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Abstract

We prove a version of Gabriel’s theorem for locally finite-dimensional
representations of infinite quivers. Specifically, we show that if Ω is any
connected quiver, the category of locally finite-dimensional representa-
tions of Ω has unique representation type (meaning no two indecompos-
able representations have the same dimension vector) if and only if the
underlying graph of Ω is a generalized ADE Dynkin diagram (i.e. one of
An, Dn, E6, E7, E8, A∞, A∞,∞ or D∞). This result is companion to ear-
lier work of the authors generalizing Gabriel’s theorem to infinite quivers
with different conditions.

1 Introduction

In [Gab72], Gabriel showed that a quiver Ω has finite representation type
(meaning the abelian category rep(Ω) of finite-dimensional representations
of Ω has only finitely many indecomposable objects) if and only if the un-
derlying graph of Ω is an ADE Dynkin diagram. He showed moreover
that dimension vectors give a bijection between the set of indecomposable
representations of Ω and the positive roots of Ω, (i.e. the integer-valued
functions on the vertex set of Ω which have Euler-Tits form equal to 1).
One consequence of this is that Ω has unique representation type, mean-
ing no two indecomposable representations can have the same dimension
vector. In fact it is a consequence of Gabriel’s theorem that for finite
quivers Ω, this condition is equivalent to Ω having finite representation
type. Note also that for any quiver Ω, rep(Ω) is always infinite Krull-
Schmidt (meaning every representation is a direct sum of indecomposable
representations). This was proved for several classes of quivers, including
A∞,∞ quivers, in [BLP11] and for any quiver in [Bot17] and [BCB20].

In [GS23] we gave a version of Gabriel’s theorem for infinite quivers.
Precisely, we showed that the category Rep(Ω) of all (possibly infinite-
dimensional) representations of Ω has unique representation type and is
infinite Krull-Schmidt (meaning every representation is a direct sum of
possibly infinitely many indecomposable representations) if and only if Ω
is an eventually outward generalized ADE Dynkin quiver (see Figure 1)
and moreover in this case dimension vectors give a bijection between the
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An = • • · · · • •

•

Dn = • • · · · • •

•

•

Em = • • • • · · · •

A∞ = • • • · · ·

A∞,∞ = · · · • • • · · ·

•

D∞ = · · · • • •

•

Figure 1: The Generalized ADE Dynkin Quivers, where m = 6, 7, 8

set of indecomposable representations and the positive roots of Ω, defined
relative to an infinite Euler-Tits form.

In fact we show that any quiver which is not eventually outward has
a (necessarily infinite-dimensional) representation which is not the direct
sum of indecomposable representations. The question remains, what hap-
pens in the category rep(Ω) of locally finite-dimensional representations
of an infinite quiver?

Indeed in [GS23, Section 9], we conjectured that for any (not necessar-
ily eventually outward) quiver Ω, rep(Ω) has unique representation type
if and only if Ω is a generalized ADE Dynkin quiver. In this paper we
prove our conjecture, stated formally below.

Theorem A (Locally Finite-Dimensional Infinite Gabriel’s Thm.)
Let Ω be a connected quiver. The category rep(Ω) has unique representa-
tion type if and only if Ω is a generalized ADE Dynkin quiver (see Figure
1) and in this case, taking dimension vectors gives a bijection between
the set of isomorphism classes of indecomposable representations and the
positive roots of Ω (as defined in [GS23]).

In Section 2 we provide the background on quivers and their represen-
tations that will be used in this paper. Then in Section 3, we show that
any locally finite-dimensional representation of any A∞,∞ quiver (regard-
less of the orientation of the arrows) is a direct sum of indecomposable
representations.
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As a consequence of this, in Section 4 we show that if V is a locally
finite-dimensional indecomposable representation of a quiver, then the
dimension of V cannot increase along a tail (a subquiver isomorphic to
A∞) and as a consequence, such a representation must be FLEI (meaning
all but finitely many of the arrows map to isomorphisms) if Ω is a finitely
branching tree quiver. Finally in Section 5 we prove the conjecture.

2 Background

In this section we give the necessary background on quivers and their
representations.

2.1 Quivers

A quiver Ω = (Ω0,Ω1) is a set Ω0 of vertices and a set Ω1 of ordered pairs
of vertices called arrows. If a = (x, y) ∈ Ω1 we say s(a) = x is the source
of a and t(a) = y is the target of a. In this case we sometimes say that a
points x → y or write a : x → y. If either a = (x, y) or a = (y, x) then we
say that a is an arrow between x and y.

A journey p is a quiver morphism from An or A∞ to Ω which is
injective on vertices. It is called finite if its domain is An and infinite if
its domain is A∞. We call the image of the left-most vertex the source
of the journey, denoted by s(p), and if the journey is finite, we call the
image of the right-most vertex the target, denoted by t(p). A journey is
called a cycle if its domain is An for n ≥ 2 and s(p) = t(p). We say that
Ω is a tree if it contains no cycles. We say that Ω is finitely-branching
if it is union of finitely many journeys. It is called eventually outward if
every journey contains at most finitely-many arrows that point towards
the source of those journeys.

A tail of a quiver is an infinite journey with vertices x0, x1, . . . such
that in Ω there is exactly one arrow between xi and xi+1 and no arrows
between xi and xj for j 6= i+ 1, i− 1. An arrow on a tail of a quiver, say
between xi and xi+1 points in the direction of the tail if it points xi → xi+1

and it points in the direction opposite the tail if it points xi+1 → xi.

2.2 Representations of Quivers

We fix an arbitrary field F throughout the paper. A representation V of
a quiver Ω is an assignment to every x ∈ Ω0 an F vector space V (x) and
to every arrow a : x → y a linear transformation V (a) : V (x) → V (y).
A subrepresentation of V is an assignment of a subspace W (x) to every
x ∈ Ω0 such that for all arrows a : x → y, V (a)(W (x)) ⊆ W (y), which
implies W is itself a representation of Ω with maps obtained by restricting
those of V . If {Wα | α ∈ A} is a family of subrepresentations of V we say
that V =

⊕

α∈A Wα if for all x ∈ Ω0 we have V (x) =
⊕

α∈A Wα(x).
We say that V is locally finite-dimensional if V (x) is a finite-dimensional

vector space for all x ∈ Ω0.
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2.3 The Transport of a Subspace

If we have vector spaces V and W and a linear map either T : V → W
or T : W → V (in which case we say T is a map between V and W ) and
A ⊆ V , the transport AT of A to W along T is T (A) in the first case
and T−1(A) in the second. If p is a journey in a quiver Ω with vertices
x0, x1, . . ., V is a representation of Ω, and U ⊆ V (x0) is a subspace, then
the transport of U along p to xn is obtained by transporting U along each
of the maps of the journey to xn.

