h,
and g, satisfy the property that {¢5/A,} is uniformly bounded and
equicontinuous, and {p5/A,} is uniformly bounded in L.

Define

g - (109Py) [2+ 9
D Ap :

As we established in the preceding proof, if we show B, - ¢;%/A, - 0 in L,
then the proof is completed.
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Let € >0 and x € X. Using our subaveraging argument from the proof
of Theorem [I.1] and the equicontinuity argument in the proof of [CMM,
Proposition 4.4], it follows that

logCy —2nlogr
2

for some C; e R. The L.H.S. is 6,-psh, hence by our arguments in the proof
of Theorem 1.1, the upper bound ¢, may be replaced by ¢,?. Therefore,

(Bp ~ <p;;") . log C; -2nlogr N
Ap 2A,
This serves as our upper bound.

For the lower bound, we apply the same argument as in the proof of
Theorem [L.I] which only required {¢5/A,} to be locally uniformly bounded
and {pg/A,} to be bounded in L!. These methods allow us to deduce that for
some neighborhood U of x, if z € U, then

to(p — ¢p)(2) —10g(Cs)/2 @p" log C; - 2nlogr
tpCo + b=t P A, < ﬁp‘A—pp (z) < oA, +

for some C,, C5 > 0. This is the same situation we had at the end of our proof
of Theorem [I.1] so we deduce B, - ¢;7/A, - 0 in L.

(3.10) ApB, -

-Aye < @p,

€.

€

v
Proof of Theorem Here U,, Vo, e and the global weights ¢f, p5 are
defined as in the previous two theorems. The conditions imposed on the
weights by our assumptions are that {¢,/A,} is equicontinuous and
{(¢p —pp)/Ap} is uniformly bounded. We define 3, as in the previous two
proofs. As before, it suffices to show B, - ¢,"/A, - 0 in L.

As in the proof of Theorem (2.10) holds. For the lower bound, we
first fix z € X, then proceed as in our proof of Theorem [I.1l Set t, =1 /\/,Tp
and

Hp — hge—Q(i—tp)q’Sq—prQp.

This definition is the same as in Theorem [I.1] hence it satisfies

ci(Lp, hy) > \/apw.
In exactly the same fashion as in our proof of Theorem [L.1] for p large
enough, we conclude there exists C, > 0 such that for all z € U, with
p3(z) # —oo, there exists S, , € H'(X, L,) such that S, ,(z) # 0 and

(3.11) Hsz,pH%p < C1|Sz,p|%p(z)-
As we have computed in our previous proofs, we have
Hp > hpe%p(l’p*mp@p.

Since {(¢p —0p)/Ap} is uniformly bounded, it follows that there exists D
independent of p such that
Hp > hPGQAptpD’

and so S,, € H, (X, Ly, hp). From this and (3.11]), we deduce

exp [2A4,1,D - 2¢,(z) + 2(1 - t,) 957 (2) + 2tp0,(2)]
Cy

< Py(z).
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Here z € X was arbitrary, so the above holds on all X, and we deduce

~t, 51 + t,0, — log Cy @1
t D pY¥p p&p <B._- 1P
pET A, <P
Since ¢, > ¢p?, we find
~t, @, + t,0, — log C @1
tD p¥p PXD < _rp .
pET A, <Po=p

By the uniform boundedness of {(¢, —0,)/A,}, it follows that there exists
Dy > 0 such that

—-log C4 O
A, A,
Using our lower bound and (3.10), one concludes as in the proof of Theorem

1] that

eq
_ 90

p

B, ~0in L'(X).

4

3.2. Proofs of Proposition and Theorems We start with the proof
of Proposition [L.4l
Proof. Let kgﬁ be the transition functions for L, with respect to the open

cover {V,}. Set ¥5” = log |k;”|. Then, we have the formula ¢j3” = ¢¢ - ¢5. Since

@5 /A, converges uniformly for all p, so does w,bgﬁ /Ap. Let the limit be 8. Tt
follows that

a_ 4B
(3.12) P = lim (M) =" - ¢P.
p A

p

Moreover, k3? is holomorphic and non-vanishing, hence ¥5* = elog ksl js
pluriharmonic, and so is the uniform limit ¥8 = lim, (¥3*/A,). This shows
that 1°f satisfies the desired conclusions.

