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THE SMALL p-ADIC SIMPSON CORRESPONDENCE IN THE SEMI-STABLE

REDUCTION CASE

MAO SHENG AND YUPENG WANG

Abstract. We generalize several known results on small Simpson correspondence for smooth formal
schemes over OC to the case for semi-stable formal schemes. More precisely, for a liftable semi-stable
formal scheme X over OC with generic fiber X , we establish (1) an equivalence between the category
of Hitchin-small integral v-bundles on Xv and the category of Hitchin-small Higgs bundles on Xét,
generalizing the previous work of Min–Wang, and (2) an equivalence between the moduli stack of
v-bundles on Xv and the moduli stack of rational Higgs bundles on Xét (equivalently, moduli stack
of Higgs bundles on Xét), generalizing the previous work of Anschütz–Heuer–Le Bras.
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1. Introduction

1.1. Overview. The small p-adic Simpson correspondence was firstly considered by Faltings [Fal05]
and then systematically studied by Abbes–Gros–Tsuji [AGT16] and Tsuji [Tsu18], which is known
as the equivalence between categories of (Faltings-)small generalized representations and (Faltings)-
small Higgs bundles on X , the generic fiber of a liftable (log-)scheme X over OC with nice singu-
larities. (For example, X could have semi-stable special fiber.) Using this, for curves, Faltings gave
an equivalence between the whole category of generalized representations and the whole category of
Higgs bundles.

According to the recent development of p-adic geometry, we have several improvements of the
previous works on p-adic Simpson correspondence. In [LZ17], for a smooth rigid variety X over K,
a discretely valued complete field over Qp with perfect residue field, Liu and Zhu assigned to each
Qp-local system on Xét to a GK-equivairant Higgs bundle on X

K̂,ét
, based on the previous work of

Scholze [Sch13]. Using the decompletion theory in [DLLZ23], Min and the second author generalized
this assignment to an equivalence between the category of v-bundles on Xv and the category of GK-
equivariant Higgs bundles on X

K̂,ét
, as the arithmetic p-adic Simpson correspondence [MW22]. More

generally, for any proper smooth rigid variety X over C, a complete algebraic closed field, Heuer
established an equivalence between the whole category of v-bundles on Xv and the whole category
of Higgs bundles Xét [Heu23], generalising the previous work of Faltings [Fal05] in the curve case.
Heuer also introduced the moduli stack of v-bundles on Xv and the moduli stack of Higgs bundles
on Xét, and proved these two stacks are isomorphic after taking étale sheafifications [Heu22]. Very
recently, Heuer and Xu proved when X is a smooth curve, these two stacks are equivalent to each
other up to a choice of extra data [HX24].
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On the other hand, the theory of p-adic Simpson correspondence is closely related to the prismatic
theory introduced by Bhatt–Scholze [BS22] and developed by Bhatt–Lurie [BL22a, BL22b]. For a
smooth formal scheme X over OC , in the case X is affine and étale over a formal torus, Tian estab-
lished an equivalence between the category of Hodge–Tate crystals on the prismatic site associated
to X and the category of topologically nilpotent Higgs bundles on X [Tia23]. In the same setting,
Morrow and Tsuji [MT20] also obtained a “q-deformation” of Tian’s result. When X is smooth over
OK , Min and the second author established an equivalence between the category of rational Hodge–
Tate crystals on the absolute prismatic site associated to X and the category of enhanced Higgs
bundles on Xét [MW22]. This work was generalized by Anschütz–Heuer–Le Bras to the derived case
and they also gave a pointwise criterion for a Higgs bundle being enhanced [AHLB23a, AHLB23b].
When X is smooth and liftable over OC with generic fiber X , Anschütz–Heuer–Le Bras also gave
an equivalence between the moduli stack of Hitchin-small v-bundles on Xv and the moduli stack
of Hitchin-small Higgs bundles Xét. As (Faltings-)small objects are always Hitchin-small, their re-
sult generalized the previous works of Faltings [Fal05], Abbes–Gros–Tsuji [AGT16] and the second
author [Wan23]. There is another generalisation of Faltings’ Simpson correspondence: In [MW24],
Min and the second author obtain an equivalence between the category of (Faltings-)small integral
v-bundles Xv and the category of (Faltings-)small integral Higgs bundles on Xét, also generalizing
partial results in [BMS18].

1.2. Main results. From now on, we freely use the notations in §1.4. In particular, we always let
K be a complete discrete valuation field with the ring of integers OK and the perfect residue field
κ, and let C be the completion of a fixed algebraic closure of K with the ring of integers OC and
the maximal ideal mC . Let Ainf,K := Ainf(OC) ⊗W(κ) OK be the ramified infinitesimal period ring
of Fontaine (with respect to K), ξK be a generator of the natural surjection θK : Ainf,K → OC , and
A2,K := Ainf,K/ξ

2
K . Equip A2,K and OC with the canonical log structures; that is, the log-structures

induced from O♭C \ {0}
[·]−→ Ainf,K via the corresponding quotients. In this paper, we always work

with semi-stable p-adic formal schemes X (viewed as log-schemes) with the generic fiber X in the
sense of [CK19].

1.2.1. An integral p-adic Simpson correspondence. Our first result is the following integral p-adic
Simpson correspondence for liftable semi-stable formal schemes.

Theorem 1.1 (Theorem 5.4). Let X be a semi-stable formal scheme over OC of relative dimension

d. Suppose that it admits a flat lifting (as a formal log-scheme) X̃ over A2,K. Then there exists

a period sheaf (OĈ+
pd,Θ) together with Higgs field Θ (depending on the given lifting X̃) inducing a

rank-preserving equivalence

(1.1) LSH-sm(X, Ô+
X) ≃ HIGt-H-sm(X,OX)

between the category LSH-sm(X, Ô+
X) of Hitchin-small integral v-bundles on Xv (cf. Definition 5.1)

and the category of twisted Hitchin-small Higgs bundles on Xét (Definition 5.2), which preserves
tensor products and dualities. More precisely, let ν : Xv → Xét be the natural morphism of sites, and
then the following assertions are true:

(1) For any M+ ∈ LSH-sm(X, Ô+
X) of rank r, the complex Rν∗(M+ ⊗ OĈ+

pd) is concentrated in
degree [0, d] such that

LηρK(ζp−1)Rν∗(M+ ⊗OĈ+
pd) ≃

(
ν∗(M+ ⊗OĈ+

pd)
)
[0],

where LηρK(ζp−1) denotes the décalage functor in [BMS18, §6]. Moreover, the push-forward

(H+(M+), θ) := (ν∗(M+ ⊗OĈ+
pd), ν∗(idM+ ⊗Θ))

defines a twisted Hitchin-small Higgs bundle of rank r on Xét.
(2) For any (H+, θ) ∈ HIGt-H-sm(X,OX) of rank r, the

M+(H+, θ) := (H+ ⊗OĈ+
pd)

θ⊗id+id⊗Θ=0

defines a Hitchin-small integral v-bundle of rank r on Xv.
(3) The equivalence (1.1) is induced by the functors in Items (1) and (2).
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Remark 1.2. Theorem 1.1 generalizes the main result [MW24, Th. 1.1] in the following sense:
In loc.cit., we always work with smooth formal schemes and (Faltings-)small integral v-bundles
and Higgs bundles, but here, the result holds for semi-stable formal schemes and for Hitchin-small
integral v-bundles and Higgs bundles. We remark that a Faltings-small integral v-bundle (resp.
Higgs bundle) is always Hitchin-small but the converse is not true (for example, a nilpotent Higgs
bundle is always Hitchin-small but not always Faltings-small). It also upgrades the rational Simpson
correspondences of Faltings [Fal05], Abbes–Gros–Tsuji [AGT16] and Wang [Wan23] for Faltings-
small objects and Anschütz–Heuer–Le Bras [AHLB23b, Th. 1.2] for Hitchin-small objects to the
integral level (see Theorem 1.9 for its analogue in semi-stable reduction case).

Given a Hitchin-small integral v-bundle M+ with the associated Hitchin-small Higgs bundle
(H+, θ) in the sense of Theorem 1.1, we also want to compare the push-forward Rν∗M+ with
the Higgs complex DR(H+, θ). Indeed, we are able to prove the following truncated cohomological
comparison, generalizing [MW24, Cor. 1.2 and Th. 1.4] to the semi-stable reduction case.

Theorem 1.3 (Corollary 5.8 and Theorem 5.9). Keep assumptions in Theorem 1.1 and letM+ be
a Hitchin-small integral v-bundle with the corresponding Hitchin-small Higgs bundle (H+, θ). Then
there exists a canonical morphism

DR(H+, θ)→ Rν∗M+

whose cofiber is killed by (ρK(ζp− 1))max(d+1,2(d−1)), and this morphism induces a quasi-isomorphism

τ≤1DR(H+, θ) ≃ τ≤1LηρK(ζp−1)Rν∗M+.

In particular, when X is a curve (i.e. d = 1), we get a canonical quasi-isomorphism

DR(H+, θ) ≃ LηρK(ζp−1)Rν∗M+.

In particular, by letting M+ = Ô+
X (or equivalently (H+, θ) = (OX, 0)), by a standard trick

used in the proof of [DI87, Th. 2.1] and [Min21, Th. 4.1], we conclude the following analogue of
Delighe–Illusie decomposition for semi-stable formal schemes:

Theorem 1.4 (Theorem 5.10). Keep assumptions in Theorem 1.1. Then there exists a quasi-
isomorphism

⊕p−1
i=0Ω

i,log
X
{−i}[−i]→ τ≤p−1LηρK(ζp−1)Rν∗Ô+

X .

Remark 1.5. To obtain the decomposition in Theorem 1.4, it seems that we must assume X admits
a lifting as formal log-scheme over A2,K (endowed with the canonical log structure). This phenom-
enon appears in the classical theory of Deligne–Illusie decomposition for log-schemes in positive
characteristic, by a previous work of the first author [SS20]. See Remark 5.11 for more discussion.

1.2.2. A stacky p-adic Simpson correspondence. Let X be a semi-stable p-adic formal scheme over

OC with the generic fiber X as before. Again we assume that X admits a lifting X̃ over A2,K .
Denote by Perfd the v-site of affinoid perfectoid spaces over C in the sense of [Sch17]. For any
S = Spa(A,A+), let XS and XS be the base-change of X abd X to A+ and A, respectively. Then
for any r ≥ 0, the following two functors

LSr(X, ÔX) : S ∈ Perfd 7→ {groupoid of v-bundles of rank r on XS,v}
and

HIGr(X,OX) : S ∈ Perfd 7→ {groupoid Higgs bundles of rank r on XS,ét}
are actually small v-stacks [Heu22, Th. 1.4]. Denote by Ar the following v-sheaf

Ar : S ∈ Perfd 7→ ⊕ri=1H
0(XS, Sym

i(Ω1
XS
{−1})).

Then we have the Hitchin-fibrations

LSr(X, ÔX)
h̃

##❍
❍❍

❍❍
❍❍

❍❍
HIG(X,OX)
h

zz✉✉
✉✉
✉✉
✉✉
✉

Ar,
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where h carries each Higgs bundle (H, θ) to the characteristic polynomial of θ while h̃ denotes the
composite of h with the “HTlog” in [Heu22, Def. 1.6]. The integral model X of X induces a sub-sheaf

AH-sm
r : S ∈ Perfd 7→ ⊕ri=1p

< i
p−1H0(XS, Sym

i(Ω1,log
XS
{−1}))

of Ar, where p<
i

p−1 denotes the ideal (ζp − 1)imC ⊂ OC . For any Z ∈ {LSr(X, ÔX),HIGr(X,OX)},
denote by ZH-sm := Z ×Ar

AH-sm
r its Hitchin-small locus. A Higgs bundle on XS,ét (resp. a v-bundle

on XS,v) of rank r is called Hitchin-small if as a point, it belongs to the Hitchin-small locus of the
corresponding moduli stack. Then our second main result is the following equivalence of stacks:

Theorem 1.6 (Theorem 5.22). Let X be a semi-stable p-adic formal scheme over OC with the

generic fiber X which admits a lifting X̃ over A2,K. Then the lifting X̃ induces an equivalence of
stacks

ρ
X̃
: LSr(X, ÔX)H-sm ≃−→ HIGr(X,OX)H-sm.

Remark 1.7. When X is smooth over OC , the above equivalence was obtained by Anschütz–Heuer–
Le Bras [AHLB23b, Th. 1.1], based on their previous work [AHLB23a] on studying rational Hodge–
Tate crystals on the prismatic site associated to X. They first constructed a fully faithful functor

S
X̃
: HIGr(X,OX) → LSr(X, ÔX) via prismatic theory and then showed the essential surjectivity

by working locally on X. Compared with their construction, we do not need any input of prismatic
theory and can give an explicit description of ρ−1

X̃
(cf. Theorem 1.9).

Remark 1.8. It is still a question if there exists an equivalence of the whole stacks

LSr(X, ÔX) ≃−→ HIGr(X,OX)
for general smooth X over C. Up to now, we only know a few on this question: We only have the
desired equivalence when X is either a curve [HX24] or the projective space Pn [AHLB23b, Cor.
1.3]. It seems the recent announcement of Bhargav Bhatt and Mingjia Zhang on Simpson gerbe may
help to solve this question, but up to now, we still do not know if such an equivalence always exists.

We now describe the strategy to prove Theorem 1.6. It suffices to show for any S = Spa(A,A+) ∈
Perfd, there is a rank-preserving equivalence

LS(X, ÔX)H-sm(S)
≃−→ HIG(X,OX)H-sm(S)

between the category of Hitchin-small v-bundles on Xv,ét and the category of Hitchin-small Higgs
bundles on XS,ét which is functorial in S. To do so, we may follow the same argument for the proof

of Theorem 1.1: Given a lifting X̃ of X over A2,K , its base-change X̃S along A2,K → A2,K(S) =
Ainf(S)⊗Ainf

A2,K is a lifting of XS (the base-change of X along OC → A+). Using this, one can still

construct a period sheaf (OĈpd,S,Θ) with Higgs field whose Higgs complex induces a resolution of

the structure sheaf ÔXS
on XS,v. Then one can prove the following rational Simpson correspondence:

Theorem 1.9 (Theorem 5.17 and Lemma 5.16). Let ν : XS,v → XS,ét be the natural morphism of
sites.

(1) For anyM ∈ LS(X, ÔX)H-sm(S) of rank r, we have a quasi-isomorphism

Rν∗(M⊗OĈ+
pd,S) ≃ ν∗(M⊗OĈ+

pd,S)

Moreover, the push-forward

(H(M), θ) := (ν∗(M⊗OĈpd,S), (ζp − 1)ν∗(ΘidM⊗Θ))

defines a Hitchin-small Higgs bundle of rank r on XS,ét.
(2) For any (H, θ) ∈ HIG(X,OX)H-sm(S) of rank r, the

M(H, θ) := (H⊗OĈpd,S)
(ζp−1)−1θ⊗id+idH⊗Θ=0

defines a Hitchin-small v-bundle of rank r on XS,v.
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(3) The functors in Items (1) and (2) defines an equivalence of categories

LS(X, ÔX)H-sm(S)
≃−→ HIG(X,OX)H-sm(S).

which preserves ranks, tensor products and dualities. Moreover, for any Hitchin-small v-
bundleM with associated Hitchin-small Higgs bundle (H, θ), there exists a quasi-isomorphism

Rν∗M≃ DR(H, θ).
Then Theorem 1.6 follows immediately as the equivalence above is ovbiously functorial in S by

the construction.
To obtain the desired period sheaf with Higgs field (OĈpd,S,Θ), we need to construct the integral

Faltings’ extension corresponding to the lifting X̃S of XS using the theory of log-cotangent complex
of Olsson (and Gabber) [Ols05, §8] as we did in [Wan23, §2]. To do so, we need to endow A+ with
a suitable log-structure, called the canonical log-structure, such that the analogue of [BMS18, Lem.
3.14] holds true. The most natural log-structure on A+ is (A× ∩ A+ → A+), and the difficult part
is prove it is the correct one (cf. §2.1).

1.3. Organization. The paper is organized as follows: In §2, we introduce the canonical log-
structure on perfectoid Tate algebra, and the basic set-up on semi-stable formal schemes we will
work with. In §3, we construct our period sheaf with Higgs field and prove the corresponding
Poincaré’s Lemma. In §4, we include the key local calculations and give a local version of Simpson
correspondence. Finally, in §5, we prove the integral Simpson correspondence at first and then give
the desired equivalence of moduli stacks on Hitchin-small v-bundles and Hitchin-small Higgs bundles
for lifable semi-stable formal schemes X.

1.4. Notations. Throughout this paper, let K be a complete discrete valuation field over Qp with
the ring of integers OK and the residue field κ, which is required to be perfect. Put W := W(κ),

let C = K̂ be the completion of a fixed algebraic closure K of K with the ring of integers OC
and the maximal ideal mC . Let Ainf and B+

dR be the corresponding infinitesimal and de Rham
period rings. Fix an embedding pQ ⊂ C×, which induces an embedding ̟Q ⊂ C♭×, where ̟ =
(p, p1/p, p1/p

2
, . . . ) ∈ C♭. Fix a coherent system {ζpn}n≥0 of primitive pn-th roots of unity in C, and

let ǫ := (1, ζp, ζ
2
p , . . . ) ∈ C♭. Put Ainf,K := Ainf ⊗W OK and then we have the canonical surjection

θK : Ainf,K → OC whose kernel IK is principally generated and we fix an its generator ξK . Define
A2,K := Ainf,K/I

2
K .

For any (sheaf of) Ainf,K-module M and any n ∈ Z, denote by M{n} its Breuil–Kisin–Fargues
twist

M{n} :=M ⊗Ainf
I⊗nK ,

which can be trivialized by ξnK ; that is, we have the identification M{n} = M · ξnK . Using this, we
may regard M as a sub-Ainf,K-module of M{−1} via the identification M = ξKM{−1}.

Let µp∞ be the sub-group of O×
C generated by {ζpn}n≥1 and Zp(1) := Tp(µp∞) be its Tate module.

For any (sheaf of) Zp-module M and any n ∈ Z, denote by M(n) its Tate twist

M(n) :=M ⊗Zp
Zp(1)

⊗n.

Let t = log([ǫ]) ∈ B+
dR be the Fontaine’s p-adic analogue of “2πi”. Then M(n) can be trivialized by

tn; that is, we have the identification M(n) =M · tn.
The natural inclusion Ainf,K →֒ B+

dR induces a natural inclusion

OC{1} ∼= ξKAinf,K/ξ
2
KAinf,K →֒ tB+

dR/t
2B+

dR
∼= C(1)

identifying OC{1} with an OC-lattice of C(1). Let OC(1) = OC ⊗Zp
Zp(1) ⊂ C ⊗Zp

Zp(1) = C(1) be
the standard OC-lattice of C(1). Then there exists an element ρK ∈ OC with the p-adic valuation
νp(ρK) = νp(DK) + 1

p−1
such that

OC(1) = ρKOC{1},
where DK denotes the ideal of differentials of OK . For example, when OK = W, we have DK = OK
and can choose ρK = ζp − 1.
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Fix a ring R. If an element x ∈ R admits arbitrary pd-powers, we denote by x[n] its n-th pd-power
(i.e. analogue of xn

n!
) in R. Put Ei = (0, . . . , 1, . . . , 0) ∈ Nd with 1 appearing at exactly the i-th

component. For any J = (j1, . . . , jd) ∈ Nd and any x1, . . . , xd ∈ R, we put

xJ := xj11 · · ·xjdd
and if moreover xi admits arbitrary pd-powers in A for all i, we put

x[J ] := x
[j1]
1 · · ·x[jd]d .

