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Abstract. We introduce a class of polynomials that we call fused Specht poly-
nomials and use them to characterize irreducible representations of the fused
Hecke algebra with parameter q = −1 in the space of polynomials. We apply
the fused Specht polynomials to construct a basis for a space of holomorphic
(chiral) conformal blocks with central charge c = 1 which are degenerate at
each point. In conformal field theory, this corresponds to all primary fields
having conformal weight in the Kac table. The associated correlation func-
tions are expected to give rise to conformally invariant boundary conditions
for the Gaussian free field, which has also been verified in special cases.
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1. Introduction

This article is essentially divided into two parts, each of which is of independent interest.
The first part is combinatorial and only assumes basic background in representation the-
ory. It concerns irreducible representations of the fused (or valenced) Hecke algebra, whose
building blocks are fused generalizations of the classical Specht polynomials. The second
part concerns degenerate conformal blocks in a c = 1 conformal field theory (CFT), which
we explicitly build from the fused Specht polynomials. (For readers interested in CFT or
random geometry, the algebraic results from the first part can be taken as a black box.)

We begin with motivation for our results from topology/representation theory point of
view on the one hand, and from CFT/random geometry point of view on the other hand.

The representation theory of the symmetric group Sn is a very classical subject (ini-
tiated by Frobenius, Schur, Young, and Specht), with ubiquitous applications to various
areas in mathematics and physics. It was observed in the 1930s that the combinatorics of
Young tableaux plays a prominent role in the classification of irreducible representations of
Sn [You30, FH04]. A particular class of those, yielding a complete set of irreducible repre-
sentations, is termed Specht modules and spanned by Specht polynomials [Spe35, Pee75].

One of the basic questions in representation theory is the decomposition of a given
representation into irreducible components. A structurally beautiful result (termed Schur-
Weyl duality) relates the representation theory of the symmetric group to that of the
special linear group SL(2,C) and its Lie algebra sl(2,C) [Sch27, Wey39, FH04]. It concerns
a tensor product of defining representationsC2 of sl(2,C), and implies in particular that the
centralizer algebra of sl(2,C) on (C2)⊗n equals a quotient of the symmetric group algebra
C[Sn]. In the case of tensor products of higher-dimensional representations, one encounters
fused (or valenced) versions of the symmetric group algebra C[Sn]. More precisely, the
centralizer algebra of sl(2,C) on its tensor product representation Cs1+1 ⊗ · · · ⊗ Csd+1,
where ς = (s1, . . . , sd) encode the valences of the representation, is isomorphic to a specific
quotient of the fused Hecke algebra (viz. the algebra of “fused permutations”) [FP20, Cd23].
This quotient is also known as the valenced Temperley-Lieb algebra [TL71, FP18b, FP20].

In topology, the Temperley-Lieb algebra can be used to construct the Jones polynomial
of a link [Jon85], and its valenced version the “colored” Jones polynomial [Kas95a, Kas97,
MM01]. Hecke algebras can be used to construct further generalizations, such as the
HOMFLY-PT polynomial [FYH+85, PT87]. In applications to mathematical physics, one
can build solutions of the Yang-Baxter equation from the Hecke algebra, which is intimately
related to quantum groups (or quasitriangular Hopf algebras). We will not need to discuss
the Yang-Baxter equation in the present work. Let us briefly mention, however, that
“quantum” variants of the Schur-Weyl duality relate representations of quantum groups
Uq(sl(2,C)) to representations of (quotients of) the Hecke algebraHn(q), where q ∈ C\{0} is
a deformation parameter [Jim86, DJ89, Mar92] and n ∈ Z>0. In the present article, we shall
be concerned with the case of q = −1 (analogous to the classical case of q = 1)1. We will
build irreducible representations of the fused Hecke algebra Hς := Hς(−1) with q = −1, by
introducing a class of polynomials that we call fused Specht polynomials (Theorem 2.14).

1The Hecke algebra Hn(±1) is isomorphic to the group algebra C[Sn] of the symmetric group, and
U±1(sl(2,C)) is understood as just the classical universal enveloping algebra U(sl(2,C)). The quantum groups
come up in the case where the deformation parameter is q ∈ C \ {0,±1}. Nevertheless, because (motivated by
CFT) we will speak of “fusion” in the present work, which also has a direct analogue in the q-deformed case,
we shall adopt the terminology of “(fused) Hecke algebra” (or “(valenced) Hecke algebra”) and the “(valenced)
Temperley-Lieb algebra” when we discuss the representation theory of the case of q = −1 as well.
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Conformal field theory has become a rich and important field of study in the mathematical
physics community in the recent decades, both because of its relation with critical lattice
models in statistical physics and random geometry (see [DFMS97, Smi06, Pel19, GKR23]
and references therein), and for its intricate connections to algebraic geometry and super-
symmetric gauge theories (see [AGT10, NS10, Tes11] and references therein). In certain
CFTs, combinatorial methods and special functions play an important role (cf. [AFLT11,
BF14, ILT15]), as will also be the case in the present work. Indeed, we shall find new
expressions for conformal blocks in a CFT with central charge c = 1 in terms of special
functions, building on the aforementioned (fused) Specht polynomials (cf. Theorem 3.24).

Conformal blocks provide fundamental building blocks of correlation functions of a CFT. In
two dimensions, the conformal symmetry imposes infinitely many constraints to the system
(encoded into representations of the Virasoro algebra) [BPZ84b, DFMS97] and thereby the
structure of the correlation functions is believed to be completely determined by the two-
and three-point functions together with the fusion rules (or “spectrum”), which describe the
asymptotics of the correlation functions, and with the central charge c, a parameter encoding
the “conformal anomaly.” In this approach, often termed “conformal bootstrap,” or BPZ’s
algebraic approach, it is in principle sufficient to understand the correlation functions of the
primary fields and the underlying Virasoro algebra representation — the former correspond
to highest-weight vectors in Virasoro highest-weight modules, and the latter then yields
the algebraic structure of the rest of the theory. Moreover, in applications one in fact most
frequently encounters precisely the correlation functions of primary fields. In this article,
we shall focus on correlation functions of primary fields in a certain c = 1 CFT, comprising
so-called “degenerate fields,” relevant to random geometry applications.

Upon expanding the correlation functions in terms of a Frobenius type expansion (oper-
ator product expansion (OPE) determined by the fusion rules), choices of different interme-
diate Virasoro modules yield different correlation functions. Particular choices are expected
to give distinguished bases of correlation functions (thus singled out by their OPEs), and
all correlation functions then to be expanded in such bases. Certain distinguished bases
of correlation functions have been related to geometric observables in scaling limits of
critical lattice models: solving crossing probabilities (cf. [Car92, Smi01, FSKZ17, PW23]), or
describing boundary condition changing operators (cf. [Car84, FSKZ17, PW19, FPW24]), also
related to Schramm-Loewner evolution curves, SLE(κ) (cf. [BBK05, Dub06, KP16, Pel20]. In
that context, the OPE structure also admits a probabilistic meaning in the corresponding
model, and is crucial in deriving rigorous scaling limit results (see [Pel19] for a survey).

The correlation functions of primary fields are expected to be conformally covariant func-
tions, and their behavior under conformal transformations is entirely characterized by their
conformal weights. Interestingly enough, a special class of primary fields called degenerate
fields often appear in applications to boundary effects in statistical physics models (as in the
aforementioned references). Their correlation functions should furthermore satisfy certain
linear homogeneous partial differential equations, BPZ PDEs, which emerge from the fact
that Virasoro Verma modules corresponding to degenerate fields contain singular vectors,
i.e., vectors which generate a nontrivial submodule [BPZ84a]. Feı̆gin & Fuchs classified all
such modules [FF84, IK11], yielding a two-parameter family of relevant conformal weights.
It is conventional to parameterize them as hr,t(θ) in terms of r, t ∈ Z>0, and θ ∈ C \ {0}:

hr,t(θ) :=
(r2 − 1)

4
θ +

(t2 − 1)

4
θ−1 +

(1− rt)

2
and c(θ) = 13− 6(θ + θ−1)

(this is also called the “Kac table” [Kac80, Sch08]).
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For SLE(κ) applications, one takes θ = κ/4, in which case c = (3κ−8)(6−κ)
2κ and h1,2 = 6−κ

2κ ,
for example. Note that c = 1 if and only if κ = 4, and in this case, we have

hr,t =
(t− r)2

4
= ht,r = h1,|t−r|+1, r, t ∈ Z>0, (1.1)

so it then suffices to consider the collection (indexed by s = t− 1 for convenience)

{h1,s+1 | s ∈ Z≥0} =
{
s2

4 | s ∈ Z≥0

}
=

{
0, 14 , 1,

9
4 , 4,

25
4 , 9,

49
4 , 16,

81
4 , . . .

}
. (1.2)

In Sections 3-4, we construct a basis for a space of conformal blocks in a CFT with central
charge c = 1 and conformal weights in the Kac table (1.2). We prove that the associated
correlation functions are linearly independent (Proposition 3.17) and span a solution space
of a special class of BPZ PDEs, also known as “Benoît & Saint-Aubin equations” [BSA88]
(Theorem 3.24). Such conformal blocks are expected to give rise to a family of conformally
invariant boundary conditions for the Gaussian free field (GFF)2, which can also be verified
in special cases [PW19, LW21]. We also plan to return to this in future work.

Interestingly (and surprisingly to us), the conformal block basis which we introduce in
the present work (and which plays an important role in applications to statistical physics
and random geometry) does not correspond to the so-called “comb basis,” which is often
used especially in the physics literature [DFMS97, KKP19]. (We provide a counterexample
in Remark 3.5 via asymptotics of a certain basis element.) The comb basis should arise
instead as a limit c ↗ 1 of the conformal block basis defined in [KKP19] for irrational
central charges, and a valenced/fused generalization thereof (analogous to but different as
in [Pel20]). Alternatively, the comb basis can be constructed from our basis.

In [KLPR24], with A. Karrila we consider analogous functions for a CFT with cen-
tral charge c = −2, describing the scaling limit of boundary-touching branches in a uni-
form spanning tree model. In particular, the explicit determinantal functions discussed
in [KLPR24, Theorem B.1] are the c = −2 (and κ = 2) analogues of the conformal block
basis functions considered in the present work (having c = 1 and κ = 4). A special case of
these are the so-called “Fomin determinants” (see [Fom01] and [KKP20, Sect. 3.4]) which
come up as partition functions for non-intersecting random walks (loop-erased walks).

Short description of our results. Throughout, we fix valences ς = (s1, . . . , sd), where
si ∈ Z>0 for all i ∈ {1, . . . , d}, and such that s1 + · · · + sd = n. (These are called “integer
compositions” of n in combinatorics literature.) The symmetric group Sn acts naturally on
{1, 2, . . . , n} by permutation, and roughly, the composition ς represents tuples of indices
that should be stable under this action, yielding variants of the symmetric group.

LetC[Sn]be the symmetric group algebra. The“colored symmetric group”Ss1×· · ·×Ssd

is a subgroup of Sn giving rise to the ς-antisymmetrizer idempotent pς defined in (2.5),
obtained by antisymmetrizing groups of consecutive letters according to the valences ς .
By the idempotent property p2ς = pς , the following conjugated set is an associative algebra
with unit pς , termed the fused Hecke algebra [Cd23] (with deformation parameter q = −1):

Hς := pςC[Sn]pς = {pς apς | a ∈ C[Sn]}. (1.3)

2The GFF also describes the scaling limit of the height function of the double-dimer model [Ken01], and
certain correlation functions in the c = 1 CFT considered in the present article give formulas for connection
probabilities in this model [KW11, PW19]. See also the recent [LR24, LL24] for the case of triple-dimers.
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In Section 2, we investigate irreducible representations of Hς in the space of polynomials.
In fact, Hς is a semisimple algebra and its simple modules3 can be expressed in terms of
Young diagrams satisfying certain properties (see Theorem 2.11 and [Cd23, Thm. 6.5]).

Recall that irreducible representations ofSn in the space of polynomials can be described
in terms of Specht polynomials [Spe35, Pee75]. They are labeled by standard Young tableaux
and are essentially equal to a product of Vandermonde polynomials. One of our main
contributions of Section 2 is to introduce a class of polynomials labeled by semi-standard
Young tableaux that we call fused Specht polynomials, which we define as certain limits of
linear combinations of Specht polynomials (up to a normalization factor) motivated by
fusion in CFT for applications in both CFT and in statistical physics — see Definition 2.12.
We also present a new explicit formula for the fused Specht polynomials in Proposition 2.22.

The main result of Section 2 is Theorem 2.14, which characterizes the irreducible repre-
sentations of Hς in terms of the fused Specht polynomials. Our proof of Theorem 2.14 is
valid only for Young diagrams with two columns (sufficient for our applications) — how-
ever, we believe that the claim extends to Young diagrams of any shape (Conjecture 2.15).

Sections 3 and 4 constitute the second part of this article. The central object of interest is
a certain space Sς of functions. Any element in Sς satisfies, in particular, a system of d BPZ
type (in this case, Benoît & Saint-Aubin, BSA) partial differential equations with c = 1, and
a certain covariance property under Möbius transformations. In other words, functions in
the space Sς can be regarded as correlation functions in a c = 1 CFT with degenerate fields
of weights in the Kac table (1.1, 1.2) (h1,s1+1, . . . , h1,sd+1), labeled by the valences ς .

The simplest nontrivial case occurs when ς = (1, . . . , 1). In this case, d = 2N is even and
all the PDEs are of second order, and a certain important basis for S(1,...,1) called conformal
block basis was constructed in [PW19]. We revisit this result in Proposition 3.2 by rewriting
the basis elements in terms of Specht polynomials associated with standard Young tableaux
with two columns. We show in Corollary 3.10 that S(1,...,1) is isomorphic to a standard
module (without defects) of the Temperley-Lieb algebra4 TL2N = TL2N (ν) = TL2N (2).

The main contribution of Section 3 is to generalize this to the case of arbitrary ς : we
construct a basis of Sς that we also call “conformal block basis.” We show that the basis
elements can be written in terms of fused Specht polynomials associated with semi-standard
Young tableaux with two columns (Proposition 3.17). We then show (Proposition 3.20) that
Sς is isomorphic to a standard module of the valenced Temperley-Lieb algebra [FP18b,
FP18a]. We also verify the Möbius covariance property of the conformal block basis
elements (Proposition 3.21), state the BPZ equations (Theorem 3.24) and outline its proof5.

In Section 3, we also show that special cases of our conformal block basis functions indeed
equal the ones used in applications to the Gaussian free field (GFF). The special case where
ς = (1, . . . , 1) is the content of [PW19, Sect. 5-6], where crossing probability formulas for the
GFF with alternating boundary data were proven, and the case of more general boundary
data was pointed out (and proven later in [LW21, Thm. 4.1]). The special case where
ς = (2, . . . , 2) was studied by Liu & Wu [LW21], who proved crossing probability formulas
for the GFF with generalized alternating boundary data. In particular, they introduced
three functions in [LW21, Eq. (5.15, 5.16, 5.17)]. We check in Remark 3.19 that these indeed
agree with the three elements of the conformal block basis of S(2,2,2,2).

3Recall that a simple module is a nonzero vector space V carrying an irreducible representation, i.e., such that
V does not have any nontrivial submodules (subspaces other than {0} and V carrying a subrepresentation).

4Here, the loop “fugacity” parameter ν := −q − q−1 ∈ C equals 2 for q = −1.
5However, the proof requires significantly more efforts and is the sole objective of Section 4.
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In Section 4, we turn to the BPZ equations. Systematic verification of these equations
does not seem amenable via a direct computation6. Therefore, we proceed by a recursive
approach bootstrapping from the already known case of 2nd order PDEs [PW19, Lem. 6.4]
via asymptotics and a combination of tools from algebra and complex geometry. We follow
Dubédat’s approach [Dub15b, Dub15a] (which unfortunately only applies with irrational
central charges), utilizing the underlying Virasoro algebra structure. The proof is rather
non-trivial, and we shall explain the strategy in more detail in the beginning of Section 4.
The key new input needed is representation-theoretic: we extend [Dub15a, Lem. 1] to the
case of c = 1, where the Virasoro structure is slightly more intricate (see Lemma 4.1).
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2. Fused Specht polynomials and the fused Hecke algebra with parameter q = −1

Throughout, we let n ∈ Z>0 be an integer and λ ⊢ n a partition of n, that is, λ =

(λ1, λ2, . . . , λl) such that λ1 ≥ λ2 ≥ · · · ≥ λl ≥ 0 and λ1 + λ2 + · · ·+ λl = n. The length of
the partition λ is denoted by |λ| = n. Let C[Sn] be the symmetric group algebra, generated
by the transpositions τi = (i, i+ 1) ∈ Sn for i ∈ {1, . . . , n− 1} =: J1, n− 1K with relations

τ2i = 1, for i ∈ J1, n− 1K,

τiτi+1τi = τi+1τiτi+1, for i ∈ J1, n− 2K,

τiτj = τjτi, for |j − i| > 1.

This section is devoted to investigating the irreducible representations of C[Sn] and its
special subalgebra, the fused Hecke algebra (1.3), in the space of polynomials. In the
key Theorem 2.14, we characterize the irreducible representations in terms of the fused
Specht polynomials, which we introduce as limiting expressions from the classical Specht
polynomials (Definition 2.12). One of the key ingredients to prove Theorem 2.14 is an
explicit combinatorial formula for the fused Specht polynomials, Proposition 2.22, which
is of independent interest. Theorem 2.14, in turn, shall be used in CFT applications later.

6An alternative approach could be provided by generalizing the elementary computation performed
in [KKP20, Sect. 5.2], but this seems very complicated in general.
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2.1. Specht polynomials and irreducible modules for the symmetric group. We begin by
fixing terminology. A Young diagram of shape λ is a finite collection of boxes arranged in l
left-justified rows with row lengths being, from top to bottom, λ1, . . . , λl. A numbering of
a Young diagram is obtained by placing the numbers 1, . . . , n in the n boxes of the Young
diagram. A standard Young tableau is a numbering which is strictly increasing across each
row and down each column. The sets of numberings and of standard Young tableaux of
shape λ will be denoted NBλ and SYTλ, respectively. Observe that SYTλ ⊂ NBλ.