If U and W are vector spaces, A ⊆ U and C ⊆ W are subspaces, and
T is a linear map between U and W , we say that T is a map between A
and C if in the case of T : U → W , we have T (A) ⊆ C and in the case
of T : W → U we have T (C) ⊆ A. In this language, if Ω is a quiver,
V is a representation of Ω and for every x ∈ Ω0 we have a subspace
W (x) ⊆ V (x), then W is a subrepresentation of V if and only if for every
arrow a ∈ Ω1 with endpoints x, y ∈ Ω0, V (a) is a map between W (x) and
W (y).

A strand of a representation V of a quiver Ω (without multiple edges)
is a sequence (v0, v1, . . .) such that there exists a joruney x0, x1, . . . in Ω
with vi ∈ V (xi) and V (a)(vi) = vi+1 if there is an arrow a : xi → xi+1 in
the journey and V (a)(vi+1) = vi if there is an arrow a : xi+1 → xi in the
journey.

2.4 Poset Filtrations and Almost Gradations

A poset filtration of an R module M consists of a partially ordered set
(P,≤), and a function F : P → Sub(M) which is order-preserving, mean-
ing p ≤ q implies Fp ⊆ Fq. Here Fp denotes the image of p ∈ P under F .
If P happens to be a totally ordered set then we say that the filtration is
linear. In this paper we will assume that all filtrations (F, P ) of M have
the property that there exists some p ∈ P with Fp = M .

An almost gradation of a poset filtration (F, P ) of an R module M is
a function C : P → Sub(M) satisfying the condition that for all p ∈ P ,
Fp = F<p ⊕ Cp, where we define F<p =

∑

q<p
Fq.

An almost gradation C of a poset filtration (F, P ) of an R module M is
independent if the family of submodules {Cp | p ∈ P} is independent in the
sense that whenever we have cp1+. . .+cpn = 0 for cpi ∈ Cpi and p1, . . . , pn
distinct elements of P , then cpi = 0 for all 1 ≤ i ≤ n. Furthermore we say
that C spans if for all p ∈ P , Fp =

∑

q≤p
Cp. Note that since M = Fp for

some p, in particular this implies that M =
⊕

p∈P
Cp.

Recall that if (P,≤P ) and (Q,≤Q) are two partially ordered sets, their
product (P,≤P )×(Q,≤Q) is the partially ordered set (P×Q,≤P×Q) where
(p, q) ≤P×Q (p′, q′) if and only if p ≤P p′ and q ≤Q q′.

We define the intersection of two poset filtrations (E,P ), and (F,Q)
of an R-module M , to be the poset filtration (E∩F, P ×Q) (where P ×Q
is given the product order) defined by [E ∩ F ](p,q) = Ep ∩ Fq. One can
easily check that E∩F : P×Q → Sub(M) is an order-preserving function,
so this does indeed define a poset filtration of M .

In [GS24] Propositions 6.1 and 6.2 we proved the following result.
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Proposition 2.1 Let I and J be totally ordered sets and (E, I), (F, J)
two linear filtrations of an R-module M .

1. Every almost gradation of (E, I) is independent.

2. For any i ∈ I and j ∈ J, we have that

[E ∩ F ]<(i,j) = Ei ∩ F<j + E<i ∩ Fj . (1)

and every almost gradation of (E ∩ F, I × J) is independent.

3 Decompositions of Locally Finite-dimensional

Representations of A∞,∞ Quivers

Let V be any representation of an A∞,∞ quiver Ω, and choosing a zero
vertex and positive direction arbitrarily, label the vertices and arrows of
this quiver as below.

Ω = · · · y−1 y0 y1 y2 · · ·
a−1 a0 a1

Define a totally ordered set I as follows:

m0 ≤ m1 ≤ . . . ≤ n−∞ ≤ . . . ≤ n−1 ≤ n0

For any vertex yℓ of Ω we define two functions Lℓ, Rℓ : I → Sub(V (yℓ))
as follows. For j ∈ Z≥0, we let Lℓ

mj
(resp. Rℓ

mj
) be the transport of the

zero subspace in V (yℓ−j) (resp. the zero subspace in V (yℓ+j)) to V (yℓ) and
for j ∈ Z≤0 we define Lℓ

nj
(resp. Rℓ

nj
) be the transport of V (yℓ+j) (resp.

V (yℓ−j)) to V (yℓ). Furthermore, we define Lℓ
n−∞

(resp. Rℓ
n−∞

) to be the
set of all v ∈ V (yℓ) such that there exists a strand (v = v0, v1, . . .) of the
journey yℓ, yℓ−1, yℓ−2, . . . (respectively of the journey yℓ, yℓ+1, yℓ+2 . . .).

Proposition 3.1 Lℓ and Rℓ are linear filtrations of V (yℓ).

Proof: We only show that L is (the case of R being similar). First
of all, Lℓ

n0
= V (yℓ) by definition. Then for any ℓ ∈ Z, we always have

0 = Lℓ
m0

⊆ Lℓ
m1

and Lℓ
n−1

⊆ Lℓ
n0

= V (yℓ). Then because taking the
image and inverse image of subspaces preserves inclusions, the trans-
port also preserves inclusions. Therefore because Lℓ

mi
and Lℓ

mi+1
are

the transports of Lℓ−i
m0

⊆ Lℓ−i
m1

respectively along the journey yℓ−i, . . . , yℓ
it follows that Lℓ

mi
⊆ Lℓ

mi+1
. A similar result shows that Lℓ

nj−1
⊆ Lℓ

nj

for all j ∈ Z≤0. Finally if v ∈ Lℓ
n−∞

then by definition there exists a
strand (v = v0, v1, . . .) of the journey yℓ, yℓ−1, . . ., so given any j ∈ Z≤0,
vℓ+j ∈ V (yℓ+j), and hence v is in the transport of V (yℓ+j) to V (yℓ) which
is Lℓ

nj
, i.e. Lℓ

n−∞
⊆ Lℓ

nj
. On the other hand, given v ∈ Lℓ

mi
for i ∈ Z≥0,

by definition v is in the transport of 0 ∈ V (yℓ−i) to V (yℓ) along the
path yℓ−i, . . . , yℓ, which implies that there exist v1, . . . , vℓ−i+1 such that
(v = v0, v1, . . . , vℓ−i+1, 0, 0, . . .) is a strand of the journey yℓ, yℓ−1, . . ., so
v ∈ Lℓ

n−∞
. ⋄
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Our goal is to show that if C0 is any almost gradation of R0∩L0, then
we can build almost gradations of the poset filtrations Lℓ ∩ Rℓ for each
ℓ ∈ Z which are compatible with C0 in the sense that we make precise in
Proposition 3.3. To this end, the following lemma and corollary describe
how certain direct sum complements behave under subspace transport.