Define |J | := j1 + · · ·+ jd. For any α ∈ N[1/p] ∩ [0, 1), we put

ζα = ζmpn

if α = m
pn

such that p and m are coprime in N. If x ∈ A admits compatible pn-th roots x
1
pn , we put

xα = x
m
pn

for α = m
pn

as above. In general, for any α := (α1, . . . , αd) ∈ (N[1/p] ∩ [0, 1))d and any x1, . . . , xd
admitting compatible pn-th roots, we put

xα := xα1
1 · · ·xαd

d .

We always denote by Perfd the v-site of affinoid perfectoid spaces over Spa(C,OC) in the sense of
[Sch17].
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2. Basic set-up

2.1. Canonical log structure on perfectoid affinoid algebras. Let (A,A+) be a perfectoid
affinoid algebra with tilting (A♭, A♭+). Fix a π ∈ A♭,+ such that π = π♯ and πp = pu for some unit
u ∈ A+,× (cf. [BMS18, Lem. 3.19]). Then A+ is π-adically complete and A = A+[ 1

π
] while the same

holds for (A♭, A♭,+, π) (instead of (A,A+, π)). Let

♯ : A♭ → A, f = (f0, f1, . . . ) ∈ A♭ = lim←−
x 7→xp

A 7→ f0

denote the usual sharp map, which is a morphism of multiplicative monoids. Then ♯ coincides with
the composite

A♭,+
[·]−→ Ainf,K(A,A

+)
θK−→ A+.

Definition 2.1. For any affinoid perfectoid U = Spa(A,A+) over Qp, the canonical log-structure on
Ainf,K(U) = Ainf,K(A,A

+) is the log-structure induced by the pre-log structure

A♭,× ∩ A♭,+ [·]−→ Ainf,K(U).

For any Ainf,K(U)-algebra B
+ ∈ {A♭,+, A+,Ainf,K(U)/Ker(θK)

n}, the canonical log-structure on B+

is the log-structure induced from the canonical log-structure on Ainf,K(U) via the natural surjection
Ainf,K(U)→ B+. In particular, the canonical log-structure on A+ is the log-structure associated to

the pre-log structure A♭,× ∩ A♭,+ ♯−→ A+.

Note that A+ admits another log-structure (A× ∩ A+ →֒ A+). Our purpose in this section is to
prove the following result:

Proposition 2.2. For any perfectoid affinoid algebra (A,A+), the canonical log-structure on A+

coincides with the log-structure (A× ∩A+ →֒ A+).
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For example, as C♭,× ∩ O♭C = ̟Q>0 · O♭,×C and C× ∩ OC = pQ>0 · O×
C , we know the canonical log-

structure on OC is associated to the pre-log-structure Q>0
a7→̟a

−−−→ O♭C
♯−→ OC while the log-structure

C×∩OC →֒ OC is associated to the pre-log-structure Q>0
a7→pa−−−→ OC , yielding Proposition 2.2 in this

case because (̟a)♯ = pa for any a ∈ Q.
The key ingredient for proving Proposition 2.2 is the following result, whose proof is similar to

that of [DH23, Prop. 2.9].

Proposition 2.3. Let (A,A+) be a perfectoid affinoid algebra over Qp with tilting (A♭, A♭,+). Then
for any f ∈ A× ∩ A+, there exists a g ∈ A♭,× ∩ A♭+ and an h ∈ A+ such that f = g♯ · (1 + ph).

Proof. Put U = Spa(A,A+) and U ♭ = Spa(A♭, A♭+). By tilting equivalence, we can an homeomor-
phism of underlying topological spaces of |U | ∼= |U ♭|. For any x ∈ |U |, we denote by x♭ ∈ |U ♭| the
image of x via this identification.

Fix an f ∈ A× ∩A+. By [Hub93, Lem. 3.3(i)] and [Hub94, Lem. 1.4], for any x ∈ |U |, we always
have 0 < |f(x)| ≤ 1. As π is a pesudo-uniformizer and |U | is quasi-compact, there exists an integer
N ≥ 0 such that for any x ∈ |U |,
(2.1) |π(x♭)|pN = |π(x)|pN ≤ |f(x)| ≤ 0.

By the approximation lemma [CS24, Lem. 2.3.1], there exists a g ∈ A♭,+ such that for any x ∈ |U |,
(2.2) |f(x)− g♯(x)| ≤ |p(x)| ·max(|g(x♭)|, |π(x♭)|pN).
As |g♯(x)| = |g(x♭)| and |p(x)| < 1, by strong triangular inequality, we deduce from (2.1) and (2.2)
that for any x ∈ |U |,

|f(x)| = |g♯(x)| = |g(x♭)|.
In particular, using (2.1) again, for any x♭ ∈ |U ♭|, we have

0 < |π(x♭)|pN ≤ |g(x♭)| ≤ 1.

This forces that g ∈ A♭× ∩A♭,+ and that g−1πpN ∈ A♭,+, by [Hub93, Lem. 3.3(i)] and [Hub94, Lem.

1.4] again. A similar argument also shows that (g♯)−1f ∈ A+,× is a unit in A+. So we can rewrite
(2.2) as

|((g♯)−1f)(x)− 1| ≤ |p(x)| ·max(1, |(g−1πpN)(x♭)|) = |p(x)|.
As p is invertible in A, the above argument implies that h := p−1((g♯)−1f − 1) is a well-defined

element in A+. By construction, we conclude that f = g♯(1 + ph) as desired. �

Corollary 2.4. Let (A,A+) be a perfectoid affinoid algebra over Qp with tilting (A♭, A♭,+). Then for
any ? ∈ {+, ∅}, we have

A× ∩ A? = (A♭,× ∩ A♭,?)♯ · (1 + pA+).

Proof. For ? = ∅, we have to show A× = (A♭,×)♯ · (1 + pA+). By recalling that A = A+[ 1
π
] and

A♭ = A♭,+[ 1
π
] with π♯ = π, we are reduced to the case for ? = +. That is, we have to show

A× ∩A+ = (A♭,× ∩ A♭,+)♯ · (1 + pA+).

But this follows from Proposition 2.3 immediately. �

Proof of Proposition 2.2: Let G ⊂ A♭,× be the kernel of the homomorphism ♯ : A♭,× → A×.
Keep the notations in the proof of Proposition 2.3. As for any g ∈ G and any x ∈ |U |, we have

|g(x♭)| = |g♯(x)| = 1,

by [Hub93, Lem. 3.3(i)] and [Hub94, Lem. 1.4], G is a sub-group of A♭,+,× and hence the kernel of
the homomorphism ♯ : A♭,+,× → A+,×. It is also the kernel of the homomorphism of monoids

♯ : A♭,× ∩A♭,+ → A× ∩A+.

So the canonical log-structure on A+ is the log-structure associated to the pre-log structure

(A♭,× ∩ A♭,+)♯ →֒ A+.

So the result follows from Corollary 2.4 because 1 + pA+ ⊂ A+,×. �
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Remark 2.5 (Surjectivity of ♯ for sympathetic algebras). Let Λ be a sympathetic algebra over C in
the sense of [Col02, §5]; that is, it is a connected, p-closed and spectral Banach C-algebra Λ (with
respect to the spectral norm | · |Λ). Put OΛ = {λ ∈ Λ | |λ|Λ ≤ 1} and then by [Col02, Lem. 2.15(iii)],
(Λ,OΛ) is a perfectoid affinoid algebra. The p-closeness of Λ [Col02, §2.8] together with Corollary

2.4 implies that Λ× = (Λ♭,×)♯, that Λ× ∩ OΛ = (Λ♭,× ∩ O♭Λ)♯ and that O×
Λ = (O♭,×Λ )♯. We point out

that the sympathetic algebras usually form a basis for the pro-étale topology of a rigid space (cf.
[Sch13, Prop. 4.8] and the proof therein).

As a consequence, we have an analogue of [BMS18, Lem. 3.14] in the logarithmic setting.

Definition 2.6. Let A be a perfect Fp-algebra (resp. a perfectoid algebra over Zp). A log-structure
MA → A on A is called perfect, if it is associated to a pre-log-structure N → A with N a uniquely

p-divisible monoid; that is, the map N
n 7→pn−−−→ N is bijective.

The following lemma is well-known to experts:

Lemma 2.7. (1) Let (MA → A)→ (MB → B) be a morphism of perfect Fp-algebras with perfect
log-structures. Then the corresponding cotangent complex L(MB→B)/(MA→A) = 0.

(2) Let (MA → A) → (MB → B) be a morphism of perfectoid algebras over Zp with perfect

log-structures. Then the corresponding p-complete cotangent complex L̂(MB→B)/(MA→A) = 0.

Proof. For Item (1): Considering the morphisms of log-rings

(A× →֒ A)→ (MA → A)→ (MB → B)

and the associated exact triangle (cf. [Ols05, Th. 8.18])

L(MA→A)/(A×→A) ⊗L
A B → L(MB→B)/(A×→A) → L(MB→B)/(MA→A),

we are reduced to the case for (MA → A) = (A× →֒ A). Assume the log-structure MB → B
is associated to the pre-log-structure N → B with N uniquely p-divisible. Then the morphism

(A× →֒ A)→ (MB → B) of log-structures is associated to the morphism (0
07→1−−→ A)→ (N → B) of

pre-log-structures. By [Ols05, Th. 8.20], it is enough to show that

L(N→B)/(0→A) = 0.

As L(0→B)/(0→A) ≃ LB/A = 0 (cf. [Ols05, Lem. 8.22]), by considering the exact triangle

L(0→B)/(0→A) → L(N→B)/(0→A) → L(N→B)/(0→B),

we are reduced to showing that
L(N→B)/(0→B) = 0.

By [Ols05, Lem. 8.28] and [Ols05, Lem. 8.23(ii)], we have quasi-isomorphisms

L(N→B)/(0→B) ≃ L(N→Z[N ])/(0→Z) ⊗L
Z[N ] B ≃ Ngp ⊗L

Z B,

where Ngp denotes the group associated to the monoid N . It remains to show that

Ngp ⊗L
Z B = 0.

As N is uniquely p-divisible, we see that p acts isomorphically on Ngp and thus on Ngp ⊗L
Z B. This

forces Ngp ⊗L
Z B = 0 because pB = 0.

For Item (2): Assume the log-structure MB → B is associated to the pre-log-structure N → B
with N uniquely p-divisible. Similar to the proof of Item (1), we are reduced to the case to show that
the derived p-adic completion of Ngp ⊗L

Z B vanishes. By derived Nakayama’s Lemma, this amounts
to that

Ngp ⊗L
Z B ⊗L

Z Fp = 0.

But this is trivial because N is uniquely p-divisible. �

Combining Proposition 2.2 together with Lemma 2.7(2), we can conclude the following analogue
of [BMS18, Lem. 3.14] immediately.

Proposition 2.8. For any morphism (A,A+) → (B,B+) of perfectoid affinoid algebras, the p-

complete cotangent complex L̂(B×∩B+→B+)/(A×∩A+→A+) = 0.
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Convention 2.9. From now on, without other clarification, for any n ≥ 1, we always regard

Spf(Ainf,K(A,A
+)/Ker(θK)

n)

as a p-adic log formal scheme with the canonical log-structure.

Although Proposition 2.2 is enough for our use, to complete the theory, we deal with a general
case at the end of this subsection. In what follows, let A+ be any perfectoid ring with A = A+[1

p
].

By [BMS18, Lem. 3.9], one can still choose a π ∈ A+ and a π ∈ A+,♭ such that π = π♯ and πp = pu
for some u ∈ A+,×. In this case, we also have A = A+[ 1

π
] and A♭ = A+,♭[ 1

π
] as well. Also, for any

α ∈ N[1/p], the πα is well-defined.

Proposition 2.10. Let A+ be a perfectoid ring with A = A+[1
p
]. Then for any x ∈ A+ whose image

in A is invertible, it always factors as

x = x♯(1 + πpαyα),

where x ∈ A+,♭ whose image in A♭ is invertible, α ∈ N[1
p
] ∩ (0, 1) and yα ∈ A+.

Proof. Fix an α ∈ N[1
p
]∩ (0, 1). We first assume A+ is p-torsion free. In this case, we have A+ ⊂ A◦

(and A+,♭ ⊂ A♭,◦). As (A,A◦) is perfectoid affinoid, by Proposition 2.3, there exists an x ∈ A♭,◦ and
an y ∈ A◦ such that x = x♯(1 + py). As

√
pA◦ ⊂ A+, we have yα := p

πpα y = u−1πp(1−α)y ∈ A+ such
that

x = x♯(1 + πpαyα).

As 1+ πpαyα ∈ A+,×, we have x♯ ∈ A+, yielding that x ∈ A+,♭. Clearly, we have x ∈ A♭,× as desired.

Now we move to the general case. Put B+ := A+/A+[
√
pA+], A

+
:= A+/

√
pA+ and B

+
:=

B+/
√
pB+. Then we have a commutative diagram of morphisms of perfectoid rings

(2.3) A+

��

// B+

��

A
+ // B

+

which is both a fiber square and a cofiber square (cf. [Bha19, Prop. 3.2]). Note that B+ is p-torsion
free with B+[1

p
] = A. As A+ → B+ is surjective, so is A+,♭ → B+,♭. By what we have proved, there

exists a wα ∈ A+ such that the image of

y := (1 + πpαwα)
−1x

in B+ is of the form z♯ for some z ∈ B+,♭ ∩ B♭,×. It remains to show y = y♯ for some y ∈ A+,♭.

Granting this, the image of y in A♭ = B♭ coincides with the image of z, which is invertible as desired.

Write z = (z0, z1, . . . ) ∈ B+,♭ = lim←−x 7→xp
B+. Denote by y the image of y in A

+
. As (2.3) is

commutative, y and z0 = z♯ coincide in B
+
. As both A

+
and B

+
are perfectoid in characteristic p

(and thus perfect), we have yp
−n

is well-defined in A
+
and coincides with zn in B

+
for any n ≥ 0.

So the yn := (yp
−n

, zn) ∈ A
+ × B+ defines an element in A+. By construction, we have y0 = y and

ypn+1 = yn for any n ≥ 0. Put

y = (y0, y1, . . . ) ∈ lim←−
x 7→xp

A+ = A+,♭

and then we have y = y♯ as desired. �

Corollary 2.11. Let A+ be any perfectoid ring with A = A+[1
p
]. For any ? ∈ {∅, ♭}, put

A+,? ∩A?,× := {x ∈ A+,? | the image of x in A? is invertible.}.
Then for any α ∈ N[1

p
] ∩ (0, 1), we have

A+ ∩ A× = (A+,♭ ∩ A♭,×)♯ · (1 + πpαA+).

Proof. This follows from Proposition 2.10 immediately. �
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2.2. Semi-stable formal schemes over A+. This subsection is closely related with the work of
Cesnavičius and Koshikawa [CK19]. Fix an affinoid perfectoid S = Spa(A,A+) ∈ Perfd. By a
semi-stable formal scheme XS of relative dimension d over A+, we mean a p-adic formal scheme XS

together with the log-structureMXS
over A+ (cf. Convention 2.9), which is étale locally of the form

Spf(R+
S ) with R+

S small semi-stable of relative dimension d over A+ as defined below. We remark
that the generic fiber XS of a semi-stable XS over A+ is always smooth over S.

Definition 2.12. Fix an affinoid perfectoid S = Spa(A,A+) ∈ Perfd. A p-complete A+-algebra
R+
S is called small semi-stable of relative dimension d over A+, if there exists an étale morphism of

p-adic formal schemes

ψ : Spf(R+
S )→ Spf(A+〈T0, . . . , Tr, T±1

r+1, . . . , T
±1
d 〉/(T0 · · ·Tr − pa))

for some a ∈ Q and 0 ≤ r ≤ d. Equip R+
S with the log-structure associated to the pre-log-structure

(2.4) Mr,a(A
+) := (⊕ri=0N · ei)⊕N·(e1+···+er) (A

× ∩A+)
(
∑r

i=0 niei,x)7→x
∏r

i=0 T
ni
i−−−−−−−−−−−−−−−→ R+

S ,

where (⊕ri=0N · ei)⊕N·(e1+···+er) (A
× ∩A+) denotes the push-out of monoids

N

17→pa

��

17→e0+···+er // N · e1 ⊕ · · · ⊕ N · er

(A× ∩A+).

In this case, we also say the semi-stable formal scheme Spf(R+
S ) is small affine. We call such a ψ

(resp. T0, . . . , Td) a chart (resp. coordinates) on R+
S or on Spf(R+

S ). The generic fiber Spa(RS, R
+
S )

of Spf(R+
S ) is then smooth over S and endowed with the induced chart ψ.

Denote by Ω1,log
XS

the module of (continuous) log-differentials of XS over A+ and for any n ≥ 1,

define Ωn,log
XS

= ∧nΩ1,log
XS

. Then Ωn,log
XS

is a locally finite free OX-module for any n ≥ 0. When

XS = Spf(R+
S ) is small affine, the Ω1,log

XS
is associated to a finite free R+

S -module Ω1,log

R+
S

of rank d, and

the chart ψ on R+
S induces an identification

Ω1,log

R+
S

=
(
(⊕di=0Z · ei)/Z · (e0 + · · ·+ er)

)
⊗Z R

+
S ⊕

(
R+
S · dlogTr+1 ⊕ · · · ⊕R+ · dlogTd

)

=
(
(⊕di=0R

+
S · ei)/R+

S · (e0 + · · ·+ er)
)
⊕
(
R+
S · dlogTr+1 ⊕ · · · ⊕R+

S · dlogTd
)
.

(2.5)

A semi-stable XS over A+ is called liftable, if there exists a flat log p-adic formal scheme X̃S

with the log-structure M
X̃S

over A2,K(S) := Ainf,K(S)/Ker(θK)
2 (as a log formal scheme with the

canonical log-structure, cf. Convention 2.9), such that XS is the reduction of X̃S modulo ξK ; that

is, the underlying scheme XS is the base-change of X̃S along the canonical surjection A2,K(S)→ A+

while the log-structureMXS
is induced by the compositeM

X̃S
→ O

X̃S
→ OXS

.

Given a semi-stable XS over A+, its lifting X̃S over A2,K(S) may not always exist. However, when

XS = Spf(R+
S ) is small affine, by (log-)smoothness of XS, the lifting X̃S always exists and is unique

up to isomorphisms. More precisely, the

A2,K(S)〈T0, . . . , Tr, T±1
r+1, . . . , T

±1
d 〉/(T0 · · ·Tr − [̟a])

with the log-structure associated to the pre-log-structure

Mr,a(A
♭,+) := (⊕ri=0N · ei)⊕N·(e1+···+er) (A

♭,× ∩ A♭,+)
(
∑r

i=0 niei,x)7→[x]
∏r

i=0 T
ni
i−−−−−−−−−−−−−−−−→ A2,K(S)〈T0, . . . , Tr, T±1

r+1, . . . , T
±1
d 〉/(T0 · · ·Tr − [̟a]),

(2.6)

where (⊕ri=0N · ei)⊕N·(e1+···+er) (A
♭,× ∩A♭,+) denotes the push-out of monoids

N

17→̟a

��

17→e0+···+er // N · e1 ⊕ · · · ⊕ N · er

(A♭,× ∩A♭,+),
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is a lifting of the log-structure associated to

(Mr,a(A
+)→ A+〈T0, . . . , Tr, T±1

r+1, . . . , T
±1
d 〉/(T0 · · ·Tr − pa)).