The group Sn acts on NBλ by letter permutations; the action of σ ∈ Sn on a numbering
N ∈ NBλ is denoted σ.N . For N ∈ NBλ, let Rλ(N) (resp. Cλ(N)) be the subgroup of Sn

which preserves the set of entries of each of its rows (resp. columns). A tabloid {N} is an
equivalence class of numberings defined by {N ′} = {N} if and only if N ′ = σ.N for some
σ ∈ Rλ(N). The C-vector space spanned by tabloids of shape λ,

Mλ := spanC{{N} | N ∈ NBλ},

carries a naturalSn-action denoted byσ.{N} := {σ.N}. Simple modules ofSn (i.e., nontrivial
modules for which the representation, is irreducible) are subspaces ofMλ, and can be real-
ized in various ways. In what follows, we recall two different but equivalent (well known)
realizations — in terms of polytabloids (Section 2.1.1) and polynomials (Section 2.1.2).

2.1.1. Polytabloid basis. For each numbering N ∈ NBλ, the column antisymmetrizer

ϵN :=
∑

σ∈Cλ(N)

sgn(σ)σ

defines the associated polytabloid vN := ϵN .{N} ∈ Mλ. Note that {N} = {N ′} does not
necessarily imply that vN and vN ′ would be equal, since the actions of row and column
permutations (the subgroups Rλ(N) and Cλ(N)) do not commute in general.

Lemma 2.1. [Spe35] A complete set of pairwise non-isomorphic simple modules of the algebra
C[Sn] is given by {V λ | λ ⊢ n}, where V λ ⊂Mλ is the C-vector space spanned by the polytabloids,

V λ := spanC{vN | N ∈ NBλ} = spanC{vT | T ∈ SYTλ},

where the polytabloid basis {vT | T ∈ SYTλ} is a linearly independent collection.

Note that ρλ(σ)(vN ) := σ.vN = vσ.N , for σ ∈ Sn and N ∈ NBλ, which implies that
(V λ, ρλ) has the structure of a (left) Sn-module. Its linear extension then gives a represen-
tation ρλ : C[Sn]! End(V λ). The pair (V λ, ρλ) is called a Specht module [Spe35]. See [Ful12,
Chap. 7] for a detailed account on Specht modules and the proof of Lemma 2.1.

2.1.2. Polynomial basis. Throughout, let {xi | i ∈ Z>0}be a collection of formal variables. We
write xi1,...,ir := (xi1 , . . . , xir). The Vandermonde determinant is the antisymmetric function

∆(xi1,...,ir) :=
∏

1≤j<k≤r

(xij − xik) (2.1)

(with the convention that ∆(x) = ∆(xi1) ≡ 1 for r = 1).

Definition 2.2. The Specht polynomial associated with N ∈ NBλ is the polynomial

PN = PN (x1, . . . , xn) :=
∏
c

∆(xN.,c), (2.2)
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where c runs through the columns of N and N.,c is the ordered set of entries in the c-th
column of N listed from bottom to top. For instance, we have

P 1 2
3 4

= ∆(x3,1)∆(x4,2) = (x3 − x1)(x4 − x2)

P 1 5 4
6 3
2

= ∆(x2,6,1)∆(x3,5)∆(x4) = (x2 − x6)(x2 − x1)(x6 − x1)(x3 − x5).

The symmetric group Sn acts on the polynomial algebra C[x1, . . . , xn] by permutation
of the variables. In fact, Peel showed in [Pee75, Thm. 1.1] that the space

P λ := spanC{PN | N ∈ NBλ} = spanC{PT | T ∈ SYTλ} (2.3)

is a simple Sn-module with basis {PT | T ∈ SYTλ} consisting of Specht polynomials.

Lemma 2.3. The following map is an isomorphism of simple C[Sn]-modules:

ϕ : V λ ! P λ

vN 7! ϕ(vN ) := PN .

Proof summary. Consider first the homomorphism ϕ : Mλ ! C[x1, . . . , xn] of Sn-modules
defined by the natural extension of ϕ({N}) := mN in terms of the monomials

mN = mN (x1, . . . , xn) :=
n∏

i=1

x
rN (i)−1
i ,

where rN (i) denotes the row number of the entry “i” in N , counting row numbers from
top to bottom. For instance, we have

m 1 2
3 4

= x01x
0
2x

1
3x

1
4 = x3x4.

By [HLV20, Thm. 9], the Specht polynomial (2.2) equals the image of the polytabloid vN :

PN = ϕ(vN ) := ϵN .mN =
∑

σ∈Cλ(N)

sgn(σ)

n∏
i=1

x
rN (i)−1
σ(i) , N ∈ NBλ. (2.4)

For instance, we have
P 1 2

3 4

= (x3 − x1)(x4 − x2) = x3x4 − x1x4 − x3x2 + x1x2 = ϵ 1 2
3 4

m 1 2
3 4

.

Hence, the restriction of ϕ to V λ (cf. Lemma 2.1) yields the sought isomorphism. □

For any N ∈ NBλ, Equation (2.2) expresses the Specht polynomial PN as a factorized
polynomial, whereas Equation (2.4) expresses it as a linear combination of monomials.

2.2. Irreducible modules for the fused Hecke algebra. Fix an integer composition ς =

(s1, . . . , sd) ∈ Zd
>0 such that s1 + · · · + sd = n (valences). The “colored symmetric group”

Ss1 × · · · ×Ssd is a subgroup of Sn giving rise to the ς-antisymmetrizer idempotent

pς :=
1

s1! · · · sd!

d∏
k=1

∑
σ∈Ssk

sgn(σ)σ ∈ C[Ss1 × · · · ×Ssd ] ⊂ C[Sn], (2.5)

which is used to define the fused Hecke algebra [Cd23] (with deformation parameter q = −1),
Hς = Hς(−1) := pςC[Sn]pς = {pς a pς | a ∈ C[Sn]}.

Note that the algebra Hς has unit pς , so inparticular, it is not a unital subalgebra of C[Sn].
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2.2.1. Fused Hecke algebras for q = ±1. The fused Hecke algebra at q = 1, also-called the
algebra of fused permutations in [Cd23], is defined as Hς(1) := sςC[Sn]sς with unit sς , where

sς :=
1

s1! · · · sd!

d∏
k=1

∑
σ∈Ssk

σ ∈ C[Ss1 × · · · ×Ssd ] ⊂ C[Sn] (2.6)

is the ς-symmetrizer idempotent. The two fused Hecke algebras Hς = Hς(−1) for q = −1 and
Hς(1) for q = 1 are related in the following manner — in particular, they are isomorphic.
There exists an involutive automorphism ω of C[Sn] defined via

ω : σ 7! sgn(σ)σ, σ ∈ Sn, (2.7)

extending linearly to C[Sn]. Since ω(pς) = sς , we see that Hς
∼= sςC[Sn]sς = H(1), where

the isomorphism and its inverse are given by

pς a pς 7! sς ω(a) sς , sς a sς 7! pς ω(a) pς , a ∈ C[Sn].

Remark 2.4. Let λ̄ denote the transpose of the partition λ, whose columns are given by the
rows of λ, and let (V λ, ρλ) be a Specht module. Then, (V λ, ρλ ◦ ω) yields a C[Sn]-module
isomorphic to V λ̄, see [Ful12, Chap. 7]. In particular, this implies that, as vector spaces,

pς(V
λ) ∼= sς(V

λ̄). (2.8)

Let us emphasize that, under this isomorphism the basis of polytabloids inV λ is not mapped
to the basis of polytabloids in V λ̄, but instead, to the basis of so-called “dual polytabloids”.

Remark 2.5. The space of dual tabloids is defined as equivalence classes of numberings,
M̌λ := spanC{[N ] | N ∈ NBλ}, modulo [N ′] = sgn(σ)[N ] if and only if N ′ = sgn(σ)σ.N

for some σ ∈ Cλ(N). The symmetric group Sn acts on M̌λ by σ.[N ] = [σ.N ]. Alternatively
to Lemma 2.1, simple modules of Sn can be characterized as subspaces of M̌λ and are
constructed as follows. For each numbering N ∈ NBλ, the row symmetrizer

ϵ̌N :=
∑

σ∈Rλ(N)

σ

defines the associated dual polytabloid v̌N := ϵ̌N .[N ]. Then, we have

V λ ≃ spanC{v̌N | N ∈ NBλ}.

The following lemma is proven, e.g., in [Cd23, App. A.1].

Lemma 2.6. Let A be a finite-dimensional semisimple associative algebra and p ∈ A an idempotent
element (i.e., p2 = p). Then, the algebra pAp with unit p is finite-dimensional and semisimple.
Moreover, if {Rλ | λ ∈ I} is a complete set of pairwise non-isomorphic simple A-modules, then

{p(Rλ) | λ ∈ I, p(Rλ) ̸= {0}}

is a complete set of pairwise non-isomorphic simple pAp-modules.

Lemma 2.6 implies in particular that both the subspaces

pς(V
λ) := spanC{pς .vT | T ∈ SYTλ}, (2.9)

pς(P
λ) := spanC{pς .PT | T ∈ SYTλ} (2.10)

are either {0} or irreducible modules for the algebra Hς . The remainder of this subsection
is devoted to the study of the subspaces pς(V λ). (We will return to pς(P

λ) in Section 2.3).
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2.2.2. Row-strict Young tableaux. Fix valences ς = (s1, . . . , sd). For λ ⊢ n, a (Young) filling
assigns a positive integer to each box of λ. Let Fillλς be the set of fillings of Young diagrams
of shape λ ⊢ n where each number k appears sk times, for k ∈ J1, dK. We say that ς is the
content, or weight, of a filling in Fillλς . In particular, we have NBλ = Fillλ(1n) = Fillλ(1,...,1).

A row-strict Young tableau is a filling whose entries are weakly increasing down each
column and strictly increasing along each row. Similarly, a column-strict Young tableau
is a filling whose numbers are weakly increasing along each row and strictly increasing
down each column. Let RSYTλ

ς and CSYTλ
ς be the set of row-strict and column-strict Young

tableaux of shape λ and content ς , respectively. The column-strict ones are often called
semistandard. Observe that |RSYTλ

ς | = |CSYTλ̄
ς |, where λ̄ is the transpose of the partition λ.

There is a condition that λ and ς need to satisfy in order for |RSYTλ
ς | to be non-zero.

Namely, let ςord be the composition ς rearranged in decreasing order, i.e., a partition. We
say that two partitions λ and µ satisfy the dominance ordering relation λ ≥ µ if and only if

λ1 + · · ·+ λi ≥ µ1 + · · ·+ µi, for all i,

where we possibly extend the sequences by zeros.

Lemma 2.7. We have |CSYTλ
ς | ≠ 0 ⇐⇒ λ ≥ ςord and similarly, |RSYTλ

ς | ≠ 0 ⇐⇒ λ̄ ≥ ςord.

Proof. The first statement follows immediately from [Cd23, Lem. 6.3] and the second state-
ment follows immediately from the first one, since |RSYTλ

ς | = |CSYTλ̄
ς |. □

2.2.3. The subspaces pς(V λ). We now return to the characterization of pς(V λ).

Definition 2.8. Let F ∈ Fillλς be a filling of shape λ with content ς . We associate to F a
numbering F̃ ∈ NBλ injectively as follows. First, we relabel each entry “k” of F by

qk := 1 +

k−1∑
j=1

sj , k ∈ J1, dK.

This gives a new filling F ′. Second, we construct a word w by reading the entries of F ′

from top to bottom, column by column from left to right; we call this column reading. Third,
we construct a new numbering F̃ by relabeling the entry “l” of F ′ by l + u, where u is the
number of times the letter l has previously appeared in w. This defines F̃ ∈ NBλ.

For example, with λ = (3, 3, 1) and ς = (2, 1, 3, 1), for F ∈ Fillλς and T ∈ RSYTλ
ς , we have

F =
1 3 4

3 3 1

2

=⇒ F ′ =
1 4 7

4 4 1

3

=⇒ F̃ =
1 5 7

4 6 2

3

,

and

T =
1 2 3

1 3 4

3

=⇒ T ′ =
1 3 4

1 4 7

4

=⇒ T̃ =
1 3 6

2 5 7

4

.

Lemma 2.9. If T ∈ RSYTλ
ς , then T̃ ∈ SYTλ.

Proof. It is a simple combinatorial exercise to verify from Definition 2.8 that T being row-
strict implies that T̃ is strictly increasing across each row and down each column. □
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For T ∈ RSYTλ
ς , we define the following vector in V λ:

wT := pς .vT̃ ∈ V λ. (2.11)

It is, a priori, a linear combination containing polytabloids of tableaux which are not
necessarily standard. Nevertheless, wT can always be expressed as a linear combination of
the basis elements {vS | S ∈ SYTλ} (Lemma 2.1); see also Equation (2.12). For example,

w 1 3
1 4
2

= 1
2 v 1 4

2 5
3

− 1
2 v 2 4

1 5
3

= v 1 4
2 5
3

, w 1 3
2 4
3

= 1
2 v 1 4

2 5
3

− 1
2 v 1 3

2 5
4

.

Proposition 2.10. The set {wT | T ∈ RSYTλ
ς } defined by Equation (2.11) is a basis for pς(V λ).

Proof. Denote by ⪯ the total order on the set NBλ of tableaux given by the lexicographic
order on the words obtained by column reading. Note that for each σ ∈ Ss1 × · · · × Ssd

and T ∈ RSYTλ
ς , we have σ.T̃ ⪰ T̃ (for the tableau as in Lemma 2.9), with strict inequality

when σ is not the identity. Moreover, it follows from Definition 2.8 that either σ.T̃ ∈ SYTλ,
or it becomes standard by permuting numbers within its columns only, in which case there
exists τ ∈ (Ss1 × · · · ×Ssd) ∩ Cλ(σ.T̃ ) such that vσ.T̃ = sgn(τ)vτσ.T̃ , where τσ.T̃ ∈ SYTλ is
standard. Hence, we see from the definitions (2.11) and (2.5) that

wT = cT̃ vT̃ +
∑

S∈SYTλ

S≻T̃

cS vS , cT̃ , cS ∈ R, cT̃ ̸= 0, (2.12)

and in particular, wT ̸= 0 since {vS | S ∈ SYTλ} is linearly independent (Lemma 2.1).
Moreover, since each element in {wT | T ∈ RSYTλ

ς } is thus obtained by an upper-triangular
transformation from {vS | S ∈ SYTλ}, the former collection is also linearly independent.

Lastly, using the isomorphism (2.8) and the fact (e.g., from [Cd23, Thm. 6.5]) that
dim(sς(V

λ̄)) = |CSYTλ̄
ς |, we have dimpς(V

λ) = dim sς(V
λ̄) = |CSYTλ̄

ς | = |RSYTλ
ς |. □

The next result identifies the complete set of irreducible representations of Hς . It essen-
tially follows from the proof of [Cd23, Thm. 6.5]7.

Theorem 2.11. The collection {pς(V λ) | λ ∈ Iς}, where Iς := {λ ⊢ n | λ̄ ≥ ςord}, is a complete
set of pairwise non-isomorphic simple Hς -modules.

Proof. On the one hand, combining Lemmas 2.1 & 2.6, we see that a complete set of pairwise
non-isomorphic simple Hς -modules is given by M := {pς(V λ) | λ ⊢ n, pς(V

λ) ̸= {0}}.
On the other hand, we have pς(V

λ) = spanC{wT | T ∈ RSYTλ
ς } by Proposition 2.10, and

Lemma 2.7 shows that |RSYTλ
ς | ≠ 0 if and only if λ ∈ Iς . Hence, M = {pς(V λ) | λ ∈ Iς}. □

The sum-of-squares formula now yields the dimension of the semisimple8 algebra Hς :

dim(Hς) =
∑
λ⊢n

|RSYTλ
ς |2 =

∑
λ∈Iς

|RSYTλ
ς |2. (2.13)

7The result [Cd23, Thm. 6.5] states in particular that a complete set of pairwise non-isomorphic simple
modules of the algebra Hς(1) := sςC[Sn]sς of fused permutations is given by sς(V

λ) for λ ≥ ςord.
8The fused Hecke algebra Hς is semisimple by Lemma 2.6.
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2.3. Fused Specht polynomials. Next, we will show how the Hς -modules pς(P λ) in (2.10)
can be characterized in terms of fused Specht polynomials (Definition 2.12 & Theorem 2.14).
Observe that, by definition, any element of pς(P λ) is a totally antisymmetric polynomial
with respect to its variables xqk , . . . , xqk+1−1 for all k ∈ J1, dK. Hence, any element of pς(P λ)

is divisible by a product of Vandermonde determinants. This observation leads us to the
definition of the fused Specht polynomials. To facilitate notation, we denote

Dς :=
{
(x1, . . . , xn) ∈ Cn | xqk = xqk+1 = · · · = xqk+1−1 for all k ∈ J1, dK

}
⊂ Cn,

and for a function f : U ! C defined on a domain U ⊂ Cn which can be continuously
extended to a subset of Dς , we shall write

[f ]eval : Cd ! C (2.14)

for the function obtained from f(x1, . . . , xn) by the evaluations of variables (projection)
xqk = xqk+1 = · · · = xqk+1−1 for all k ∈ J1, dK. We abuse notation and denote the variables
of both f and [f ]eval by (x1, . . . , xn) ∈ Cn and (x1, . . . , xd) ∈ Cd, respectively. We define

ψ : pς .C[x1, . . . , xn]! C[x1, . . . , xd]

pς .f 7!

 pς .f∏d
k=1

∏
qk≤i<j<qk+1

(xj − xi)


eval

.
(2.15)

Definition 2.12. For each F ∈ Fillλς , we define the fused Specht polynomial FF : Cd ! C as

FF :=

 pς .PF̃∏d
k=1

∏
qk≤i<j<qk+1

(xj − xi)


eval

= ψ(pς .PF̃ ), (2.16)

where F̃ ∈ NBλ is obtained from F as in Definition 2.8.

The simplest class of fused Specht polynomials arises when the tableau has one column:

Proposition 2.13. Fix λ = (1n) and valences ς = (s1, . . . , sd) ∈ Zd
>0 such that s1+ · · ·+ sd = n.

Let T ∈ RSYT(1n)
ς . Then, we have

FT = FT (x1, . . . , xd) =
∏

1≤i<j≤d

(xj − xi)
sisj . (2.17)

Proof. By Definition 2.12 and using the fact that the Specht polynomial for a standard Young
tableau with one column is the Vandermonde determinant, we have

FT =

 ∏
1≤i<j≤n(xj − xi)∏d

k=1

∏
qk≤i<j<qk+1

(xj − xi)


eval

=

 ∏
1≤i<j≤d

sj−1∏
l=0

si−1∏
m=0

(xqj+l − xqi+m)


eval

.