Lemma 3.1 Let T : V → W be a linear map of vector spaces and suppose
A ⊆ B ⊆ V and C ⊆ D ⊆ W are subspaces.

1. If Y ⊆ W is such that T (B)∩D = [T (A)∩D+ T (B)∩C]⊕ Y then
there exists X ⊆ V such that T maps X isomorphically onto Y , and
B ∩ T−1(D) = [A ∩ T−1(D) +B ∩ T−1(C)]⊕X.

2. If X ⊆ V is such that B∩T−1(D) = [A∩T−1(D)+B∩T−1(C)]⊕X
then there exists Y ⊆ W such that T maps X isomorphically onto
Y , and T (B) ∩D = [T (A) ∩D + T (B) ∩ C]⊕ Y .

Proof:

1. Let {yi | i ∈ I} be a basis for Y and since Y ⊆ T (B), for each
i ∈ I choose xi ∈ B with T (xi) = yi. Note that because Y ⊆ D,
xi ∈ T−1(D) as well. Let X = Span(xi | i ∈ I).

First we show that X and A∩T−1(D)+B∩T−1(C) are independent.
Suppose that we have

∑

i∈I
αixi + (a + b) = 0 where αi ∈ F, a ∈

A∩T−1(D), and b ∈ T−1(C)∩B. Applying T we obtain
∑

i∈I
αiyi+

T (a) + T (b) = 0. Then T (a) ∈ T (A) ∩ D and T (b) ∈ C ∩ T (B), so
by hypothesis we must have

∑

i∈I αiyi = T (a) + T (b) = 0, hence
αi = 0 for all i by independence of {yi | i ∈ I}. Thus

∑

i∈I
αixi = 0

which implies a + b = 0 as desired. Also note that incidentally we
obtain that {xi | i ∈ I} is independent, hence this set is a basis for
X which means T maps X isomorphically onto Y .

Now we show that B ∩ T−1(D) = [A ∩ T−1(D) + T−1(C) ∩ B] +
X. Given any z ∈ B ∩ T−1(D), T (b) ∈ T (B) ∩ D, hence we can
write T (z) =

∑

i∈I αiyi + T (a) + T (b) where a ∈ A, b ∈ B, and
T (a) ∈ T (A) ∩ D, T (b) ∈ T (B) ∩ C. Then a ∈ A ∩ T−1(D) and
b ∈ B ∩ T−1(C), hence we have k := z − (

∑

i∈I
αixi + a + b) ∈

B∩kerT ⊆ B∩T−1(C). So we can write z =
∑

i∈I
αixi+a+(b+k) ∈

X + [A ∩ T−1(D) + T−1(C) ∩ B].

2. Let Y = T (X). Then because X ⊆ B, we have Y ⊆ T (B) and
because X ⊆ T−1(D), we have Y ⊆ D.

First we show that Y and T (A) ∩ D + T (B) ∩ C are independent.
Suppose that we have y + (d+ c) = 0 where y ∈ Y , d ∈ T (A) ∩ D,
and c ∈ T (B) ∩ C. Then y = T (x) for some x ∈ X. Furthermore
d = T (a) for some a ∈ A which then must be in T−1(D) as well,
implying that actually a ∈ A∩T−1(D), and c = T (b) for some b ∈ B
which then must be in T−1(C) implying that b ∈ B ∩ T−1(C). We
also have x+a+b ∈ kerT ⊆ T−1(C), so there exists w ∈ T−1(C) such
that x+ a+ b = w. Note that x+ a+ b ∈ B, hence w ∈ B ∩T−1(C),
therefore rearranging yields x + a + (b − w) = 0 where x ∈ X,
a ∈ A ∩ T−1(D), and b − w ∈ B ∩ T−1(C). By hypothesis X is
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independent from A∩T−1(D)+B∩T−1(C), so x = 0 which implies
y = 0 and therefore d+ c = 0 as well, as desired.

Now we show that T (B) ∩D = [T (A) ∩D + T (B) ∩ C] + Y . Given
any z ∈ T (B)∩D, there exists v ∈ B with T (v) = z ∈ D and hence
v ∈ B ∩ T−1(D) automatically. Since B ∩ T−1(D) = [A∩ T−1(D) +
B ∩ T−1(C)] +X by hypothesis, we can write v = x+ a + b where
x ∈ X, a ∈ A∩T−1(D), and b ∈ B∩T−1(C). Then T (a) ∈ T (A)∩D,
T (b) ∈ T (B) ∩ C and T (x) ∈ Y , and we have z = T (v) = T (x) +
T (a) + T (b), as desired.

Finally we must show that T maps X isomorphically onto Y . By
definition T (X) = Y , so we need only show that T |X is injective.
Suppose x ∈ X is such that x ∈ kerT . Then since kerT ⊆ T−1(C)
and since X ⊆ B, we have x ∈ B ∩ kerT ⊆ B ∩ T−1(C). However
X is independent from B ∩ T−1(C) by hypothesis, so x = 0.

⋄

The following corollary follows immediately from Lemma 3.1.

Corollary 3.1 Suppose that V and W are vector spaces and A ⊆ B ⊆ V
and C ⊆ D ⊆ W are subspaces. If T is a linear map V → W or W → V
and X ⊆ V is such that B ∩ DT = [A ∩ DT + B ∩ CT ] ⊕ X, then there
exists Y ⊆ W such that T is an isomorphism between X and Y and
BT ∩D = [AT ∩D +BT ∩ C]⊕ Y .

We now show that the filtrations Lℓ and Rℓ behave well under trans-
port. We write ni − 1 (resp. mi − 1) to mean the immediate prede-
cessor of ni (resp. mi) in I when such an element exists and we define
n−∞ − 1 = n−∞.

Proposition 3.2

1. For i > 0, Lℓ+1
mi

(resp. Rℓ
mi

) is the transport of Lℓ
mi−1

(resp. Rℓ+1
mi−1

)
along V (aℓ).

2. For j < 0, Lℓ+1
nj

(resp. Rℓ
nj
) is the transport of Lℓ+1

nj+1
(resp. Rℓ

nj+1
)

along V (aℓ).

3. Lℓ+1
n−∞

(resp. Rℓ
n−∞

) is the transport of Lℓ
n−∞

(resp. Rℓ+1
n−∞

) along
V (aℓ).