By the étaleness of the chart ψ, there exists a unique R̃+
S together with a unique homomorphism of

A2,K(S)-algebras

ψ̃ : A2,K(S)〈T0, . . . , Tr, T±1
r+1, . . . , T

±1
d 〉/(T0 · · ·Tr − [̟a])→ R̃+

S

lifting ψ. Then we have X̃S = Spf(R̃+
S ) with the log-structureM

X̃S
induced by the composite

(2.7) Mr,a(A
♭,+)→ A2,K(S)〈T0, . . . , Tr, T±1

r+1, . . . , T
±1
d 〉/(T0 · · ·Tr − [̟a])

ψ̃−→ R̃+
S .

Using this, it is clear that X̃S is (log-)smooth over A2,K(S).
By definition, any smooth X over A+ endowed with the induced log-structure from A+ is always

semi-stable over A+. We now give another typical example of semi-stable formal schemes over A+.

Example 2.13. The semi-stable formal scheme over OC defined above is exactly the semi-stable
formal scheme X with the log-structure (MX = O×

X ∩ OX →֒ OX) considered in [CK19, §1.5 and
§1.6], where X is the generic fiber of X. For any S = Spa(A,A+), denote by XS the base-change
of X along Spf(A+)→ Spf(OC) (viewed log formal schemes, Convention 2.9) with the fiber product
log-structureMXS

. Then XS is a semi-stable formal scheme over A+. Moreover, if X is liftable, then

so is XS. Indeed, let X̃ (with the log-structureMX) is a lifting of X over A2,K, then its base-change

X̃S along A2,K → A2,K(S) with the log-structureM
X̃S

induced from the fiber product gives rise to
a lifting of XS. This is the typical case we shall work in.

Now, we are going to introduce some notations, which will be used in local calculations, as in
[CK19, §3.2] for small semi-stable XS = Spf(R+

S ) over A+ with the chart ψ as in Definition 2.12.
Denote its generic fiber by XS = Spa(RS, R

+
S ).

For any n ≥ 0, put

A+
r,a,n := A+〈T

1
pn

0 , . . . , T
1
pn

r , T
± 1

pn

r+1 , . . . , T
± 1

pn

d 〉/(T
1
pn

0 · · ·T
1
pn

r − p
a
pn )

and

Mr,a,n(A
+) := (⊕ri=0

1

pn
N · ei)⊕ 1

pn
N·(e1+···+er) (A

× ∩ A+)
(
∑r

i=0
ni
pn
ei,x)7→x

∏r
i=0 T

ni
i−−−−−−−−−−−−−−−−→ Ar,a,n,

where (⊕ri=0
1
pn
N · ei)⊕ 1

pn
N·(e1+···+er) (A

× ∩ A+) denotes the push-out of monoids

1
pn
N

1
pn

7→p
a
pn

��

1
pn

7→
∑r

i=0
1
pn
ei
// 1
pn
N · e1 ⊕ · · · ⊕ 1

pn
N · er

(A× ∩A+).

Put A+
r,a,∞ := (colimnA

+
r,a,n)

∧ and Mr,a,∞(A+) := colimnMr,a,n(A
+). Then A+

r,a,∞ is perfectoid over
A+ and the natural map Mr,a,∞ → A+

r,a,∞ induces a perfect log-structure on A+
r,a,∞ (cf. Definition

2.6). Indeed, we have

Mr,a,∞(A+) := (⊕ri=0N[
1

p
] · ei)⊕N[ 1

p
]·(e1+···+er) (A

× ∩ A+)
(
∑r

i=0
ni
pn
ei,x)7→x

∏r
i=0 T

ni
i−−−−−−−−−−−−−−−−→ A+

r,a,∞,

where (⊕ri=0
1
pn
N · ei)⊕ 1

pn
N·(e1+···+er) (A

× ∩ A+) denotes the push-out of monoids

N[1
p
]

1
pn

7→p
a
pn

��

1
pn

7→
∑r

i=0
1
pn
ei
// N[1

p
] · e1 ⊕ · · · ⊕ N[1

p
] · er

(A× ∩A+).
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Note that Spa(Ar,a,∞ = A+
r,a,∞[1

p
], A+

r,a,∞)→ Spa(Ar,a,0 = A+
r,a,0[

1
p
], A+

r,a,0) is a pro-étale Galois cover-

ing with the Galois group

(2.8) Γ ∼= {δ = δn0
0 · · · δnr

r δ
nr+1

r+1 · · · δnd

d | ni ∈ Zp, ∀ 0 ≤ i ≤ d, such that n0 + · · ·+ nr = 0} ∼= Z⊕d
p ,

where the action of Γ on A+
r,a,∞ is uniquely determined such that for any 0 ≤ i ≤ d, and n ≥ 0 and

any δ = δn0
0 · · · δnd

d ∈ Γ, we have

(2.9) δ(T
1
pn

i ) = ζni
pnT

1
pn

i .

Put γi := δ−1
0 δi when 1 ≤ i ≤ r and γj = δj when r + 1 ≤ j ≤ d. Then we have an isomorphism

(2.10) Γ ∼= Zp · γ1 ⊕ · · · ⊕ Zp · γd.
This is useful in some calculations.

LetX∞,S = Spa(R̂∞,S, R̂
+
∞,S) be the base-change ofXS along Spa(Ar,a,∞, A

+
r,a,∞)→ Spa(Ar,a,0, A

+
r,a,0)

with respect to the chart ψ : XS → Spa(Ar,a,0, A
+
r,a,0). Then X∞,S is affinoid perfectoid such that

X∞,S → XS is a pro-étale Galois covering with Galois group Γ whose action on R̂+
∞,S is determined

by (2.9). Consider the set of indices

(2.11) Jr := {α = (α0, . . . , αr, αr+1, . . . , αd) ∈ (N[
1

p
] ∩ [0, 1))d+1 |

r∏

i=0

αi = 0}.

Then R̂+
∞,S admits a Γ-equivariant decomposition

(2.12) R̂+
∞,S =

⊕̂
α∈Jr

R+
S · T α,

where “⊕̂” denotes the p-adic topological direct sum. Note that the composite

Mr,a,∞(A+)→ A+
r,a,∞ → R̂+

∞,S

defines a perfect log-structure on R̂+
∞,S, which factors through the canonical log-structure on R̂+

∞,S

because Ti ∈ R̂×
∞,S ∩ R̂+

∞,S for any 0 ≤ i ≤ r.

For any 0 ≤ i ≤ d, let T ♭i := (Ti, T
1
p

i , . . . ) ∈ R̂♭,×
∞,S ∩ R̂♭,+

∞,S. Then the map

ιψ : A2,K(S)〈T0, . . . , Tr, T±1
r+1, . . . , T

±1
d 〉/(T0 · · ·Tr − [̟a])→ A2,K(X∞)

carrying each Ti to [Ti]
♭ is a well-defined morphism of A2,K(S)-algebras compatible with log-structures

on the source and target. By the étaleness of ψ̃ above, the ιψ uniquely extends to a morphism of
A2,K(S)-algebras (still denoted by)

(2.13) ιψ : (Mr,a(A
♭,+)→ R̃+

S )→ (R̂♭,×
∞,S ∩ R̂♭,+

∞,S

[·]−→ A2,K(X∞)),

lifting the natural morphism (Mr,a(A
+) → R+

S ) → (R̂×
∞,S ∩ R̂+

∞,S → R̂+
∞,S). The Γ-action on X∞

induces a Γ-action on R̂♭
∞,S and thus on A2,K(X∞) such that for any 0 ≤ i ≤ d, any n ≥ 0 and any

δ = δn0
0 · · · δnd

d ∈ Γ, we have

(2.14) δ((T ♭i )
1
pn ) = ǫ

ni
pn (T ♭i )

1
pn .

Note that the ιψ above is not Γ-equivariant!

3. Period sheaves

Fix an S = Spa(A,A+) ∈ Perfd. Throughout this section, we always assume XS is a liftable

semi-stable formal scheme over A+ with the generic fiber XS and a fix an its lifting X̃S over A2,K(S).

Denote by XS,v the v-site associated to XS in the sense of [Sch17], and by ÔXS
(resp. Ô+

XS
, Ô♭XS

and Ô♭,+XS
) the sheaf sending each affinoid perfectoid U = Spa(B,B+) ∈ XS,v to B♭ (resp. B+, B♭

and B♭,+). For any n ≥ 1, the canonical log-structure on Ainf,K(Ô+
XS

)/Ker(θK)
n is the log-structure

associated to the morphism of monoids

Ô♭,×XS
∩ Ô♭,+XS

[·]−→ Ainf,K(Ô+
XS

)/Ker(θK)
n.
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It follows from Proposition 2.2 that the canonical log-structure on Ô+
XS

is exactly the log-structure

Ô×
XS
∩ Ô+

XS
=:MXS

→֒ Ô+
XS
.

3.1. Integral Faltings’ extension. In this part, we follow the argument in [Wan23, §2] to construct

an analogue of integral Faltings’ extension in loc.cit. on XS,v with respect to the given lifting X̃S.

Denote by MXS
and M

X̃S
the log-structures on XS and X̃S, respectively. Then we have the

morphisms of log-ringed topoi over A2,K(S):

(O
X̃S
,M

X̃S
)→ (OXS

,MXS
)→ (Ô+

XS
,MXS

).

This gives rise to an exact triangle of p-complete cotangent complexes

(3.1) L̂(OXS
,MXS

)/(O
X̃S
,M

X̃S
)⊗̂

L

OXS
Ô+
XS
→ L̂(Ô+

XS
,MXS

)/(O
X̃S
,M

X̃S
) → L̂(Ô+

XS
,MXS

)/(OXS
,MXS

).

The first term is easy to handle with: As the log-structure MXS
is induced from M

X̃S
via the

compositeM
X̃S
→ O

X̃S
→ OXS

, it follows from [Ols05, Lem. 8.22] that

L̂(OXS
,MXS

)/(O
X̃S
,M

X̃S
) ≃ L̂OXS

/O
X̃S

.

As X̃S is flat over A2,K(S), using [Wan23, Cor. 2.3], we have quasi-isomorphisms

L̂OXS
/O

X̃S

≃ L̂A+/A2,K (S)⊗̂
L

A+OXS
≃ OXS

{1}[1]⊕OXS
{2}[2].

So we finally conclude that

(3.2) L̂(OXS
,MXS

)/(O
X̃S
,M

X̃S
)⊗̂

L

OXS
Ô+
XS
≃ Ô+

XS
{1}[1]⊕ Ô+

XS
{2}[2].

The last term of (3.1) is also easy to handle with: Consider the morphisms of log-rings

(A× ∩ A+ =:MA → A+)→ (OXS
,MXS

)→ (Ô+
XS
,MXS

)

and the induced exact triangle

L̂(OXS
,MXS

)/(A+,MA)⊗̂
L

OXS
Ô+
XS
→ L̂(Ô+

XS
,MXS

)/(A+,MA) → L̂(Ô+
XS

,MXS
)/(OXS

,MXS
).

By Proposition 2.8(2), the middle term L̂(Ô+
XS

,MXS
)/(A+,MA) above vanishes, yielding a quasi-isomorphism

L̂(Ô+
XS

,MXS
)/(OXS

,MXS
) ≃ (L̂(OXS

,MXS
)/(A+,MA)⊗̂

L

OXS
Ô+
XS

)[1].

If XS is not only semi-stable but smooth over A+, then we have a quasi-isomorphism

L̂(OXS
,MXS

)/(A+,MA) ≃ Ω1,log
XS

[0] = Ω1
XS
[0].

However, in the logarithmic case, it is not straightforward that L̂(OXS
,MXS

)/(A+,MA) is discrete. So we

have to exhibit the discreteness of L̂(OXS
,MXS

)/(A+,MA) directly.

Lemma 3.1. We have L̂(OXS
,MXS

)/(A+,MA) ≃ Ω1,log
XS

[0].

Proof. It suffices to show the complex L̂(OXS
,MXS

)/(A+,MA) is discrete. Since the problem is local on

XS,ét, we may assume XS = Spf(R+
S ) is small affine such that the log-structureMXS

is induced by
the pre-log-structure Mr,a(A

+) ⊕ (⊕dj=r+1Z · ej) → R+
S where Mr,a(A

+) is defined in (2.4) and ej is
mapped to Tj for any r + 1 ≤ j ≤ d. To conclude, we have to show

L̂(Mr,a(A+)⊕(⊕d
j=r+1Z·ej)→R+

S
)/(MA→A+) ≃ Ω1,log

R+
S

[0].

By the étaleness of A+
r,a := A+〈T0, . . . , Tr, T±1

r+1, . . . , T
±1
d 〉/(T0 · · ·Tr − pa) → R+

S , using [Ols05, Lem.
8.22], we are reduced to the case to show

L̂Mr,a(A+)⊕(⊕d
j=r+1Z·ej)→A+

r,a)/(MA→A+) ≃ Ω1,log

A+
r,a
[0].

Put A+,nc
r,a = A+[T0, . . . , Tr, T

±1
r+1, . . . , T

±1
d ]/(T0 · · ·Tr − pa). Then we have

A+,nc
r,a
∼= A+ ⊗Z[MA] Z[Mr,a(A

+)⊕ (⊕dj=r+1Z · ej)].
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As Z[Mr,a(A
+) ⊕ (⊕dj=r+1Z · ej)] is flat over Z[MA], we see that A+,nc

r,a is flat over A+ and thus flat
over Zp. So we have a quasi-isomorphism

L̂(Mr,a(A+)⊕(⊕d
j=r+1Z·ej)→A+

r,a)/(MA→A+) ≃ L̂(Mr,a(A+)⊕(⊕d
j=r+1Z·ej)→A+,nc

r,a )/(MA→A+).

By the flat base-change theorem [Ols05, Cor. 8.13], we then have a quasi-isomorphism

L(Mr,a(A+)⊕(⊕d
j=r+1Z·ej)→A+,nc

r,a )/(MA→A+) ≃ L(Mr,a(A+)⊕(⊕d
j=r+1Z·ej)→Z[Mr,a(A+)⊕(⊕d

j=r+1Z·ej)])/(MA→Z[MA])⊗L
Z[MA]A

+.

According to [Ols05, Lem. 8.23(ii)], we have a quasi-isomorphism

L(Mr,a(A+)⊕(⊕d
j=r+1Z·ej)→A+,nc

r,a )/(MA→A+) ≃
(
Mr,a(A

+)gp/Mgp
A ⊕ (⊕dj=r+1Z)

)
⊗L

Z A
+

≃
( (

(⊕di=0A
+ · ei)/A+ · (e0 + · · ·+ er)

)
⊕ (⊕dj=r+1A

+ · ej)
)
[0].

So we finally conclude a quasi-isomorphism

L̂(Mr,a(A+)⊕(⊕d
j=r+1Z·ej)→A+

r,a)/(MA→A+) ≃
( (

(⊕di=0A
+ · ei)/A+ · (e0 + · · ·+ er)

)
⊕ (⊕dj=r+1A

+ · ej)
)
[0],

yielding the desired discreteness of L̂(Mr,a(A+)⊕(⊕d
j=r+1Z·ej)→A+

r,a)/(MA→A+). �

Thanks to the above lemma, the third term in (3.1) reads

(3.3) L̂(Ô+
XS

,MXS
)/(OXS

,MXS
) ≃ (Ô+

XS
⊗OXS

Ω1,log
XS

)[1].

Definition 3.2 (Integral Faltings’ extension). Let XS be a liftable semi-stable formal scheme over

A+ with the generic fiber XS. For a lifting X̃S of XS over A2,K(S) (with the log-structureM
X̃S
), we

call

E+
X̃S

:= H0(L̂(Ô+
XS

,MXS
)/(O

X̃S
,M

X̃S
)[−1])

the integral Faltings’ extension associated to the lifting X̃S.

Proposition 3.3. The integral Faltings’ extension E+
X̃S

is a locally finite free Ô+
XS

-module of rank

d+ 1 and fits into the following short exact sequence

(3.4) 0→ Ô+
XS
{1} → E+

X̃S

→ Ô+
XS
⊗OXS

Ω1,log
XS
→ 0.

Moreover, the cohomological class [E+
X̃S

] ∈ Ext1(Ô+
XS
⊗OXS

Ω1,log
XS

, Ô+
XS
{1}) is exactly the obstruction

class for lifting the natural morphism of A+-algebras (OXS
,MXS

) → (Ô+
XS
,MXS

) to a morphism

of A2,K(S)-algebras (O
X̃S
,M

X̃S
) 99K (A2,K(Ô+

XS
),MX̃S

), where MX̃S
denotes the canonical log-

structure on A2,K(Ô+
XS

).

Proof. The first statement follows from Equations (3.1), (3.2) and (3.3) immediately. It remains
to prove the “moreover” part. By the construction of E+

X̃S

, as argued in [Wan23, Lem. 2.10], the

class [E+
X̃S
] is exactly the obstruction class for lifting (Ô+

XS
,MXS

) to a log-ring over (O
X̃S
,M

X̃S
). As

L̂(Ô+
XS

,MXS
)/(A+,MA) = 0 by Proposition 2.8(2), the lifting of (Ô+

XS
,MXS

) over (A2,K(S),MA2,K(S))

is unique (up to the unique isomorphism), where MA2,K(S) denotes the canonical log-structure on

A2,K(S). So it must be (A2,K(Ô+
XS

),MX̃S
). Thus one can conclude by noting that lifting the

morphism

(OXS
,MXS

)→ (Ô+
XS
,MXS

)

over (O
X̃S
,M

X̃S
) amounts to lifting the morphism of A+-algebras

(OXS
,MXS

)→ (Ô+
XS
,MXS

)

to a morphism of A2,K(S)-algebras

(O
X̃S
,M

X̃S
) 99K (A2,K(Ô+

XS
),MX̃S

).

Using Proposition 2.8(2) instead of [BMS18, Lem. 3.14] in loc.cit., the result follows from the same
proof for [Wan23, Prop. 2.14]. �
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When the lifting X̃S of XS is fixed (as we did at the very beginning of this section), we also use
E+ to stand for the Breuil–Kisin–Fargues twist of the corresponding integral Faltings’ extension

(3.5) E+ := E+
X̃S

{−1}
for short. The following result is obvious from Proposition 3.3.

Corollary 3.4. The E+ is a locally finite free Ô+
XS

-module of rank d+ 1 and fits into the following
short exact sequence

0→ Ô+
XS
→ E+ → Ô+

XS
⊗OXS

Ω1,log
XS
{−1} → 0.

In the rest of this subsection, we want to describe of E+ in the case where XS = Spf(R+
S ) is small

affine with the chart ψ (cf. Definition 2.12). We adapt the notations below Example 2.13. Put
E+

R̃+
S

:= E+
X̃S

(X∞) and then it admits a continuous action of Γ fitting into the following Γ-equivariant

short exact sequence

0→ R̂+
∞,S{1} → E+

R̃+
S

→ R̂+
∞,S ⊗R+

S
Ω1,log

R+
S

→ 0.

As an R̂+
∞,S-module, we have

E+

R̃+
S

∼= R̂+
∞,S{1} ⊕ R̂+

∞,S ⊗R+
S
Ω1,log

R+
S

.

So the E+

R̃+
S

is uniquely determined by its Γ-action; that is, it is determined by an 1-cocycle

c ∈ H1(Γ,HomR̂+
∞,S

(R̂+
∞,S ⊗R+

S
Ω1,log

R+
S

, R̂+
∞,S{1})) ∼= H1(Γ,HomR+

S
(Ω1,log

R+
S

, R̂+
∞,S{1})).

Now, we are going to calculate the above 1-cocycle c by using that E+

R̃+
S

stands for the obstruction

class for lifting the Γ-equivariant morphism

(Mr,a(A
+)→ R+

S )→ (R̂×
∞,S ∩ R̂+

∞,S → R̂+
∞,S)

to a Γ-equivariant morphism

(Mr,a(A
♭,+)⊕ (⊕dj=r+1Z · ej)

α−→ R̃+
S ) 99K (R̂♭,×

∞,S ∩ R̂♭,+
∞,S → A2,K(X∞,S)).