The evaluation of this leads to (2.17). □

We now state the main theorem of this section, which gives an isomorphism of the two
Hς -modules pς(P

λ) := spanC{pς .PS | S ∈ SYTλ} in (2.10) and spanC{FF | F ∈ Fillλς }
defined via (2.16). The latter space carries the Hς -action induced by the linear map ψ.

Theorem 2.14. Let λ be a Young diagram with two columns. The map ψ in (2.15) defines a linear
isomorphism from pς(P

λ) to spanC{FF | F ∈ Fillλς } = spanC{FT | T ∈ RSYTλ
ς }.

Moreover, either collection {pς(P λ) | λ ∈ Iς} and {spanC{FT | T ∈ RSYTλ
ς } | λ ∈ Iς}, where

Iς := {λ ⊢ n | λ̄ ≥ ςord}, is a complete set of pairwise non-isomorphic simple Hς -modules.
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Proof. The key will be to prove that the set {FT | T ∈ RSYTλ
ς } is linearly independent, when

λ has exactly two columns (Proposition 2.30). Given this, we can finish the proof as follows.
On the one hand, because the map ψ is a surjection onto spanC{FF | F ∈ Fillλς } from

the linear span of pς .PF̃ , where F̃ ∈ NBλ is obtained from F ∈ Fillλς as in Definition 2.8,
and the space pς(P

λ) defined by (2.3, 2.10) is either {0} or an irreducible Hς -module (by
Lemma 2.6), we obtain from the sum-of-squares formula (SOS) (2.13) that∑

λ⊢n
(dim(spanC{FF | F ∈ Fillλς }))2 ≤

∑
λ⊢n

(dim(pς(P
λ)))2 = dim(Hς).

On the other hand, since the linearly independent collection {FT | T ∈ RSYTλ
ς } spans a

subset of spanC{FF | F ∈ Fillλς } of dimension |RSYTλ
ς |, the SOS (2.13) also gives

dim(Hς) =
∑
λ⊢n

|RSYTλ
ς |2 ≤

∑
λ⊢n

(dim(spanC{FF | F ∈ Fillλς }))2.

Combining these facts together, we conclude that

dim(pς(P
λ)) = dim(spanC{FF | F ∈ Fillλς }) = |RSYTλ

ς |,

so in particular, we have spanC{FF | F ∈ Fillλς } = spanC{FT | T ∈ RSYTλ
ς } and ψ defines

a linear isomorphism from pς(P
λ) onto this space, as claimed.

Moreover, combining Lemmas 2.1, 2.3 & 2.6, we see that a complete set of pairwise non-
isomorphic simple Hς -modules is given by N := {pς(P λ) | λ ⊢ n, pς(P

λ) ̸= {0}}. Since
dimpς(P

λ) = |RSYTλ
ς | ≠ 0 if and only if λ ∈ Iς by Lemma 2.7, we conclude that either

asserted collection is a complete set of pairwise non-isomorphic simple Hς -modules. □

It thus remains to prove that the set {FT | T ∈ RSYTλ
ς } is linearly independent (Proposi-

tion 2.30). One of the key ingredients for the proof will be to find a combinatorial formula
for the fused Specht polynomials (Proposition 2.22). Unfortunately, the arguments leading
to the linear independence of {FT | T ∈ RSYTλ

ς } and thus to Theorem 2.14 are valid only
for Young diagrams with two columns. However the combinatorial formula will hold for
any shape. Thus, we believe that Theorem 2.14 also holds more generally:
Conjecture 2.15. Theorem 2.14 holds for Young diagrams of any shape.

2.3.1. Combinatorial formula for the fused Specht polynomials. Consider the group
Qλ := Sλ̄1

×Sλ̄2
× · · · ×Sλ̄l

⊂ Sn

where λ̄ = (λ̄1, . . . , λ̄l) (in particular,
∑

i λ̄i = n). Note that Qλ acts on Fillλς by permuting
entries of a filling such that each factor Sλ̄i

permutes entries in the ith column.
Example 2.16. For instance, consider

T = 1 3

1 3

2 2

In this case, we have Qλ = S3 × S3. For instance, the permutation σ = (13) × Id ∈ Qλ

exchanges the two entries lying in the first row, first column and third row, first column:

σ.T =
2 3

1 3

1 2

Similarly, Id × (12) leaves T unchanged because it permutes two identical entries “3”.
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We denote by Qλ.F the orbit of F ∈ Fillλς under the action of Qλ. We also denote by
StabQλ

(F ) = {σ ∈ Qλ | σ.F = F} ⊂ Qλ the stabilizer of F in Qλ.

Remark 2.17. For a numbering N ∈ NBλ, the orbit Qλ.N corresponds to Cλ(N).N , where
Cλ(N) is the column-stabilizer subgroup defined in Section 2.1.

Before proceeding, we fix some notation to be used throughout the rest of this section.

Notation 2.18. LetWF ⊂ Qλ.F be the subset of fillings in the orbit of F which have at least
two boxes containing the same entry in the same row. For U ∈ (Qλ.F )\WF , let σF ;U be the
shortest permutation in Qλ such that σF ;U .F = U . We denote by (rUi (k))

sk
i=1 the sequence

of row numbers of boxes of U containing the entry “k”, ordered by column-reading U .
Let (rU,ord

i (k))ski=1 be the ordering of (rUi (k))
sk
i=1 in decreasing order, and let τU ;k be

permutations such that (rUτU ;k(i)
(k))ski=1 = (rU,ord

i (k))ski=1. Finally, let λU (k) be the partition

λU (k) :=
(
rU,ord
i (k)− sk + i− 1

)sk
i=1
. (2.18)

Remark 2.19. Let us mention that if sk = 1 for some k, that is, the entry “k” appears exactly
once in the filling, then λF (k) is simply the row number where k lies minus 1. Also, if the
entry “k” appears in the rows 1, 2, . . . , sk exactly once, then λF (k) = ∅.

As a matter of convenience for the reader, we record two examples below. We focus on
Young diagrams with two columns only, since only diagrams of this shape are considered
in the subsequent sections (and in Theorem 2.14).

Example 2.20. Let λ = (2, 2), so that λ̄ = (2, 2) and Qλ = S2 ×S2. Consider

F =
1 2

2 3
∈ Fillλς

with ς = (s1, s2, s3) = (1, 2, 1). The orbit Qλ.F reads

Qλ.F =

{
1 2

2 3
,

2 2

1 3
,

1 3

2 2
,

2 3

1 2

}
.

Note that the stabilizer StabQλ
(F ) consists only of the identity element, since there is no

repeated entry within the same column. Therefore, we have |Qλ.F | = |Qλ|. Moreover, for
fillings containing repeated entries in the same row, we have

WF =

{
2 2

1 3
,

1 3

2 2

}
.

Finally, we have rF (1) = (1), rF (2) = (2, 1), and rF (3) = (2). Hence we infer from (2.18)
that λF (1) = ∅, λF (2) = ∅, and λF (3) = (1).

Example 2.21. Let λ = (2, 2, 2), so that λ̄ = (3, 3) and Qλ = S3 ×S3. Consider

F = 2 3

1 2

2 3

∈ Fillλς

with ς = (s1, s2, s3) = (1, 3, 2). In this case, we have StabQλ
(F ) ∼= S2×S2, since the entries

“2” and “3” appear twice on the left and right column, respectively. Therefore, the orbit
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Qλ.F contains 62/4 = 9 elements (and WF consists of the last 6 elements in Qλ.F ):

2 3

1 2

2 3

,
2 3

2 3

1 2

,
1 2

2 3

2 3

,
2 2

1 3

2 3

,
2 3

1 3

2 2

,
2 2

2 3

1 3

,
2 3

2 2

1 3

,
1 3

2 2

2 3

,
1 3

2 3

2 2

.

Finally, we have rF (1) = (2), rF (2) = (1, 3, 2), and rF (3) = (1, 3). Thus rF,ord(1) = rF (1) =

(2), rF,ord(2) = (3, 2, 1), and rF,ord(3) = (3, 1). We then have the permutations τF ;2 = (132)

and τF ;3 = (13), and we infer from (2.18) that λF (1) = (1), λF (2) = ∅, and λF (3) = (1).

We now give a combinatorial formula for the fused Specht polynomials, equivalent to
Equation (2.16) in Definition 2.12. This formula is key to obtain the linear independence in
the proof of Theorem 2.14, and it is also of independent interest.

Proposition 2.22. FixF ∈ Fillλς . To eachU ∈ (Qλ.F )\WF , we associate the following monomial9:

mU = mU (x1, . . . , xd) :=
d∏

k=1

(−1)(
sk
2 )sgn(τU ;k)

sk!
SλU (k)(1

sk)x
|λU (k)|
k , (2.19)

where SλU (k)(1
sk) is the Schur polynomial associated with the partition λU (k) and evaluated at 1

for each of its sk variables (see Appendix A for the definition of Schur polynomials).
Then, the fused Specht polynomial defined in (2.12) admits the following combinatorial formula:

FF = |StabQλ
(F )|

∑
U∈(Qλ.F )\WF

sgn(σF ;U ) mU . (2.20)

Remark 2.23. The evaluation at (1sk) of the Schur polynomial SλU (k),

SλU (k)(1
sk) =

∏
1≤i<j≤sk

λUi (k)− λUj (k) + j − i

j − i
,

equals the number of column-strict (semistandard) Young tableaux of shape λU (k) and
entries in {1, . . . , sk} (and any content). In particular, S∅(1sk) = 1 = S(1sk )(1

sk) for sk ≥ 1.

Example 2.24. Consider again

F =
1 2

2 3
∈ Fillλς

with λ = (2, 2) and ς = (s1, s2, s3) = (1, 2, 1). As explained in Example 2.20, the set Qλ.F

has four elements, two of them lying in WF , and |StabQλ
(F )| = 1. Hence, the fused Specht

polynomial FF = FF (x1, x2, x3) in (2.20) is a linear combination of two monomials:

F 1 2
2 3

= m 1 2
2 3

+ m 2 3
1 2

= mF + mU , where U = 2 3

1 2
.

The permutation σF ;U is a product of two transpositions, so sgn(σF ;U ) = 1. The monomial
mF is then calculated from Equation (2.19) as follows:

m 1 2
2 3

=
(−1)(

s1
2 )+(

s2
2 )+(

s3
2 )sgn(τF ;1τF ;2τF ;3)

s1!s2!s3!
SλF (1)(1

s1)SλF (2)(1
s2)SλF (3)(1

s3)x
|λF (1)|
1 x

|λF (2)|
2 x

|λF (3)|
3

9Here, we use the convention that
(
a
b

)
= 0 if a < b.
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=
(−1)(

1
2)+(

2
2)+(

1
2)

1!2!1!
S∅(1)S∅(1, 1)S(1)(1)x

|∅|
1 x

|∅|
2 x

|(1)|
3 = −x3

2
.

The computation of

m 2 3
1 2

= −x1
2

is quite similar, with the difference that rU (2) = (1, 2), so rU,ord(2) = (2, 1), which yield the
transposition τU ;2 = (12) with sgn(τU ;2) = −1. We finally conclude that

F 1 2
2 3

=
x1 − x3

2
.

Example 2.25. Consider then

F = 2 3

1 2

2 3

∈ Fillλς

with λ = (2, 2, 2) and ς = (s1, s2, s3) = (1, 3, 2). As explained in Example 2.21, the sets
Qλ.F and WF contain 9 and 6 elements, respectively. Hence, the fused Specht polynomial
FF is a linear combination of three monomials. Each monomial is weighted by a factor
|StabQλ

(F )| = 4 and by the sign of the shortest permutation sendingU toF . More precisely,
straightforward computations show that

F 2 3
1 2
2 3

= 4m 2 3
1 2
2 3

+ 4m 2 3
2 3
1 2

+ 4m 1 2
2 3
2 3

.

The monomial mF is then calculated from Equation (2.19) as follows:
m 2 3

1 2
2 3

=
(−1)(

s1
2 )+(

s2
2 )+(

s3
2 )sgn(τF ;1τF ;2τF ;3)

s1!s2!s3!
SλF (1)(1

s1)SλF (2)(1
s2)SλF (3)(1

s3)x
|λF (1)|
1 x

|λF (2)|
2 x

|λF (3)|
3

= − (−1)(
1
2)+(

3
2)+(

2
2)

1!3!2!
S(1)(1)S∅(1, 1, 1)S(1)(1, 1)x

|(1)|
1 x

|∅|
2 x

|(1)|
3

= − 1

12
· 1 · 1 · 2 · x1x3 = −x1x3

6
.

Note that the new subtlety in this example is that the Schur polynomial S(1)(1, 1) equals 2.
The other monomials are computed in a similar way. Altogether, we find that

F 2 3
1 2
2 3

= −2x1x3
3

+
x21
2

+
x23
2

=
(x1 − x3)

2

3
.

With the notation explained, we now proceed with the proof of Proposition 2.22.

Proof of Proposition 2.22. The proof consists of an explicit computation of the formula (2.16)
in Definition 2.12 utilizing the expression (2.4) for the Specht polynomial as a sum over
monomials. First of all, we write the Specht polynomial PF̃ = PF̃ (x1, . . . , xn) as follows:

PF̃ =
∑

N∈Qλ.F̃

sgn(σF̃ ;N )
d∏

k=1

qk+1−1∏
i=qk

x
lNi (k)−1
i , (2.21)
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where (lNi (k))ski=1 = (rN (qk), r
N (qk + 1), . . . , rN (qk+1 − 1)) is the sequence of row numbers

of the entries qk, . . . , qk+1 − 1. Recall that pς .PF̃ in (2.12) is the antisymmetrization of PF̃

with respect to the groups of variables xqk , . . . , xqk+1−1 for all k ∈ J1, dK. The formula (2.12)
can readily be brought to the following form:

FF =

 ∑
N∈Qλ.F̃

sgn(σF̃ ;N )
d∏

k=1

1

sk!(−1)(
sk
2 )

∑
σ∈Ssk

sgn(σ)
∏qk+1−1

i=qk
x
lNi (k)−1

σ(i)∏
qk≤i<j<qk+1

(xi − xj)


eval

. (2.22)

(Note that we introduced a factor (−1)(
sk
2 ) to replace xj −xi by xi−xj in the denominator.)

Now, denote Ŵk := {N ∈ Qλ.F̃ | lNi (k) = lNj (k) for some (i, j) ∈ J1, skK2, i ̸= j}, and
set Ŵ :=

⋃d
k=1 Ŵk. Any numbering N ∈ Ŵ leads to a vanishing term in the sum (2.22)

because the product
∏qk+1−1

m=qk
x
lNm(k)−1
m is a symmetric function of at least two variables,

which therefore vanishes upon antisymmetrization. Thus, we obtain

FF =

 ∑
N∈(Qλ.F̃ )\Ŵ

sgn(σF̃ ;N )
d∏

k=1

1

sk!(−1)(
sk
2 )

∑
σ∈Ssk

sgn(σ)
∏qk+1−1

i=qk
x
lNi (k)−1

σ(i)∏
qk≤i<j<qk+1

(xi − xj)


eval

.

Let lN,ord
i (k) be the ordering of lNi (k) in decreasing order, and let τN ;k be a permutation

such that (lNτN ;k(i)
(k))ski=1 = (lN,ord

i (k))ski=1. We reorganize the sum in the numerator as

FF =

 ∑
N∈(Qλ.F̃ )\Ŵ

sgn(σF̃ ;N )
d∏

k=1

sgn(τN ;k)

sk!(−1)(
sk
2 )

∑
σ∈Ssk

sgn(σ)
∏qk+1−1

i=qk
x
lN,ord
i (k)−1

σ(i)∏
qk≤i<j<qk+1

(xi − xj)


eval

.

Introducing the partition(
λ̂Ni (k)

)sk
i=1

=
(
lN,ord
i (k)− sk + i− 1

)sk
i=1
,

we recognize the Schur polynomial (A.1) discussed in Appendix A:∑
σ∈Ssk

sgn(σ)
∏qk+1−1

i=qk
x
λ̂N
i (k)+sk−i

σ(i)∏
qk≤i<j<qk+1

(xi − xj)
= Sλ̂N (k)(xqk , . . . , xqk+1−1).

Therefore, we infer that

FF =

 ∑
N∈(Qλ.F̃ )\Ŵ

sgn(σF̃ ;N )
d∏

k=1

sgn(τN ;k)

sk!(−1)(
sk
2 )
Sλ̂N (k)(xqk , . . . , xqk+1−1)


eval

.

We now investigate the sum over the numberings N in more detail. We have

(Qλ.F̃ )\Ŵ =
⋃

U∈(Qλ.F )\WF

(StabQλ
(U)).Ũ ,

where Ũ is the numbering associated with the filling U , and StabQλ
(U).Ũ is the orbit of Ũ

in StabQλ
(U). The right-hand side is clearly a disjoint union of sets, so FF equals ∑

U∈(Qλ.F )\WF

∑
N∈StabQλ

(U).Ũ

sgn(σF̃ ;N )
d∏

k=1

sgn(τN ;k)

sk!(−1)(
sk
2 )
Sλ̂N (k)(xqk , . . . , xqk+1−1)


eval

. (2.23)

The last step of the proof consists of showing that all of the terms in the sum over
N ∈ StabQλ

(U).Ũ are equal. To this end, let us consider some filling U ∈ (Qλ.F )\WF
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and two numberings N1, N2 ∈ StabQλ
(U).Ũ with N1 ̸= N2. The key observation is that,

although the sequences lN1(k) and lN2(k) are different for at least one index k ∈ J1, dK, we
have lN1,ord(k) = lN2,ord(k) and therefore λ̂N1(k) = λ̂N2(k) for all k ∈ J1, dK. Hence, we have
λ̂N (k) = λU (k) for all N ∈ StabQλ

(U).Ũ . It remains to prove that

sgn(σF̃ ;N1
)

d∏
k=1

sgn(τN1;k) = sgn(σF̃ ;N2
)

d∏
k=1

sgn(τN2;k). (2.24)

Because there exists a permutation ω ∈ StabQλ
(U) such that ω.N1 = N2, we have

sgn(σF̃ ;N2
) = sgn(σF̃ ;ω.N1

) = sgn(ω) sgn(σF̃ ;N1
). (2.25)

Moreover, on the one hand, ω takes the form ω =
∏d

k=1 ωk, where each ωk acts on the boxes
containing the entries qk, . . . , qk+1 − 1, while on the other hand, we have

lN2(k) = lωk.N1(k), for all k ∈ J1, dK,

which implies that

sgn(τN2;k) = sgn(τωk.N1;k) = sgn(ωk) sgn(τN1;k). (2.26)

Therefore (2.24) follows from (2.25, 2.26). We thereby conclude that the second sum in (2.23)
contains |StabQλ

(U)| times the same term, and we in fact have |StabQλ
(U)| = |StabQλ

(F )|.
Taking Ũ for the representative of the orbit StabQλ

(U).Ũ , we finally obtain

FF = |StabQλ
(F )|

 ∑
U∈(Qλ.F )\WF

sgn(σF̃ ;Ũ )
d∏

k=1

sgn(τŨ ;k)

sk!(−1)(
sk
2 )
SλU (k)(xqk , . . . , xqk+1−1)


eval

.