The following lemmas will be used to prove Theorem

Lemma 3.3. If (X,w) and (L,, h,) satisfy (A) and (B'), and ¥*¢ are
functions such that ¢* = ¢pf + B, then there exists £* ¢ C* with

£% = &P + 4P,
Proof. Note that (3.12) implies
P = P and Y + Y7 + Y7 for all a, B, .

By the C* version of the first Cousin Problem [Kr| Proposition 6.1.7] there
exist functions £% € C>(V,) for all a such that

£% = £ 1 % for all a, B.

This is what we desired to show.
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Recall that the local weights o,, ¢, of g, and h, were defined in Section
(see 2.2)). As were ¢, and £5 (see (2.3) and (2.1)). We also recall that
¢p = &y + ¢5. In general, similar relationships exist for the local and global
weights of any metric.

In the following lemmas and the proof of Theorem we let 6 be the
(1,1)-form such that 6|y, = dd°£€%, where £% are as in the previous lemma.
Also, we will set ¢ = ¢* — £%,

Lemma 3.4. Let (X,w) and (L, h,) satisfy (A) and (B’), and suppose the
following conditions hold.

(a) There exist &, > 0 with 6, - 0 such that
ci(Lp,hy)

D
(b) There exist o € PSH(X,0) and some ¢ >0 such that

0 +dd°o > cw.

dd®¢* - Spw < on V,.

Then there exists a subsequence {(@p' - ¢,,)/Ap,} such that

eq
(L (ij) - @% - ¢ in LY(X),
A,
where
~ 031 -, \1
(3.13) @l = [limsup (%)] +@e{pe PSH(X,0) | P <@}
jooo pj

Proof. First, since ¢, is continuous we may assume, by subtracting a
constant, that A,(0 - ¢) <0. We compute

dd®(Ap(@- @) +¢p) = Ay (dd° + 0) +dd (P — Apd”) 2 Apcw - ApSpw,
hence for p large enough it follows that [A,(0 - @) + ¢3] is psh.
Let p be large enough such that [A,(0 - @) + ¢5] is psh. Since

A,(0-9)+ ¢, e PSH(X,6,) and Ay(0 - @) + @, < @p, it follows from the
definition of ¢;? that A,(0 - @) + % < £% + ¢p? < ¢¢, therefore

(e-9)+ (f)g/Ap < (éf,‘ +@p)[Ap < ‘bg/Ap'
By the local uniform convergence ¢5/A, - ¢%, the L.H.S. and R.H.S. of the
previous equation are uniformly bounded in L} .(Ve), thus {(£% + ¢p7)/A,} is
as well. As a consequence, there exists a subsequence {(&’gj +@p1)/Ap,} which

converges in L!(U,) and a.e. to a function ¢4« ¢ PSH(V,) (see [H3,
Theorem 3.2.12]). As there are finitely many a, we may assume the
convergence holds for all a simultaneously.

We claim that

eq *
(5.4 - = imsup (L2 )|
j—ooo Apj

To prove the claim, note that from [KI, Theorem 2.6.3] we can deduce

- a4 eI\
PeT = llim sup (L’ b )] )

i A,

J—oo Dj
Due to the uniform convergence ¢%/A, -~ ¢* and the continuity of ¢, it
follows that
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¢ — ¢ = [lim sup (gp]A i )] - ¢ = [lim sup (&’p] o ¢a)]

j—ooo Dj jooo Apl

A
- [lim sup (—p A b )] = [lim sup (—(pp, R )] )
jooo Apj jooo Apj

Which gives us (3.14).
By definition

*

7 - e ge
is 0-psh. Moreover, by (3.14), since ¢;? < ¢, for all p, we have ¢ < ¢ which
gives us (3.13). To finish off the computation we note that
a eq a
(pg?_(ppi _ (gpi_'_(ppi)_(bpi _)aeqa (boc: eq_(p'
A, A,

where the convergence is in L'(U,). Since this holds on all U,, it follows that
(@ = @p,)[Ap, > 9% — @ in L(X). This completes the proof.