Proof: For (1) and (2) the claim follows from the trivial fact that the
transport along a path of the transport along another path is the trans-
port along the concatenation of the paths. We now show (3). In this
case, if w is in the transport of Lℓ

n−∞
along V (aℓ) then if aℓ points from

yℓ to yℓ+1 then there exists v0 ∈ Lℓ
n−∞

such that V (aℓ)(v0) = w. On
the other hand if aℓ points from yℓ+1 to yℓ then V (aℓ)(w) = v′0 ∈ V (aℓ).
By definition of Lℓ

n−∞
, in either case there exists strands (v0, v1, . . .) and

(v′0, v
′
1, . . .) of the journey yℓ, yℓ−1, . . ., and then either (w, v0, v1, . . .) or

(w, v′0, v
′
1, . . .) are strands of the journey yℓ+1, yℓ, yℓ−1, . . ., so w ∈ Lℓ+1

n−∞
.

Conversely if w ∈ Lℓ+1
n−∞

then there exists a strand (w = v0, v1, . . .) of the
journey yℓ+1, yℓ, yℓ−1, . . . which implies that (v1, v2, . . .) is a strand of the
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journey yℓ, yℓ−1, . . ., so v1 ∈ Lℓ
n−∞

and w is in the transport of Lℓ
n−∞

along V (aℓ). ⋄

Now suppose that C0 is any almost gradation of L0 ∩ R0. Precisely
this means that for each p, q ∈ I , C0

p,q is a direct sum complement of
[L0 ∩ R0]<(p,q) = [L0

p ∩ R0
<q + L0

<p ∩ R0
q ] (see Proposition 2.1) inside of

L0
p ∩ R0

q . Suppose for ℓ ≥ 0 that we have an almost gradation Cℓ of
Lℓ ∩ Rℓ. There are six cases to consider. We use the convention that
(−∞)± 1 = −∞.

1. If p = mi and q = mj for some 2 ≤ i < ∞ and 0 ≤ j < ∞, then
Lℓ+1

mi−1
⊆ Lℓ+1

mi
are the transports of Lℓ

mi−2
⊆ Lℓ

mi−1
from V (yℓ) to

V (yℓ+1) and Rℓ
mj

⊆ Rℓ
mj+1

are the transports of Rℓ+1
mj−1

⊆ Rℓ+1
mj

from V (yℓ+1) to V (yℓ). Since we have that

Lℓ
mi−1

∩Rℓ
mj+1

= [Lℓ
mi−2

∩Rℓ
mj+1

+ Lℓ
mi−1

∩ Rℓ
mj

]⊕ Cℓ
mi−1,mj+1

by hypothesis, it follows from Corollary 3.1 that there exists Cℓ+1
mi,mj

⊆
V (yℓ+1) such that

Lℓ+1
mi

∩ Rℓ+1
mj

= [Lℓ+1
mi−1

∩Rℓ+1
mj

+ Lℓ+1
mi

∩Rℓ+1
mj−1

]⊕ Cℓ+1
mi,mj

and V (aℓ) is an isomorphism between Cℓ
mi−1,mj+1

and Cℓ+1
mi,mj

.

2. If p = ni and q = mj for −∞ ≤ i ≤ −1 and 0 ≤ j < ∞, then a
similar argument to that given in (1) shows there exists Cℓ+1

ni,mj
⊆

V (yℓ+1) which is a complement of [Lℓ+1∩Rℓ+1]<(p,q) inside of [L
ℓ+1∩

Rℓ+1](p,q) such that V (aℓ) is an isomorphism between Cℓ
ni+1,mj+1

and Cℓ+1
ni,mj

.

3. If p = mi and q = nj for 2 ≤ i < ∞ and −∞ ≤ j ≤ 0, again there
exists Cℓ+1

mi,nj
⊆ V (yℓ+1) which is a complement of [Lℓ+1∩Rℓ+1]<(p,q)

inside of [Lℓ+1 ∩ Rℓ+1](p,q) such that V (aℓ) is an isomorphism be-
tween Cℓ

mi−1,nj−1
and Cℓ+1

mi,nj
.

4. If p = ni and q = nj for −∞ ≤ i ≤ −1 and −∞ ≤ j ≤ 0, again there
exists Cℓ+1

ni,nj
⊆ V (yℓ+1) which is a complement of [Lℓ+1∩Rℓ+1]<(p,q)

inside of [Lℓ+1 ∩ Rℓ+1](p,q) such that V (aℓ) is an isomorphism be-
tween Cℓ

ni+1,nj−1
and Cℓ+1

ni,nj
.

5. If p = m1 or p = n0 we define Cℓ+1
p,q to be any direct sum complement

of [Lℓ+1 ∩Rℓ+1]<(p,q) inside of [Lℓ+1 ∩ Rℓ+1](p,q).

6. If p = m0 then we are forced to let Cℓ
p,q = 0.

We use a similar method to define Cℓ
p,q for ℓ < 0. Therefore we have

obtained almost gradations Cℓ
p,q for all p, q ∈ I and all ℓ ≥ 0 which are

compatible for varying ℓ in the sense that we can use them to define the
following subrepresentations of V . For any s, t ∈ Z such that s ≤ t, define
four subrepresentations, Dm,m

s,t , Dn,m
s,t , Dm,n

s,t , and Dn,n
s,t , as follows.

8



Dm,m
s,t (yℓ) =

{

Cℓ
m1+ℓ−s,m1+t−ℓ

if s ≤ ℓ ≤ t

0 if ℓ < s or ℓ > t

Dm,n
s,t (yℓ) =

{

Cℓ
m1+ℓ−s,nℓ−t

if s ≤ ℓ ≤ t

0 if ℓ < s or ℓ > t

Dn,m
s,t (yℓ) =

{

Cℓ
ns−ℓ,m1+t−ℓ

if s ≤ ℓ ≤ t

0 if ℓ < s or ℓ > t

Dn,n
s,t (yℓ) =

{

Cℓ
ns−ℓ,nℓ−t

if s ≤ ℓ ≤ t

0 if ℓ < s or ℓ > t

Furthermore define five more subrepresentations Dm,n
s,∞ , Dn,m

−∞,t, and
Dn,n

−∞,∞ as follows.

Dm,n
s,∞ (yℓ) =

{

Cℓ
m1+ℓ−s,n−∞

if ℓ ≥ s

0 if ℓ < s

Dn,n
s,∞(yℓ) =

{

Cℓ
ns−ℓ,n−∞

if ℓ ≥ s

0 if ℓ < s

Dn,m
−∞,t(yℓ) =

{

Cℓ
n−∞,m1+t−ℓ

if ℓ ≤ t

0 if ℓ > t

Dn,n
−∞,t(yℓ) =

{

Cℓ
n−∞,nℓ−t

if ℓ ≤ t

0 if ℓ > t

Dn,n
−∞,∞(yℓ) = Cℓ

n−∞,n−∞

Proposition 3.3 For b, c ∈ {m,n} and s, t ∈ Z, W is a subrepresenta-
tion of V for W equal to one of Db,c

s,t , D
m,n
s,∞ , Dn,m

−∞,t, or Dn,n
−∞,∞. Further-

more if s ≤ ℓ < t then W (aℓ) is an isomorphism and otherwise W (aℓ) = 0.