It finally remains to perform the evaluations of variables xqk = xqk+1 = · · · = xqk+1−1 for
all k ∈ J1, dK. First of all, note that sgn(τŨ ;k) = sgn(τU ;k). Permutations between F and U

may differ by products of transpositions exchanging boxes in the same column and having
the same entry. However, the permutation sending F̃ to Ũ does not contain any such
transposition in its decomposition. Thus, the permutation sending F̃ to Ũ is the shortest
permutation sending F toU . Hence, we have sgn(σF̃ ;Ũ ) = sgn(σF ;U ). Lastly, the evaluation
of the Schur polynomial is obtained from the identity (A.3) from Appendix A. □

Remark 2.26. If sk = 1 for all k, then the filling F becomes a numbering and the fused
Specht polynomial FF in (2.20) becomes a Specht polynomial PF . To see this, let us choose
N ∈ NBλ in the formula (2.20). In this caseWN is the empty set, the group Qλ = Cλ(N) and
StabQλ

(N) is the trivial group. Moreover, since sk = 1 for all k, the sequences (rUi (k))
sk
i=1

contain one element only, which is the row number rU (k) where the entry “k” lies. Thus,
τU ;k is the identity permutation, and the partition in (2.18) becomes (rU (k) − 1). This
implies that sλU (k)(1

sk) = 1. Altogether, the formula (2.20) reduces to (2.4), as expected:

FN =
∑

U∈Cλ(N).N

sgn(σN ;U )
d∏

k=1

x
rU (k)−1
k = PN

2.3.2. Linear independence of the fused Specht polynomials. We will next show that the set
{FT | T ∈ RSYTλ

ς } is a collection of non-zero vectors (Lemma 2.27). In the case where λ is
a Young diagram with two columns, we show in addition that {FT | T ∈ RSYTλ

ς } is a set of
linearly independent vectors (Proposition 2.30). This implies Theorem 2.14.



19

Lemma 2.27. Let T ∈ RSYTλ
ς and consider the set {(|λU (k)|)k∈J1,dK | U ∈ (Qλ.T )\WT }, where

(Qλ.T )\WT indexes the sum in (2.20); recall also Notation 2.18. Then, (|λT (k)|)k∈J1,dK is the
unique minimum for the lexicographic order in this set. Hence, the coefficient of the monomial

d∏
k=1

x
|λT (k)|
k (2.27)

in FT equals (and implies in particular that FT is non-zero)

|StabQλ
(T )|

d∏
k=1

sgn(τT ;k)

sk!(−1)(
sk
2 )
SλT (k)(1

sk), (2.28)

where SλT (k)(1
sk) is the Schur polynomial associated with the partition λT (k) and evaluated at 1

for each of its sk variables (see Appendix A for the definition of Schur polynomials).

Proof. Fix U ∈ (Qλ.T )\WT such that U ̸= T . Let i ∈ J1, dK be the smallest index such that U
and T differ at the positions of i. Consider two “skew” Young tableaux T ′ and U ′ obtained
from T andU by removing boxes containing a number in J1, i−1K. Since T ′ is column-strict
(semistandard), we see that

si∑
j=1

rUj (i) >

si∑
j=1

rTj (i),

which, using the definition (2.18) leads to
(|λU (k)|)k∈J1,dK > (|λT (k)|)k∈J1,dK.

We then infer that (|λT (k)|)k∈J1,dK is indeed a minimum for the lexicographic order in the
set {(|λU (k)|)k∈J1,dK | U ∈ (Qλ.T )\WT }. Consequently, the only monomial in

FT = |StabQλ
(T )|

∑
U∈(Qλ.T )\WT

sgn(σT ;U ) mU

proportional to (2.27) is obtained at U = T . This gives the coefficient (2.28). □

Lemma 2.28. Letλ be a Young diagram with two columns. The mapT ∈ RSYTλ
ς 7! (|λT (k)|)k∈J1,dK

is injective.

Proof. Let T, T ′ ∈ RSYTλ
ς such that (|λT (k)|)k∈J1,dK = (|λT ′

(k)|)k∈J1,dK. Suppose T ̸= T ′. Let
i be the smallest index such that T and T ′ differ at the positions of i. Consider two “skew”

Young diagrams obtained by keeping only boxes containing i in T (resp. T ′): both consist
of either one single column diagram, or two disconnected column diagrams. Because these
skew diagrams are different for T and T ′, and both T and T ′ have two columns, we have

si∑
j=1

rT
′

j (i) ̸=
si∑
j=1

rTj (i).

However, this implies |λT ′
(i)| ≠ |λT (i)|, a contradiction. Hence, we deduce that T = T ′. □

Remark 2.29. Lemma 2.28 does not hold when λ is a Young diagram with more than two
columns. As a counterexample, let us consider the two row-strict Young tableaux

T1 =
1 2 3

1 4

1 4

3

and T2 =
1 2 4

1 3

1 3

4
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In this case, we have
2∑

j=1

rT1
j (3) =

2∑
j=1

rT2
j (3) = 5 =

2∑
j=1

rT1
j (4) =

2∑
j=1

rT2
j (4),

which implies in particular that
|λT1(i)| = |λT2(i)|, for all i = 1, 2, 3, 4.

Hence, the map T ∈ RSYTλ
ς 7! (|λT (k)|)k∈J1,dK is not injective in this case.

Proposition 2.30. Let λ be a Young diagram with two columns. The set {FT | T ∈ RSYTλ
ς } is

linearly independent.

Proof. Suppose that there is a linear relation with coefficients (αT ) not identically zero:∑
T∈RSYTλ

ς

αTFT = 0, αT ∈ R, and αT ̸= 0 for some T ∈ RSYTλ
ς . (2.29)

Take T ∈ {U ∈ RSYTλ
ς | αU ̸= 0} such that (|λT (k)|)k∈J1,dK is the minimum for the

lexicographic order (unique by Lemma 2.28). By Lemma 2.27, the coefficient of the mono-
mial (2.27) in the linear relation (2.29) is nonzero, which is a contradiction. □

This concludes the proof of Theorem 2.14. To prove Conjecture 2.15, one should find an
argument replacing Lemma 2.28. We only use Theorem 2.14 in the sequel.

3. The space of c = 1 degenerate conformal blocks

Next, we apply the fused Specht polynomials from Section 2 to construct a basis for a
space of conformal blocks in a CFT with central charge c = 1 and conformal weights in the
Kac table (1.2). Their correlation functions form a basis for a solution space Sς of a special
class of BPZ PDEs, known as “Benoît & Saint-Aubin equations” [BSA88] (that we will
call “conformal block basis functions”), see Theorem 3.24. We also gather some algebraic
structure related to the conformal block basis: in particular, we show that Sς is isomorphic
to a standard module of the valenced Temperley-Lieb algebra (Proposition 3.20).

The key importance of these conformal block basis functions is that they are expected
(and in some cases known) to give rise to a family of conformally invariant boundary
conditions for Gaussian free field (GFF) [MS16, PW19, LW21]. Concrete formulas for them
will thus be needed in applications for problems in random geometry (which we plan to
return to in future work). With this in mind, we briefly discuss the relationship of our
construction with the prior literature and show that special cases of our conformal block
basis functions indeed equal the ones used in GFF applications — see Section 3.1.

Throughout the rest of this section, we assume that n = 2N is a given positive even
integer, and all (fused) Specht polynomials will be associated with two-column rectangular
Young tableaux of n boxes. In particular, Theorem 2.14 is applicable in this setup.

3.1. Conformal blocks for unit valences ς = (1n) with n = 2N . Recall that SYT(N,N) is the
set of standard Young tableaux of shape λ = (N,N). For each T ∈ SYT(N,N), we associate
its transpose T t ∈ SYT(2N ) which is obtained by exchanging the rows and columns of T .

Definition 3.1. For each T ∈ SYT(N,N), we define the conformal block basis function as

UT (x1, . . . , x2N ) := ∆(x1, . . . , x2N )−1/2 PT t(x1, . . . , x2N ), (3.1)
where PT t is the Specht polynomial (2.2) and ∆ is the Vandermonde determinant (2.1).
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Note that the conformal block functions are positive functions UT : X2N ! R>0 on

X2N := {(x1, . . . , x2N ) ∈ R2N | x1 < · · · < x2N}.

Because they are also Möbius covariant and satisfy a system of second order BPZ PDEs
(see (3.2, 3.3)), they give rise to “partition functions” for interacting Schramm-Loewner
evolution, SLE4 curves. This fact is important for their probabilistic interpretation [PW19].

Generally speaking, in this section we consider positive smooth functionsF : X2N ! R>0

satisfying the below three properties. The first one is the following system of BPZ PDEs:(
∂2

∂x2j
+
∑
k ̸=j

(
1

xk − xj

∂

∂xk
− 1/4

(xk − xj)2

))
F (x1, . . . , x2N ) = 0, j ∈ J1, 2NK. (3.2)

Second, for all Möbius transformations φ : H ! H of the upper half-plane H := {z ∈
C | Im(z) > 0} such that φ(x1) < · · · < φ(x2N ), we require the covariance

F (φ(x1), . . . , φ(x2N )) =
2N∏
i=1

φ′(xi)
−1/4 × F (x1, . . . , x2N ). (3.3)

Finally, we insist that there exist constants C > 0 and p > 0 such that for all N ≥ 1 and
(x1, . . . x2N ) ∈ X2N the following power-law bound holds:

F (x1, . . . , x2N ) ≤ C
∏

1≤i<j≤2N

|xj − xi|µij(p) with µij(p) :=

−p, |xi − xj | < 1,

+p, |xi − xj | ≥ 1.
(3.4)

The first space of interest to us describes correlation functions with Kac type conformal
weights h1,2 = 1/4 as in (1.2) for a conformal field theory of central charge c = 1:

S(12N ) = S(1,...,1) := {F : X2N ! R | F satisfies (3.2), (3.3), and (3.4)}. (3.5)

It follows from the results [FK15a, FK15b] of Flores & Kleban that dimS(12N ) equals theN -th
Catalan number. We will see that the conformal block basis functions {UT | T ∈ SYT(N,N)}
of Definition 3.1 indeed span S(12N ) and are linearly independent. Indeed, to establish this
we only need to show that they coincide with the conformal blocks in [PW19, Eq. (6.1)],
which was proven to be a basis for S(12N ) by Peltola & Wu [PW19].

Lemma 3.2. The collection {UT | T ∈ SYT(N,N)} is a basis for S(12N ).

Proof. Observe that the set SYT(N,N) of standard Young tableaux of shape λ = (N,N) is
in bĳection with the set LPN of planar N -link patterns, that is, planar pair partitions
α = {{a1, b1}, {a2, b2}, . . . , {aN , bN}} of the set {1, 2, . . . , 2N}. (The latter can be used to
label connectivities of planar curves as in [PW19].) Indeed, without loss of generality, we
may assume that a1 < a2 < · · · < aN and aj < bj for all j. Then, it is not hard to check that a
bĳection is obtained by sending the element of the first (resp. second) row and i-th column
of a tableau T ∈ SYT(N,N) to the i-th element of {a1, a2, . . . , aN} (resp. {b1, b2, . . . , bN})
associated with α ∈ LPN — from the fact that T is strictly increasing across each row and
down each column one obtains that α is a planar pairing. Using this bĳection, we obtain

UT (x1, . . . , x2N ) =
∏

1≤i<j≤2N

(xj − xi)
1
2
θα(T )(i,j),

where α(T ) ∈ LPN is the link pattern corresponding to T ∈ SYT(N,N) and

θα(i, j) :=

+1, i, j ∈ {a1, a2, . . . , aN} or i, j ∈ {b1, b2, . . . , bN},
−1, otherwise.
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This is exactly [PW19, Eq. (6.1)], which is known to form a basis for S(12N ). □

Remark 3.3. Both SYT(N,N) and LPN are in bĳection with the set DPN of Dyck paths: walks
ϖ on Z≥0 of 2N steps with steps of length one, starting and ending at zero. The conformal
block functions UT can then be related to piecewise constant Dirichlet boundary conditions
for the GFF (see [PW19, Sect. 6.4] for details) as follows. For fixed x1 < · · · < x2N , consider
the GFF Γϖ on the upper-half plane H := {z ∈ C | Im(z) > 0} with boundary data10

π
2 (2ϖ(k)− 1), if x ∈ (xk, xk+1), for all k ∈ J0, 2NK,

Then, the level lines of Γϖ started at the points (x1, . . . , x2N ) are SLE4 curves with partition
function UT (ϖ)(x1, . . . , x2N ), where T (ϖ) ∈ SYT(N,N) is the Young tableau corresponding
to the Dyck path ϖ (this is a special case of [MS16, Thm. 1.1]; see [PW19, Prop. 6.8] for
details). This model was further investigated by Liu & Wu in [LW21].

Remark 3.4. Note that since each Dyck path ϖ has steps of length one (cf. Remark 3.3),
the height gaps in the GFF Γϖ have absolute value π. This is also the most common
height gap when considering level lines of the GFF [SS13]. Liu & Wu defined in [LW21,
Eq. (5.15, 5.16, 5.17)] three functions generalizing the conformal block functions and related
them to height gaps of absolute value 2π. It is not hard to check that these functions are
the three elements of our conformal block basis S(2,2,2,2), which we define in the next section
using the fused Specht polynomials. We shall detail this connection in Remark 3.19.

3.2. Temperley-Lieb action and braiding. Next, we make explicit the action on the space
S(12N ) of the Temperley-Lieb algebra TL2N = TL2N (ν) = TL2N (2), with loop fugacity
ν := −q − q−1 ∈ C equaling 2 for q = −1. It arises from braiding of the conformal block
basis functions UT , when viewed as functions on {(z1, . . . , z2N ) ∈ C2N | zi ̸= zj for i ̸= j}.

The braid group Bn on n strands is generated by bi ∈ Bn for i ∈ J1, n− 1K with relations
bibi+1bi = bi+1bibi+1, for i ∈ J1, n− 2K,

bibj = bjbi, for |j − i| > 1.

Bn is isomorphic to the fundamental group (the first homotopy group) of the complex
quotient manifold Cn := {(z1, . . . , zn) ∈ Cn | zi ̸= zj for i ̸= j}\Sn, where the symmetric
group acts by permutation of coordinates (see, e.g., [Kas95b, Rem. 2.3 in Sect. XIX.2]).

The braid group B2N acts naturally on the conformal block functions UT by

bk.UT (. . . , zk, zk+1, . . .) = UT (. . . , zk+1, zk, . . .), k ∈ J1, 2N − 1K, (3.6)

where zk and zk+1 are exchanged along a counterclockwise loop of the fundamental group.

Remark 3.5. Let us emphasize that the conformal block basis for S(12N ) does not correspond
to the “comb basis” frequently used in the literature (e.g., [DFMS97, KKP19]). A simple
counterexample is the basis of conformal block functions for N = 2. We have

U 1 3
2 4

= ∆(x1,2,3,4)
−1/2 P 1 2

3 4

=

√
(x3 − x1)(x4 − x2)

(x2 − x1)(x3 − x2)(x4 − x1)(x4 − x3)
,

U 1 2
3 4

= ∆(x1,2,3,4)
−1/2 P 1 3

2 4

=

√
(x2 − x1)(x4 − x3)

(x3 − x1)(x3 − x2)(x4 − x1)(x4 − x2)
.

Namely, each element of the comb basis is an eigenvector of b1 ∈ B4, while U 1 3
2 4

is not.

10Here, we use the convention that x0 = −∞ and x2N+1 = +∞.
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Recall from Lemmas 2.1 & 2.3 that the space P (2N ) of Specht polynomials is a simple
module of the symmetric group S2N , where permutations act on the variables x1,...,2N :=

(x1, . . . , x2N ). The action (3.6) of the braid group generators bk on S(12N ) can be related to
the action of the symmetric group generators τk = (k, k + 1) (transpositions) on P (2N ) as

bk.UT = −i∆(x1,...,2N )−1/2 τk.PT t , k ∈ J1, 2N − 1K. (3.7)

In particular, this induces an action of the symmetric group S2N (or, equivalently, of the
Hecke algebra H(12N )(−1)) on S(12N ). The action of the generators τk is then given by

τk.UT = −i bk.UT = ∆(x1,...,2N )−1/2 (−τk).PT t , k ∈ J1, 2N − 1K. (3.8)

(So the action of τk on UT is not just transposition of the k-th and (k + 1)-st coordinates.)
Utilizing the involutive algebra automorphism ω of C[S2N ] defined in (2.7), we have

a.UT = ∆(x1,...,2N )−1/2 ω(a).PT t , a ∈ C[S2N ]. (3.9)

Remark 3.6. From Remark 2.4, we see that theS2N -module S(12N ) is isomorphic to the simple
module V (N,N). Moreover, the conformal block basis {UT | T ∈ SYT(N,N)} of S(12N ) is sent in
this isomorphism to the basis of dual polytabloids of V (N,N) — see Remark 2.5.

We now proceed with the action on S(12N ) of the Temperley-Lieb algebra.

Definition 3.7. The Temperley-Lieb algebra TLn(ν) with fugacity ν := −q− q−1 ∈ C parame-
terized by q ∈ C \ {0} is generated by ei ∈ TLn(ν) for i ∈ J1, n− 1K with relations

e2i = ν ei, for i ∈ J1, n− 1K,

eiei+1ei = ei, for i ∈ J1, n− 2K,

eiei−1ei = ei, for i ∈ J2, n− 1K,

eiej = ejei, for |j − i| > 1.

(3.10)

The Temperley-Lieb algebra TLn(ν) is isomorphic to a diagram algebra [Kau90] which,
as a vector space, is generated by non-crossing planar tangles embedded in a rectangle
connecting 2n points lying on the boundary. In this presentation, there are exactly n points
on the left boundary and n points on the right boundary: e.g., two elements of TL4(ν) are

and

.