4

For the following proof we will use the definition of ¢® from the
previous Lemma.
Proof of Theorem Let € >0 and x € X. Although we are working with
currents, it still suffices to show the claim holds for a subsequence.
Since {¢5/A,} is uniformly convergent on V, it is equicontinuous on U,,
hence by our arguments in the proof of Theorem (2.10) holds. That is,
there exists a Cy € R such that

eq B
(3.15) logPy (¢p —p < logCy -2nlogr
24p Ap 24,

From the above and Lemma [3.4] it follows that there exists a subsequence
{p;} such that for all j, we have

log P, log Cy - 2nlogr ol —Pp\
i 9 _ < j il 3q _ )
on, ~(WTT9)s 27, T\ TA, (@*=¢)

By the definition of %9, it follows that

+ €.

log Py, log Cy - 2nlogr Ol —Pp\
] _ eq _ ] ] _ eq _

This shall serve as our upper bound.
By continuity of ¢,, we assume WLOG that o ¢ PSH(X, 0) and
(0 - @) <0. From (b), we have

5y < c1(Lp, hp)[Ap - dd°§™ = dd® (95 /A, ~ ¢%).

Define tPi = /(Sp,- + 1/ /A ” and set HF:) - hpje*Q(ifij)APi(‘Peq*(P)*QtPiAPi(Q*P)‘ We
compute

c1(Lyp,, E;j) =dd¢p, + (1 - tp,)Ap,dd (¢ — @) + t,,Ap,dd®(0 - @)

= ddc(d)ff,. - Ap;d’a) +(1- tpi)ApiddC(‘Peq +E%) + tp;ApiddC (@+£&%)

> —6p Ap,w + @Apjcw + c\//—Tp}.w > c\/AT,}.w.
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Since ¢/Ap, »> 00 as j - oo, flvpj satisfies the assumptions of Demailly’s L?

estimates for 9. By our arguments from Theorem [.1] using
Ohsawa-Takegoshi extension and Demailly’s estimate for 9, there is a Cy >0
such that for all z € U, with p5(z) # —oo, there exists S,; € H(X, L,,) satisfying
S,j(z) #0 and

(3-17) “SZJH%;; < C2|Szj(x)|}2;p“i°
Since (¢°1 - ) and (o - @) are negative, we have flvpj > h,,, and so
S, € Hpy (X, Ly, hy,). From this and (3.17) it follows that
HSz,thp. < CQ|SZ’j(x)|hp.e—2(1—tp,~)Apj(<Peq—<P)(r)—2tp,~Apj(Q—(P)(x)'
] ]

thus
o 2(1t0) Ap, (9°7-9) (x) +2tp; Ap, (0-) () ISZ,,-(x)I%pj

< 5 -
Cs 512,
By the variational characterization of the Bergman kernel, it follows that
log Cp _ log Py (x)

(1= 1) (9% - @)(x) + tp, (2 - ) (x) -

27, — 24,
hence
logC, logP, (x)
— eq _ _ _ J _ eq _
tp)'((p (p)(x) + tP;‘ (Q (p)(x) 2Ap]. < 2Apj ((p (p)(x)'
As (¢° - @) is negative, we have
logC, log Pp,»(x) eq
tP](Q_(p)(x)_ 2Ap]. S 2Apj _((p _(p)(x)'
Combining with (3.16) yields
logCy log P, (x)
3.18 t,. (0 - - < ’ - (% -
( ) p,(Q (p)(x) 2Ap}- = 2Api ((p (p)(x)
logCy —2nlogr <p,‘§,." - ¥p, —
< [ N eq _ .
< oA, +€e+ l( A, (¢ ®)