Here, the map α : Mr,a(A
♭,+) ⊕ (⊕dj=r+1Z · ej) → R̃+

S is determined by (2.7) together with that
α(ej) = Tj for all r + 1 ≤ j ≤ d. As in the proof of Lemma 3.1, we have an isomorphism of
R+
S -modules

(3.6) Ω1,log

R+
S

∼= (⊕di=0R
+
S · ei)/R+

S · (e0 + · · ·+ er),

where ej stands for dlogTj for any r + 1 ≤ j ≤ d via the identification (2.5). Let

ιψ : (Mr,a(A
♭,+)⊕ (⊕dj=r+1Z · ej)

α−→ R̃+
S )→ (R̂♭,×

∞,S ∩ R̂♭,+
∞,S

[·]−→ A2,K((X∞,S))

be the morphism of A2,K(S)-algebras introduced in (2.13). Then one can describe the 1-cocycle c

above by using ιψ: For any δ =
∏d

i=0 δ
ni

i ∈ Γ (2.8), the map

c(δ) : Ω1,log

R+
S

→ R̂+
∞,S

is determined by that for any 0 ≤ j ≤ d, in ξA2,K(X∞,S) ∼= R̂+
∞,S{1},

c(δ)(ej) · α(ej) = δ(ιψ(α(ej)))− ιψ(α(ej)).
As α(ej) = Tj for all j, it then follows from (2.14) that

c(δ)(ej) = [ǫnj ]− 1 =
[ǫnj ]− 1

[ǫ]− 1
· ([ǫ]− 1) ∈ ξKA2,K(X∞,S).

As [ǫ]−1
t
∈ B+

dR goes to 1 modulo t, via the identification

OC · ξK = OC{1} = ρ−1
K OC(1) = OC · ρ−1

K t (cf. §1.4),

for any δ =
∏d

i=0 δ
ni

i ∈ Γ and any 0 ≤ j ≤ d, we have

c(δ)(ej) = njρKξK .
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In summary, we have proved the following proposition:

Proposition 3.5. There exists an isomorphism of R̂+
∞,S-modules

E+
X̃S

(X∞,S) =: E+

R̃+
S

∼= R̂+
∞,S · ξK ⊕

(
(⊕di=0R̂

+
∞,S · ei)/R̂+

∞,S · (e0 + · · ·+ er)
)

such that via this isomorphism, the Γ-action on E+

R̃+
S

is given by that for any δ =
∏d

i=0 δ
ni

i ∈ Γ,

δ(aξK +
d∑

j=0

bjej) = (δ(a) + ρK

d∑

j=0

δ(bj)nj)ξK +
d∑

j=0

δ(bj)ej .

Put E+ := E+(X∞,S) where E+ is the Breuil–Kisin–Fargues twist of the integral Faltings’ extension
(cf. (3.5)). Then it admits a continuous action of Γ.

Corollary 3.6. (1) The E+ is a free R̂+
∞,S-module of rank d + 1 fitting into the short exact

sequence

0→ R̂+
∞,S

i−→ E+ pr−→ R̂+
∞,S ⊗R+

S
Ω1,log

R+
S

{−1} → 0.

(2) There exists an isomorphism of R̂+
∞,S-modules

E+ ∼= R̂+
∞,S · e⊕

(
(⊕di=0R̂

+
∞,S · yi)/R̂+

∞,S · (y0 + · · ·+ yr)
)

such that the following statements hold true:

(a) The R̂+
∞,S · e is identified with R̂+

∞,S via the injection i above and e = i(1).
(b) Via the isomorphism (cf. (3.6))

Ω1,log

R+
S

{−1} ∼= (⊕di=0R
+
S ·

ei
ξK

)/R+
S · (

e0
ξK

+ · · ·+ er
ξK

),

the image of yi via the projection pr above is pr(yi) =
ei
ξK

for any 0 ≤ i ≤ d.

(c) The Γ-action on E+ is given by that for any δ =
∏d

i=0 δ
ni

i ∈ Γ,

δ(ae +
d∑

j=0

bjyj) = (δ(a) + ρK

d∑

j=0

δ(bj)nj)e+
d∑

j=0

δ(bj)yj.

Proof. The Item (1) follows from Corollary 3.4. The Item (2) follows from Proposition 3.5 by letting
yi =

ei
ξK

with ei’s appearing there. �

3.2. Period sheaves. Now, we are going to follow the strategy in [MW24, §2] to construct the

period sheaves with Higgs fields (OĈ+
pd,S,Θ) and (OĈpd,S,Θ) by using the twisted integral Faltings’

extension E+ = E+
X̃S

{−1} associated to the lifting X̃S of XS over A2,K(S).

Recall the following well-known lemma due to Quillen and Illusie:

Lemma 3.7 ([SZ18, Lem. A.28]). Let B be a commutative ring. For any short exact sequence of
flat B-modules

0→ E
u−→ F

v−→ G→ 0

and any n ≥ 0, there exists an exact sequence of B-modules:

(3.7) 0→ Γn(E)→ Γn(F )
∂−→ Γn−1(F )⊗G ∂−→ · · · ∂−→ Γn−i(F )⊗ ∧iG ∂−→ · · · ∂−→ ∧nG→ 0,

where the differentials ∂ are induced by sending each

f
[m1]
1 · · ·f [mr ]

r ⊗ ω ∈ Γm(F )⊗ ∧lG
with fi ∈ F , mi ≥ 1 satisfying m1 + · · ·+mr = m and ω ∈ ∧lG to

r∑

i=1

f
[m1]
1 · · · f [mi−1]

i · · ·f [mr ]
r ⊗ v(fi) ∧ ω ∈ Γm−1(F )⊗ ∧l+1G.

Moreover, there exists an exact sequence

(3.8) 0→ Γ(E)→ Γ(F )
∂−→ Γ(F )⊗G ∂−→ Γ(F )⊗ ∧2G ∂−→ · · · ,
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where the differentials ∂ are all Γ(E)-linear.

Applying the above lemma to the short exact sequence in Corollary 3.4, we get an exact sequence

(3.9) 0→ Γ(Ô+
XS

)→ Γ(E+) ∂−→ Γ(E+)⊗OXS
Ω1,log

XS
{−1} → · · ·

where ∂ is Γ(Ô+
XS

)-linear. Note that Γ(E+) ∼= Ô+
XS

[e]pd is the free pd-algebra generated by e over

Ô+
XS

, where e stands for the basis 1 ∈ Ô+
XS

. As ζp − 1 admits arbitrary pd-powers in Ô+
XS

, the

e− (ζp − 1) generates a pd-ideal Ipd of Ô+
XS

[e]pd such that we have Γ(Ô+
XS

)/Ipd ∼= Ô+
XS

.

Definition 3.8. Let OĈ+
pd,S be the p-adic completion of

OC+
pd,S := Γ(E+)/Ipd · Γ(E+)

and let Θ : OĈ+
pd,S → OĈ+

pd,S ⊗OXS
Ω1,log

XS
{−1} be the morphism induced by ∂ in (3.9). Define

(OĈpd,S,Θ : OĈpd,S → OĈpd,S ⊗OXS
Ω1,log

XS
{−1}) := (OĈ+

pd,S,Θ)[
1

p
].

Theorem 3.9 (Poincaré’s Lemma). For any ? ∈ {∅,+}, the following sequence

0→ Ô?
XS
→ OĈ?

pd,S
Θ−→ OĈ?

pd,S ⊗OXS
Ω1,log

XS
{−1} Θ−→ OĈ?

pd,S ⊗OXS
Ω2,log

XS
{−2} → · · ·

is exact on Xv. In particular, Θ defines a Higgs field on OĈ+
pd,S.

Proof. It suffices to prove the case for ? = +. By Corollary 3.4, locally on Xv, the E+ is a direct

sum of Ô+
XS

and Ô+
XS
⊗OXS

Ω1,log
XS
{−1}. So locally on Xv, the Γ(E+) is a free pd-polynomial ring over

Γ(Ô+
XS

). Modulo Ipd, by the exactness of (3.9), we have the following exact sequence

(3.10) 0→ Ô+
XS
→ OC+

pd,S

Θ−→ OC+
pd,S ⊗OXS

Ω1,log
XS
{−1} Θ−→ OC+

pd,S ⊗OXS
Ω2,log

XS
{−2} → · · ·

where Θ denotes the reduction of ∂ in (3.9). Moreover, locally on Xv, the OC+
pd,S is a free pd-

polynomial ring and thus faithfully flat over Ô+
XS

. In particular, taking p-adic completion preserves
the exactness of (3.10), yielding the desired exactness in the case ? = +. �

Now, we give the local description of (OĈ+
pd,XS

,Θ) in the case XS = Spf(R+
S ) is small affine. We

first introduce some notations. Let

R̂+
∞,S[Y0, . . . , Yr, Yr+1, . . . , Yd]

∧
pd

be the p-complete free pd-algebra over R̂+
∞,S generated by Y0, . . . , Yd and let

Θ : R̂+
∞,S[Y0, . . . , Yr, Yr+1, . . . , Yd]

∧
pd → ⊕di=0R̂

+
∞,S[Y0, . . . , Yr, Yr+1, . . . , Yd]

∧
pd ·

ei
ξK

be the map sending each f ∈ R̂+
∞,S[Y0, . . . , Yr, Yr+1, . . . , Yd]

∧
pd to

Θ(f) =
d∑

i=0

∂f

∂Yi
· ei
ξK
.

Noting that for any n ≥ 0 and for any f ∈ R̂+
∞,S[Y0, . . . , Yr, Yr+1, . . . , Yd]

∧
pd, we have

Θ((Y0 + · · ·+ Yr)
[n]f) = (Y0 + · · ·+ Yr)

[n]Θ(f) + (Y0 + · · ·+ Yr)
[n−1]f ·

r∑

i=0

ei
ξK
.

So we get a well-defined map

(3.11) Θ : P+
∞,S → P+

∞,S ⊗R+
S
Ω1,log

R+
S

{−1} = (⊕di=0P
+
∞,S ·

ei
ξK

)/P+
∞,S · (

e0
ξK

+ · · ·+ er
ξK

)

via the identification Ω1,log

R+
S

{−1} ∼= (⊕di=0R
+
S · eiξK )/R+

S · ( e0ξK + · · ·+ er
ξK
) (cf. (3.6)), where

P+
∞,S := R̂+

∞,S[Y0, . . . , Yr, Yr+1, . . . , Yd]
∧
pd/(Y0 + · · ·+ Yr)pd
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denotes the quotient of R̂+
∞,S[Y0, . . . , Yr, Yr+1, . . . , Yd]

∧
pd by the pd-ideal generated by Y0 + · · · + Yr.

Clearly, via the isomorphisms

Ω1,log

R+
S

{−1} ∼= ⊕di=1R
+
S ·

ei
ξK

and

P+
∞,S
∼= R̂+

∞,S[Y1, . . . , Yd]
∧
pd,

the Θ is exactly

Θ =

d∑

i=1

∂

∂Yi
⊗ ei
ξK
.

When context is clear, we also express Θ as

Θ =

d∑

i=0

∂

∂Yi
⊗ ei
ξK

: P+
∞,S → P+

∞,S ⊗R+
S
Ω1,log

R+
S

{−1}.

By construction of OĈ+
pd,S, we see that OĈ+

pd,S(X∞) is the p-adic completion of Γ(E+)/(e− (ζp−
1))pd, where E+ and e are described in Corollary 3.6 and (e − (ζp − 1))pd denotes the pd-ideal
generated by e− (ζp − 1). Let yi be elements in E+ described in Corollary 3.6 as well. By abuse of

notations, we will not distinguish yi with its image in OĈ+
pd,S(X∞).

Proposition 3.10. Keep notations above. The morphism of R̂+
∞,S-algebras

R̂+
∞,S[Y0, . . . , Yr, Yr+1, . . . , Yd]

∧
pd → OĈ+

pd,S(X∞)

sending each Yi to yi induces an isomorphism

ι : P+
∞,S → OĈ+

pd,S(X∞)

compatible with Higgs fields. Via the isomorphism ι, the Γ-action on OĈ+
pd,XS

(X∞) is given by that

for any δ =
∏d

i=0 δ
ni

i ∈ Γ and any 0 ≤ j ≤ d, we have

δ(Yj) = Yj + njρK(ζp − 1).

Proof. Consider the isomorphisms

E+ ∼= R̂+
∞,S · e⊕ (⊕di=1R̂

+
∞,S · yi) and Ω1

R+
S

{−1} ∼= ⊕di=1R
+
S ·

ei
ξK
.

Via the projection pr : E+ → R̂+
∞,S⊗R+

S
Ω1
R+

S

{−1} in Corollary 3.6, the image of yi is
ei
ξK

. By Lemma

3.7, we have Γ(E+) = R̂+
∞,S[e, y1, . . . , yd]pd is the free pd-polynomial ring over R̂+

∞,S generated by

e, y1, . . . , yd while the differential map ∂ : Γ(E+)→ Γ(E+)⊗R+
S
Ω1
R+

S

{−1} reads

∂ =

d∑

i=1

∂

∂yi
⊗ ei
ξ
.

Modulo (e− (ζp − 1))pd and after taking p-adic completion, we see that

(OĈ+
pd,XS

(X∞),Θ) = (R̂+
∞,S[y1, . . . , yd]

∧
pd,

d∑

i=1

∂

∂yi
⊗ ei
ξK

).

Using the isomorphism (P+
∞,S,Θ) ∼= (R̂+

∞,S[Y1, . . . , Yd]
∧
pd,
∑d

i=1
∂
∂Yi
⊗ ei
ξK
) mentioned above, we conclude

that ι is an isomorphism. As for any δ =
∏d

i=0 δ
ni

i ∈ Γ and any 0 ≤ j ≤ d, we have δ(yj) = yj+njρKe

and e is mapped to ζp−1 via the map E+ → OĈ+
pd,XS

(X∞), the desired Γ-action follows directly. �

Note that for any ? ∈ {∅,+}, the sheaf OĈ?
pd,S is an Ô?

XS
-algebra and the OĈ?

pd,S ⊗Ô+
XS

OĈ?
pd,S is

endowed with the tensor product Higgs field Θ⊗ id + id⊗Θ.
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Proposition 3.11. For any ? ∈ {∅,+}, the multiplication map

OĈ?
pd,S ⊗Ô+

XS

OĈ?
pd,S → OĈ?

pd,S

on OĈ?
pd,S is compatible with Higgs fields; that is, for any local sections f, g ∈ OĈ?

pd,S, we have

Θ(fg) = Θ(f)g + fΘ(g).

Proof. Since the problem is local on both XS,ét and XS,v, we may assume XS = Spf(R+
S ) is small

affine and are reduced to showing that for any f, g ∈ OĈ+
pd,S(X∞), we have

Θ(fg) = Θ(f)g + fΘ(g).

But this follows from Proposition 3.10 immediately. �

We remark that Proposition 3.11 amounts to that the Higgs complex HIG(OĈ?
pd,S,Θ) is a commu-

tative differential graded algebra over Ô?
XS

. Using this Theorem 3.9 amounts to that the morphism

Ô?
XS
→ HIG(OĈ?

pd,S)

is actually an isomorphism of algebras in the derived category of Ô+
XS

-modules.
We end this section with the following remarks.

Remark 3.12. Provided E+ in Corollary 3.4, for any r ≥ 0, one can define E+r as the pull-back of
E+ along the natural inclusion

prÔ+
X ⊗OX

Ω1,log
X
{−1} →֒ Ô+

X ⊗OX
Ω1,log

X
{−1}.

So it fits into the short exact sequence

0→ Ô+
X → E+r → prÔ+

X ⊗OXS
Ω1,log

X
{−1} → 0.

As in [Wan23, §2], one can construct period sheaves OĈ?
r with Higgs fields Θ̃ for ? ∈ {∅,+}. (Recall

that OC{−1} = ρKOC(−1), the OĈ?
r coincides with OĈ?

prρK
in loc.cit..) Put

(OĈ†,?, Θ̃) := colimr→0+(OĈ?
r, Θ̃).

The one can show that the Higgs complex DR(OĈ†, Θ̃) is a resolution of ÔX (cf. [Wan23, Th. 2.28]).
Similar to [MW24, Consruction 2.9], there exists a natural injection

ιPS : OĈ+
pd → OĈ+

0

identifying (ζp − 1)Θ with Θ̃. As [MW24, Prop. 2.10], the natural inclusion OĈ† →֒ OĈ0 factors
through the image of ιPS, yielding the following inclusions of period sheaves with Higgs fields

(OĈ†, Θ̃)→ (OĈpd, (ζp − 1)Θ)→ (OĈ0, Θ̃).

Remark 3.13. Recall for smooth X over OC , the log-structure on X is induced from the canonical
log-structure on OC . By [Ols05, Lem. 8.22], all (log)-contangent complexes in (3.1) reduces to the
usual (p-complete) cotangent complexes as in [Wan23, Eq.(2-4)]. So all constructions in this section
is compatible with those in [Wan23] and [MW24] (ans thus so are our main results in §1).

4. A local Simpson correspondence

Fix an affinoid perfectoid S = Spa(A,A+) ∈ Perfd. In this section, we always assume R+
S is small

semi-stable and keep the notations at the end of §2.2. We first make some definitions.

Definition 4.1. Let B ∈ {R+
S , RS, R̂

+
∞,S, R̂∞,S}.

(1) By a Γ-representation of rank r over B, we mean a finite projective B-module M of rank r
which is endowed with a continuous Γ-action.
A Γ-representation M+ over R+

S of rank r is called Hitchin-small if it admits an R+
S -basis

e1, . . . , ed such that for any δ ∈ Γ, the matrix of δ with respect to the given basis is of the form
exp(−(ζp − 1)ρKAδ) for some (p-adically) topologically nilpotent matrix Aδ ∈ Matr(R

+
S ).
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By a Hitchin-small Γ-representation of rank r over B, we mean a finite free B-module M
which is endowed with a (continuous) Γ-action which is of the formM =M+⊗R+

S
B for some

Hitchin-small Γ-representation M+ over rank r over R+
S .

(2) By a Higgs module of rank r over R+
S , we mean a pair

(H+, θ : H+ → H+ ⊗R+
S
Ω1,log

R+
S

{−1})

consisting of a finite free R+
S -module H+ of rank r and an Higgs field θ, i.e., an R+

S -linear
morphism θ satisfying θ ∧ θ = 0. For any Higgs module (H?, θ), we denote by DR(H?, θ) the
induced Higgs complex.
A Higgs module (H+, θ) over R+

S is called
(a) twisted Hitchin-small if the Higgs field θ is topologically nilpotent;
(b) Hitchin-small if it is of the form

(H+, θ) = (H+, (ζp − 1)θ′)

for some twisted Hitchin-small Higgs module (H+, θ′).
By a (twisted) Hitchin-small Higgs module of rank r over RS, we mean a pair

(H, θ : H → H ⊗R+
S
Ω1,log

R+
S

{−1})
consisting of a finite free RS-module H of rank r and an Higgs field θ, which is of the form
(H, θ) = (H+[1

p
], θ) for some (twisted) Hitchin-small Higgs module (H+, θ) of rank r over

R+
S .

(3) For any ? ∈ {∅,+}, we denote by RepH-sm
Γ (B?) the category of Hitchin-small Γ-representations

over B?, and by HIG(t-)H-sm(R?
S) the category of (twisted) Hitchin-small Higgs modules over

R?
S.

Roughly, the purpose of this section is to establish the equivalences of categories

RepH-sm
Γ (R̂?