Proof: Let ℓ ∈ Z. We shall show that V (aℓ) is a map between W (yℓ)
and W (yℓ+1). There are several cases to consider.

(Case 1 : ℓ + 1 < s or ℓ > t and any W ). In this case W (yℓ) =
W (yℓ+1) = 0, hence V (aℓ) is a map between V (aℓ) is a map between
W (yℓ) and W (yℓ+1) and W (aℓ) = 0.

(Case 2 : ℓ+1 = s and W = Db,c
s,t or W = Db,n

s,∞). First of all, W (yℓ) =
0. If aℓ : yℓ → yℓ+1 then automatically V (aℓ) is a map between W (yℓ)
and W (yℓ+1) and W (aℓ) = 0. Now suppose aℓ : yℓ+1 → yℓ. We consider
two subcases. If W = Dm,c

s,t or W = Dm,n
s,∞ , then we have W (yℓ+1) =

Cs
m1,q

⊆ Ls
m1

∩ Rs
q for some q ∈ I . Recall that Ls

m1
is the transport

of 0 ⊆ V (yℓ) to V (ys), so V (aℓ)(L
s
m1

) = 0, hence V (aℓ)(W (yℓ+1)) ⊆
W (yℓ) and W (aℓ) = 0. On the other hand, if W = Dn,c

s,t or W = Dn,n
s,∞

we have W (yℓ+1) = Cs
n0,q

for some q ∈ I . But by definition, Ls
n1

=
V (aℓ)

−1(V (yℓ)) = V (yℓ+1) = Ls
n0

. Thus Ls
n1

∩ Rs
q = Ls

n0
∩ Rs

q , and so
since Ls

n0
∩Rs

q = [Ls
n1

∩Rs
q +Ls

n0
∩Rs

<q ]⊕Cs
n0 ,q

, we have that Cs
n0,q

= 0,
so indeed V (aℓ)(W (yℓ+1)) = V (aℓ)(0) = 0 = W (yℓ), and W (aℓ) = 0.

(Case 3 : ℓ = t and W = Db,c
s,t or W = Dn,c

−∞,t). After replacing L by
R, a similar argument to that in Case 3 gives the desired results.

(Case 4 : s ≤ ℓ < t and W = Db,c
s,t , W = Dm,n

s,∞ , W = Dm,n
−∞,t, or

W = Dn,n
−∞,∞). By construction V (aℓ) is an isomorphism between the
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following pairs of subspaces, which simultaneously shows that V (aℓ) is a
map between W (yℓ) and W (yℓ+1) and that W (aℓ) is an isomorphism.

Cℓ
m1+ℓ−s,m1+t−ℓ

∼= Cℓ+1
m1+(ℓ+1)−s,m1+t−(ℓ+1)

Cℓ
m1+ℓ−s,nℓ−t

∼= Cℓ+1
m1+(ℓ+1)−s,n(ℓ+1)−t

Cℓ
ns−ℓ,m1+t−ℓ

∼= Cℓ+1
ns−(ℓ+1),m1+t−(ℓ+1)

Cℓ
ns−ℓ,nℓ−t

∼= Cℓ+1
ns−(ℓ+1),n(ℓ+1)−t

Cℓ
m1+ℓ−s,n−∞

∼= Cℓ+1
m1+(ℓ+1)−s,n−∞

Cℓ
ns−ℓ,n−∞

∼= Cℓ+1
ns−(ℓ+1),n−∞

Cℓ
n−∞,m1+t−ℓ

∼= Cℓ+1
n−∞,m1+t−(ℓ+1)

Cℓ
n−∞,nℓ−t

∼= Cℓ+1
n−∞,n(ℓ+1)−t

Cℓ
n−∞,n−∞

∼= Cℓ+1
n−∞,n−∞

⋄

We now prove a few properties of the subrepresentations Db,c
s,t that will

be needed shortly.

Lemma 3.2 For any p, q ∈ I, Cℓ
p,q is equal to W (yℓ) for W one of the

subrepresentations Db,c
s,t , D

b,n
s,∞, Dn,c

−∞,t, or Dn,n
−∞,∞ for b, c ∈ {m, n}.

Proof: Given ℓ ∈ Z and i, j ≥ 0, if we let s = 1 + ℓ− i and t = ℓ− 1 + j
we obtain that Cℓ

mi,mj
= Dm,m

s,t (yℓ). A similar method shows the desired
result for all p, q ∈ I and ℓ ∈ Z. ⋄

Lemma 3.3 Fix s, t ∈ Z with s ≤ t.

1. At most one of Dm,m
s,t , Dm,n

s,t , Dn,m
s,t , and Dn,n

s,t is nonzero.

2. At most one of Dm,n
s,∞ , Dn,n

s,∞ is nonzero.

3. At most one of Dn,m
−∞,t and Dn,n

−∞,t is nonzero.

Proof: Suppose as−1 points from ys to ys−1. Then Ls
n1

= V (as−1)
−1(V (ys−1)) =

Ls
n0

. Hence if W equals Dn,c
s,t , D

n,n
s,∞, we have W (ys) = Cs

n0,q
= 0 for all

q ∈ I . Since V (aℓ) is an isomorphism between W (yℓ) and W (yℓ+1) for
s ≤ ℓ < t, it follows that W = 0. On the other hand if as−1 points
from ys−1 to ys, then Ls

m1
= V (as−1)(0) = Ls

m0
. Hence if W equals

Dm,c
s,t , Dm,n

s,∞ , we have W (ys) = Cs
n0,q

= 0 for all q ∈ I and as above we
obtain W = 0.

Similar arguments show that if at points from yt to yt+1, thenDb,n
s,t , D

n,n
−∞,t =

0 and if at points from yt+1 to yt then Db,m
s,t , Dn,m

−∞,t = 0. The desired re-
sult follows. ⋄
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For any s, t ∈ Z, we define

Es,t = Dm,m
s,t +Dm,n

s,t +Dn,m
s,t +Dn,n

s,t ,

Es,∞ = Dm,n
s,∞ +Dn,n

s,∞,

E−∞,t = Dn,m
−∞,t +Dn,n

−∞,t,

E−∞,∞ = Dn,n
−∞,∞

Proposition 3.4 For any s, t ∈ Z ∪ {±∞}, Es,t is an isotypic subrepre-
sentation of V . It is a direct sum of a thin indecomposable representation
of Ω supported on the full subquiver with vertices {yℓ | ℓ ∈ [s, t] ∩ Z}.