Note, by Lemma 324 we have (¢! - ¢,,)/Ap, - (9% - @) in L'(X) and by
definition f, - 0, so from computations similar to those in the proof of
Theorem [1.1] we have

log P,,, n
lim sup h—((pe"—(p) <€ w_'
j 2Ap]. LA (X) X n:
Letting € — 0, we find that
log P, .
2P (0% — ) >0
oA, (9% - o)

in L1(X). Therefore

j‘—”" > T+dd® @™ — dd°¢ = 0 + dd° @™

bj

(3.19)

weakly as currents.



ASYMPTOTICS OF FUBINI-STUDY CURRENTS FOR SEQUENCES OF LINE BUNDLES 18

Now, we address the second half of (L.5). By the definition of ¢°? and
Lemma [3.4 we have

©p, = Pp, Op! —Pp,\ __ .
( o p)—[( ) p)—(weq—w)]=(<pGQ—<p)é(<p°’—<p)-
Pj pj

With this and (3.18) we can deduce

]Og CQ (pg}q - (ppi ’FC? log ppj (x) (pg}q - (ppi
o ) (0) 52 (L) G- ) (o) < 2R (B ),

Note t,,(@ - ¢) - 0 by definition and [(@,! - ¢,,)/Ap, - (9°7 - @)] - 0 in L}(X)
by Lemma [3.4l So, it follows from (3.15) and the inequality above that

log By, (¢ — ¥,
24, Ay,

wn
<€ -
LX) x n!

lim sup
j
Letting € — O tells us that

logPy (90’ ~9n)
2A,, A,
in L1(X), hence by (3.4) in the proof of Theorem [L.I] we have

7Pj - Ci(LPj' hle)]q)

Ap,
From this and (3.19) it follows that
1 (L, gl
Ap,

— 0 as currents.

- 0+dd®@p,

as desired.
Next, we prove (L.6). Since

log P, e logP,, @' - @p,
i (@ -9)], - =0
oA, oA, A,

in L1(X), we also have

(pgjq B (ppi) N eq
( A, (9% - 9)
in L'(X). Then, from Lemma [3.4 we deduce that (¢°? —¢) = ($°? - @) a.e., and
®°1 = @°9 a.e. Since °1 and @°? are gpsh and equal a.e., they are equal
everywhere. Since ¢°? is independent of the subsequence {p;}, it follows
from Lemma [3.Z] that every subsequence of (¢, - ¢,)/A, + ¢ has a

subsequence converging to ¢°®? almost everywhere. Then
(Pp' = @p) /A, + @ > 9 a.e., and (L.6) holds, that is,

eq *
(peq — lim sup u + @.
b Ap

Lastly, we only proved the theoreNm for a particularly smooth 0 ¢ {T},
and we must show it holds for all. Let 6 € {T} be smooth and choose ¢ € C(X)
such that 0+ ddc@ = T. Set @1 = sup{€ ¢ PSH(X,0) | ¥ <@}. Define 0 = ¢ - @.

We see that 0 € C(X) and dd¢o =dd¢(¢ - @) = 0 -0, hence ¢°? = ¢°I + 0, and
0+dd°@®? = (0 -dd°c) +dd® (¥ + 0) = 0+ dd°@=.
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It follows that y
B L 9+ddegT
pj
which shows the result is independent of our choice of 0 as desired.

4. APPLICATIONS

Applying Theorem to tensor products of powers of line bundles yields the
following:

Corollary 4.1. Assume Fj, 1 <j <k, are holomorphic line bundles on X
equipped with continuous metrics hti and singular metrics g& such that
ci(F;,gb) >0 and ¢y (F;,g'™) > €w, for some € >0. Let {m;,} be a sequence
of natural numbers with m, - o, as p - oo. Let y,, p > 1, be the
Fubini-Study currents associated with H(Q)(X, L,) where

Ly=F""®...0 F,*", hy, = (h")"r @ ... (hfk)mes,
Let h;? be the equilibrium metric of h,. Then
¥ —c1(Lp, hp?)

k -0
2jer Mip

weakly as currents.