Multiplication of diagrams is defined to be their concatenation with the additional rule that,
whenever a loop is formed, it is removed and replaced by a scalar factor of ν = −q − q−1:

:= = ν ×

.
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The product is extended bilinearly to the whole algebra. The isomorphism between the
algebra defined by the presentation (3.10) and the diagram algebra is explicitly given by

ei =

,

i ∈ J1, n− 1K,

and the unit of the algebra is given by the through-line diagram

1 =

.
When q is not a root of unity, or when q = ±1, the algebra TLn(ν) with ν = −q − q−1 is

semisimple, with its simple modules given by the so-called standard modules (cell modules)
{L(s)

n | s ∈ {n mod 2, n mod 2 + 2, . . . , n}.

Elements in the standard module L(s)
n can be understood diagrammatically as non-crossing

planar tangles embedded in a rectangle and connecting n+ s points on the boundary, with
n points on the left boundary and s points on the right boundary, and such that the s points
cannot be connected among each other. (See, e.g., [RSA14, FP18b] for a detailed account.)
The multiplication rule is then given by concatenation with the rules that a loop is replaced
by a factor ν as before, and whenever the resulting diagram connects points on the right
boundary, it is set to zero. Examples of the action of TL4(ν) on L(2)

4 are

= = ν × .

= = 0 × = 0.

Remark 3.8. Setting τk = 1− ek for all k, the defining relations (3.10) of TLn = TLn(2) with
q = −1 can be written in the form

τ2i = 1, for i ∈ J1, n− 1K,

τiτi+1τi = τi+1τiτi+1, for i ∈ J1, n− 2K,

τiτj = τjτi, for |j − i| > 1,

together with the important relation
1− τi − τi+1 + τiτi+1 + τi+1τi − τiτi+1τi = 0, for i ∈ J1, n− 2K. (3.11)
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This makes it clear that TLn is a (nontrivial) quotient of the group algebra C[Sn] of the
symmetric group (or equivalently, of the Hecke algebra H(1n)(−1)).

Proposition 3.9. The representation of C[S2N ] on S(12N ) descends to a representation of TL2N .

Proof. By Remark 3.8, it suffices to verify the relation (3.11). Denote by ⟨τk, τk+1⟩ ∼= S3 the
subgroup of S2N generated by the transpositions τk and τk+1. By (3.9), we have∑

σ∈⟨τk,τk+1⟩

sgn(σ)σ.UT = ∆(x1,...,2N )−1/2
∑

σ∈⟨τk,τk+1⟩

sgn(σ)ω(σ).PT t

= ∆(x1,...,2N )−1/2
∑

σ∈⟨τk,τk+1⟩

σ.PT t , k ∈ J1, 2N − 2K.
(3.12)

Since T t is a Young tableau with two columns, at least two entries among k, k + 1, k + 2

lie on the same column. We thus infer that PT t is antisymmetric in at least two variables
among (xk, xk+1, xk+2). Hence, the symmetrization of PT t with respect to (xk, xk+1, xk+2)

gives zero, which together with (3.12) implies that the relation (3.11) is satisfied. □

Corollary 3.10. The TL2N -module S(12N ) is isomorphic to the standard module L(0)

2N .

Proof. S(12N ) is isomorphic to V (N,N) as a C[S2N ]-module. By [PPR08, Lem. 4.2], the latter
is isomorphic to L(0)

2N . Proposition 3.9 shows that these representations descend to the
quotient TL2N (cf. Remark 3.8), which proves the claim. □

Remark 3.11. By virtue of Proposition 3.9, throughout this section we will often employ
loose notations — e.g., we identify τk ∈ C[S2N ] and τk = 1 − ek ∈ TL2N when acting on
S(12N ). Note however that, when acting on functions in S(12N ), the action (3.8) of the element
τk ∈ TL2N is not a permutation of the variables: for each k ∈ J1, 2N − 1K, we have

τk.UT (x1, . . . , x2N ) = ∆(x1, . . . , x2N )−1/2 (−τk).PT t(x1, . . . , xk, xk+1, . . . , x2N )

= −∆(x1, . . . , x2N )−1/2 PT t(x1, . . . , xk+1, xk, . . . , x2N ).

Remark 3.12. With this identification, the relation bk = −iτk = −i(1− ek) in the action (3.7)
of TLn corresponds to the familiar “skein relation” for the Kauffman bracket polyno-
mial [Kau87], with deformation parameter q = −1 (and fugacity ν = 2).

3.3. Conformal blocks for general valences ς . We now construct the spaces of c = 1 con-
formal blocks, denoted Sς , for any valences ς = (s1, . . . , sd) ∈ Zd

>0, and show that they carry
representations of “fused”versions of the Temperley-Lieb algebra, called valenced Temperley-
Lieb algebras [FP18b, FP20]. We begin with the definition of the valenced Temperley-Lieb
algebra, which also gives systematic tools to carry out the fusion of the conformal blocks.

Definition 3.13. The Jones-Wenzl idempotents [Wen87] in the Temperley-Lieb algebra TLn(ν)
are nonzero elements JWi,j ̸= 0 for i, j ∈ J1, nK with i < j, defined recursively via

JWi,jJWi,j = JWi,j ,

ek JWi,j = JWi,j ek = 0, for all k ∈ Ji, j − 1K.

In the case q = −1 (and ν = 2), the Jones-Wenzl idempotents are given by the symmetrizers:

JWi,j =
1

(j − i+ 1)!

∑
σ∈⟨τi,τi+1,...,τj−1⟩

σ

(or rather, their images under the quotient map in Remark 3.8).
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Consider the ς-symmetrizer idempotent sς of C[Sn] defined in (2.6) and denote by s̄ς the
corresponding image in the TLn quotient (cf. Remark 3.8). Then, we have

s̄ς =

d∏
k=1

JWqk,qk+1−1, where qk := 1 +

k−1∑
j=1

sj , k ∈ J1, dK.

To define the fused conformal blocks, we use the notation (2.14) for [f ]eval. We will show
that for each f ∈ S(12N ), the evaluations xqk = xqk+1 = · · · = xqk+1−1 for all k ∈ J1, dK of

s̄ς .f(x1, . . . , x2N )√∏d
k=1

∏
qk≤i<j<qk+1

(xj − xi)

yields a finite value. This gives the following result.

Proposition 3.14. The following space of functions is well-defined:

Sς :=

{
F : Xd ! R

∣∣∣∣ F =

 s̄ς .f√∏d
k=1

∏
qk≤i<j<qk+1

(xj − xi)


eval

, f ∈ S(12N )

}
. (3.13)

Proof. By Lemma 3.2, for every f ∈ S(12N ) there is a polynomial P ∈ P 2N such that

f = ∆(x1,...,2N )−1/2 P.

Thus, the claim follows by noting that

s̄ς .f = ∆(x1,...,2N )−1/2 ω(sς).P = ∆(x1,...,2N )−1/2 pς .P, (3.14)

and pς .P is divisible by
∏d

k=1

∏
qk≤i<j<qk+1

(xj − xi). □

Using Proposition 3.14, we define a family {UT | T ∈ CSYT(N,N)
ς }, where CSYTλ

ς is the set
of column-strict Young tableaux of shape (N,N) and content ς . We set

Sς := spanC{UT | T ∈ CSYT(N,N)
ς }. (3.15)

In Lemma 3.16, we write UT in the form UT = KFT t where K is a normalization factor in-
dependent of T , and FT t is the fused Specht polynomial (Definition 2.12). As the collection
{FT t | T ∈ CSYT(N,N)

ς } is linearly independent by Proposition 2.30, this implies that the
collection {UT | T ∈ CSYT(N,N)

ς } is linearly independent and thus forms a basis for Sς .

Definition 3.15. For each T ∈ CSYT(N,N)
ς , we define the conformal block basis function as

UT (x1, . . . , xd) :=

 s̄ς .UT̂√∏d
k=1

∏
qk≤i<j<qk+1

(xj − xi)


eval

, (3.16)

where T̂ := (F̃ )t with F = T t ∈ RSYT(2N )
ς being the transpose of T ∈ CSYT(N,N)

ς , and
F̃ ∈ SYTλ constructed as in Definition 2.8 and Lemma 2.9.

This definition is motivated by fusion in CFT: the left-hand side in (3.16) should be a
correlation function of CFT fields obtained from fusion of fields with Kac type conformal
weights h1,2 = 1/4 as in (1.2) — and the correlation functions of the latter are given by the
functions in the solution space S(12N ) in (3.5) [FK15a]. Now, Lemma 3.2 implies that the
conformal block functions appearing on the right-hand side in (3.16) form a basis for this
space, and can hence be thought of as conformal blocks. Finally, the evaluation operation
on the right-hand side in (3.16) is nothing but a fusion with the appropriate fusion channels,
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to obtain CFT fields with more general Kac type conformal weights in (1.2) labeled by the
valences ς . We shall make this heuristics precise in the course of the rest of this article.

Let us begin by observing that the (fused) conformal block basis functions can be written
even more explicitly using the fused Specht polynomials FF from Definition 2.12. Recall
that the latter also have an explicit combinatorial formula (2.20) obtained in Proposition 2.22.

Lemma 3.16. Fix ς = (s1, . . . , sd) ∈ Zd
>0 with s1 + · · ·+ sd = 2N . Let T ∈ CSYT(N,N)

ς , and let
T t ∈ RSYT(2N )

ς be its transpose. The conformal block function UT then reads

UT (x1, . . . , xd) =
∏

1≤i<j≤d

(xj − xi)
−

sisj
2 ×FT t(x1, . . . , xd). (3.17)

Proof. Utilizing (3.14), we obtain

UT (x1, . . . , xd) :=

 s̄ς .UT̂√∏d
k=1

∏
qk≤i<j<qk+1

(xj − xi)


eval

=

 pς .PT̃ t∏d
k=1

∏
qk≤i<j<qk+1

(xj − xi)

√∏d
k=1

∏
qk≤i<j<qk+1

(xj − xi)√∏
1≤i<j≤2N (xj − xi)


eval

.

These two ratios have a well-defined evaluation. Indeed, it follows from Definition 2.12
that the first fraction gives FT t . Moreover, by Proposition 2.13 we have

√∏d
k=1

∏
qk≤i<j<qk+1

(xj − xi)√∏
1≤i<j≤2N (xj − xi)


eval

=
∏

1≤i<j≤d

(xj − xi)
−

sisj
2 .

This gives the asserted identity (3.17). □

Proposition 3.17. The collection {UT | T ∈ CSYT(N,N)
ς } is a basis for Sς in (3.15).

Proof. Lemma 3.16 gives an explicit expression of each conformal block function UT in
terms of fused Specht polynomials. The claim thus follows from Proposition 2.30. □

Remark 3.18. If ς = (1, 1, . . . , 1) = 1n with d = n = 2N , then and T ∈ SYT(N,N). Moreover, by
Remark 2.26 the fused Specht polynomialFT t then becomes the classical Specht polynomial
PT t . Hence UT reduces to the conformal block function (3.1) of [PW19].

Remark 3.19. Let us check that our functions match with [LW21, Eq. (5.15, 5.16, 5.17)] as
discussed in Remark 3.4. These functions were shown to have an important interpretation
for GFF level sets with height gaps ±2π. We expect that our more general functions play
the same role for GFF level sets of type [ALS20] with more general height gaps.

Consider the conformal block functions in S(2,2,2,2). We have dimS(2,2,2,2) = 3, because
there are three column-strict Young tableaux with this set of contents:

T1 =
1 1 2 2

3 3 4 4
, T2 =

1 1 3 3

2 2 4 4
, T3 =

1 1 2 3

2 3 4 4
.

Utilizing Lemma 3.16, we compute the conformal block functions {UT1 ,UT2 ,UT3} spanning
S(2,2,2,2). First of all, the fused Specht polynomials FT t

1
and FT t

2
are immediately computed,

because any given entry appears only in one column (see Proposition 2.13). This gives

FT t
1
= (x2 − x1)

4(x4 − x3)
4 and FT t

2
= (x3 − x1)

4(x4 − x2)
4.
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Therefore, thanks to Lemma 3.16 we immediately obtain

UT1 =

(
(x2 − x1)(x4 − x3)

(x3 − x1)(x3 − x2)(x4 − x1)(x4 − x2)

)2

UT2 =

(
(x3 − x1)(x4 − x2)

(x2 − x1)(x3 − x2)(x4 − x1)(x4 − x3)

)2

.

Hence, we readily see that UT1 and UT2 correspond to [LW21, Eq. (5.16, 5.15)].
The third conformal block function UT3 is slightly more intricate, because the entries “2”

and “3” appear in two different columns in T t
3 . Thus, consider T̂3 ∈ SYT(4,4), with transpose

T̃ t
3 = 1 4

2 6

3 7

5 8

as in Definition 2.8. From Definition 2.12 and Lemma 3.16, we obtain

UT t
3
(x1, x2, x3, x4)∏

1≤i<j≤4(xj − xi)−2
=

 p(2,2,2,2).PT̃ t
3

(y1, . . . , y8)

(y2 − y1)(y4 − y3)(y6 − y5)(y8 − y7)


y2=y1=x1,
y4=y3=x2,
y6=y5=x3,
y8=y7=x4

,

where p(2,2,2,2) acts by antisymmetrizing with respect to the sets of variables {x1, x2},
{x3, x4}, {x5, x6}, and {x7, x8}. Note that this formula slightly simplifies because the
Specht polynomial P

T̃ t
3

is by definition antisymmetric with respect to {x1, x2} and {x7, x8}.
Hence, an explicit computation then finally leads to [LW21, Eq. (5.17)].

3.4. Valenced Temperley-Lieb action. We will next consider the valenced Temperley-Lieb
algebra TLς = TLς(2) with fugacity ν = −q − q−1 = 2, i.e., with deformation parameter
q = −1. It is isomorphic to a diagram algebra of valenced tangles [FP18b] (which we will
not, however, use in the present work). It is conveniently defined as the associative algebra

TLς := TLς(2) := s̄ςTL2N (2)s̄ς

with unit s̄ς . Moreover, by Lemma 2.6, as the Temperley-Lieb algebra TL2N = TL2N (2) is
semisimple, so is TLς , and its simple modules are given by s̄ς(L

(s)

2N ) whenever nontrivial11.
Let us lastly note that TLς is also isomorphic to a quotient of the fused Hecke algebras
Hς := Hς(−1) = pςC[S2N ]pς ∼= sςC[S2N ]sς =: Hς(1), discussed in Section 2.2 (cf. [Cd23]).

Proposition 3.17 implies the following result, which is an analog of Theorem 2.14:

Proposition 3.20. Fix ς = (s1, . . . , sd) ∈ Zd
>0 with s1 + · · ·+ sd = 2N . The map

s̄ς .f 7!

 s̄ς .f√∏d
k=1

∏
qk≤i<j<qk+1

(xj − xi)


eval

, f ∈ S(12N ), (3.18)

is a linear isomorphism from s̄ς(S(12N )) to Sς , and it induces an isomorphism of TLς -modules as

(s̄ςas̄ς).F =

 (s̄ςas̄ς).f√∏d
k=1

∏
qk≤i<j<qk+1

(xj − xi)


eval

, a ∈ TL2N (2), (3.19)

11See [FP18b, FP18a] for a thorough study of this algebra.
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where f ∈ S(12N ) is chosen such that

F =

 s̄ς .f√∏d
k=1

∏
qk≤i<j<qk+1

(xj − xi)


eval

∈ Sς .

Moreover Sς is isomorphic to the simple module s̄ς(L(0)

2N ).

Proof. Recall that in (3.13), Sς is defined via the map (3.18), and by Proposition 3.17, we have
dimSς = |CSYT(N,N)

ς |. Also, Corollary 3.10 (and its proof) shows that s̄ς(S(12N )) is isomorphic
to the TLς -module s̄ς(L

(0)

2N ) and dim s̄ς(L
(0)

2N ) = dim sς(V
(N,N)). The claim now follows, since

from the proof of Proposition 2.10, we obtain dim sς(V
(N,N)) = |CSYT(N,N)

ς |. □

3.5. Covariance properties. The purpose of this section is to verify that the conformal
block functions satisfy the Möbius covariance of the primary fields with Kac weights (1.2).

Proposition 3.21. Let φ : H ! H be a Möbius transformation such that φ(x1) < · · · < φ(xd).
The conformal block functions UT satisfy the covariance property

UT (φ(x1), . . . , φ(xd)) =
d∏

i=1

|φ′(xi)|−s2i /4 × UT (x1, . . . , xd).

Proof. Applying xi 7! φ(xi) for all i = 1, . . . , d in (3.17) of Lemma 3.16, we obtain

UT (φ(x1), . . . , φ(xd)) =
∏

1≤i<j≤d

(φ(xj)− φ(xi))
−sisj/2 ×FT t(φ(x1), . . . , φ(xd)).

The claim now follows from Lemmas 3.22 and 3.23, proven below. □

Lemma 3.22. Fix ς = (s1, . . . , sd) ∈ Zd
>0 with s1 + · · ·+ sd = 2N . Let φ : H! H be a Möbius

transformation such that φ(x1) < · · · < φ(xd). We have

∏
1≤i<j≤d

(φ(xj)− φ(xi))
−sisj/2 =

d∏
i=1

φ′(xi)
si(si−2N)/4 ×

∏
1≤i<j≤d

(xj − xi)
−sisj/2.

Proof. This can be directly verified by utilizing the identity

φ(x)− φ(y) = (x− y)
√
φ′(x)φ′(y), (3.20)

satisfied by all Möbius transformations φ, combined with the identity 2N =
∑d

j=1 sj . □

Lemma 3.23. Fix ς = (s1, . . . , sd) ∈ Zd
>0 with s1 + · · ·+ sd = 2N . We have

FT t(φ(x1), . . . , φ(xd)) =
d∏

i=1

φ′(xi)
si(N−1)/2−si(si−1)/2 ×FT t(x1, . . . , xd).

Proof. Using (3.1) from Definition 3.1 and Equations (3.3, 3.20) for UT , we obtain

pς .PT̃ t(φ(x1), . . . , φ(x2N ))∏d
k=1

∏
qk≤i<j<qk+1

(φ(xj)− φ(xi))

=
pς .

(∏
1≤i<j≤2N φ′(xi)

1/4φ′(xj)
1/4 ×

∏2N
i=1 φ

′(xi)
−1/4 × P

T̃ t(x1, . . . , x2N )
)

∏d
k=1

∏
qk≤i<j<qk+1

(xj − xi)φ′(xi)1/2φ′(xj)1/2
.