∞,S) ≃ RepH-sm
Γ (R?

S) ≃ HIGt-H-sm(R?
S) ≃ HIGH-sm(R?

S).

Clearly, it suffices to deal with the case for ? = +, which will be handled with in the next three
subsections.

4.1. Γ-representations over R+
S v.s. Γ-representations over R̂+

∞,S. Note that the base-change

M+ 7→ M+
∞ :=M+ ⊗R+

S
R̂+

∞,S induces a well-defined functor

RepH-sm
Γ (R+

S )→ RepH-sm
Γ (R̂+

∞,S).

We now show this functor is exactly an equivalence of categories. More precisely, we shall prove the
following result:

Proposition 4.2. The base-change along R+
S → R̂+

∞,S induces an equivalence of categories

RepH-sm

Γ (R+
S )

≃−→ RepH-sm

Γ (R̂+
∞,S)

such that for any M+ ∈ RepH-sm

Γ (R+
S ) with the induced M+

∞ ∈ RepH-sm

Γ (R̂+
∞,S), the natural morphism

RΓ(Γ,M+)→ RΓ(Γ,M+
∞)

identifies the former with a direct summand of the latter whose complementary is concentrated in
degree ≥ 1 and killed by ζp − 1.

We will prove Proposition 4.2 later.
Recall [BMS18, Lem. 7.3] that for any p-complete Zp-module N equipped with a continuous

Γ-action, RΓ(Γ, N) can be calculated by the Koszul complex

K(γ1 − 1, . . . , γd − 1;N) : N
γ1−1,...,γd−1−−−−−−−→ Nd → · · · ,

where γi ∈ Γ is defined in (2.10). Recall we have the Γ-equivariant decomposition (2.12)

R̂+
∞,S =

⊕̂
α∈Jr

R+
S · Tα = R+

S ⊕
⊕̂

α∈Jr\{0}
R+
S · T α,

where Jr is the set of indices defined in (2.11).
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Lemma 4.3. Let M+ be a finite free Γ-representation over R+
S of rank r such that it admits an R+

S -
basis e1, . . . , er such that for any δ ∈ Γ, its action on M+ is given by the matrix exp(−(ζp−1)Aδ) for

some topologically nilpotent Aδ ∈ Matr(R
+
S ). Then the RΓ(Γ,M+⊗⊕̂α∈Jr\{0}

R+
S ·T α) is concentrated

in degree ≥ 1 and killed by ζp − 1.

Proof. We claim that for any α = (α0, . . . , αd) ∈ Jr \ {0}, the RΓ(Γ,M+ · T α) is concentrated in
degree ≥ 1 and killed by ζp − 1. Granting this, we can conclude by noting that

RΓ(Γ,M+ ⊗R+
S
(
⊕̂

α∈Jr\{0}
R+
S · T α)) =

⊕

α∈Jr\{0}

RΓ(Γ,M+ · T α)

because the right hand side above is killed by ζp − 1 and thus already p-complete.
It remains to prove the claim. Without loss of generality, we may assume α0 = 0. Then α1, . . . , αd

are not all zero. Without loss of generality, we may assume α1 6= 1. By Hochschild–Serre spectral
sequence, it suffices to show RΓ(Zp · γ1,M+ · Tα) is concentrated in degree ≥ 1 and killed by ζp− 1.
We now check this by working with the Koszul complex

K(γ1 − 1;M+ · Tα) :M+ · T α γ1−1−−−→ M+ · T α.
Put θi := Aγi for any 1 ≤ i ≤ d and

(4.1) F (θ) :=
1− exp(−(ζp − 1)θ)

(ζp − 1)θ
:= 1 +

∑

n≥1

(−1)n(ζp − 1)[n]θn ∈ OC [[θ]].

Then we have θi ∈ Matr(R
+
S ) which is topologically nilpotent and thus F (θi) is a well-defined matrix

in GLr(R
+
S ) such that γ1 acts on M+ via 1− (ζp − 1)θiF (θi). Thus, for any m ∈ M+, we have

(γ1− 1)(mT α) =
(
ζα1 (1− (ζp − 1)θiF (θi))− 1

)
(mT α) = (ζα1 − 1)

(
1− ζα1

ζp − 1

ζα1 − 1
θ1F (θ1)

)
(mT α).

As α1 6= 0, we have ζp−1
ζα1−1

∈ OC and thus 1− ζα1 ζp−1
ζα1−1

θ1F (θ1) ∈ GLr(R
+
S ) because θ1 is topologically

nilpotent, yielding that

Hn(Zp · γ1,M · Tα) =
{

0, n = 0
(M · T α)/(ζp − 1), n = 1

as desired. This completes the proof. �

Proof of Proposition 4.2. As the essential surjectivity is a part of definition, it suffices to show
that full faithfulness of the base-change functor. As the functor preserves tensor products and
dualitis, it suffices to show the expected cohomological comparison. That is, we have to show that
for any M+ ∈ RepH-sm

Γ (R+
S ), the natural map

RΓ(Γ,M+)→ RΓ(Γ,M+ ⊗R+
S
R̂+

∞,S)

identifies the former as a direct summand of the latter whose complementary is concentrated in
degree ≥ 1 and killed by ζp − 1. But this follows from Lemma 4.3 immediately. �

4.2. Hitchin-small Higgs modules v.s. Hitchin-small twisted Higgs modules. Clearly, for
any ? ∈ {∅,+} the rule (H+, θ) 7→ (H+, (ζp − 1)θ) defines a well-defined functor

HIGt-H-sm(R?
S)→ HIGH-sm(R?

S).

One can prove this functor is indeed an equivalence of categories.

Proposition 4.4. The twist functor (H+, θ) 7→ (H+, (ζp− 1)θ) induces an equivalence of categories

HIGt-H-sm(R+
S )→ HIGH-sm(R+

S )

such that for any (H+, θ) ∈ HIGt-H-sm(R+
S ) with induced (H+, θ′) ∈ HIGH-sm(R+

S ), there exists a
quasi-isomorphism

Lηζp−1DR(H+, θ′) ≃ DR(H+, θ).

where Lηζp−1 denotes the décalage functor in [BMS18, §6].
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Proof. Via the isomorphism (3.6), one can write

θ =

d∑

i=1

θi ⊗
ei
ξK

and θ′i =

d∑

i=1

θ′i ⊗
ei
ξK
.

Using this, we have θ′i = (ζp− 1)θi for all i. Note that DR(H+, θ′) and DR(H+, θ) can be computed
by the Koszul complexes

K(θ′1, . . . , θ
′
d;H

+) and K(θ1, . . . , θd;H
+),

respectively. By [BMS18, Lem. 7.9], we have a quasi-isomorphism

ηζp−1K(θ′1, . . . , θ
′
d;H

+) ≃ K(θ1, . . . , θd;H
+),

yielding the desired quasi-isomorphism

Lηζp−1DR(H+, θ′) ≃ DR(H+, θ).

In particular, taking H0, we have

H0(DR(H+, θ)) ∼= H0(Lηζp−1DR(H+, θ′)) ∼= H0(DR(H+, θ′)

where the last isomorphism follows from [BMS18, Lem. 6.4] because H0(DR(H+, θ′) is a sub-R+
S -

module of H+ and thus (ζp − 1)-torsion free. As the twist functor preserves tensor product and
dualities, the above cohomological comparison implies the full faithfulness of the twist functor. One
can conclude as the essential surjectivity is a part of the definition. �

4.3. Local Simpson correspondence. Let (P+
∞,S,Θ =

∑d
i=0

∂
∂Yi
⊗ ei

ξK
) be as in Proposition 3.10.

Let P+
S = R+

S [Y0, . . . , Yd]
∧
pd/(Y0 + · · · + Yr)pd be the quotient of R+

S [Y0, . . . , Yd]
∧
pd, the free pd-

polynomial ring over R+
S generated by Y0, . . . , Yd, by the closed pd-ideal generated by Y0 + · · ·+ Yr.

Then P+
S is a sub-R+

S -algebra of P+
∞,S which is Θ-preserving and stable under the action of Γ such

that via the decomposition (2.12), there is a Γ-equivariant isomorphism

(4.2) P+
S,∞ = P+

S ⊗̂R+
S
R̂+

∞,S =
⊕̂

α∈Jr
PS · T α.

Now, we are going to prove the following local Simpson correspondence.

Theorem 4.5 (Local Simpson correspondence). Let ? ∈ {∅,∞}
(1) For any M+

? ∈ RepH-sm

Γ (R̂+
?,S) of rank r, define

ΘM+
?
= id⊗Θ :M+

? ⊗R̂+
?,S
P+
?,S →M+

? ⊗R̂+
?,S
P+
?,S ⊗R+

S
Ω1,log

R+
S

{−1}.

Then we have

Hn(Γ,M+
? ⊗R̂+

?,S
P+
?,S) =

{
H+(M+

? ), n = 0
(ζp − 1)ρK-torsion, n ≥ 1

where H+(M+
? ) is a finite free R+

S -module of rank r such that the restriction of ΘM+
?

to

H+(M+
? ) induces a Higgs field θ making (H+(M+

? ), θ) ∈ HIGt-H-sm(R+
S ).

(2) For any (H+, θ) ∈ HIGt-H-sm(R+
S ) of rank r, define

ΘH+ := θ ⊗ id + id⊗Θ : H ⊗R+
S
P+
?,S → H+ ⊗R̂+

?,S
P+
?,S ⊗R+

S
Ω1,log

R+
S

{−1}.

Then the M+
? (H

+, θ) := (H ⊗R+
S
P+
?,S)

Θ
H+=0 together with the induced Γ-action from P+

?,S is

a well-defined object in RepH-sm

Γ (R̂+
?,S) of rank r.

(3) The functors M+
? 7→ (H+(M+

? ), θ) and (H+, θ) 7→ M+
? (H

+, θ) above define an equivalence of
categories

RepH-sm

Γ (R̂+
?,S) ≃ HIGt-H-sm(R+

S )

such that for any M+
? ∈ RepH-sm

Γ (R̂+
?,S) with the induced (H+, θ), there exists an isomorphism

of Higgs modules

(4.3) (M+
? ⊗R̂+

?,S
P+
?,S,ΘM+

?
) ≃ (H+ ⊗R̂+

?,S
P+
?,S,ΘH+)
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and a quasi-isomorphism

(4.4) RΓ(Γ,M+
? [

1

p
]) ≃ DR(H+[

1

p
], θ).

(4) The following diagram is commutative

(4.5) RepH-sm

Γ (R+
S )

−⊗
R
+
S

R̂+
∞,S

// RepH-sm

Γ (R̂+
∞,S)

HIGt-H-sm(R+
S ).

M+

gg❖❖❖❖❖❖❖❖❖❖❖❖ M+
∞

77♥♥♥♥♥♥♥♥♥♥♥♥

Before we establish the above local Simpson correspondence, let us do some preparations.

Construction 4.6. Let B be a p-complete p-torsion free OC-algebra and G = Zp · γ such that G
acts on B trivially. Let B[Y ]∧pd be the free pd-polynomial ring over B generated by Y which is

equipped with an action of G such that γ(Y ) = Y + (ζp − 1)ρK . For any α ∈ N[1
p
] ∩ [0, 1), let B · eα

be the 1-dimensional representation of G over B with the basis eα such that γ(eα) = ζαeα. For any
finite free B-module V of rank r together with a fixed B-basis e1, . . . , er which is endowed with a
G-action satisfying the condition:

(∗) With respect to the given basis, the action of γ on V is given by the matrix exp(−(ζp−1)ρKθ)
for some topologically nilpotent matrix θ ∈ Matr(B).

we define
Mα(V ) := V ⊗B B · eα ⊗B B[Y ]∧pd

and equip it with the diagonal G-action.

We remark that the G-representation V satisfying the condition (∗) is exactly the log-nilpotent
B-representation of G in the sense of [MW24, Def. 3.2]. The following lemma plays the key role in
this section.

Lemma 4.7. Keep notations in Construction 4.6.

(1) Suppose that α 6= 0. We have

Hn(G,Mα(V )) =

{
0, n = 0

Mα(V )/(ζα − 1), n = 1.

(2) Suppose that α = 0. We have

Hn(G,M0(V )) =

{
exp(θY )(V ), n = 0

Mα(V )/ρK(ζ
α − 1), n = 1,

where
exp(θY )(V ) := {

∑

i≥0

θi(v)Y [i] ∈M0(V ) | v ∈ V }.

Moreover, the natural inclusion M0(V )
G →M0(V ) induces a G-equivariant isomorphism

M0(V )
G ⊗B B[Y ]∧pd

∼=−→M0(V ).

Proof. Comparing Construction 4.6 with [MW24, Not. 3.1 and Def. 3.2], one can conclude by
applying [MW24, Prop. 3.4]. �

Corollary 4.8. Keep notations in Construction 4.6. Let Gd = ⊕di=1Zp · γi which acts on B trivially
and B[Y1, . . . , Yd]

∧
pd be the p-complete free pd-polynomial ring over B generated by Y1, . . . , Yd with

the a Gd-action such that γi(Yj) = Yj + δij(ζp − 1)ρK for any 1 ≤ i, j ≤ d. Let V be a finite free
B-module of rank r which is equipped with a G-action such that for some B-basis e1, . . . , er of V and
for any 1 ≤ i ≤ d, the action of γi on V satisfies the condition (∗) in Construction 4.6 for some
topologically nilpotent matrix θi ∈ Matr(B). For any α = (α1, . . . , αd) ∈ (N[1

p
] ∩ [0, 1))d, let B · eα

be the 1-dimensional representation of Gd over B such that γi(eα) = ζαieα for any 1 ≤ i ≤ d, and
define

Mα(V ) := V ⊗B B · eα ⊗B B[Y1, . . . , Yd]
∧
pd.
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Then the following assertions are true:

(1) Suppose that α 6= 0. Then we have

Hn(Gd,Mα(V )) =

{
0, n = 0

(ζp − 1)-torison, n ≥ 1.

(2) Suppose that α = 0. Then we have

Hn(Gd,M0(V )) =

{
exp(

∑d
i=1 θiYi)(V ), n = 0

(ζp − 1)ρK-torison, n ≥ 1,

where

exp(
d∑

i=1

θiYi)(V ) := {
∑

J∈Nd

θJ(v)Y [J ] | v ∈ V }.

Moreover, the natural inclusion M0(V )
G →M0(V ) induces a G-equivariant isomorphism

M0(V )G ⊗B B[Y1, . . . , Yd]
∧
pd

∼=−→M0(V ).

Proof. Note that as Gd is commutative, the θi’s commute with each others. In particular, the

exp(

d∑

i=1

θiYi) :=
∑

J∈Nd

θJY [J ]

is a well-defined matrix in GLr(B[Y1, . . . , Yd]
∧
pd). So exp(ρK

∑d
i=1 θiYi)(V ) is also well-defined and is

a finite free R+
S -module of rank r.

For Item (1): Without loss of generality, we may assume αd 6= 0. By Serre–Hochschild spectral
sequence, it suffices to show Hn(Zp · γd,Mα(V )) is killed by ζp − 1 for n = 1 and vanishes for n = 0.
But this follows from Lemma 4.7(1) (by working with B[Y1, · · · , Yd−1]

∧
pd instead of B there).

For Item (2): Using the same spectral sequence argument as in Item (1), one can deduce from
Lemma 4.7(2) that for any n ≥ 1, the Hn(Gd,M0(V )) is killed by (ζp − 1)ρK . Using Lemma 4.7(2)
again, by iteration, we have

H0(Gd,M0(V )) =M0(V )γ1=···=γd=1

=
(
exp(θdYd)(V ⊗B B[Y1, . . . , Yd−1]

∧
pd)
)γ1=···=γd−1=1

= · · ·

= exp(
d∑

i=1

θiYi)(V ).

Now, the final isomorphism

M0(V )
G ⊗B B[Y1, . . . , Yd]

∧
pd

∼=−→M0(V )

follows as exp(
∑d

i=1 θiYi) ∈ GLr(B[Y1, . . . , Yd]
∧
pd). �

Now, we are able to establish the local Simpson correspondence.

Proof of Theorem 4.5. We first prove Items (1), (2) and (3) for ? = ∅.
For Item (1): Fix an M+ ∈ RepH-sm

Γ (R+
S ) of rank r such that via the isomorphism (2.10), the

γi-action on M+ is given by exp(−(ζp − 1)ρKθi) for some topologically nilpotent θi ∈ EndR+
S
(M+)

for any 1 ≤ i ≤ d. Consider the isomorphisms

(4.6) Ω1,log

R+
S

∼= ⊕di=1R
+
S · ei and (P+

S ,Θ) ∼= (R+
S [Y1, . . . , Yd]

∧
pd,

d∑

i=1

∂

∂Yi
⊗ ei
ξK

).

It follows from Corollary 4.8 that Hn(Γ,M+⊗R+
S
P+
S ) is killed by ρK(ζp− 1) for n ≥ 1 and gives rise

to a finie free R+
S -module

(4.7) H+(M+) = exp(

d∑

i=1

θiYi)(M
+).
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Then the restriction of ΘM+ to H+(M+) is given by

(4.8) θ =
d∑

i=1

θi ⊗
ei
ξK

: H+(M+)→ H+(M+)⊗R+
S
Ω1,log

R+
S

{−1}.

In particular, we have θ is topologically nilpotent as each θi does. This completes the proof for Item
(1).

For Item (2): Again we use the isomorphisms (4.6). Fix an (H+, θ) ∈ HIGt-H-sm(R+
S ) of rank r

and write θ =
∑d

i=1 θi ⊗ ei
ξK

with θi ∈ EndR+
S
(H+) topologically nilpotent for all i. Fix an

x =
∑

J∈Nd

hJY
J ∈ H+ ⊗R+

S
P+
S .

Then we have

ΘH+(x) =
d∑

i=1

(∑

J∈Nd

(θi(xJ ) + xJ+Ei
)Y J

)
⊗ ei
ξK
.

In particular, ΘH+(x) = 0 if and only if for any 1 ≤ i ≤ d, we have xJ+Ei
= −θi(xJ). By iteration,

this amounts to that for any J ∈ Nd,

xJ = (−1)|J |θJ(x0),

yielding that

(4.9) M+(H+, θ) = exp(−
d∑

i=1

θiYi)(H
+) := {

∑

J∈Nd

(−1)|J |θJ(h)Y [J ] | h ∈ H+}.

As γi(Yj) = Yj + (ζp − 1)ρK via the isomorphism (2.10) by Corollary 3.6, we see that the γi-action
on M+(H+, θ) is given by

(4.10) γi = exp(−ρK(ζp − 1)θi).

This forces M+(H+, θ) ∈ RepH-sm
Γ (R+

S ) as desired.
For Item (3): For any M+ ∈ RepH-sm

Γ (R+
S ), it follows from the “moreover” part of Corollary 4.8

that the natural morphism H+(M+)→ M+ ⊗R+
S
P+
S induces a Γ-equivariant isomorphism

H+(M+)⊗R+
S
P+
S

∼=−→M+ ⊗R+
S
P+
S .