Proof. Set
=(gM)mMr®... @ (gh)m.
Let x € X and suppose U, V c X are open polydisc neighborhoods of x with

UeV. For1<j<k,let <1)§" and pg" denote the local weights of hfi and gt on
V, respectively. Then the local weights of h, and g, are given by

k k

F : F,

$p =Y m;p,¢" and p, =Y m;,p".
=1 =1

Set
Ap = [01(Lp,gp Zm]p/;(ci([-‘j,gﬂ)/\wni.

Note there exists ¢ > 0, such that cA, < ZH m;, and
c1(Lp,gp) 2 m1,pC1(F1'QF") 2 my pEW.

By Theorem it suffices to show that {¢,/ Zfzi m;,} is equicontinuous and
uniformly bounded in L!(U), and {p,/ Zfzi m;,} is uniformly bounded in
LY(U).

Observe that

®p _211mJP¢’ Zk:( mip )¢Fj
k - ’
2jct Myp Z] 1 Myp j Ze 1 Myp
50 as {m;,/ Y f, my,} is bounded for all j, and ¢!/ is continuous on U, it

follows that {¢,/ Zfzi m;,} is equicontinuous and uniformly bounded in
L'(U). Similarly,
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hence {p,/ Zf’zi m;,} is uniformly bounded in L!(U). This completes the
proof.

Remark 4.2. If hfi = gh, 1 <j <k, then h;? = h,, and

k ,
Ci(LP'hP) _ Z( m]rP )Ci(Fj,hFj).

k k
Y-t Mep A\ Yo Myp

If additionally m;,/ ¥f, m, converges for all j, then

7p u ( . m;p ) F;
— lim ci1(F;, h').
YeMep ; P Y,My, 1( ! )

The following results are corollaries of Theorem

Corollary 4.3. Let (X,w) be as in (A) and for p > 1, let L, be a holomorphic
line bundle on X equipped with the metric h, with C? local weights ¢y for
all a. As well, let A, >0 with A, - co. Suppose the following conditions hold.

(a) There exists a continuous (1,1)-form ® such that

c1(Lp, hp) L@
Ap
uniformly.
(b) There exists g € L'(X) such that
dd®o+P >cw

Then for any 0 € {®}, and ¢ € C(X) such that dd°¢p = ® - 0, we have

?/P C, e Ci(LP’hgq)
— - 0+dd°¢®? and ———
A, +dd®¢°®? an A,

weakly as currents, where ¢ = sup{ ¢ PSH(X,0) | ¥ < ¢}.

- 0 +dd®e?

To prove the above Corollary, we will show that the given conditions
imply the conditions stated in Lemma To do this, we first prove the
following lemma.

Lemma 4.4. Let U be a coordinate polydisc. Assume {¢,: U - R} is a
family of C? functions bounded in L!, and there exists a continuous
(1,1)-form ® such that

dd®¢, - P uniformly.
Then, there exists ¢ € C'(U) and a subsequence {¢,,} such that
¢p, = ¢ locally uniformly.
Proof. Let K € U and € > 0. Choose ry > 0 such that
K={xeU|dist(x,K)<ro}eU.
Since dd¢¢, - ® uniformly it follows that there exists M >0 such that
-Mw<dd¢, < Mw.

Let ¢: U - R be a smooth real potential for w. As {¢, + M} is a family of
psh functions bounded in L!, it follows from [HG, Theorem 3.2.12] that there
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exists ¢y € PSH(U) and a subsequence {®p, + MC} such that ¢, + MC — dy in
L}l . We define ¢y = au M¢. We claim ¢y is continuous differentiable.