(3.21)
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Now, straightforward computations similar to those in the proof of Lemma 3.22 lead to

∏
1≤i<j≤2N

φ′(xi)
1/4φ′(xj)

1/4 =
2N∏
i=1

φ′(xi)
(2N−1)/4, (3.22)

∏
qk≤i<j<qk+1

φ′(xi)
1/2φ′(xj)

1/2 =

qk+1−1∏
i=qk

φ′(xi)
(sk−1)/2 (3.23)

(recall here that qk+1 − qk = sk). Substituting (3.22, 3.23) into (3.21) yields

[(3.21)]eval =

 pς .
(∏2N

j=1 φ
′(xj)

(N−1)/2 × P
T̃ t(x1, . . . , x2N )

)∏d
k=1

∏qk+1−1
i=qk

φ′(xk)(sk−1)/2 ×
∏d

k=1

∏
qk≤i<j<qk+1

(xj − xi)


eval

.

Here, since the product
∏2N

j=1 φ
′(xj)

(N−1)/2 is symmetric in the xj variables, we may also
take it out of the antisymmetrizer pς . Therefore, we infer from Definition 2.12 that

FT t(φ(x1), . . . , φ(xd)) = [(3.21)]eval =

 ∏2N
j=1 φ

′(xj)
(N−1)/2∏d

k=1

∏qk+1−1
i=qk

φ′(xk)(sk−1)/2


eval

×FT t(x1, . . . , xd)

=
d∏

k=1

φ′(xk)
sk(N−1)/2−sk(sk−1)/2 ×FT t(x1, . . . , xd).

This completes the proof. □

3.6. BPZ partial differential equations. In this section, we consider a system of BPZ partial
differential equations for the conformal block functions. To write them explicitly, let

L(j)
m := −

∑
1≤i≤d
i ̸=j

(
(xi − xj)

1+m ∂

∂xi
+

1 +m

4
s2i (xi − xj)

m

)
(3.24)

be first order differential operators, using h1,si+1 = s2i /4 in the Kac table (1.2), and define

D(j)

sj+1 =

sj+1∑
k=1

∑
m1,...,mk≥1

m1+···+mk=sj+1

(−1)k−sj−1(sj !)
2∏k−1

l=1 (
∑l

i=1mi)(
∑k

i=l+1mi)
× L(j)

−m1
· · · L(j)

−mk
, (3.25)

(These are also known as Benoît & Saint-Aubin equations [BSA88], in a CFT with central
charge c = 1.) A special case of this is the second order PDE system (3.2), satisfied by the
functions UT (x1, . . . , x2N ) in Definition 3.1, which we will use to derive the general case.

Theorem 3.24. For each T ∈ CSYT(N,N)
ς , the conformal block function of Definition 3.15 satisfy

D(j)

sj+1 UT (x1, . . . , xd) = 0, for all j ∈ J1, dK.

Due to the complexity of the general BPZ differential operators in Equation (3.25), our
proof of Theorem 3.24 does not rely on a direct computation utilizing the explicit represen-
tation of Lemma 3.16. Instead, we follow a recursive approach. A key result for the proof
will be to show that, if we start from a solution of two BPZ equations of orders sj + 1 and
sj+1+1 = 2 at xj and xj+1 having a specific asymptotic behavior as xj+1 ! xj , then we can
construct a solution of a new BPZ equation of order sj + 2 at xj which no longer depends
on xj+1. More precisely, the following result is the key to the proof of Theorem 3.24.
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Theorem 3.25. Fix d ≥ 2. Fix ς = (s1, . . . , sd) ∈ Zd
>0 such that sk = ℓ − 1 and sk+1 = 1 for

some k ∈ J1, . . . , d− 1K. Also, let F : Xd ! R be a smooth function satisfying the BPZ PDEs

D(j)

sj+1F (x1, . . . , xd) = 0, for all j ∈ J1, dK. (3.26)

Finally, using the indices hs+1 := h1,s+1 in the Kac table (1.2), assume that when |xk+1 − xk| > 0

is small enough, the following (convergent) expansion holds:

F (x1, . . . , xd) = (xk+1 − xk)
hℓ+1−hℓ−h2

∑
i≥0

fi(. . . , xk, xk+2, . . .)(xk+1 − xk)
i, (3.27)

where fi(x1, . . . , xk, xk+2, . . . , xd) are smooth functions on Xd−1. Then, f0 satisfies the BPZ PDEs

D(j)

sj+1f0(x1, . . . , xk, xk+2, . . . , xd) = 0, j ∈ J1, dK, j ̸= k, k + 1, (3.28)

D(k)

ℓ+1f0(x1, . . . , xk, xk+2, . . . , xd) = 0. (3.29)

A result similar to Theorem 3.25 was proven through a direct computation by Karrila,
Kytölä, and Peltola in [KKP20, Lem. 5.6] in a specific scenario where the two “merging”
pointsxk andxk+1 have sk = sk+1 = 1 and the other “spectator”points have sj = 1or sj = 2.
However, extending their proof to the case of arbitrary sk ≥ 1 for one of the two merging
points is, again, a priori out of reach due to the complexity of the BPZ differential operator.
Instead, we follow an approach developed by Dubédat in [Dub15b, Dub15a] which relies
on the framework of Virasoro uniformization developed in particular by Kontsevich and
Friedrich [Kon87, Kon03, FK04, Fri04]. Specifically, [Dub15a, Thm. 15] is a result similar to
our Theorem 3.25, except that it only applies to irrational central charges c /∈ Q, whereas
the present case of interest concerns unit central charge, c = 1. Nevertheless, several key
lemmas to the proof of [Dub15a, Thm. 15] do still apply as well to c = 1 — and we will
use them for the proof of Theorem 3.25 (Section 4.4). As a matter of convenience for the
readers, the majority of this proof will be relegated to the next Section 4.

Recall that Definition 3.15 expresses the conformal block functions in terms of an evalu-
ation of a linear combination of conformal block functions for ς = (12N ). In the next result,
we rewrite (3.16) in such a form that Theorem 3.25 can be applied recursively.

Lemma 3.26. Fix ς = (s1, . . . , sd) ∈ Zd
>0 with s1+ · · ·+ sd = 2N . Let f ∈ S(12N ). Then, we have s̄ς .f√∏d

k=1

∏
qk≤i<j<qk+1

(xj − xi)


eval

(3.30)

= lim
xqd
!xd

lim
xqd+sd−1!xqd

1

(xqd+sd−1 − xqd)
sd−1

2

· · · lim
xqd+2!xqd

1

(xqd+2 − xqd)
lim

xqd+1!xqd

1

(xqd+1 − xqd)
1
2

× · · · × lim
xq1!x1

lim
xq1+s1−1!xq1

1

(xq1+s1−1 − xq1)
s1−1

2

· · · lim
xq1+1!xq1

s̄ς .f(x1, . . . , x2N )

(xq1+1 − xq1)
1
2

.

Proof. By Lemma 3.2, we can write f = ∆(x1,...,2N )−1/2 P for some polynomial P ∈ P 2N .
We first rewrite the left-hand side of (3.30) utilizing (3.14):

s̄ς .f√∏d
k=1

∏
qk≤i<j<qk+1

(xj − xi)
=

pς .P
(∏d

k=1

∏
qk≤i<j<qk+1

(xj−xi)
1/2∏

1≤i<j≤n(xj−xi)1/2

)
∏d

k=1

∏
qk≤i<j<qk+1

(xj − xi)
.
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Note now that

pς .P =
d∏

k=1

∏
qk≤i<j<qk+1

(xj − xi)× q1, (3.31)

∏
1≤i<j≤n

(xj − xi) =

d∏
k=1

∏
qk≤i<j<qk+1

(xj − xi)× q2, (3.32)

whereQ1 andQ2 are some polynomials, where in particular, Q2 does not vanish at xi = xj
for (i, j) ∈ Jqk, . . . , qk+1 − 1K2 and k ∈ J1, dK. This leads to the formula s̄ς .f√∏d

k=1

∏
qk≤i<j<qk+1

(xj − xi)


eval

=

[
Q1√
Q2

]
eval

(3.33)

for the left-hand side of (3.30). We now examine the right-hand side of (3.30):

lim
xqd
!xd

lim
xqd+sd−1!xqd

· · · lim
xq1!x1

lim
xq1+s1−1!xq1

· · · lim
xq1+1!xq1

s̄ς .f(x1, . . . , x2N )∏d
k=1

∏sk−1
m=1 (xqk+m − xqk)

m/2

= lim
xqd
!xd

lim
xqd+sd−1!xqd

· · · lim
xq1!x1

lim
xq1+s1−1!xq1

· · · lim
xq1+1!xq1

pς .P
(∏d

k=1

∏sk−1
m=1 (xqk+m−xqk

)m/2∏
qk≤i<j<qk+1

(xj−xi)1/2

)
∏d

k=1

∏sk−1
m=1 (xqk+m − xqk)

m
.

We compute the chain of limits of each ratio separately. Fix l ∈ J1, dK. By (3.31),

lim
xql+sl−1!xql

· · · lim
xql+1!xql

pς .P(x1, . . . , x2N )∏d
k=1

∏sk−1
m=1 (xqk+m − xqk)

m

= lim
xql+sl−1!xql

· · · lim
xql+1!xql

∏d
k=1

∏j−1
i=0

∏sk−1
j=1 (xqk+j − xqk+i)∏d

k=1

∏sk−1
m=1 (xqk+m − xqk)

m
Q1(x1, . . . , x2N ).

This chain of limits acts only on the terms k = l in the product over k, so all terms for k ̸= l

can be taken out. For the terms k = l on which the limits act, we obtain∏d
k=1,k ̸=l

∏sk−1
m=1 (xqk+m − xqk)

m∏d
k=1,k ̸=l

∏j−1
i=0

∏sk−1
j=1 (xqk+j − xqk+i)

lim
xql+sl−1!xql

· · · lim
xql+1!xql

pς .P(x1, . . . , x2N )∏d
k=1

∏sk−1
m=1 (xqk+m − xqk)

m

= lim
xql+sl−1!xql

· · · lim
xql+1!xql

∏sl−2
i=0 (xql+sl−1 − xql+i)

(xql+sl−1 − xql)
sl−1

· · · (xql+2 − xql+1)

(xql+2 − xql)
Q1(x1, . . . , x2N ).

Since the limit of each ratio is finite at each step of the chain of limits, we obtain

lim
xql+sl−1!xql

· · · lim
xql+1!xql

pς .P(x1, . . . , x2N )∏d
k=1

∏sk−1
m=1 (xqk+m − xqk)

m

=

∏d
k=1,k ̸=l

∏j−1
i=0

∏sk−1
j=1 (xqk+j − xqk+i)∏d

k=1,k ̸=l

∏sk−1
m=1 (xqk+m − xqk)

m
lim

xql+sl−1!xql

· · · lim
xql+1!xql

Q1(x1, . . . , x2N ).

Repeating the chain of limits as above for all l ∈ J1, dK, we conclude that

lim
xqd
!xd

lim
xqd+sd−1!xqd

· · · lim
xq1!x1

· · · lim
xq1+1!xq1

pς .P(x1, . . . , x2N )∏d
k=1

∏sk−1
m=1 (xqk+m − xqk)

m
= [Q1]eval .

Utilizing (3.32), similar arguments can be invoked to show that

lim
xqd
!xd

lim
xqd+sd−1!xqd

· · · lim
xq1!x1

· · · lim
xq1+1!xq1

∏d
k=1

∏sk−1
m=1 (xqk+m − xqk)

m/2∏
qk≤i<j<qk+1

(xj − xi)1/2
=

[
1√
Q2

]
eval

.

Multiplying the two equations above, we obtain the right-hand side of the sought (3.33). □
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Lemma 3.27. Let F : Xd ! R such that F = P1/
√
P2 for some polynomials P1 and P2. Then, for

any index k ∈ J1, d− 1K, there exists θk ∈ Z such that when |xk+1 − xk| > 0 is small enough, the
following (convergent) expansion holds:

F (x1, . . . , xd) = (xk+1 − xk)
θk/2

∑
i≥0

fi(. . . , xk, xk+2, . . .) (xk+1 − xk)
i.

Moreover, all coefficients fi have the form Pi/
√
Qi, where Pi andQi are polynomials in the variables

x1, . . . , xk, xk+2, . . . , xd (which do not depend on xk+1).

Proof. The first claim readily follows, since for any k ∈ J1, d − 1K, there exists θk ∈ Z such
that F (x1, . . . , xd) = (xk+1 − xk)

θk/2g(x1, . . . , xd), where g is (real) analytic at xk+1 = xk.
Concerning the second claim, any fi is of the form

fi =
1

i!

[
∂xk+1

(
(xk+1 − xk)

−θk/2F (x1, . . . , xd)
)]

xk+1=xk

=
Pi√
Qi
,

where Pi and Qi are polynomials independent of xk+1. This completes the proof. □

We are now ready to prove Theorem 3.24.

Proof of Theorem 3.24. By definition (3.5), each function f ∈ S(12N ) satisfies D(j)

2 f = 0, for all
j ∈ J1, 2NK. Note that Lemma 3.26 consists of d chains of limits. We proceed by induction
on the number of limits, where the base case will be governed by s̄ς .f ∈ S(12N ). As the
induction hypothesis, we suppose that for given i ∈ J0, dK, the function

g(x1, x2, . . . , xi−1, xqi , xqi+1, . . . , x2N )

= lim
xqi−1!xi−1

lim
xqi−1+si−1−1!xqi−1

1

(xqi−1+si−1−1 − xqi−1)
(si−1−1)/2

× · · · × lim
xqi−1+2!xqi−1

1

(xqi−1+2 − xqi−1)
lim

xqi−1+1!xqi−1

1

(xqi−1+1 − xqi−1)
1/2

× · · · × lim
xq1!x1

lim
xq1+s1−1!xq1

1

(xq1+s1−1 − xq1)
(s1−1)/2

· · · lim
xq1+1!xq1

s̄ς .f(x1, . . . , x2N )

(xq1+1 − xq1)
1/2

is of the form P/
√
Q with some polynomials P and Q, and that g satisfies the BPZ PDEsD(j)

sj+1 g = 0, for all j ∈ J1, i− 1K,

D(j)

2 g = 0, for all j ∈ Jqi, 2NK.

(So the base case is i = 0, in which case we just have s̄ς .f — indeed of the form P/
√
Q and

satisfies D(j)

2 f = 0 for all j ∈ J1, 2NK.) Now, define gk with k ∈ J0, si − 1K and such that

gk(x1, x2, . . . , xi−1, xqi , xqi+k+1, xqi+k+2, . . . , x2N ) (3.34)

= lim
xqi+k!xqi

1

(xqi+k − xqi)
k/2

· · · lim
xqi+2!xqi

1

(xqi+2 − xqi)
lim

xqi+1!xqi

g(. . . , xi−1, xqi , xqi+1, . . .)

(xqi+1 − xqi)
1/2

.

We now perform the induction step, i.e., show that the function gsi−1 is also of the form
P/

√
Q for some (different) polynomials P and Q, and that it satisfies the BPZ PDEsD(j)

sj+1 g = 0, for all j ∈ J1, iK,

D(j)

2 g = 0, for all j ∈ Ji+ 1, 2NK.
(3.35)
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By induction, this then implies that the following function satisfies D(j)

sj+1h = 0 for all j:

h :=

 s̄ς .f√∏d
k=1

∏
qk≤i<j<qk+1

(xj − xi)


eval

.

Since the conformal block functions UT (x1, . . . , xd) are defined by (3.16), it thus suffices to
take f = UT̂ (x1, . . . , x2N ) and T t ∈ SYT(2N ) to conclude the proof of Theorem 3.24.

In order to finish the induction step, we again proceed by induction, now on k ∈ J0, si−1K.
Suppose gk = Pk/

√
Qk where Pk and Qk are polynomials, and gk satisfies the BPZ PDEs

D(j)

sj+1 gk = 0, for all j ∈ J1, i− 1K,

D(qi)

k+2 gk = 0,

D(j)

2 gk = 0, for all j ∈ Jqi + k + 1, 2NK.

This is obviously true for the base case k = 0, since g0 = g. Next, suppose this is true for a
given k ∈ J1, si − 1K. By (3.34), the function gk+1 is given by

gk+1 = lim
xqi+k+1!xqi

gk
(xqi+k+1 − xqi)

(k+1)/2
.

Therefore, by Lemma 3.27 we have

gk = (xqi+k+1 − xqi)
(k+1)/2

∑
m≥0

um (xqi+k+1 − xqi)
k,

where the coefficients um are smooth for all m and, in particular, gk+1 = u0 is of the form
Pk+1/

√
Qk+1 for some polynomials Pk+1 and Qk+1. Moreover, because

h1,k+3 − h1,k+2 − h1,2 = (k + 1)/2,

we can apply Theorem 3.25 to deduce that gk+1 satisfies the BPZ PDEs
D(j)

sj+1 gk+1 = 0, for all j ∈ J1, i− 1K,

D(qi)

k+3 gk+1 = 0,

D(j)

2 gk+1 = 0, for all j ∈ Jqi + k + 2, 2NK.

We then conclude by induction that gsi−1 satisfies (3.35); thereby proving Theorem 3.24. □

4. Fusion argument for BPZ PDEs — Proof of Theorem 3.25

To prove that the BPZ PDEs are satisfied at all valences, we follow a fusion argument
bootstrapping from the already known lower order PDEs to the higher order ones. This
approach, which seems to us to be the most amenable one to carry out systematically,
utilizes a combination of tools from algebra and analytic geometry, and rigorously appeared
in [Dub15a] for the case of irrational central charges. Since the case of present interest is
that of unit central charge c = 1, we have to modify the argument to account for slightly
more complicated representation structure of the Virasoro algebra. We present the gist of
the proof in this section in a manner that does not assume prior knowledge of [Dub15a].

First of all, it is well-known and not too hard to check that the differential operators
{L(j)

m | j ∈ Z} in (3.24) satisfy the commutation relations of the Witt algebra. In fact, there
is a natural action of d copies of the Witt algebra acting on the space of functions Sς , one
copy for each point. These actions do not commute with each other. An essential step



35

for the proof of Theorem 3.25 will be to extend such non-commuting actions of the Witt
algebra to commuting actions of the Virasoro algebra. Such an extension was investigated
in detail by Dubédat in [Dub15b, Dub15a] within the geometric framework of Virasoro
uniformization [Kon87, BS88, Fri04, FK04]). In this approach, the Virasoro algebra acts
on the space of sections of a suitable line bundle over an extended Teichmüller space.
Whereas the Teichmüller space of a Riemann surface parametrizes its equivalence classes
of complex structures, the extension we consider emerges from the fact that the Riemann
surface is endowed with more data. More precisely, the extra data consists of a choice
of a local coordinate for each marked point, and vanishing at the corresponding marked
point. This viewpoint is closely related to Segal’s sewing formalism [Seg88], which instead
considers Riemann surfaces with parametrized boundary circles and their filling with
analytic disks. Let us mention that whereas Dubédat’s framework [Dub15b, Dub15a] holds
for general bordered Riemann surfaces with marked points, we will specifically study the
case of genus zero Riemann surfaces with one boundary component and with d marked
points lying on the boundary. The (extended) Teichmüller space of such surfaces is simpler
because its first homology group (and, therefore, their mapping class group) is trivial.