Proof: For s, t ∈ Z, by Lemma 3.3, Es,t is equal to either Dm,m
s,t , Dm,n

s,t ,
Dn,m

s,t , or Dn,n
s,t . In any of these cases, by Proposition 3.3 W (aℓ) is an

isomorphism if s ≤ ℓ < t and is zero otherwise. Taking compatible bases
for Es,t(yℓ) for s ≤ ℓ ≤ t, Es,t is then a direct sum of the desired thin sub-
representations, which are all isomorphic to each other. The cases with
s = −∞ or t = ∞ or both are similar. ⋄

For any ℓ ∈ Z, Cℓ is an almost gradation of the intersection of two
linear filtrations, so by Proposition 2.1 it is always an independent almost
gradation. Hence the set of subrepresentations {Es,t | s, t ∈ Z ∪ {±∞}}
are independent. We now show that this set of subrepresentations actu-
ally spans V too. Since it is not true that all (even independent) almost
gradations span (see Examples 3.1 and 3.2 below), we introduce a new
condition that guarantees spanning and then show that the almost gra-
dations Cℓ satisfy this condition.

Definition 1 We say that a linear filtration F of V is closed under in-
tersection if for all subsets A ⊆ I there exists i ∈ I such that i ≤ a for all
a ∈ A and Fi =

⋂

a∈A
Fa.

Remark 3.1

1. It suffices to check the condition for subsets A ⊆ I which are sat-
urated, meaning that if i ∈ I has the property that a ≤ i ≤ b for
a, b ∈ A then i ∈ A.

2. If A contains its infimum then the condition is automatically satisfied
by taking i to be this infimum.

Lemma 3.4 If V is a finite-dimensional vector space, F : I → Sub(V )
is a linear filtration, A ⊆ I is any subset, then there exists a0 ∈ A such
that Fa0 = Fb for all b ∈ A with b ≤ a0, and hence

⋂

a∈A
Fa = Fa0 .

Proof:
Since V is finite-dimensional, the set of subspaces {Fa | a ∈ A} has

a minimal element, say Fa0 . Then given any b ∈ A with b ≤ a0 we have
Fb ⊆ Fa0 , so by minimality it must be that Fb = Fa0 as desired. ⋄
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Proposition 3.5 If I is a totally ordered set and F : I → Sub(V ) is
a linear filtration of a finite-dimensional vector space V which is closed
under intersection, then every almost gradation of F spans F .

Proof: Let C be an almost gradation of F , let p ∈ I and let v ∈ Fp.
Consider the set A = {a ≤ p | v ∈ Fa}. By hypothesis there exists i1 ∈ I
such that i1 ≤ a for all a ∈ A and Fi1 =

⋂

a∈A
Fa. Then v ∈ Fi1 and

by definition of an almost gradation we have Fi1 = Ci1 ⊕ F<i1 so we can
write v = ci1 + vi2 where ci1 ∈ Ci and vi2 ∈ F<i. We claim that ci1 6= 0.
Indeed, if this is the case then v ∈ F<i1 =

⋃

j<i1
Fj so in fact there exists

some j < i1 such that v ∈ Fj . But this means that j ∈ A contradicting
that i1 ≤ a for all a ∈ A, so it follows that ci1 6= 0. If vi2 = 0, we’re
done. If not, replace v by vi2 and repeat this process. If at some point
vin = 0, again we’re done. If this never happens, we obtain a sequence
i1 > i2 > . . . with cin ∈ Cin r {0}. Since C is an almost gradation of
a linear filtration, by Proposition 2.1 it is independent, i.e. the family of
subspaces Ci1 , Ci2 . . . is independent, hence ci1 , ci2 , . . . is an independent
set, contradicting that V is a finite-dimensional vector space. ⋄

Corollary 3.2 If I and J are totally ordered sets and E : I → Sub(V ),
F : J → Sub(V ) are filtrations of a finite-dimensional vector space V
which are both closed under intersection, then every almost gradation of
E ∩ F : I × J → Sub(V ) spans E ∩ F .

Proof: Let C : I × J → Sub(V ) be an almost gradation of E ∩ F and let
v ∈ Ea ∩ Fb. Since E is closed under intersection, there exists i ∈ I such
that v ∈ Ei but v /∈ E<i. Then the residue v ∈ Ei/E<i is nonzero.

We claim that the function F
i
: J → Sub(Ei/E<i) defined by j 7→

Ei ∩ Fj is a filtration which is closed under intersection (here Ei ∩ Fj

denotes the image of Ei ∩ Fj in the quotient Ei/E<i). First of all, this
function is a filtration because on the one hand it is order-preserving
since both intersecting with Ei and projecting to the quotient preserve
containment, and on the other hand since (F, J) is a filtration of V and

hence there exists j1 ∈ J such that Fj1 = V , and hence F
i

j1
= Ei ∩ Fj1 =

Ei = Ei/E<i. Second of all, this filtration is closed under intersection
because given any subset A ⊆ J , since F is closed under intersection there
exists j ∈ J with j ≤ a for all a ∈ A with the property that Fj =

⋂

a∈A
Fa,

which implies that Ei ∩ Fj =
⋂

a∈A
Ei ∩ Fa. Note that we automatically

have Ei ∩ Fj ⊆
⋂

a∈A
Ei ∩ Fa. However because V is finite-dimensional,

by Lemma 3.4, there exists a0 ∈ A such that Fj = Fb for all b ≤ a0. Hence
in fact we have Fj =

⋂

a∈A
Fa = Fa0 , which implies Ei ∩ Fj = Ei ∩ Fa0 ,

so Ei ∩ Fj = Ei ∩ Fa0 , and thus Ei ∩ Fj =
⋂

a∈A
Ei ∩ Fa as desired.

We now show that Ei ∩ F<j = F
i

<j . Note that if {j′ ∈ J | j′ < j} = ∅,

then F<j = 0 and F
i

<j = 0, so this equality is trivial. On the other
hand, if {j′ ∈ J | j′ < j} 6= ∅, then because J is totally ordered, we

have that F<j =
⋃

j′<j
Fj′ and similarly F

i

<j =
⋃

j′<j
Ei ∩ Fj′ , therefore
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Ei ∩F<j = Ei ∩
⋃

j′<j
Fj′ =

⋃

j′<j
Ei ∩Fj′ , and since the projection map

Ei → Ei/E<i preserves unions, the desired equality follows.