To see that ¢y is C! smooth we note that A¢y = Tr(®) is continuous. If
K e U is a ball, then A¢y is bounded on K, so by [GT, Lemma 4.1] there
exists Yx € C1(K) with Yk = ¢y a.e. on K. Then, g + M€ = ¢y + M€ a.e. and
both sides are psh, so they're equal everywhere. It follows that ¢y € C!(K).
As K c U was an arbitrary ball we have ¢y € CH(U).

Next, as dd®¢,, - ® uniformly, it follows that for k large enough, we
have

—w <dd®(Pp, — Pv) < w.

From this and subaveraging, we find
(5= Gu+ @) < oo [ (9, = bu+C)d,
B(x,r)
for all x ¢ K and O < r < ryp, where dA is the Lebesgue measure. It follows that

(p, — Pu)(x) < fB (M)(%k Pu)dA + [B - (€ - ¢(x))dA.

By the uniform continuity of ¢ on K, it follows that we can choose r small
enough so that

JTnl”Qn

el r2n T r2n

n!

(8 ~60) (@) < e [ (6~ du)dA v

for all x € K. By applying similar arguments to (¢y - ¢y, ), it follows that by
shrinking r, if necessary, we may assume

(Gv =) @) S g [ (du=p)dAve

Combining these inequalities gives

j-l'IlPQIl

n!

HHPQH

n!
i o Go =G0 =€ (b - 00) @) < 1o [ (@ - du)dhee,
SO
n! n!
6o, — Sul(x) < 57 fB oy 90— GUldA €< f;? |bp, ~duldA + €.

As ¢p, » ¢y in LY(K), it follows that if k is large enough, then
nle

90, ~ ul(x) < oo v e

As x was arbitrary, we see ¢, - ¢y uniformly on K, therefore {¢p} has a
subsequence converging uniformly to ¢y on K.

To see that {¢,} has a subsequence converging locally uniformly on U,
we let {K,} be an exhaustion of U by compact sets, and then apply a
diagonalization argument to construct a sequence converging uniformly on
each K,, and hence, locally uniformly on K.

v

Proof of Corollary As dd° ¢y /Ap = @ uniformly on V, it follows that
there exists M > 0 such that

-Mw <dd®¢; /A, < Mw.

Hence, there exists a smooth function ¢ such that {¢%/A, + €} is
plurisubharmonic for all p,a. By [DS, Proposition A.16], it follows that there
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exists a ¢ >0 and 6% e PSH(U,) for all p,a such that dd@; =dde (o5 + ApC)
and

|85/ Asllce < [, dd*(85/A, +€) na .

Define $§/Ap = @/Ap — €. From above it is clear that {ag/Ap} is bounded in
L'(Uy). As dde¢g = ddegg, it follows that ¢3 = ¢p& + kS almost everywhere for
some pluriharmonic function k§ € C>(U,). Hence, ¢¢ is C? and ¢3 = ¢% + kS
everywhere.

Since kf is pluriharmonic, it is the real part of a holomorphic function

f&. Let eg = ege’r. We find

h, (€5, 6%) = e TieTih,(ef, e2) = e ?Ref @267 = 295k = 7205,

o) (’fg are C? local weights of h, with respect to the local frames eZ, and the
family {ag/Ap} is bounded in L1(U,).

Suppose {p;} is a subsequence. By condition (a) and Lemma it
follows that for all a, there exists ¢« € C'(U,) and a subsequence {p;,} such
that ag; /Apjk - ¢“ locally uniformly on U,. We will start by showing that the
claim holds for this subsequence.

We shall apply Theorem to the subsequence {p;, } with open cover
{Us} and local frames e%. Given (?)g; [Ap, — ¢% conditions (A) and (B’) are
satisfied for our subsequence. To see that (b) of Theorem holds, we first
note that dd®(g + ¢%) = dd°g + ®|y, = dd°g + T|y,. Next, we define @’ by
o' =0+ @. Then,

dd®(o+¢%) =dd®9+ T|y, =dd°e+0+dd°¢@=dd’ +6,

so dd°o’ + 0 > cw, and (b) is satisfied. It remains to show that condition (a) of
Theorem holds for the subsequence.