The proof of Theorem 3.25 consists of three steps and utilizes various results of Dubé-
dat [Dub15b, Dub15a]. The first step is to construct the extension of the solution space of
a set of d BPZ differential equations giving rise to d non-commuting actions of the Witt
algebra to the space of sections of a line bundle over the extended Teichmüller space giving
rise to d commuting actions of the Virasoro algebra. We describe such an extension at the
beginning of Section 4.3, and it essentially recalls the results of [Dub15b, Sect. 4]. Once such
a space of sections is identified, the second step of the proof consists of choosing a local
coordinate which encircles the marked points xk and xk+1 and study what the two Virasoro
representations at xk and xk+1 become in the limit |xk+1 − xk| ! 0. A crucial point here
is to translate the problem, written in analytic-geometric form, into an equivalent algebraic
problem, which then becomes amenable. As a matter of convenience for the readers, and
because this is the key difference to [Dub15b, Dub15a], we will study the algebraic part
of the problem first separately in Section 4.2 (see Lemma 4.1). Finally, once the algebraic
problem is solved, it remains to utilize the extension the other way around to get back to
solutions of higher order BPZ differential equations, as desired (see Section 4.4).

4.1. Verma modules over the Virasoro algebra and fusion. The Virasoro algebra Vir is the
infinite-dimensional Lie algebra generated by the Virasoro modes {Ln | n ∈ Z} and the
central element C,

Vir = CC ⊕
⊕
n∈Z

CLn,

with the following commutation relations:

[Lm, Ln] = (m− n)Lm+n + δm,−n
m2(m− 1)

12
C, m, n ∈ Z,

[C,Vir] = 0, n ∈ Z
(4.1)

(where δi,j stands for the Kronecker delta function, equaling zero unless i = j). It has the
triangular decomposition Vir = Vir−⊕h⊕Vir+, where h = CC⊕L0 and Vir± = ⊕

±n>0
CLn.

The universal enveloping algebra of the subalgebra Vir− is

U(Vir−) =
⊕

0<i1≤···≤ik
k≥0

CL−ik · · ·L−i1 ,
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and it has the “standard basis” {L−ik · · ·L−i1 | 0 < i1 ≤ · · · ≤ ik, k ≥ 0} by the Poincaré-
Birkhoff-Witt theorem. Let us also note that U(Vir) is a Z-graded algebra with degree
deg(Ln) := −n and deg(C) := 0. (See the textbook [IK11] for more background on Vir.)

Let V be a Vir-module. For (c, h) ∈ C2, a (c, h)-highest-weight vector vch ∈ V is an element
satisfying Cvch = cvch, L0v

c
h = hvch, and Lnv

c
h = 0 for all n > 0. In this context, c ∈ C is

called the central charge and h ∈ C is called the weight of vch. The Verma module M c
h is the

Z≥0-graded Vir-module spanned by U(Vir−)vch,

M c
h =

⊕
ℓ≥0

(M c
h)ℓ, where (M c

h)ℓ :=
⊕

0<i1≤···≤ik
i1+···+ik=ℓ

k≥0

CL−ik · · ·L−i1v
c
h.

Note that the dimension of (M c
h)ℓ is the number of partitions of ℓ. Moreover, it follows

from the commutation relations (4.1) that each element v ∈ (M c
h)ℓ satisfies L0v = (h+ ℓ)v.

Hence, we say that each v ∈ (M c
h)ℓ is a vector in M c

h at level (or degree) ℓ.
A highest-weight vector wℓ ∈ M c

h of level ℓ > 0 is called a singular vector. If a non-zero
singular vector can be found, thenM c

h is said to be degenerate at level ℓ > 0, and in this case,wℓ

generates a proper submodule of M c
h isomorphic to M c

h+ℓ. Submodules of Verma modules
were classified by B. Feı̆gin and D. Fuchs [FF82, FF84, FF90]. (See, e.g., the book [IK11] for
more background.) In particular, every submodule of M c

h is generated by singular vectors.
There is an exceptional set of parameters (c, h) for which M c

h is not irreducible — the Kac
table [Kac79, Kac80] — see (1.2) for an example with c = 1 (relevant to the present work).
Since irreducible modules generally appear in conformal field theory applications, it is
important to classify singular vectors of M c

h, which was also done in [FF82, FF84, FF90].
Fix c = 1. From now on, we only consider Verma modules of type Mh := M1

h , which
possess a singular vector at level ℓ > 0 if and only if h belongs to the Kac table (1.2):

hℓ = h1,ℓ :=
1
4(ℓ− 1)2 ∈

{
0, 14 , 1,

9
4 , 4,

25
4 , 9,

49
4 , 16,

81
4 , . . .

}
. (4.2)

Let vℓ = v1hℓ
denote the highest-weight vector of Mℓ := Mhℓ

. Then, the singular vector at
level ℓ has the form wℓ = ∆ℓvℓ, where ∆ℓ ∈ U(Vir−) is some polynomial in the negative
Virasoro generators. As the coefficient of Lℓ

−1 in ∆ℓ cannot vanish [IK11, Sect. 5.2.1], we
may normalize it to one. An explicit formula for the polynomial ∆ℓ was found in [BSA88]12:

∆ℓ =
ℓ∑

k=1

∑
i1,...,ik≥1
i1+···+ik=ℓ

(−1)ℓ−k(ℓ− 1)!2∏k−1
l=1 (

∑l
j=1 ij)(

∑k
j=l+1 ij)

L−i1 · · ·L−ik (4.3)

(see also [BFIZ91]). For instance, ℓ = 1, 2, 3 the formula (4.3) yields

∆1 = L−1,

∆2 = L2
−1 − L−2,

∆3 = L3
−1 − 2(L−1L−2 + L−2L−1) + 4L−3.

Observe that L0(∆ℓvℓ) = (hℓ + ℓ)(∆ℓvℓ) = hℓ+2(∆ℓvℓ). In fact, the singular vector ∆ℓvℓ
generates a submodule ofMℓ isomorphic toMℓ+2, which is the maximal proper submodule.
Generally, when c = 1 there exists a one-dimensional infinite chain of submodules, where
each arrow denotes the embedding ofMj+2 intoMj giving its maximal proper submodule:

Mℓ  ↩ Mℓ+2  ↩ Mℓ+4  ↩ · · · . (4.4)

12Note that in (4.3), the Virasoro generators L−ij are not ordered.
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This structure of the Verma module Mℓ is referred to as “chain” type (see [KR09, Figure 1],
and [FF84, IK11] for details). Let us also remark that the submodule structure of Verma
modules can be more intricate for other rational values of the central charge [FF83, IK11].

4.2. Fusion: the key algebraic lemma. Let t be a formal variable. For α, h ∈ R, consider
the space Vα,h := C[[t]][t−1]tα of formal series with finitely many negative terms:

tα
∑
k∈Z

akt
k, with inf{k : ak ̸= 0} > −∞.

Vα,h is a Vir-module with zero central charge c = 0, where each generator Ln acts by

Ln 7! L0
n := −tn+1∂t − (n+ 1)htn.

(The role of the parameter αwill become clear in the fusion procedure later, see Lemma 4.1,
and also [DFMS97, Sect. 8.A].) The operators {L0

n | n ∈ Z} satisfy the commutation relations
[L0

m, L
0
n] = (m − n)L0

m+n of the Witt algebra (so Vα,h is also a Witt-module13). This action
is motivated by CFT in the context of vertex algebras (cf. [Hua97, Kac98, FBZ04]): for a
Riemann surface with marked points, to each marked point one associates a representation
of the Witt algebra (morally, the Lie algebra of deformations of the complex structure, where
the formal variable represents a local coordinate): a deformation near a given marked point
is governed by the Witt-action on the corresponding module. (See also [Dub15b, Sect. 2.4].)

Next, let W be a Vir-module with central charge c = 1, whose Vir-action is simply
denoted by Ln. Consider the space W ⊗ Vα,h of formal series with coefficients in W :

tα
∑
k∈Z

vkt
k, vk ∈W, with inf{k : vk ̸= 0} > −∞.

Then, W ⊗ Vα,h is a Vir-module with central charge c = 1, where each generator Ln acts by

Ln 7! L̂n(vt
α+k) := (Lnv)t

α+k − (α+ k + (n+ 1)h)vtα+k+n, n, k ∈ Z, v ∈W. (4.5)

Let ∆̂ℓ be the BPZ operator in (4.3) with the substitutions Ln 7! L̂n for all n ∈ Z.
The reason to introduce the Vir-module W ⊗ Vα,h is motivated by fusion in CFT. If Vα,h

is the Virasoro (Witt) module associated to a given marked point x, the tensor product
W ⊗ Vα,h associates another Vir-module W at a nearby point y, and the action (4.5) can be
thought of as a deformation at x also keeping track of y = x+ t. Conversely, a deformation
at y = x+t keeping track ofx can be represented by operators of type (4.6, 4.7) in Lemma 4.1.

We are now ready to state the key algebraic result, crucial for the proof of Theorem 3.25. It
is analogous to [Dub15a, Lem. 1] — however the proof slightly differs because the Virasoro
submodule structure is more intricate for the present case of c = 1 than for irrational c. This
is the main reason why we cannot use the results [Dub15b, Dub15a] of Dubédat directly.

The result is an algebraic formulation of the fusion of two points x and y = x + t on
a Riemann surface (as t ! 0). We assume that the point x carries a Virasoro highest-
weight representation of weight hℓ := h1,ℓ and the point y carries a Virasoro highest-weight
representation of weight h2 := h1,2. We expect from the CFT operator product expansion
(fusion) of the corresponding two fields that “Φ1,ℓ(x) × Φ1,2(y) = Φ1,ℓ−1(x) + Φ1,ℓ+1(x)”

as y ! x. In the present work, we are interested in the subleading channel Φ1,ℓ+1, which
results in a conformal weight hℓ+1 = h1,ℓ+1 at higher level, needed for Theorem 3.25.

13Recall that the Virasoro algebra is a one-dimensional central extension of the Witt algebra.
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Lemma 4.1. Fix ℓ ≥ 2. Using the notation from (4.2), let us denote h̃ := h2, ĥ := hℓ, and
α := hℓ+1 − ĥ− h̃. Suppose w = tα

∑
k≥0 vkt

k is a highest-weight vector of weight ĥ such that

∆̂ℓw = 0 and ∆̃2w = 0,

where ∆̃2 := L̃2
−1 − L̃−2 is defined in terms of

L̃−1 := ∂t (4.6)

L̃−2 := − t−1∂t + t−1L−1 + ĥt−2 +
∑
k≥0

tkL−2−k. (4.7)

Then, the coefficient v0 is a highest-weight vector in W of weight hℓ+1 which satisfies ∆ℓ+1v0 = 0.

Proof. The proof consists of two steps. The first step is to check that v0 ∈ W is indeed a
highest-weight vector of weight hℓ+1. Indeed, we have L̂0w = ĥw at degree α, which yields
L0v0 = (ĥ+ h̃+ α)v0. Moreover, we have L̂nw = 0 at degree α, for all n > 0, which yields
Lnv0 = 0, for all n > 0. This shows that v0 is a highest-weight vector of weight hℓ+1.

The second and last step of the proof is to find an element Pk ∈ U(Vir−) \ {0} of degree
k < 2ℓ + 4 such that Pkv0 = 0. To see why this is useful, consider the homomorphism
ϕ : Mℓ+1 ! W of Vir-modules which maps the highest-weight vector vℓ+1 ∈ Mℓ+1 to
v0 ∈ W . The first isomorphism theorem of modules implies that Ker(ϕ) is a proper
submodule of Mℓ+1. Using the chain (4.4) of Verma modules, we obtain

Mℓ+1  ↩ Mℓ+3  ↩ Mℓ+5  ↩ · · · ,

where the image of Mℓ+3 is generated by ∆ℓ+1vℓ+1, the image of Mℓ+5 is generated by
∆ℓ+3(∆ℓ+1vℓ+1), etc. Now, if there exists Pk ∈ U(Vir−)\{0} of degree k such that Pkv0 = 0,
then it follows that Pkvℓ+1 ∈ Ker(ϕ). In particular, we have Ker(ϕ) =Mℓ+3 if k < 2ℓ+ 4, in
which case we may conclude that 0 = ϕ(∆ℓ+1vℓ+1) = ∆ℓ+1v0, as desired.

It now remains to construct such aPk. To this end, consider first the assumption ∆̃2w = 0.
Expanding by degree, we obtain

0 = ρ(α)v0

0 = ρ(α+ 1)v1 − L−1v0

0 = ρ(α+ k)vk −
k∑

j=1

L−jvk−j ,

where ρ(a) = a2 − ĥ has roots α and hℓ−1 − ĥ− h̃ < α. Thus, we have ρ(α+ k) ̸= 0 for all
k > 0, and there exist elements R0, R1, . . . ∈ U(Vir−) such that vk = Rkv0 for all k.

Next, consider the assumption ∆̂ℓw = 0:

∆̂ℓ

(
tα

∑
k≥0

tkRkv0

)
= 0.

Write

∆̂ℓ

(
tα

∑
k≥0

tkRk

)
= tα−ℓ

∑
k≥0

tkPk,

for some polynomials Pk ∈ U(Vir−) of degree k such that Pkv0 = 0, for all k ≥ 0. We first
focus on the coefficients of Lk

−1 of Pk decomposed in the standard basis. If P,Q ∈ U(Vir−)
are homogeneous and such that P = aLk

−1 + · · · and Q = bLk′
−1 + · · · in the standard basis,
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then PQ = abLk+k′

−1 + · · · in the standard basis. (This holds because the commutation
relations of Vir− do not produce any monomial in L−1.) We then see inductively that

Rk =
1

ϱ(1) · · · ϱ(k)
Lk
−1 + · · · , k ≥ 1,

with ϱ(k) = ρ(α+ k). Next, we write

∆̂ℓ =
∑

i+j+k=ℓ
i,j,k≥0

bi,j,kt
−i∂jtL

k
−1 + · · · ,

where the remainder does not contain any monomial in L−1. Note that b0,0,ℓ = 1.
We now finally show that there exists an element Pk ∈ U(Vir−)\{0} of degree d < 2ℓ+4

such that Pkv0 = 0. To this end, we assume towards a contradiction that no Pk has a
nonzero monomial in L−1 for k ≤ 2ℓ+ 3. Then, we have

tα−ℓ
∑
k≥0

tkPk = ∆̂ℓ

(
tα

∑
k≥0

tkRk

)
=

( ∑
i+j+k=ℓ
i,j,k≥0

bi,j,kt
−i∂jtL

k
−1

)(
tα

∑
l≥0

tlLl
−1

ϱ(1) · · · ϱ(l)

)
+ · · ·

For each d ∈ J0, ℓK, let Qd be the polynomial of degree at most d (determined by explicit
differentiation) such that( ∑

i+j=d
i,j≥0

bi,j,ℓ−dt
−i∂jt

)
tα+m+d = Qd(l)t

α+m, m ≥ −d.

Note that Q0 = b0,0,ℓ = 1. Now, we have

tα−ℓ
∑
k≥0

tkPk =

ℓ∑
d=0

∑
j≥−d

Qd(j)

ϱ(1) · · · ϱ(j + d)
tα+jLℓ+j

−1 + · · · .

By assumption, we know that the coefficients of monomials in L−1 of degree ℓ + j for
j ∈ J−ℓ, ℓ+ 3K are vanishing. Thus, we obtain

0 = Qℓ(−ℓ),

0 =
Qℓ(−ℓ+ 1)

ϱ(1)
+Qℓ−1(−ℓ+ 1),

0 =
Qℓ(−ℓ+ 2)

ϱ(1)ϱ(2)
+
Qℓ−1(−ℓ+ 2)

ϱ(1)
+Qℓ−2(−ℓ+ 2),

...

0 =
Qℓ(0)

ϱ(1) · · · ϱ(ℓ)
+

Qℓ−1(0)

ϱ(1) · · · ϱ(ℓ− 1)
+ · · ·+Q0(0),

...

0 =
Qℓ(ℓ+ 3)

ϱ(1) · · · ϱ(2ℓ+ 3)
+

Qℓ−1(ℓ+ 3)

ϱ(1) · · · ϱ(2ℓ+ 2)
+ · · ·+ Q0(ℓ+ 3)

ϱ(1) · · · ϱ(ℓ+ 3)
.

Multiplying the i-th equation by ϱ(1) · · · ϱ(i− 1), we obtain

0 = Qℓ(−ℓ),
0 = Qℓ(−ℓ+ 1) +Qℓ−1(−ℓ+ 1)ϱ(1),
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0 = Qℓ(−ℓ+ 2) +Qℓ−1(−ℓ+ 2)ϱ(2) +Qℓ−2(−ℓ+ 2)ϱ(1)ϱ(2),

...
0 = Qℓ(0) +Qℓ−1(0)ϱ(ℓ) + · · ·Q0(0)ϱ(1) · · · ϱ(ℓ),

...
0 = Qℓ(ℓ+ 3) +Qℓ−1(ℓ+ 3)ϱ(2ℓ+ 3) + · · ·+Q0(ℓ+ 3)ϱ(ℓ+ 4) · · · ϱ(2ℓ+ 3).

Since ϱ(0) = 0, we find that for all m ∈ J−ℓ, ℓ+ 3K

0 = Qℓ(m) +Qℓ−1(m)ϱ(ℓ+m) + · · ·+Q0(m)ϱ(m+ 1) · · · ϱ(ℓ+m) =: O(m).

On the one hand, sinceQ0 = 1, the last term is non-vanishing and of degree 2ℓ, while all the
other terms are of degree at most 2ℓ− 1. Thus, O is not the zero polynomial. On the other
hand, since O is a polynomial of degree at most 2ℓ with 2ℓ+ 4 zeroes, we infer that O ≡ 0.
This is a contradiction. Hence, we conclude that there exists an element Pk ∈ U(Vir−) \ {0}
of degree d < 2ℓ+ 4 such that Pkv0 = 0. This concludes the proof of Lemma 4.1. □

4.3. Virasoro action on the determinant line bundle. Next, we shall describe the geomet-
ric framework for the conformal block functions, viewed as sections of a line bundle. It
turns out that the space Sς of conformal block functions of Proposition 3.14 carries non-
commuting actions of the Witt algebra at each variable xi ∈ R = ∂H, for i ∈ J1, dK. This is
a manifestation of the (infinitesimal) conformal symmetry in CFT. Our aim is to construct
a space which carries commuting actions of the Virasoro algebra, which leads to a structure
underlying the BPZ partial differential equations. For this purpose, we first have to pass
from the Witt algebra action to an action of its central extension (viz. the Virasoro algebra),
on a space of sections of a one-dimensional line bundle (“determinant line bundle”) over a
Teichmüller space involving marked boundary points (cf. the variables (x1, . . . , xd)).