Now we claim that the function C
i
: J → Sub(Ei/E<i) which sends

j 7→ Ci,j is an almost gradation of F
i
. One the one hand, given any j ∈ J

and v ∈ F
i

j = Ei ∩ Fj , because C is an almost gradation of E ∩ F , by
Equation 1 we have Ei ∩ Fj = [E<i ∩ Fj +Ei ∩ F<j ]⊕Ci,j , hence we can
write v = c + u + w where c ∈ Ci,j , u ∈ E<i ∩ Fj , and w ∈ Ei ∩ F<j .

Taking residues mod E<i yields v = c+w, where c ∈ C
i
and w ∈ Ei ∩ F<j .

Recall that we just showed this latter space is equal to F
i

<j , hence we have

F
i

j = F
i

<j + C
i
. On the other hand, we must show that F

i

<j and C
i
are

independent. Suppose that w ∈ F
i

<j and c ∈ C
i
satisfy w + c = 0. Then

w ∈ Ei ∩F<j and c ∈ Ci,j and w+ c ∈ E<i ∩Fj . By independence of Ci,j

and E<i∩Fj +Ei∩F<j we have c = 0, hence c = 0 and w = 0 as desired.

Since C
i
is an almost gradation of F

i
, by Proposition 3.5, C

i
spans,

so since v ∈ Ei ∩ Fb = F
i

b, we can write v = ci,j1 + . . . + ci,jni
where

ci,jℓ ∈ Ci,jℓ , jℓ ≤ b, and we can assume that ci,j1 , . . . , ci,jni
are nonzero

because v /∈ E<i. Therefore v = ci,j1 + . . . + ci,jni
+ v′ where v′ ∈ E<i.

Because v, ci,jℓ ∈ Fb, we have v′ ∈ Fb as well. If v′ = 0 we’re done.
If not, we may replace v by v′ and repeat the process. As in the case
of Proposition 3.5, because V is finite-dimensional, at some point in this
process we must obtain v′ = 0, so v ∈

∑

(i,j)<(a,b) Ci,j as desired.
⋄

Remark 3.2 In [GS24] we showed that if P is any well-founded partially
ordered set then every almost gradation of any poset filtration F of P
spans F .

We now give two examples that show the necessity of the conditions
of V being finite-dimensional and F being closed under intersection in
Proposition 3.5.

Example 3.1 Let V be the uncountable dimensional vector space {(a0, a1, . . .) :
ai ∈ F}, let I = Z≤0 ∪ {−∞} be the totally ordered set with the usual or-
der. Define F : I → Sub(V ) by setting Fi = {(a0, a1, . . .) ∈ V | a0 =
. . . = ai−1 = 0} for i ∈ Z≤0 and F−∞ = 0. Then Fi/F<i

∼= F, hence if
C is any almost gradation of F , the sum of all Ci has countable dimen-
sion, and hence cannot span F0. Note that in this case the only saturated
subset of I which is does not contain its infimum is Z≤0, but the element
−∞ ∈ I satisfies the property that F−∞ =

⋂

i∈Z≤0
Fi, hence F is closed

under intersection.

Example 3.2 Let V be a 1-dimensional vector space. Define I = Z≤0 ∪
{−∞} to be the totally ordered set with the usual order, and F : I →
Sub(V ) to send i 7→ V if i ∈ Z≤0 and −∞ 7→ 0, then every almost
gradation C of F has the property that Ci = 0 for all i ∈ I, so clearly C
doesn’t span F . Note that although V is finite-dimensional, this filtration
is not closed under intersection since the only lower bound for the subset
Z≤0 ⊆ I is −∞, yet F−∞ = 0 6=

⋂

i∈Z≤0
Fi = V .
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Lemma 3.5 If V is locally finite-dimensional, then for all i we have that
Li

n−∞
=

⋂

j∈Z≤0
Li

nj
, and similarly for the filtration Ri.

Proof: We prove the statement for L only, the case of R being sim-
ilar. The containment (⊆) is clear. For ease of notation, let T i

n−∞
=

⋂

j∈Z≤0
Li

nj
. Since V (yi) is finite-dimensional, the decreasing chain of

subspaces Li
n0

⊇ Li
n−1

⊇ Li
n−2

⊇ . . . must stabilize, say at J0, so that

Li
nj

= Li
nj−1

for all j ≤ J0. Therefore T i
n−∞

= Li
nJ0

. But notice that

the same statement holds for Li−J0 , i.e. there exists some J1 such that
T i−J0
n−∞

= Li−J0
nJ1

. But the transport of Li−J0
nJ1

to xi is equal to Li
nJ0−J1

which we have just shown is equal to T i
n−∞

. Continuing in this way we

obtain a sequence J0, J1, J2, . . . in in N such that T i
n−∞

is equal to the

transport of T
i−J0−J1−...−Jℓ
n−∞ to yi. So given any v = w0 ∈ T i

n−∞
there ex-

ists w1 ∈ T i−J0
n−∞

whose transport to yi is w0, and similarly w2 ∈ T i−J0−J1
n−∞

whose transport to yi−J0 is w1. So we obtain a sequence v = w0, w1, w2, . . .
which is a subsequence of a strand (v0, v1, . . .) which is contained in Li

n−∞

by definition. ⋄

Corollary 3.3 If V is a locally finite-dimensional representation of an
A∞,∞ quiver Ω then for all ℓ ∈ Z, the filtrations Lℓ and Rℓ of V (yℓ) are
closed under intersection.

Proof: We prove only the case for Lℓ, the case of Rℓ being similar. By
Remark 3.1 it suffices to check only saturated subsets of I which do not
have a lower bound. The only such subset is {. . . , n−2, n−1, n0}. On the
one hand, n−∞ ≤ ni for all i ∈ Z≤0, and on the other hand by Lemma
3.5 we have that Lℓ

n−∞
=

⋂

j∈Z≤0
Lℓ

nj
as desired. ⋄

Theorem 1 Let V be a locally finite-dimensional representation of an
A∞,∞ quiver and let C0 be any almost gradation of L0∩R0. Let Db,c

s,t and
Es,t be the corresponding subrepresentations of V which exist by Proposi-
tion 3.3. Then V =

⊕

s≤t
Es,t.

Proof: For every ℓ ∈ Z, by Corollary 3.3, Lℓ and Rℓ are closed under
intersection, hence by Corollary 3.2, Cℓ spans V (yℓ). By Lemma 3.2, for
s, t ∈ Z and b, c ∈ {m,n}, the subrepresentations Db,c

s,t , D
b,n
s,∞, Dn,c

−∞,t, and
Dn,n

−∞,∞ span V . Hence clearly the subrepresentations {Es,t | −∞ ≤ s ≤
t ≤ ∞} span V too.