It follows from the construction of θ on H+(M+) that the above isomorphism is compatible with
Higgs fields. By Poincaré’s Lemma 3.9, we have quasi-isomorphisms

RΓ(Γ,M+[
1

p
])

≃−→ RΓ(Γ,DR(M+ ⊗R+
S
P+
S [

1

p
]),ΘM+)

≃←− RΓ(Γ,DR(H+ ⊗R+
S
P+
S [

1

p
]),ΘH+)

≃←− DR(H+[
1

p
], θ),

where the last quasi-isomorphism follows from RΓ(Γ, P+
S [

1
p
]) = 0, by Item (1). Thus, one only need

to show the functors in Items (1) and (2) are quasi-inverses of each other. We divide the proof into
three steps:

Step 1: Fix an M+ ∈ RepH-sm
Γ (R+

S ) and put (H+, θ) = (H+(M+), θ). We denote by

ιM+(H+,θ) :M
+(H+(M+), θ) =M+(H+, θ)→M+
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the natural morphism induced by the composites

M+(H+, θ) = (H+ ⊗R+
S
P+
S )

Θ
H+=θ⊗id+id⊗Θ=0

=
(
(M+ ⊗R+

S
P+
S )

Γ ⊗R+
S
P+
S

)Θ
M+⊗id+(id⊗id)⊗Θ=0

→֒ (M+ ⊗R+
S
P+
S ⊗R+

S
P+
S )

id⊗Θ⊗id+id⊗id⊗Θ=0

→ (M+ ⊗R+
S
P+
S )

id⊗Θ=0

=M+,

where the last equality follows from the Poincaré’s Lemma 3.9 while the last arrow is induced by
the multiplication on P+

S (cf. Proposition 3.11).
Step 2: Fix an (H+, θ) ∈ HIGt-H-sm(R+

S ) and put M+ =M+(H+, θ). We denote by

ι(H+,θ) : H
+(M+)→ H+

the natural morphism compatible with Higgs fields induced by the composites

H+(M+) = (M+ ⊗R+
S
P+
S )

Γ

=
(
(H+ ⊗R+

S
P+
S )

Θ
H+=0 ⊗R+

S
P+
S

)Γ

→֒ (H+ ⊗R+
S
P+
S ⊗R+

S
P+
S )

Γ

→ (H+ ⊗R+
S
P+
S )

Γ

= H+,

where the last equality follows as P Γ
S = R+

S (by Item (1)) while the last arrow is again induced by
the multiplication on P+

S .
Step 3: It remains to show the morphism ιM+ and ι(H+,θ) are both isomorphisms. But this can be

deduced from their constructions together with Equations (4.7), (4.8), (4.9) and (4.10) immediately.
We have finished the proof in the ? = case. Now, we move to the case for ? =∞.

For Item (1): Fix anM+
∞ ∈ RepH-sm

Γ (R̂+
∞,S). By Proposition 4.2, there exists anM+ ∈ RepH-sm

Γ (R̂+
S )

such thatM+
∞
∼=M+⊗R+

S
R̂+

∞,S. Then the decomposition (4.2) induces a Γ-equivariant decomposition

M+
∞ ⊗R̂+

∞,S
P+
∞,S =

⊕̂
α∈Jr

M+ ⊗R+
S
P+
S · T α.

Fix an α = (α0, . . . , αr, αr+1, . . . , αd) ∈ Jr \ {0}. We claim that RΓ(Γ,M+⊗R+
S
P+
S · Tα) vanishes for

n = 0 and is killed by ζp − 1 for any n ≥ 1. Without loss of generality, we may assume α0 = 0 and
then α1, . . . , αd are not all zero. Then the claim follows from the isomorphism (2.10) together with
Corollary 4.8(1).

Thanks to the claim, the Item (1) follows from the ? = ∅ case and moreover we have the identity

(H+(M+
∞), θ) = (H+(M+), θ).

The Items (2) and (3) follows from the same arguments in the proof for the ? = ∅ case. In

particular, for any (H+, θ =
∑d

i=1 θi ⊗ ei
ξK

) ∈ HIGt-H-sm(R+
S ), we have

(4.11)

M+
∞(H+, θ) = exp(−

d∑

i=1

θiYi)(H
+⊗R+

S
R̂+

∞,S) = exp(−
d∑

i=1

θiYi)(H
+)⊗R+

S
R̂+

∞,S =M+(H+, θ)⊗R+
S
R̂+

∞,S

on which γi acts via the formulae (4.10). This implies the Item (4), and then completes the proof. �

Finally, we obtain the following equivalence of categories.

Corollary 4.9. For any ? ∈ {∅,+}, we have the following equivalences of categories

RepH-sm

Γ (R̂?
∞,S) ≃ RepH-sm

Γ (R?
S) ≃ HIGt-H-sm(R?

S) ≃ HIGH-sm(R?
S).
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Moreover, for anyM∞ ∈ RepH-sm

Γ (R̂∞,S) with correspondingM ∈ RepH-sm

Γ (R̂S), (H, θ) ∈ HIGt-H-sm(RS)
and (H ′, θ′) ∈ HIGH-sm(RS), we have quasi-isomorphisms

RΓ(Γ,M∞) ≃ RΓ(Γ,M) ≃ DR(H, θ) ≃ DR(H ′, θ′).

Proof. This follows from Proposition 4.2, Proposition 4.4 and Theorem 4.5 immediately. �

It is worth showing the explicit form of the equivalence

RepH-sm
Γ (R̂∞,S) ≃ HIGH-sm(RS).

Let M∞ be a Hitchin-small Γ-representation of rank r over R̂∞,S with associated M ∈ RepH-sm
Γ (RS);

that is, we haveM∞ =M⊗RS
R̂∞,S. Fix an RS-basis e1, . . . , ed ofM such that for any 1 ≤ i ≤ d, the

action of γi ∈ Γ onM is given by exp(−(ζp−1)ρKθi) for some topolohically nilpotent θi ∈ Matr(R
+
S )

with respect to the given basis. Let (H, θ) be the Hitchin-small Higgs module associated toM∞ over
RS. Then we have

(4.12) (H =M, θ =
d∑

i=1

(ζp − 1)θi ⊗
dlogTi
ξK

),

where we use the isomorphism Ω1
RS

= Ω1,log

R+
S

[1
p
] and identify ei ∈ Ω1,log

R+
S

(cf. (3.6)) with dlogTi ∈ Ω1
RS

.

Conversely, if we start with a Hitchin-small Higgs module

(H, θ =
d∑

i=1

(ζp − 1)θi ⊗
dlogTi
ξK

) ∈ HIGH-sm(RS)

with θi ∈ Matr(R
+
S ) topologically nilpotent, then its associated Hitchin-small Γ-representation M

over RS is given by M = H together with the Γ-action such that for any 1 ≤ i ≤ d, the γi acts via
exp(−(ζp − 1)ρKθi).

4.4. An integral comparison theorem. Let (H+, θ) ∈ HIGt-H-sm(R+
S ) be a twisted Hitchin-small

Higgs module of rank r with associated Hitchin-small Γ-representation M+ ∈ RepH-sm
Γ (R+

S ) (resp.

M+
∞ ∈ RepH-sm

Γ (R̂+
∞,S)). As DR(P+

S ,Θ) (resp. DR(P+
∞,S,Θ)) is a resolution of R+

S (resp. R̂+
∞,S), we

have the left part of the following commutative diagram:

(4.13) RΓ(Γ,M+)
� _

��

≃ // RΓ(Γ,DR(M+ ⊗R+
S
P+
S ,ΘM+))

� _

��

DR(H+, θ)? _oo

RΓ(Γ,M+
∞)

≃ // RΓ(Γ,DR(M+
∞ ⊗R̂+

∞,S
P+
∞,S,ΘM+

∞
)) DR(H+, θ)? _oo

while the right part follows from the Theorem 4.5. On the other hand, combining Proposition 4.2
with [BMS18, Lem. 6.4 and Lem. 6.10], we have the following commutative diagram

(4.14) LηρK(ζp−1)RΓ(Γ,M
+) //

≃

��

RΓ(Γ,M+)
� _

��
LηρK(ζp−1)RΓ(Γ,M

+
∞) // RΓ(Γ,M+

∞).

Then we have the following result:

Proposition 4.10. Keep notations as above. For any ? ∈ {∅,∞}, the composite

τ≤1DR(H+, θ)→ DR(H+, θ)
(4.13)−−−→ RΓ(Γ,M+

? )

uniquely factors through the composite

τ≤1LηρK(ζp−1)RΓ(Γ,M
+
? )→ LηρK(ζp−1)RΓ(Γ,M

+
? )

(4.14)−−−→ RΓ(Γ,M+)

and induces a quasi-isomorphism

τ≤1DR(H+, θ)
≃−→ τ≤1LηρK(ζp−1)RΓ(Γ,M

+
? ).
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Proof. By the commutativity of diagrams (4.13) and (4.14), it suffices to deal with the case for ? = ∅.
Then one can conclude by the same argument used in the proof of [MW24, Prop. 5.6]. But for the
convenience of readers, we exhibit details here.

We claim the morphism DR(H+, θ)→ RΓ(Γ,M+) induces an isomorphism

(4.15) H1
dR(H

+, θ) := H1(DR(H+, θ)) ∼= ρK(ζp − 1)H1(Γ,M+).

Granting this, one can conclude the result as follows: By [BMS18, Lem. 8.16], the morphism
τ≤1DR(H+, θ)→ τ≤1RΓ(Γ,M+)→ RΓ(Γ,M+) uniquely factors as

τ≤1DR(H+, θ)→ τ≤1LηρK(ζp−1)RΓ(Γ,M
+)→ τ≤1RΓ(Γ,M+)→ RΓ(Γ,M+).

Here, we implicitly commute τ≤1 and LηρK(ζp−1) (by [BMS18, Cor. 6.5]). By the proof of [BMS18,
Lem. 6.10], the Hi of the morphism τ≤1LηρK(ζp−1)RΓ(Γ,M

+)→ τ≤1RΓ(Γ,M+) is given by

Hi(τ≤1LηρK(ζp−1)RΓ(Γ,M
+)) = Hi(Γ,M+)/Hi(Γ,M+)[ρK(ζp − 1)]

×(ρK(ζp−1))i−−−−−−−−→ Hi(Γ,M+)

for i ∈ {0, 1}. In particular, this induces an isomorphism

Hi(τ≤1LηρK(ζp−1)RΓ(Γ,M
+)) ∼= (ρK(ζp − 1))iHi(Γ,M+)

for i ∈ {0, 1}. Then it follows from the claim above that the morphism

τ≤1DR(H+, θ)→ τ≤1LηρK(ζp−1)RΓ(Γ,M
+
? )

is a quasi-isomorphism as desired.
Now, we focus on the proof of the claim above. Put P (M+) :=M+⊗R+

S
P+
S for short and consider

the following commutative diagram:
(4.16)

H+ //

��

H+ ⊗ Ω1,log

R+
S

{−1} //

��

H+ ⊗ ρ2Ω̂2(−2) //

��

. . .

M+ //

��

P (M+) //

��

P (M+)⊗ Ω1,log

R+
S

{−1} //

��

P (M+)⊗ Ω2,log

R+
S

{−2} //

��

. . .

∧1(M+)d

��

// ∧1P (M+)d //

��

∧1P (M+)d ⊗ Ω1,log

R+
S

{−1} //

��

∧1P (M+)d ⊗ Ω2,log

R+
S

{−2} //

��

. . .

∧2(M+)d

��

// ∧2P (M+)d //

��

∧2P (M+)d ⊗ Ω1,log

R+
S

{−1} //

��

∧2P (M+)d ⊗ Ω2,log

R+
S

{−2} //

��

. . .

...
...

...
...

where the horizontal arrows are induced by Higgs fields and the vertical arrows are induced by Koszul
complexes associated to Γ-actions. Then we have the following commutative diagram

(4.17) H+ //

��

H+ ⊗R+
S
Ω1,log

R+
S

{−1} //

��

. . .

P (M+) // P (M+)⊗R+
S
Ω1,log

R+
S

{−1} ⊕ ∧1P (M+)d // . . .

M+ //

OO

∧1(M+)d //

OO

. . .

such that the arrows from the bottom to the middle induce the quasi-isomorphism

RΓ(Γ,M+) ≃ RΓ(Γ,HIG(P (M+),ΘM+])).

We have to deduce the relation between H1
dR(H

+, θ) and H1(Γ,M+) from the diagram (4.17).
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Let x1, . . . , xd ∈ H+ such that ω =
∑d

i=1 xi ⊗ ei
ξK

represents an element in H1
dR(H

+, θ) via the

isomorphism Ω1,log

R+
S

∼= ⊕di=1R
+
S · ei, cf. (3.6). Equivalently, we have that for any 1 ≤ i, j ≤ d,

θi(xj) = θj(xi), where we write θ =
∑d

i=1 θi ⊗ ei
ξK
. We want to determine the element in H1(Γ,M+)

induced by ω. To do so, we have to solve the equation

(4.18) ΘM+(
∑

n

hnY
[n]) = ω,

where
∑

n hnY
[n] =: m ∈ M . Note that

ΘM+(
∑

n

hnY
[n]) =

d∑

i=1

(
∑

n

θi(hn)Y
[n] +

∑

n

hnY
[n−1i])⊗ ei

ξK

=
d∑

i=1

∑

n

(θi(hn) + hn+1i
)Y [n] ⊗ dlogTi

ξK
.

So (4.18) holds true if and only if for any 1 ≤ i ≤ d and n ∈ Nd satisfying |n| ≥ 1,

(4.19) hn+1i
= −θi(hn)

and

(4.20) h1i = −θi(h0) + xi.

As θi(xj) = θj(xi) for any 1 ≤ i, j ≤ d, it is easy to see that for any h ∈ H+, one can put h0 = h
and use (4.19) and (4.20) to achieve an element m(h) ∈M satisfying ΘM+(m(h)) = ω. Moreover, if
we put m(ω) := m(0), then

m(h) = m(ω) + exp(−
d∑

k=1

θkYk)h.

As a consequence, the image of ω in H1(Γ,M+) = H1(K(γ1 − 1, . . . , γd − 1;M+)) is represented by

v(ω) := (γ1(m(ω))−m(ω), . . . , γd(m(ω))−m(ω)) ∈ ∧1(M+)d.
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On the other hand, as γ1 acts on Y2, . . . , Yd trivially (cf. Proposition 3.10), we have

γ1(m(ω))−m(ω)

=γ1

( ∑

n1≥1,n2,...,nd≥0

(−θ1)n1−1(−θ2)n2 · · · (−θd)ndx1Y
[n1]
1 · · ·Y [nd]

d

)

−
∑

n1≥1,n2,...,nd≥0

(−θ1)n1−1(−θ2)n2 · · · (−θd)ndx1Y
[n1]
1 · · ·Y [nd]

d

=
∑

n1≥1,n2,...,nd≥0

(−θ1)n1−1(−θ2)n2 · · · (−θd)ndx1(Y1 + ρK(ζp − 1))[n1]Y
[n2]
2 · · ·Y [nd]

d

−
∑

n1≥1,n2,...,nd≥0

(−θ1)n1−1(−θ2)n2 · · · (−θd)ndx1Y
[n1]
1 · · ·Y [nd]

d

=
∑

n1≥1,n2,...,nd≥0,0≤l≤n1

(−θ1)n1−1(−θ2)n2 · · · (−θd)ndx1ρ
n1−l
K (ζp − 1)[n1−l]Y

[l]
1 Y

[n2]
2 · · ·Y [nd]

d

−
∑

n1≥1,n2,...,nd≥0

(−θ1)n1−1(−θ2)n2 · · · (−θd)ndx1Y
[n1]
1 · · ·Y [nd]

d

=
∑

n1≥1,n2,...,nd≥0,0≤l≤n1−1

(−θ1)n1−1(−θ2)n2 · · · (−θd)ndx1ρ
n1−l
K (ζp − 1)[n1−l]Y

[l]
1 Y

[n2]
2 · · ·Y [nd]

d

=
∑

n1,n2,...,nd≥0,l≥0

(−θ1)n1+l(−θ2)n2 · · · (−θd)ndx1ρ
l+1
K (ζp − 1)[l+1]Y

[n1]
1 · · ·Y [nd]

d

=
∑

l≥0

ρl+1
K (−θ1)l(ζp − 1)[l+1] exp(−

d∑

k=1

θkYk)x1

=(ζp − 1)ρKF (ρKθ1) exp(−
d∑

k=1

θkYk)x1,

where F (θ) = 1−exp(−(ζp−1)θ)
(ζp−1)θ

was defined in (4.1). Similarly, for any 1 ≤ i ≤ d, we have

(γi − 1)(m(ω)) = ρ(ζp − 1)F (θi) exp(−
d∑

k=1

θkYk)xi.

As a consequence, the image of ω in H1(Γ,M+) is represented by

(4.21) v(ω) = (ζp − 1)ρK(F (ρKθ1) exp(−
d∑

k=1

θkYk)x1, . . . , F (ρKθd) exp(−
d∑

k=1

θkYk)xd).

Since for any 1 ≤ i, j ≤ d,

(γj − 1)(F (ρKθi) exp(−
d∑

k=1

θkYk)xi) =F (ρKθi) exp(−
d∑

k=1

θkYk)(exp(−(ζp − 1)ρKθj)− 1)xi

=(ζp − 1)ρKF (ρKθi)F (ρKθj) exp(−
d∑

k=1

θkYk)θj(xi),

(4.22)

and θj(xi) = θi(xj), we deduce that

(γj − 1)(F (ρKθi) exp(−
d∑

k=1

ΘkYk)xi) = (γi − 1)(F (ρKθi) exp(−
d∑

k=1

θkYk)xj)

and hence that

v′(ω) := (F (ρKθ1) exp(−
d∑

k=1

θkYk)x1, . . . , F (ρKθd) exp(−
d∑

k=1

θkYk)xd) ∈ ∧1(M+)d

represents an element in H1(Γ,M+).
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Therefore, as a cohomological class, we have

v(ω) = ρK(ζp − 1)v′(ω) ∈ ρK(ζp − 1)H1(Γ, V0).

In other words, the map DR(H, θH) → RΓ(Γ,M+) carries H1
dR(H

+, θH) into ρK(ζp − 1)H1(Γ,M+).
We have to show it induces an isomorphism

H1
dR(H

+, θH) ∼= ρK(ζp − 1)H1(Γ,M+).

The injectivity is obvious. Indeed, let T be the total complex of the double complex in (4.16)
representing RΓ(Γ,DR(P (M+),ΘM)). By the spectral sequence argument, we have

H1
dR(H

+,Θ) = E1,0
2 = E1,0

∞ ⊂ H1(T ) ∼= H1(Γ,M+)

and the desired injectivity follows.
It remains to prove the surjectivity. For this, let y1, . . . , yd ∈ H such that

v′ = (F (ρKθ1) exp(−
d∑

j=1

θjYj)y1, . . . , F (ρKθd) exp(−
d∑

j=1

θjYj)yd) ∈ ∧1(M+)d

represents an element in H1(K(γ1 − 1, . . . , γd − 1;M+)) ∼= H1(Γ,M+). Equivalently, we have that
for any 1 ≤ i, j ≤ d,

(γj − 1)(F (ρKθi) exp(−
d∑

k=1

θkYk)yi) = (γi − 1)(F (ρKθj) exp(−
d∑

k=1

θkYk)yj).

By (4.22), this amounts to that

(ζp − 1)ρKF (ρKθi)F (ρKθj) exp(−
d∑

k=1

θkYk)θj(yi) = ρK(ζp − 1)F (ρKθi)F (ρKθj) exp(−
d∑

k=1

θkYk)θi(yj).

By noting that F (ρKθi)’s are invertible (as θi’s are topologically nilpotent and F (θ) ≡ 1 mod θ),
we conclude that v′ represents an element in H1(Γ,M+) if and only if θi(yj) = θj(yi) for any

1 ≤ i, j ≤ d. As a consequence, ω′ =
∑d

i=1 yi ⊗ dlogTi
ξK

represents an element in H1
dR(H, θ). Now

for any v′ ∈ H1(Γ,M+), by (4.21), we know that v(ω′) = ρK(ζp − 1)v′. That is, ρK(ζp − 1)v′ is
contained in the image of

H1
dR(H, θ)→ ρK(ζp − 1)H1(Γ,M+).