As c1(Lp, hp)/A, is uniformly convergent to ® = ddc¢?, it follows that
there exists 6, > 0 with 6, — 0 such that

¢ ra Ci(L,h)
ddc¢ —5pws#,

which gives us (a) of Theorem
It follows from Theorem that for any 6 € {®} and ¢ € C(X) such that
dd¢e@ = ® - 0, we have
. cy(Ly, , hy!
KL 0 +dd® ¢ and 1(”%—””@ - 0+dd°¢,
Pjp, AP;'k

where
(peq = sup{lp € PSH(X, 9) | lp < (P}

Since this convergence holds for an arbitrary subsequence, it holds for the
entire sequence.

4

Remark 4.5. In the above scenario, we do get for all a that ¢%/A, has a
subsequence converging uniformly to some ¢« € C'(U,). Unlike the ¢°? in
our proof above, the function ¢ is dependent on the subsequence. However,
in the case where L, = LP, the function ¢ is unique up to constant addition.
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Before stating our next corollary, we let {V,} be an open cover of X as
in Section and define ¢3,p5 to be the local weights of h, and g, on V.

Corollary 4.6. Let (X,w) and L, be as in (A) and (B). Assume the local
weights ¢ of h, are C*> and {¢5/A,} is bounded in L'(V,). Suppose the
following conditions hold.

(a) There exists a continuous (1,1)-form & such that

Ci(Lp' hp) N
Ap

uniformly.
(b) For all a the family {p5/A,} is uniformly bounded in L'(V,), and
there exists C > 0 such that A,/a, < C.
Then for any real smooth closed 0 € {®}, and ¢ ¢ C(X) such that
ddc¢@ =P -0, we have

'}’p c, € Ci(LP’hgq)
= > 0+dd°@p®? and ———=
Ap + () an Ap

weakly as currents, where @1 =sup{y ¢ PSH(X,0) | ¥ < ¢}.

- 0 +dd®e?

Proof: Note that, since (B) is assumed, our setup is stronger than the one in
Corollary so (a) implies condition (a) of Corollary It suffices to show
that condition (b) of Corollary [£.3 holds, i.e., there exists a g € L'(X) such that
® +dd°g > cw for some ¢ > 0.

By Lemma there exists ¢* € C'(V,) and a subsequence {¢g } such
that ¢,‘§j /Ap = ¢* locally uniformly. Let ¢ be a real smooth potential for w on

Va. As A,/a, is bounded, it follows that for some ¢ > 0 we have
dd®(pp [Ap —c€) =c1(Lp, gp)/Ap —cw > (ap/Ap)w - cw >0,

so (pg/Ap - cC) is psh for all a. Since (p5/A, - c() is uniformly bounded in
Ll _(Vq), it follows from [HS, Theorem 3.2.12] that (pg,/Ap; —cC) has a
subsequence converging to a function p* € PSH(U,) in L!(U,). By refining
our original subsequence, we may assume WLOG that the convergence
holds for all a simultaneously.

We define p* = p* + c¢, and set % = p® — ¢p*. We compute

d +dd% =P +ddp* - ddP* =dd°(p*) + dd°cC > cw.

Next, notice that
598 .
A, P ¢ =e
in L1(U,) for all a. The left-most function glues to a global function, hence
0% = @# almost everywhere for all a, 8. Since @* is qpsh for all a, the equality
holds everywhere. Then, the function g: X — [-oc0, o0) defined by gl|y, = 0* is
well defined and satisfies

® +dd > cw.
Clearly, o € L'(x), so condition (b) of Corollary [£.3] holds.
A4

Before stating the next theorem we recall than in (B’), the functions ¢
were the local uniform limits of the scaled local weights ¢%/A,.
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Theorem 4.7. Let (X,w) be as in (A) and L be a big line bundle on X.
Suppose (L, h,) are as in (B'), where L, = LP, e§ = (e{')®P, and A, = p. Then,
there is a metric h on L with local weights ¢* on V,, and

c1(LP, hy?)