In the constructions and statements below, we mostly follow [Dub15b, Sect. 2 & 4].

4.3.1. Extended Teichmüller space and determinant lines. LetS be a simply-connected, compact
Riemann surface with a single boundary component ∂S and marked points xi ∈ ∂S, for
i ∈ J1, dK. We endow S with the following additional data. Let z be a local coordinate at
x ∈ ∂S. A k-jet at x is an element of R[z]/(zk+1R[z]) with a first order zero: for each

η =
∑
i≥1

ηiz
i ∈ R[z], η1 > 0,

we denote the associated k-jet as [η]k =
∑k

i=1 ηiz
i. For each k = (k1, . . . , kd), we define Tk

to be the space of equivalence classes of surfaces S as above with a ki-jet at ki at xi, for
i ∈ J1, dK, where each equivalence class consists of all marked surfaces related by conformal
isomorphisms sending marked points to marked points and ki-jets to ki-jets.

For each surface S, let Adm(S) be the set of conformal metrics on S which near the
boundary are pushforwards of the flat metric from the cylinder, so that in particular the
boundary ∂S is a geodesic. For two such conformally equivalent metrics g ∈ Adm(S) and
e2σg ∈ Adm(S), with Weyl factor σ ∈ C∞(S,R), we define the conformal anomaly

S0
L(σ, g) :=

1

12π

∫∫
S

(
1

2
|∇gσ|2g +Rgσ

)
volg,

where ∇g, Rg, and volg are respectively the divergence, Gaussian curvature, and volume
form on S in the metric g. We then define the (real) determinant line associated to S

as the one-dimensional R-vector space DetR(S) := (R × Adm(S))/∼ consisting of pairs
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(r, g) = r[g], where r ∈ R and g ∈ Adm(S), subject to the equivalence relation “∼” given
by [g] = e−S0

L(σ,g)[e2σg] in terms of the anomaly. (See also [Fri04, KS07, Dub15b, MP24].)
We view Det := {DetR(H)} as the determinant line “bundle” over the (genus zero,

trivial) Teichmüller space T = {H} of simply-connected, compact Riemann surfaces with
a single boundary component without any marked points (that can be represented by
the upper half-plane S = H, say). We then define the determinant line bundle Detk over
Tk as the pull-back of Det under the projection forgetting marked points and jets. In
the spirit of the infinitesimal conformal symmetry in CFT [DFMS97, Sch08] and Virasoro
uniformization [Kon87, BS88], as explained in detail in [Dub15b, Sect. 2.4.4], there exists an
action of the Witt algebra as (local) differential and multiplication operators L0

n 7! −zn+1∂z
such that the negative generators send smooth functions on Tk to smooth functions on Tk′

for some k′i ≥ ki for all i. To make the action on this tower (Tk)k closed, one considers the
projective limit given by the smooth projections Tk′ ! Tk, consisting of truncations of the
jets for k′i ≥ ki (see [Dub15b, Sect. 2.4.4] for a detailed account),

T∞ := lim
 

Tk.

Elements of T∞ may be thought of as equivalence classes of surfaces S with marked points
as above, but with formal coordinates14 at each marked point instead of k-jets. The result
in [Dub15b, Thm. 4] shows that the spaceC∞(T∞,Det∞) of sections of the pull-back bundle
Det∞ over T∞ obtained from the projective limit construction carries a representation of
d commuting copies of the Virasoro algebra with central charge c = 1: one for each marked
point x1, . . . , xd ∈ ∂S. As the details of this construction are irrelevant for the purposes of
understanding the present work, we refer the reader to [Dub15b, Dub15a] for more details,
and only highlight the key ingredients for proving Theorem 3.25.

4.3.2. Conformal block functions as sections of the determinant line bundle. After choosing a
reference section µζ of the bundle Det∞ (which can, for example, be constructed from the
zeta-regularized determinant of the Laplacian [Dub15b, Sect. 3]), we shall denote sections
in C∞(T∞,Det∞) by fµζ , where f ∈ C∞(T∞). The functions f will play the role of the
correlation functions in Sς . Indeed, to any given smooth function F : Xd ! C, we associate
a smooth function f ∈ C∞(T∞) as (the lift15 of the one) described in Equation (4.9) below.

We will use a convenient choice of smooth coordinates on Tk, associated to the choice of
reference surface S = H of T with coordinates z around 0 and −1/z around ∞. Thanks to
the action of the Möbius group, we may also choose two of the marked points to be x1 = 0

and xd+1 = ∞, and we may choose the first order of the jet at ∞ to equal one: thus, for one
and two marked points, respectively, we have

[(H; 0; [η(0)]k)] ∈ Tk, [η(0)]k :=
k∑

i=1

η(0)i zi, η(0)i ∈ R,

[(H; 0,∞; [η(0)]k, [η
(∞)]l)] ∈ Tk,l, [η(∞)]l := −1

z
+

l∑
i=2

(−1)iη(∞)

i z−i, η(∞)

i ∈ R,

and for at least three marked points, we obtain the representatives

[(H; 0, x2, . . . , xd,∞; [η(0)]k1 , [η
(x2)]k2 , . . . , [η

(xd)]kd , [η
(∞)]kd+1

)] ∈ Tk1,...,kd+1
,

14The key difference is that is when a local coordinate z is given, a formal coordinate is an element of zR[[z]].
15Abusing notation, we identify f ∈ C∞(T(1,...,1))with its pullback under the projection map, f ∈ C∞(T∞).
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[η(xj)]k :=
k∑

i=1

η
(xj)

i (z − xj)
i, η

(xj)

i ∈ R, j ∈ J2, dK.

Thus, the following collection provides a set of smooth coordinates on Tk and hence on T∞:

(x2, . . . , xd; η
(0)

1 , . . . , η(0)k1
; η(x2)

1 , . . . , η(x2)

k2
; . . . ; η(xd)

1 , . . . , η(xd)

kd
; . . . ; η(∞)

2 , . . . , η(∞)

kd+1
). (4.8)

In particular, given any smooth function F : Xd ! C, taking k1 = k2 = · · · = kd = kd+1 = 1,

f [(H; 0, x2, . . . , xd,∞; [η(0)]1, [η
(x2)]1, . . . , [η

(xd)]1, [η
(∞)]1)]

:= (η(0)1 )−hs1+1

d∏
j=2

(η
(xj)

1 )−hsj+1 × F (0, x2, . . . , xd)
(4.9)

where (s1, . . . , sd) = ς ∈ Zd
>0, defines a smooth function f ∈ C∞(T(1,1,...,1)), which lifts to

a smooth function in C∞(T∞). By virtue of [Dub15b, Thm. 4] there are d + 1 commuting
copies of the Virasoro algebra acting on the section fµζ ∈ C∞(T∞,Det∞), with one copy
corresponding to each marked point x1 = 0, x2, . . . , xd,∞. We denote the generators in
the Vir-action associated to the marked point xj by L(xj)

n . By construction, this action has
central charge c = 1. Moreover, these representations are in fact highest-weight modules
with highest-weight vectors fµζ : for each j ∈ J1, dK, we have

L
(xj)

0 (fµζ) = hsj+1(fµζ),

L(xj)
n (fµζ) = 0, for all n > 0.

(4.10)

The representation at ∞ has weight zero: L(∞)
n (fµζ) = 0 for all n ≥ 0. Moreover, we have

∆
(xj)

ℓ = D(xj)

ℓ +D
(xj)

ℓ ,

where ∆
(xj)

ℓ is the partial differential operator (4.3) involving L(xj)

i for all i, and D(xj)

ℓ = D(j)

ℓ

is defined in (3.25), and D
(xj)

ℓ is a differential operator which vanishes if η(xj)

i = 0 for all
i > 1. This shows that, if F satisfies the BPZ equations (3.26) at each marked point, then

∆
(xj)

sj+1(fµζ) = 0, for all j ∈ J1, dK. (4.11)

Conversely, if fµζ satisfies the “null-vector” equations (4.11), then F satisfies the BPZ
PDEs (3.26) (see [Dub15b, Sect. 4]). In conclusion, we have related solutions F to the BPZ
PDEs (3.26) to solutions fµζ to Equations (4.11) via the correspondence of Equation (4.9).

4.4. Fusion of BPZ PDEs — proof of Theorem 3.25.

Theorem 3.25. Fix d ≥ 2. Fix ς = (s1, . . . , sd) ∈ Zd
>0 such that sk = ℓ − 1 and sk+1 = 1 for

some k ∈ J1, . . . , d− 1K. Also, let F : Xd ! R be a smooth function satisfying the BPZ PDEs

D(j)

sj+1F (x1, . . . , xd) = 0, for all j ∈ J1, dK. (3.26)

Finally, using the indices hs+1 := h1,s+1 in the Kac table (1.2), assume that when |xk+1 − xk| > 0

is small enough, the following (convergent) expansion holds:

F (x1, . . . , xd) = (xk+1 − xk)
hℓ+1−hℓ−h2

∑
i≥0

fi(. . . , xk, xk+2, . . .)(xk+1 − xk)
i, (3.27)

where fi(x1, . . . , xk, xk+2, . . . , xd) are smooth functions on Xd−1. Then, f0 satisfies the BPZ PDEs

D(j)

sj+1f0(x1, . . . , xk, xk+2, . . . , xd) = 0, j ∈ J1, dK, j ̸= k, k + 1, (3.28)

D(k)

ℓ+1f0(x1, . . . , xk, xk+2, . . . , xd) = 0. (3.29)
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Remark 4.2. Our Theorem 3.25 as well as its proof are very closely related to [Dub15a,
Thm. 15]. However, [Dub15a, Thm. 15] only applies to irrational central charges, because of
a certain algebraic result required to carry out the argument [Dub15a, Lem. 1]. The reason
for this is that the structure of highest-weight modules of the Virasoro algebra is much more
intricate when the central charge is rational. Our Lemma 4.1 is an extension of [Dub15a,
Lem. 1] to the case of unit central charge. On the other hand, [Dub15a, Lem. 12, 13, 14],
which are used for building the bridge between analytic geometry and algebra, do apply
to any central charge. Therefore, we can use all of them for the proof of Theorem 3.25.

Proof of Theorem 3.25. From F as in the statement, we construct f ∈ C∞(T(1,1,...,1)) as in (4.9):

f [(H; 0, x2, . . . , xd,∞; [η(0)]1, [η
(x2)]1, . . . , [η

(xd)]1, [η
(∞)]1)]

:= (η(0)1 )−hs1+1(η(xk)

1 )−hℓ(η
(xk+1)

1 )−h2
∏

2≤j≤d
j ̸=k,k+1

(η
(xj)

1 )−hsj+1 × F (0, x2, . . . , xd),

where in the coordinates (4.8) on T(1,1,...,1), we have the 1-jets [η(∞)]1 = −1/z and

[η(0)]1 = η(0)1 z, η(0)1 ∈ R,

[η(xj)]1 = η
(xj)

1 (z − xj), η
(xj)

1 ∈ R, j ∈ J2, dK.

The first step of the proof is to derive an asymptotic expansion for the section fµζ as
xk+1 ! xk, starting from the assumed asymptotic expansion (3.27) of F . To this end, note
that we have η(xk+1) = η(xk) − η(xk)(xk+1), which implies that∑

j≥1

η
(xk+1)

j (z − xk+1)
j =

∑
j≥1

η(xk)

j

(
(z − xk)

j − (xk+1 − xk)
j)
)
.

Taking the derivative with respect to z and evaluating at z = xk+1 yields

η
(xk+1)

1 =
∑
j≥1

j η(xk)

j (xk+1 − xk)
j−1.

Hence, using the expansion (3.27), we infer that

f [(H; 0, x2, . . . , xd,∞; [η(0)]1, . . . , [η
(xk)]1, [η

(xk) − η(xk)(xk+1)]1, [η
(xk+2)]1, . . . , [η

(∞)]1)]

:= (η(0)1 )−hs1+1(η(xk)

1 )−hℓ
∏

2≤j≤d
j ̸=k,k+1

(η
(xj)

1 )−hsj+1 ×
(
η(xk)

1 +
∑
j≥2

j η(xk)

j (xk+1 − xk)
j−1

)−h2

× (xk+1 − xk)
hℓ+1−hℓ−h2

∑
i≥0

fi(. . . , xk, xk+2, . . .)(xk+1 − xk)
i.

It is crucial to note that, while k-jets use formal local coordinates, with possibly zero as radius
of convergence, in order to carry out the fusion argument for the PDEs it is necessary
to establish a true series expansion in genuine local coordinates with a positive radius of
convergence. This we obtain for our explicit functions from Lemma 3.27, which gives (3.27).

The Lagrange inversion theorem now allows us to write

xk+1 − xk =
∑
i≥1

gi(η
(xk)(xk+1)− η(xk)(xk))

i,
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where gi is a rational function of {xk, η(xk)

1 , . . . , η(xk)
ni } where ni is a finite integer for all i ≥ 1

and, in particular, g1 = 1/η(xk)

1 . This justifies that we indeed have the expansion

f [(H; 0, x2, . . . , xd,∞; [η(0)]1, . . . , [η
(xk)]1, [η

(xk) − η(xk)(xk+1)]1, [η
(xk+2)]1, . . . , [η

(∞)]1)]

:=
(
η(xk)(xk+1)− η(xk)(xk)

)hℓ+1−hℓ−h2
∑
i≥0

f̃i
(
η(xk)(xk+1)− η(xk)(xk)

)i
, (4.12)

where f̃i is a smooth function of {x2, . . . , xd,∞} as well as of {η(xj)

1 | j ̸= k, k + 1} and
of {η(xk)

1 , . . . , η(xk)
mi } for some finite integer mi. Note also that the coefficients f̃i are smooth

because they are products of compositions of smooth functions. Moreover, m0 = 1 and

f̃0 = (η(0)1 )−hs1+1(η(xk)

1 )−hℓ+1
∏

2≤j≤d
j ̸=k,k+1

(η
(xj)

1 )−hsj+1 × f0(x1, . . . , xk, xk+2, . . . , xd). (4.13)

Therefore, f̃0µζ is a Vir-highest-weight vector as in (4.10) with weight hsj+1 at xj for
j ̸= k, k + 1, and weight hℓ+1 at xk. The other coefficients give smooth sections f̃iµζ .

The final step of the proof is to connect this analytic setting to the algebraic Lemma 4.1.
Consider the space C∞(T∞,Det∞)⊗ Vα,h2 of formal series as in Section 4.2, and set

Z := tα
∑
i≥0

(f̃iµζ)t
i, α := hℓ+1 − hℓ − h2.

We now express the action of the d + 1 Vir-copies on Z in terms of the action of the d
Vir-copies on fµζ . Specifically, [Dub15a, Lem. 12] identifies the Vir-action at xk with the
action of L̂n in (4.5); [Dub15a, Lem. 13] identifies the action of the generators L(xk+1)

−1 and
L

(xk+1)

−2 with L̃−1 (4.6) and L̃−2 (4.7), respectively; and [Dub15a, Lem. 14] relates the action
of L(xj)

n on fµζ associated to the “spectator points” xj , with j ̸= k, k+1, to the action of L(xj)
n

on Z . Also, by construction, the section fµζ is Vir-highest-weight as in (4.10) with weight
hsj+1 at xj for j ̸= k, k + 1, weight hℓ at xk, and weight h2 at xk+1. Since by assumption F
in (4.9) satisfies the corresponding BPZ equations at those points, fµζ satisfies (4.11):

∆
(xj)

sj+1 (fµζ) = 0, j ̸= k, k + 1,

∆(xk)

ℓ (fµζ) = 0,

∆
(xk+1)

2 (fµζ) = 0.

This implies in particular that ∆̂ℓ(Z) = 0 and ∆̃2(Z) = 0. To finish the proof, we just need
to apply Lemma 4.1 to infer that f̃0 in (4.13) satisfies∆

(xj)

sj+1 (f̃0µζ) = 0, j ̸= k, k + 1,

∆(xk)

ℓ+1 (f̃0µζ) = 0.

From this, we conclude that f0 satisfies the asserted BPZ equations (3.28, 3.29). □

Appendix A. Expressions for Schur polynomials

In this appendix, we recall the Schur polynomials, used in particular for the proof of
Proposition 2.22. Recall first that we consider sets of variables xqk , . . . , xqk+1−1, where

qk := 1 +

k−1∑
j=1

sj , k ∈ J1, dK.
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In particular, we have qk+1 − qk = sk. Moreover, let λ = (λi)
sk
i=1 be a partition. The Schur

polynomial associated with the partition λ admits the bialternant formula

Sλ(xqk , . . . , xqk+1−1) =
det

(
x
λj+sk−j
i

)
1≤i,j≤sk∏

qk≤i<j<qk+1
(xi − xj)

.

Utilizing the Leibniz formula for the determinant, this can also be written as

Sλ(xqk , . . . , xqk+1−1) =

∑
σ∈Ssk

sgn(σ)
∏qk+1−1

i=qk
xλi+sk−i
σ(i)∏

qk≤i<j<qk+1
(xi − xj)

. (A.1)

Equivalently, the Schur polynomial also admits the following combinatorial formula:

Sλ(xqk , . . . , xqk+1−1) =
∑

T∈CSYT(λ)

(1,2,...,sk)

x
tqk
qk · · ·x

tqk+1−1

qk+1−1 , (A.2)

where each ti is the number of occurences of the number i in the tableau T ∈ CSYT(λ)

(1,2,...,sk)
.

In particular, the evaluation of (A.2) at xi = xk for all i ∈ Jqk, qk+1 − 1K leads to

Sλ(xk, . . . , xk) = Sλ(1, . . . , 1)x
|λ|
k , (A.3)

where Sλ(1, . . . , 1) represents the number |CSYT(λ)

(1,2,...,sk)
| of column-strict Young tableaux

of shape λ with and content (1, 2, . . . , sk),

Sλ(1, . . . , 1) =
∏

1≤i<j≤sk

λi − λj + j − i

j − i
.
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