As v′ is arbitrary in H1(Γ,M+), this proves the desired surjectivity and thus the desired claim. �

5. The p-adic Simpson correspondence on Hitchin-small objects

In this section, we aim to generalize the integral Simpson correspondence [MW24, Th. 1.1] and the
geometric stacky Simpson correspondence [AHLB23b, Th. 1.1] to the case for semi-stable X. From
now on, we always assume X is a liftable semi-stable formal scheme over OC of relative dimension

d over OC with the generic fiber X in the sense of [CK19] and fix an its lifting X̃ over A2,K . For

any S = Spa(A,A+) ∈ Perfd, denote by XS, XS and X̃S the base-changes of X, X and X̃ to A+, A
and A2,K(S), respectively. Then XS is a liftable semi-stable formal scheme over A+ with the generic

fiber XS and the induced lifting X̃S from X̃. When X = Spf(R+) with the lifting X̃ = Spf(R̃+)

and the generic fiber X = Spa(R,R+), we also denote by Spf(R+
S ), Spa(RS, R

+
S ) and R̃+

S for the

corresponding base-changes. For any ? ∈ {∅,+}, let OĈ?
pd,S be the period sheaf with Higgs fields

constructed in §3.2 corresponding to the lifting X̃S. By construction, it is also functorial in S and
so is the notation P ?

∞,S in Proposition 3.10.
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5.1. The integral p-adic Simpson correspondence. Fix an S = Spa(A,A+) ∈ Perfd and let

XS, X̃S, XS, and etc. be as before.

Definition 5.1. By a Hitchin-small integral v-bundle of rank r on XS,v, we mean a sheaf of locally

finite free Ô+
XS

-modulesM+ on XS,v such that there exists an étale covering {Xi,S → XS}i∈I by small

affine Xi,S = Spf(R+
i,S) such that for any i ∈ I, theM+(Xi,∞,S) is a Hitchin-small Γ-representation

of rank r over R̂+
i,∞,S in the sense of Definition 4.1. Denote by LSH-sm(XS, Ô+

XS
) the category of

Hitchin-small integral v-bundles on XS,v.

Definition 5.2. By an Higgs bundle of rank r on XS,ét, we mean a pair (H+, θ) consisting of a sheaf
H+ of locally finite free OXS

-modules of rank r on XS,ét and a Higgs field θ on H+, i.e., an OXS
-linear

homomorphism

θ : H+ → H+ ⊗OXS
Ω1,log

XS
{−1}

satisfying the condition θ ∧ θ = 0. For any Higgs bundle (H+, θ), denote by DR(H+, θ) the induced
Higgs complex. A Higgs bundle (H+, θ) is called

(1) twisted Hitchin-small if θ is topologically nilpotent;
(2) Hitchin-small if it is of the form

(H+, θ) = (H+, (ζp − 1)θ′)

for some twisted Hitchin-small integral Higgs bundles.

Denote by HIG(t-)H-sm(XS,OXS
) the category of (twisted) integral Hitchin-small Higgs bundles on

XS,ét.

Lemma 5.3. The twist functor (H+, θ) 7→ (H+, (ζp − 1)θ) induces an equivalence of categories

HIGt-H-sm(XS,OXS
)

≃−→ HIGH-sm(XS,OXS
)

such that for any (H+, θ) ∈ HIGt-H-sm(XS,OXS
) with the induced (H+, θ′) ∈ HIGH-sm(XS,OXS

), there
exists a quasi-isomorphism

Lηζp−1DR(H+, θ′) ≃ DR(H+, θ).

Proof. This indeed follows from the definition (of Lη). By [Sta24, Tag 06YQ], the DR(H+, θ′) is
strongly K-flat in D(OXS

) in the sense of [BMS18, §6] (as it is a bounded complex of vector bundles).
So Lηζp−1DR(H+, θ′) is represented by the complex ηζp−1DR(H+, θ′) defined in [BMS18, Def. 6.2].
Denote its differentials by d for simplicity. As θ′ = (ζp − 1)θ, for any n ≥ 0, we have

(ηζp−1DR(H+, θ′))n = H+ ⊗OXS
Ωn,log

XS
{−n} ⊗ (ζp − 1)n.

By definition of d (cf. the commutative diagram in [BMS18, Def. 6.2]), for any local section

x ∈ H+ ⊗OXS
Ωn,log

XS
{−n}, we have

d(x)⊗ (ζp − 1)n+1 = θ′(x)⊗ (ζp − 1)n = θ(x)⊗ (ζp − 1)n+1.

Via the isomorphism (ηζp−1DR(H+, θ′))n ∼= H+ ⊗OXS
Ωn,log

XS
{−n}, we have an isomorphism of com-

plexes
(ηζp−1DR(H+, θ′), d) ≃ DR(H+, θ),

yielding the desired quasi-isomorphism. �

The main theorem in this section is the following generalisation of [MW24, Th. 1.1].

Theorem 5.4. Let (OĈ+
pd,S,Θ) be the period sheaf with Higgs field associated to X̃S. Let ν : XS,v →

XS,ét be the natural morphism of sites.

(1) For anyM+ ∈ LSH-sm(XS, Ô+
XS

) of rank r, put

ΘM+ := id⊗Θ :M+ ⊗OĈ+
pd,S →M+ ⊗OĈ+

pd,S ⊗OXS
Ω1,log

XS
{−1}.

Then the complex Rν∗(M+ ⊗OĈ+
pd,S) is concentrated in degree [0, d] such that

LηρK(ζp−1)Rν∗(M+ ⊗OĈ+
pd,S) ≃

(
ν∗(M+ ⊗OĈ+

pd,S)
)
[0].

https://stacks.math.columbia.edu/tag/06YQ
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Moreover, the push-forward

(H+(M+), θ) := (ν∗(M+ ⊗OĈ+
pd,S), ν∗(ΘM+))

defines a twisted Hitchin-small Higgs bundle of rank r on XS,ét.
(2) For any (H+, θ) ∈ HIGt-H-sm(XS,OXS

) of rank r, put

ΘH+ = θ ⊗ id + id⊗Θ : H+ ⊗OĈ+
pd,S →H+ ⊗OĈ+

pd,S ⊗OXS
Ω1,log

XS
{−1}.

Then the

M+(H+, θ) := (H+ ⊗OĈ+
pd,S)

Θ
H+=0

defines a Hitchin-small integral v-bundle of rank r on XS,v.
(3) The functors in Items (1) and (2) defines an equivalence of categories

LSH-sm(XS, Ô+
XS

)
≃−→ HIGt-H-sm(XS,OXS

).

which preserves ranks, tensor products and dualities.

Combining this with Lemma 5.3, we obtain

Corollary 5.5. The composite

LSH-sm(XS, Ô+
XS

)→ HIGt-H-sm(XS,OXS
)

×(ζp−1)−−−−−→ HIGH-sm(XS,OXS
)

defines an equivalence of categories

LSH-sm(XS, Ô+
XS

)
≃−→ HIGH-sm(XS,OXS

)

preserving ranks, tensor products and dualities.

5.1.1. Proof of Theorem 5.4. We follow the strategy in [MW24, §4.2].

Lemma 5.6. Suppose XS = Spf(R+
S ) is small affine with the generic fiber XS = Spa(RS, R

+
S )

Let M+ be a Hitchin-small integral v-bundle of rank r on XS,v such that M+
∞ := M+(X∞,S) is a

Hitchin-small Γ-representation of rank r over R̂+
∞,S. Then there exists a natural morphism

RΓ(Γ, (M+ ⊗Ô+
XS

OĈ+
pd,S)(X∞,S))→ RΓ(XS,v,M+ ⊗Ô+

XS

OĈ+
pd,S)

which is an almost quasi-isomorphism and is an isomorphism in degree 0.

Proof. It suffices to show that there exists some c > 0 such that there is an almost isomorphism of
sheaves of Ô+

XS
-modules

M+/pc ∼= (Ô+
XS
/pc)r.

Granting this, one can conclude by the same argument in the proof of [MW24, Lem. 4.15].
Denote by X•

∞,S the Čech nerve associated to the Γ-torsor X∞,S → XS. Then we have

X•
∞,S = Spa(C(Γ•, R̂∞,S),C(Γ

•, R̂+
∞,S))

where C(Γ•, N) denotes the ring of continuous functions from Γ• into N for any Zp-module N
equipped with a continuous Γ-action. The Hitchin-smallness of M+

∞ yields a Γ-equivariant isomor-
phism

M+
∞/ρK(ζp − 1) ∼= (R̂+

∞,S/ρK(ζp − 1))r.

Note that the continuous Γ-actionM+
∞ induces a cosimplicial C(Γ•, R̂+

∞,S)-module C(Γ•,M+
∞), yield-

ing an isomorphism

C(Γ•,M+
∞/ρK(ζp − 1)) ∼= C(Γ•, R̂+

∞,S/ρK(ζp − 1))r

of cosimplicial C(Γ•, R̂+
∞,S)-modules. As X∞,S → XS is a Γ-torsor, by the proof of [Sch13, Lem.

4.10(i)], we have the desired almost isomorphism

M+/pc ∼= (Ô+
XS
/pc)r

for any 0 < c < νp((ζp − 1)ρK). �
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Corollary 5.7. Keep assumption and notations in Lemma 5.6. Then the above natural morphism
induces a quasi-isomorphism

Lη(ζp−1)ρKRΓ(Γ, (M+ ⊗Ô+
XS

OĈ+
pd,S)(X∞,S))

≃−→ Lη(ζp−1)ρKRΓ(XS,v,M+ ⊗Ô+
XS

OĈ+
pd,S).

Moreover, we have the following quasi-isomorphisms

H0(Xv,S, (M+ ⊗Ô+
XS

OĈ+
pd,S))[0]

∼= H0(Γ, (M+ ⊗Ô+
XS

OĈ+
pd,S)(X∞,S))[0]

∼= LηρK(ζp−1)RΓ(Γ, (M+ ⊗Ô+
XS

OĈ+
pd,S)(X∞))

∼= LηρK(ζp−1)RΓ(Xv,S, (M+ ⊗Ô+
XS

OĈ+
pd,S)).

Proof. For the first desired quasi-isomorphism, by [BMS18, Lem. 8.11(2)] and Lemma 5.6, it suffices
to show for any k ≥ 0, the

Hk(Γ, (M+ ⊗Ô+
XS

OĈ+
pd,S)(X∞,S)) = Hk(Γ,M+

∞ ⊗R̂+
∞,S

P+
∞,S).

has no mC-torsion. Let (H+, θ) be the twisted Hitchin-small Higgs module over R+
S associated to

M+
∞ via Theorem 5.4. Then we have a quasi-isomorphism

RΓ(Γ,M+
∞ ⊗R̂+

∞,S
P+
∞,S) ≃ RΓ(Γ, H+ ⊗R+

S
P+
∞,S) ≃ H+ ⊗R+

S
RΓ(Γ, P+

∞,S),

where the second follows asH+ is finite free over R+
S with trivial Γ-action. So we have an isomorphism

Hk(RΓ(Γ,M+
∞ ⊗R̂+

∞,S
P+
∞,S))

∼= H+ ⊗R+
S
Hk(RΓ(Γ, P+

∞,S))

and thus are reduced to showing that Hk(Γ, P+
∞,S) has no mC-torsion. By decomposition (4.2), it

suffices to show for any α ∈ Jr, the Hk(Γ, P+
S · T α) has no mC-torsion. For α = 0, the RΓ(Γ, P+

S ) is
computed by the Koszul complex

K(γ1 − 1, . . . , γd − 1;P+
S ) ≃

⊗̂L

1≤i≤d
K(γi − 1;R+

S [Yi]
∧
pd)

where
⊗̂L

denotes the p-complete derived tensor product. By Künneth formulae, we are reduced to
the case for d = 1; that is, we just need to show

R+
S [Y ]

∧
pd

γ−1−−→ R+
S [Y ]

∧
pd

has cohomologies with no mC-torsion, where the Γ-action on RS[Y ]∧pd is given by Construction 4.6 (for

B = R+
S ). It follows from Lemma 4.7(2) that Hi(Γ, R+

S [Y ]
∧
pd) has no mC-torsion for any i ≥ 0. For

α = (α0, . . . , αd) 6= 0, without loss of generality, we may assume α0 = 0 and then the RΓ(Γ, P+
S ·Tα)

is computed by the Koszul complex

K(γ1 − 1, . . . , γd − 1;P+
S · Tα) ≃

⊗̂L

1≤i≤d
K(γi − 1;R+

S [Yi]
∧
pd · T αi

i ).

Using Lemma 4.7 (1) and (2) again, we may conclude the result from the same argument as above.
For the “moreover” part, by [BMS18, Cor. 6.5], we have to show that for any k ≥ 1, the

Hk(Γ, (M+ ⊗Ô+
XS

OĈ+
pd,S)(X∞)) = Hk(Γ,M∞ ⊗R̂+

∞,S
P+
∞,S)

is killed by ρK(ζp − 1). But this follows from Theorem 4.5(1) immediately. �

Proof of Theorem 5.4. We proceed as in the proof of of [MW24, Th. 4.4].
For Item (1): LetM+ be a Hitchin-small integral v-bundle onXS,v of rank r with the corresponding

covering {Xi,S → XS}i∈I . As argued in the proof of [MW24, Th. 4.4], the LηρK(ζp−1)Rν∗(M+ ⊗Ô+
XS

OĈ+
pd,S) is the sheafification of the presheaf

US ∈ XS,ét 7→ LηρK(ζp−1)RΓ(Uv,M+ ⊗Ô+
XS

OĈ+
pd,S)

while ν∗(M+ ⊗Ô+
XS

OĈ+
pd,S) is the sheafification of the presheaf

US ∈ XS,ét 7→ H0(Uv,M+ ⊗Ô+
XS

OĈ+
pd,S).
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To conclude the desired quasi-isomorphism

LηρK(ζp−1)Rν∗(M+ ⊗Ô+
XS

OĈ+
pd,S) ≃ ν∗(M+ ⊗Ô+

XS

OĈ+
pd,S)[0],

as this is local problem on XS,ét, we are reduced to showing that for any small semi-stable US =
Spf(R+

S ) ∈ XS,ét lying over some Xi,S, the followings are true:

(i) There is a quasi-isomorphism

LηρK(ζp−1)RΓ(Uv,M+ ⊗Ô+
XS

OĈ+
pd,S) ≃ H0(Uv,M+ ⊗Ô+

XS

OĈ+
pd,S)[0].

(ii) The H+ := H0(Uv,M+ ⊗Ô+
XS

OĈ+
pd,S) is a finite free R+

S -module of rank r such that the

induced Higgs field θ from ν∗(ΘM+) on H+ makes (H+, θ) a Hitchin-small twisted Higgs
module over R+

S .

As M+(U∞,S) is a Hitchin-small Γ-representation over R̂+
∞,S of rank r, the Item (i) above follows

from Corollary 5.7 while the Item (ii) follows from Theorem 4.5.
For Item (2): Let (H+, θ) be a twisted Hitchin-small Higgs bundle on XS,ét of rank r. Then

there exists an étale covering {Xi,S = Spf(R+
i,S) → XS}i∈I by small semi-stable Xi’s such that the

evaluation (H+
i , θi) of (H+, θ) at Xi,S is a twisted Hitchin-small Higgs module over R+

i,S of rank

r. Put M+ := M+(H+, θ) for short. By Theorem 4.5, we have M(Xi,S,∞) is a Hitchin-small Γ-

representation of rank r over R̂+
i,∞,S, yielding thatM+ is a Hitchin-small integral v-bundle of rank

r as desired.
For Item (3): Using Proposition 3.11, similar to the proof of Theorem 4.5(3), for any M+ ∈

LSH-sm(XS, Ô+
XS

) and any (H+, θ) ∈ HIGt-H-sm(XS,OXS
), one can construct canonical morphisms

ιM+ :M+(H+(M+), θ)→M+

and

ι(H+,θ) : (H+(M+(H+, θ)), θ)→ (H+, θ)

of integral v-bundles and Higgs bundles respectively. To conclude, it suffices to show these two maps
are both isomorphism. But this is again a local problem, and thus we are reduced to Theorem 4.5(3)
and the proof therein. By standard linear algebra, the equivalence preserves tensor products and
dualities. This completes the proof. �

5.1.2. Cohomological comparison. LetM+ be a Hitchin-small integral v-bundle with the associated
twisted Hitchin-small Higgs bundle (H+, θ) in the sense of Theorem 5.4. It remains to compare the
complexes

DR(H+, θ) and Rν∗(M+).

By Poincaré’s Lemma 3.9, we have a quasi-isomorphism

Rν∗(M+)
≃−→ Rν∗(DR(M+ ⊗Ô+

XS

OĈ+
pd,S,ΘM+)).

By Theorem 5.4(1), we have

DR(H+, θ) = ν∗(DR(M+ ⊗Ô+
XS

OĈ+
pd,S,ΘM+)).

Thus, we get a canonical morphism

(5.1) DR(H+, θ)→ Rν∗(M+).

Corollary 5.8. Recall X has the relative dimension d over OC. The canonical map (5.1) has cofiber
killed by (ρK(ζp − 1))D where D = max(d+ 1, 2(d− 1)).

Proof. This follows from the same argument in the proof of [MW24, Cor. 4.5]. �

On the other hand, as ν∗(M+) ≃ H0(DR(H+, θ)) ⊂ H+ is p-torsionfree, by [BMS18, Lem. 6.10],
there exists a canonical map

(5.2) LηρK(ζp−1)Rν∗M+ → Rν∗M+.

Similar to [MW24, Th. 5.4], we have the following cohomological comparison theorem.
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Theorem 5.9. The natural morphism

τ≤1DR(H+, θ)→ DR(H+, θ)
(5.1)−−→ Rν∗(M+)

uniquely factors over the composite

τ≤1LηρK(ζp−1)Rν∗M+ → LηρK(ζp−1)Rν∗M+ (5.2)−−→ Rν∗M+

and induces a quasi-isomorphism

τ≤1DR(H+, θ)
≃−→ τ≤1LηρK(ζp−1)Rν∗M+.

Proof. To show the map τ≤1DR(H+, θ)→ Rν∗(M+) uniquely factors through τ≤1LηρK(ζp−1)Rν∗M+,
by [BMS18, Lem. 8.16], we have to show the induced map

H1(DR(H+, θ))→ R1ν∗(M+)

factors through ρK(ζp − 1)R1ν∗(M+). Since the problem is local on XS,ét, we may assume XS =
Spf(R+

S ) is small semi-stable and then apply Proposition 4.10. It remains to show this map

τ≤1DR(H+, θ)→ τ≤1LηρK(ζp−1)Rν∗M+

is a quasi-isomorphism. But this is again a local problem on XS,ét and thus we can conclude by using
Proposition 4.10 again. �

By lettingM+ = Ô+
XS

in Theorem 5.9, we obtain a quasi-isomorphism

(5.3) γ1 : OXS
⊕ Ω1,log

XS
{−1}[−1] = τ≤1DR(OXS

, 0)
≃−→ τ≤1LηρK(ζp−1)Rν∗Ô+

XS
.

Using this, we have the following analogue of Deligne–Illusie decomposition [DI87, Th. 2.1] in mixed
characteristic case for semi-stable formal schemes.

Theorem 5.10. The quasi-isomorphism γ1 above extends to a quasi-isomorphism

γ :

p−1⊕

i=0

Ωi,log
XS
{−i} = τ≤p−1DR(OXS

, 0)
≃−→ τ≤1LηρK(ζp−1)Rν∗Ô+

XS
.