(4.1) % - cy(L, h®?) and —cy(L, h®?) weakly as currents,

where h®d is the equilibrium metric determined by h, as defined in Section

The convergence (41) is a special case of (I.5), and one can formulate a
statement similar to (4.1) whenever the ¢« are local weights of a metric. This
isn’t the only similarity to Theorem In fact, the only condition from
Theorem which we can’t show holds here is the assumption that
c1(Lp, hp)/Ap > dd®¢* - S,w. This property isn't needed here, as g handles the
positivity requirement. Despite the similarities, Theorem [£.7] is proved using
Theorem [1.2] and not Theorem

The following lemma will be needed in our proof of Theorem [4.7]

Lemma 4.8. If 0 is a real smooth closed (1,1)-form on X with
PSH(X,0) # @, and o, € C(X) converges uniformly to o € C(X), then
T,, T € PSH(X) with 1, - T uniformly, where

T, :=sup{Y e PSH(X,0) | ¥ <0,} and 7 :=sup{y e PSH(X,0) | P <o}.

Proof. Define

F,={¢ePSH(X,0) | ¥<0,} and F={¢pe PSH(X,0) | Y <0o}.
Let ¥ € F,. We see

Y —|op -0~ <0 and ¥ - |0, - 0f 1~ € PSH(X, 0),
s0 P - ||op — 0|~ € F. Taking the supremum over all such 3 we obtain
Tp — |0p — 0|~ < T. Similarly, T - |0 - 0p |1~ < Tp, thus || T - Tp |1~ < [0p — T]| 1=,
and so 1, - T uniformly as desired.
4

For the following proof, we fix a smooth metric hy on L with curvature
0 =c1(L, ho). Recall definition ([I.4), that is, T is the current satisfying
Ty, = dd¢¢*. By definition, the global weight of he? is given by
@®1 =sup{Y e PSH(X,0) | Y < @}.
Proof of Theorem [4.7l As in the proof of Proposition there exist
pluriharmonic functions w,bgﬁ € C>(V,nVp) for all a,B, and p, which are
defined by V¥ = log |kS?|, where k3? denotes the transition function of L,.
These have the property that

05 = dp+ Uy
Since e? = (e%)®r, it follows that 5" = py£*, thus
a 5] a
¢ = lim (ﬁ) - lim (M) = ¢F + e,
p \ p P p

hence h is well defined, and ¢%/p - ¢~ glue to a global potential for
c1(Lp, hp)fp - T.
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Let g be a metric on L with strictly positive curvature current and local
weights p®. The family of bounded local weights of gP is {p-p®/Ap} = {p®},
which is clearly bounded in L!(V,). Since ®%/p — ¢* locally uniformly on V,,
it follows that {¢5/p} is equicontinuous and uniformly bounded on U,. This
shows the hypothesis of Theorem hold with g, = gP, hence

Yo — c1(Lp, hp")
p
Since ¢4 (L, h¢?) = 0 + dd°¢®°q, we'll be done if we show
c1(Lp, hp)
p

- 0.

S 0 +ddeged

ci1(Lp, hp?) —0+ ddc(Pp

p p
our desired convergence will hold provided
@’

= — °®? locally uniformly.

We show this now.
Let ¢ and ¢, denote the global weights of h and h, with respect to hy
and h{), respectively. If 1* denotes the local weight of hy on V,, then

¢ _ b5~ Py gg__wa
p p p
Then ¢,/p — ¢* — Y = ¢ uniformly. By definition we have

(pp =sup{y e PSH(X,0) e Y < ¢,/p} and ¢°? =sup{p e PSH(X,0) e P < ¢},

hence by Lemma [£.8] it follows that ¢,/p — ¢°? locally uniformly, which
completes the proof
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