Proof. This follows from a standard trick of Deligne–Illusie. See for example [Min21, Th. 4.1]. �

Remark 5.11. Recall to obtain Theorem 5.10, we need XS admits a lifting X̃S over A2,K(S) as

a log-scheme (as this is used to construct the period sheaf (OĈ+
pd,S,Θ)). It seems that such a

decomposition γ in Theorem 5.10 never exists if we only assume XS lifts to A2,K(S) as a scheme
without lifting the log-structure at the same time. The phenomenon also appears in [SS20]. In
loc.cit., for a semi-stable formal scheme X0 over W(κ) with the canonical log-structure MX0 and
the special fiber X over κ with the induced log-structure MX . Let F : X → X (1) be the relative
Frobenius map associated to X . Then there exists a quasi-isomorphism

⊕p−1
i=0Ω

i,log

X (1) [−i]→ τ≤p−1F∗(DR(OX , d))

if and only if (X ,MX ) admits a lifting over S := W(κ)[u] with the log-structure associated to

N
17→u−−→ S, which lifts the usual log-structure on W(κ) induced by (N

17→p−−→W(κ)) via the surjection

S
u 7→p−−→ W(κ) (cf. [SS20, Th. 2.9]). Recall that the map G

u 7→[̟]−−−−→ A2,K lifts the natural morphism
W(κ) →֒ OC which is compatible with log-structures as well. This also suggests that the the
canonical log-structure on A2,K(S) should be the only reasonable one to obtain Theorem 5.10.

In general, we make the following conjecture.

Conjecture 5.12. Let XS be a liftable semi-stable formal scheme over A+ with a fixed lifting X̃S over
A2,K(S). For any Hitchin-small integral v-bundle M on XS,v with the associated twisted Hitchin-
small Higgs bundle (H+, θ) in the sense of Theorem 5.4, if we denote by r the nilpotency length of
(ζp − 1)θ modulo p, then the canonical morphism

DR(H+, θ)→ Rν∗M+

induces a quasi-isomorphism

τ≤p−rDR(H+, θ) ≃ τ≤p−rLηρK(ζp−1)Rν∗M+.
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We remark that Theorem 5.10 tells us Conjecture 5.12 holds true when r = 1. Another special
case of Conjecture 5.12 we are able to prove is the following result:

Theorem 5.13. Let XS be a liftable semi-stable curve over A+ with a fixed lifting X̃S over A2,K(S).
For any Hitchin-small integral v-bundleM on XS,v with the associated twisted Hitchin-small Higgs
bundle (H+, θ) in the sense of Theorem 5.4, the canonical morphism (5.1) induces a quasi-isomorphism

DR(H+, θ) ≃ LηρK(ζp−1)Rν∗M+.

Proof. When XS is a curve, both DR(H+, θ) and LηρK(ζp−1)Rν∗M+ are concentrated in degree [0, 1].
So the result follows from Theorem 5.9 immediately. �

5.2. The stacky Simpson correspondence. This part is devoted to establishing an equivalence
between the stacks of Hitchin-small v-bundles on XS,v and Hitchin-small rational Higgs bundles
on XS,ét, generalizing the previous work of Anschütz–Heuer–Le Bras [AHLB23b, Th. 1.1] to the
semi-stable reduction case.

We first make the following definitions.

Definition 5.14. By a Hitchin-small v-bundle of rank r on XS,v, we mean a sheaf of locally finite

free ÔXS
-modulesM on XS,v such that there exists an étale covering {Xi,S → XS}i∈I by small affine

Xi,S = Spf(R+
i,S) such that for any i ∈ I, theM(Xi,∞,S) is a Hitchin-small Γ-representation of rank r

over R̂i,∞,S in the sense of Definition 4.1. Denote by LSH-sm(XS, ÔXS
) the category of Hitchin-small

v-bundles on XS,v.

Definition 5.15. By an rational Higgs bundle of rank r on XS,ét, we mean a pair (H, θ) consisting
of a sheaf H of locally finite free OXS

[1
p
]-modules of rank r on XS,ét and a Higgs field θ on H. For

any rational Higgs bundle (H, θ), denote by DR(H, θ) the induced Higgs complex. A rational Higgs
bundle (H, θ) is called (twisted) Hitchin-small if there exists an étale covering {Xi,S → XS}i∈I by
small affine Xi,S = Spf(R+

i,S) such that for any i ∈ I, the evaluation (H, θ)(Xi,S) is a (twisted) Hitchin-

small Higgs modules over Ri,S in the sense of Definition 4.1(2). Denote by HIG(t-)H-sm(XS,OXS
[1
p
])

the category of (twisted) Hitchin-small rational Higgs bundles on XS,ét.

Lemma 5.16. The functor (H, θ) 7→ (H, (ζp − 1)θ) induces an equivalence of categories

HIGH-sm(XS,OXS
[
1

p
])

≃−→ HIGt-H-sm(XS,OXS
[
1

p
])

such that for any twisted Hitchin-small (H, θ) with the induced (H, θ′ = (ζp − 1)θ), there exists a
quasi-isomorphism

DR(H, θ) ≃ DR(H, θ′).
Proof. By unwinding definitions, the result follows from Lemma 5.3 immediately. �

We give a remark on rational Higgs bundles on XS,ét. Let i : XS,ét → XS,ét be the natural morphism
of sites. Clearly, for any locally finite free OX,S-module E of rank r on Xét,S , we have

Ri∗E = i∗E
which is a locally finite free OXS

[1
p
]-module of rank r and i∗OXS

= OfrakXS
[1
p
]. So the functors i∗

and i−1 induces an equivalence between the category of locally finite free OXS
-module on XS,ét and

the category of locally finite free OXS
-module on XS,ét, yielding an equivalence of categories

(5.4) HIG(XS,OXS
) ≃ HIG(XS,OXS

[
1

p
]).

Here, HIG(XS,OXS
) denotes the category of Higgs bundles on XS,ét. Denote by

HIG(t-)H-sm(XS,OXS
) ⊂ HIG(XS,OXS

)

the full sub-category corresponding to HIG(t-)H-sm(XS,OXS
[1
p
]) via the above equivalence (5.4); that

is, we have an equivalence of categories induced by i∗ and i−1:

(5.5) HIG(t-)H-sm(XS,OXS
) ≃ HIG(t-)H-sm(XS,OXS

[
1

p
]).

The following theorem is the analogue of Theorem 5.4 on the rational level.
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Theorem 5.17. Let (OĈpd,S,Θ) be the period sheaf with Higgs field associated to X̃S. Let ν : XS,v →
XS,ét be the natural morphism of sites.

(1) For anyM ∈ LSH-sm(XS, ÔXS
) of rank r, put

ΘM := id⊗Θ :M⊗OĈpd,S →M⊗OĈpd,S ⊗OXS
Ω1,log

XS
{−1}.

Then we have a quasi-isomorphism

Rν∗(M⊗OĈ+
pd,S) ≃ ν∗(M⊗OĈ+

pd,S)[0]

Moreover, the push-forward

(H(M), θ) := (ν∗(M⊗OĈpd,S), ν∗(ΘM))

defines a twisted Hitchin-small rational Higgs bundle of rank r on XS,ét.
(2) For any (H, θ) ∈ HIGt-H-sm(XS,OXS

[1
p
]) of rank r, put

ΘH = θ ⊗ id + id⊗Θ : H⊗OĈpd,S →H⊗OĈpd,S ⊗OXS
Ω1,log

XS
{−1}.

Then the
M(H, θ) := (H⊗OĈpd,S)

ΘH=0

defines a Hitchin-small integral v-bundle of rank r on XS,v.
(3) The functors in Items (1) and (2) defines an equivalence of categories

LSH-sm(XS, ÔXS
)

≃−→ HIGt-H-sm(XS,OXS
[
1

p
]).

which preserves ranks, tensor products and dualities. Moreover, for anyM∈ LSH-sm(XS, ÔXS
)

with associated (H, θ), there exists a quasi-isomorphism

Rν∗M≃ DR(H, θ).
Proof. For Item (1): LetM be a Hitchin-small v-bundle of rank r with the associated étale covering
{Xi,S → XS}i∈I by small semi-stable Xi’s as in Definition 5.14. Then by definition 5.1, the restriction
M|Xi,S

is of the formM|Xi,S
=M+

i [
1
p
] for some Hitchin-small integral v-bundle on Xi,S,v.

To see Rν∗(M⊗OĈpd,S) ≃ ν∗(M⊗OĈpd,S), it is enough to show that for any k ≥ 1, we have

Rkν∗(M⊗OĈpd,S) = 0.

As Rkν∗(M⊗OĈpd,S) is the sheafification of the presheaf

U ∈ Xét 7→ Hk(Uv, (M⊗OĈpd,S)|U ),

to see Rkν∗(M⊗OĈpd,S) = 0, we may work locally on Xét. So one can check this on each Xi. But
this follows from Theorem 5.4 (1) immediately.

Let (H+
i , θi) be the twisted Hitchin-small integral Higgs bundle on Xi,S,ét associated toM+

i in the
sense of Theorem 5.4. It is clearly that

(H(M), θ)|Xi,S
= (H+

i , θi)[
1

p
].

This implies (H(M), θ) is a twisted Hitchin-small rational Higgs bundle of rank r as desired.
For Item (2): It follows from a similar argument as above by using Theorem 5.4(2) directly.
For Item (3): One can conclude the functors in Items (1) and (2) are the quasi-inverses of each other

by the same argument for the proof of Theorem 5.4(3). So we get the desired equivalence of categories,
which preserves ranks by construction. By standard linear algebra, this equivalence preserves tensor
products and dualities. Finally, by Poincaré’s Lemma, we have the quasi-isomorphisms

Rν∗(M)
≃−→ Rν∗(DR(M⊗OĈpd,S,ΘM)).

On the other hand, by Item (1), we have a quasi-isomorphism

DR(H, θ) ≃−→ Rν∗(DR(M⊗OĈpd,S,ΘM)),

yielding the quasi-isomorphism
Rν∗(M) ≃ DR(H, θ)
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as desired. This completes the proof. �

Remark 5.18. Denote by π : XS,v → XS,ét the natural morphism of sites, and then we have ν = i◦π.
Via the equivalence (5.5), it is easy to see that Theorem 5.17 still holds true if one replaces ν and
HIGt-H-sm(XS,OXS

[1
p
]) by π and HIGt-H-sm(XS,OXS

), respectively.

Corollary 5.19. The following composite

LSH-sm(XS, ÔXS
)

Th. 5.17−−−−−→ HIGt-H-sm(XS,OXS
[
1

p
])

Lem. 5.16−−−−−→ HIGH-sm(XS,OXS
[
1

p
])

defines an equivalence of categories

ρ
X̃S

: LSH-sm(XS, ÔXS
)

≃−→ HIGH-sm(XS,OXS
[
1

p
]) ≃ HIGH-sm(XS,OXS

)

which is functorial in S such that for any Hitchin-small v-bundleM on XS,v with associated Hitchin-
small (rational) Higgs bundle (H, θ) on XS,ét (resp. XS,ét), there exists a quasi-isomorphism

Rν∗M≃ DR(H, θ).
Proof. This follows from Lemma 5.16 and Theorem 5.17 directly. �

For any r, we denote by (R1π∗GLr)(XS) and
(
(Matr⊗Ω1

XS
(−1))//GLr

)
(XS) the sheafifications of

the presheaves

US ∈ XS,ét 7→ {the set of isomorphic classes of v-bundles on US,v of rank r}
and

US ∈ XS,ét 7→ {the set of isomorphic classes of Higgsbundles on US,ét of rank r},
respectively. By [Heu22, Th. 1.2], there exists an isomorphism

(5.6) HTlog : (R1π∗GLr)(XS)
∼=−→
(
(Matr ⊗ Ω1

XS
(−1))//GLr

)
(XS).

See [Heu22, §5] for its construction and [Heu22, §4] for the construction of its inverse HTlog−1

(denoted by Ψ in loc.cit.).

Lemma 5.20. The equivalence ρ
X̃S

: LSH-sm(XS, ÔXS
)

≃−→ HIGH-sm(XS,OXS
) is compatible with the

isomorphism HTlog above in the sense that the following diagram commutes

(5.7)

LSH-sm

r (XS, ÔXS
) HIGH-sm

r (XS,OXS
)

(R1π∗GLr)(XS)
(
(Matr ⊗ Ω1

XS
(−1))//GLr

)
(XS)

ρ
X̃S

HTlog

where LSH-sm

r (XS, ÔXS
) and HIGH-sm

r (XS,OXS
) denotes the corresponding full sub-categories of rank-

r objects.

Proof. We follow the strategy used in the proof of [AHLB23b, Cor. 3.12]. For anyM∈ LSH-sm
r (XS, ÔXS

)
with associated (H, θ) ∈ HIGH-sm

r (XS,OXS
), we have to show that the (local) isomorphic class c(M)

(resp. c(H, θ)) associated to M (resp. (H, θ)) satisfies the condition HTlog(c(M)) = c(H, θ).
Clearly one can check this locally onXS,ét. So we may assume XS = Spf(R+

S ) is small semi-stable such

that M∞ :=M(X∞,S) is a Hitchin-small Γ-representation of rank r over R̂∞,S with the associated

Hicthin-small Higgs module (H, θ) over RS. LetM ∈ RepH-sm
Γ (RS) such thatM∞

∼= M⊗RS
R̂∞,S. Let

θi ∈ Matr(R
+
S ) be the topologically nilpotent matrix such that γi acts on M via exp(−(ζp− 1)ρKθi)

with respect to a fixed RS-basis e1, . . . , er of M . As argued in the paragraph around (4.12), we have

(5.8) (H, θ) ∼= (M,

d∑

i=1

(ζp − 1)θi ⊗
dlogTi
ξK

).
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Let Spa(R1,S, R
+
1,S) =: X1,S → XS be the finite étale Galois covering associated to the Galois group

Γ/Γp, where Γp = ⊕di=1Zp · γpi ⊂ Γ via the ismorphism (2.10). As the problem is local on XS,ét as
well, we are reduced to showing that

HTlog(c(M|X1,S
)) = c((H, θ)|X1,S

).

By (5.8), the Higgs module over R1,S induced by (H, θ)|X1,S
is

(5.9) (H ⊗RS
R1,S, θ ⊗ id) ∼= (M,

d∑

i=1

p(ζp − 1)θi ⊗
dlogT

1
p

i

ξK
) = (M,

d∑

i=1

p(ζp − 1)ρKθi ⊗
dlogT

1
p

i

t
)

while the Γp-representation over R̂∞,S fromM|X1,S
is the restriction of M∞ to Γp. In (5.9), we use

the identification OC{−1} = ρKOC(−1) (cf. §1.4). In particular, the γpi acts on M∞ (with respect
to the choose basis e1, . . . , er) via the matrix

(5.10) γpi = exp(−p(ζp − 1)ρKθi), ∀ 1 ≤ i ≤ d.

Comparing (5.9) with (5.10), it then follows from the construction of HTlog (cf. [Heu22, Prop. 5.3
and its proof]) that HTlog(c(M|X1,S

)) = c((H, θ)|X1,S
). This completes the proof. �

Now, we are going to give a geometric interpretion of Hitchin-smallness. For any r ≥ 0, we
consider two functors on Perfd:

(5.11) LSr(X, ÔX) : S ∈ Perfd 7→ {the groupoid of v-bundles of rank r on XS,v}
and

(5.12) HIGr(X,OX) : S ∈ Perfd 7→ {the groupoid of Higgs bundles of rank r on XS,ét}.
By [Heu22, Th. 1.4], these two functors are both small v-stacks (on Perfd). Consider the v-sheaf

(5.13) Ar : S ∈ Perfd 7→ Ar(S) := ⊕ri=1H
0(XS, Sym

i(Ω1
XS
{−1})),

which is referred as Hitchin-base in loc.cit.. Then there are morphisms of v-sheaves, called Hitchin
fibrations,

(5.14) h : HIGr(X,OX)→ Ar and h̃ : LSr(X, ÔX)→ Ar
where h is defined by sending each Higgs bundle (H, θ) to the characteristic polynomial of θ and h̃
is defined by the composite of h ◦ HTlog (cf. [Heu22, §1.3]). In our setting, one can define an open
subset AH-sm

r ⊂ Ar such that

(5.15) AH-sm
r (S) = ⊕ri=1p

< i
p−1H0(XS, Sym

i(Ω1,log
XS
{−1})),

where p<
i

p−1 denotes the ideal (ζp−1)imC ⊂ OC . For any v-stack Z over Ar, define its Hitchin-small
locus by

(5.16) ZH-sm := Z ×Ar
AH-sm
r .

In particular, we have LSr(X, ÔX)H-sm and HIGr(X,OX)H-sm.

Proposition 5.21. Keep notations as above. Then we have

(1) HIGH-sm(XS,OXS
) = ∪r≥0HIGr(X,OX)H-sm(S), and

(2) LSH-sm(XS, ÔXS
) = ∪r≥0LSr(X, ÔX)H-sm(S).

More precisely, a Higgs bundle (H, θ) (resp. v-bundleM) of rank r on XS,ét (resp. XS,v) is Hitchin-

small if and only if as an S-point of HIGr(X,OX) (resp. LS(X, ÔX)),
(H, θ) ∈ HIGr(X,OX)H-sm(S) (resp. M ∈ LS(X, ÔX)H-sm(S)).

Proof. It suffcies to prove Item (1) while Item (2) follows by Lemma 5.20. For any Hitchin-small
Higgs bundle (H, θ) ∈ HIGH-sm(XS,OXS

) of rank r, we regard it as a Hitchin-small rational Higgs
bundle on XS,ét. It follows from Definition 5.15 that as S-point of HIGr(X,OX),

(H, θ) ∈ HIGr(X,OX)H-sm(S).
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It remains to show for any Higgs bundle (H, θ) ∈ HIGr(X,OX)H-sm(S) (again viewed as a rational
Higgs bundle in HIG(XS,OXS

[1
p
])), étale locally on XS,ét, it is of the form (H+, θ)[1

p
] for some Hitchin-

small integral Higgs bundle (H+, θ). To do so, we may assume XS = Spf(R+
S ) is small semi-stable

such that (H, θ) is induced by a Higgs module (H, θ =
∑d

i=1 θi ⊗ ei
ξK
) of rank r over RS (such that

θi ∈ Matr(RS) with respect to a fixed RS-basis of H). As (H, θ) ∈ HIGr(X,OX)H-sm(S), for any 1 ≤
i ≤ d, the θi has eigenvalues in (ζp− 1)mCR

+
S . As θi’s commute with each others, by standard linear

algebra, there exists a matrix X ∈ GLr(Frac(RS)) such that θ′i := XθiX
−1 ∈ (ζp − 1)mCMatr(R

+
S )

for all i, where Frac(RS) denotes the algebraic closure of the fractional field of RS. Thus X induces
an isomorphism

(H, θ) ∼= (H ′, θ′ =

d∑

i=1

θ′i ⊗
ei
ξK

)

for some Hitchin-small Higgs module (H ′, θ′) over RS. �

Now, we are able to give the following equivalence of stacks, generalizing the previous work of
[AHLB23b, Th. 1.1].

Theorem 5.22. Let X be liftable a semi-stable formal scheme over OC with a fixed lifting X̃ over
A2,K. Then for any r ≥ 0, there exists an equivalence of stacks

ρ
X̃
: LSr(X, ÔX)H-sm ≃−→ HIGr(X,OX)H-sm.

Proof. For our purpose, by Proposition 5.21, it is enough to assign to each S ∈ Perfd a rank-
preserving equivalence of categories

ρ
X̃S

: LSH-sm(XS, ÔXS
) ≃ HIGH-sm(XS,OXS

)

which is functorial in S. But this follows from Corollary 5.19 directly. �
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