On the other hand, by Proposition 2.1 the family of subspaces {Cℓ
p,q |

p, q ∈ I} is independent, hence the family of subrepresentations {Db,c
s,t , D

b,n
s,∞, Dn,c

−∞,t, D
n,n
−∞,∞ |

s, t ∈ Z, b, c ∈ {m, n}} is also independent. By Lemma 3.3 for any
−∞ ≤ s ≤ t ≤ ∞, Es,t is equal to one of Dm,m

s,t , Dm,n
s,t , Dn,m

s,t , Dn,n
s,t , Dm,n

s,∞ ,
Dn,n

s,∞, Dn,m
−∞,t, D

n,n
−∞,t, D

n,n
−∞,∞, hence the family {Es,t | −∞ ≤ s ≤ t ≤ ∞}

is independent as well. ⋄
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As a consequence, we recover the following analog of [GS24, Theo-
rem 1] for locally finite-dimensional representations of a (not necessarily
eventually outward) A∞,∞ quiver which was proved in [BLP11].

Corollary 3.4 Let Ω be a (not necessarily eventually outward) A∞,∞

quiver. Then the category rep(Ω) of locally finite-dimensional represen-
tations of Ω is infinite Krull-Schmidt. Furthermore, the indecomposables
are all thin and taking supports gives a bijection between these indecom-
posables and the connected subquivers of Ω.

4 Locally Finite-dimensional Indecompos-

ables of Finitely Branching Tree Quivers

Suppose that x0, x1, x2, . . . is a tail of a quiver Ω and that V is a locally
finite-dimensional representation of Ω. We use Ω to define an A∞,∞ quiver
Ω′ whose vertex set is {yn | n ∈ Z} and where there is an arrow from yn
to yn−1 for n ≤ 0 and if n,m ≥ 0 then the set of arrows from yn to ym is
exactly the set of arrows from xn to xm.

Example 4.1 Let Ω be the following representation of D∞ with all arrows
pointing to the right.

z1

Ω = x0 x1 x2 · · ·

z2

Then x0, x1, x2, . . . is a tail of Ω and the corresponding Ω′ is the fol-
lowing representation of A∞,∞ with all arrows pointing away from y0.

Ω′ = · · · y−2 y−1 y0 y1 y2 · · ·

We also use V to define a representation V ′ of Ω′ by setting V ′(yn) =
V (xn) for n ≥ 0 and V ′(ym) = V (x0) for m ≤ 0. Furthermore if a is an
arrow in Ω which connects yn and ym for n,m ≥ 0 then by definition there
is a corresponding arrow connecting xn and xm and we define V ′(a) =
V (a). If a is an arrow connecting yn and ym for n,m ≤ 0 we define V ′(a)
to be the identity map (since in that case V ′(yn) = V ′(ym) = V (x0).

Example 4.2 Let Ω, the tail x0, x1, . . ., and Ω′ be as in Example 4.1 and
let V be the indecomposable representation of Ω pictured below which has
dimension 2 at x0, dimension 1 at x1, and is zero at xn for n ≥ 2 (note
that this representation necessarily has dimension 1 at z1 and z2).
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F

V = F
2

F 0 · · ·

F

Then the representation V ′ of Ω′ is the same as V for all vertices and
arrows to the right of y0, and to the left is just infinitely many copies of
a two-dimensional vector space with all arrows mapping to isomorphisms
as shown below.

V ′ = · · · F
2

F
2

F
2

F 0 · · ·∼ ∼ ∼

Given any locally finite-dimensional representation V of a quiver Ω
with a tail x0, x1, . . ., let Ω

′ and V ′ be as described above.

Corollary 4.1 Suppose Ω is a quiver, z0, z1, . . . is a tail of Ω, and V
is a locally finite-dimensional indecomposable representation of Ω with
V (z0) 6= 0. Let e be the unique arrow between x0 := zn and x1 := zn+1

for some n ≥ 0. If e points x0 → x1 then V (e) must be surjective, and if
e points x1 → x0 then V (e) must be injective.

Proof: Without loss of generality we may assume the tail is x0, x1, . . .
and that e is an arrow between x0 and x1. Consider the A∞,∞ quiver Ω′

and its representation V ′ associated to the quiver Ω, its representation
V , and its tail x0, x1, . . . defined above. Then as in Section 3, we have
the poset filtrations Lℓ ∩ Rℓ of V ′(yℓ) for all ℓ ∈ Z and letting C0 be
any almost gradation of L0 ∩ R0, the results of Section 3 give associated
subrepresentations Es,t for s, t ∈ Z ∪ {±∞} such that V ′ =

⊕

s≤t
Es,t.

Notice that because for all ℓ < 0, V ′(aℓ) is an isomorphism, L0
mi

= 0
for all i ∈ Z≥0 and L0

nj
= V ′(y0) for all j ∈ Z<0 ∪ {−∞}. Therefore we

must have C0
p,q = 0 unless p = n−∞, and hence if s ≤ 0 then Es,t = 0

unless s = −∞. Therefore we have V ′ =
⊕

1≤s≤t
Es,t ⊕

⊕

t
E−∞,t.

If s ≥ 1, then Es,t(yℓ) = 0 for ℓ ≤ 0, hence for such s, Es,t is a
subrepresentation of V , and the family of subrepresentations {Es,t | s ≥ 1}
of V is still independent, thus U :=

⊕

1≤s≤t
Es,t is a subrepresentation

of V . Let W be the subrepresentation of V defined by W (x) = V (x) if
x is not equal to x0, x1, x2, . . . and W (xi) =

⊕

t E−∞,t(xi) for i ∈ Z≥0.
Notice that in fact W (x0) = V (x0). We claim that W is actually a
subrepresentation, i.e. that V (a) is a map between W (x) and W (y) for
all all arrows whose vertices are x and y. If x, y ∈ {x1, x2, . . .}, the claim
follows because

⊕

t
E−∞,t is a subrepresentation of V ′ and if at most

one of x, y is in {x0, x1, . . .} the claim follows trivially since in this case
W (x) = V (x) and W (y) = V (y). Therefore we must only consider the
case when a = e which is an arrow between x0 and x1.

If e points opposite the direction of the tail the result is trivial. since
W (x0) = V (x0). On the other hand, if e points in the direction of the
tail, then we have L1

mi
= 0 for all i ∈ Z≥0, L

1
n−∞

= L1
nj

= imV (e) for
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j ∈ Z<0, and L1
n0

= V (x1). Therefore in particular imV (e) = L1
n1

=
L1

n−∞
=

⊕

t
E−∞,t(x1).

Hence we have two subrepresentations U,W of V and we claim V =
U ⊕W . Indeed for any x /∈ {x1, x2, . . .}, U(x) = 0 and W (x) = V (x), so
the result follows, and if x ∈ {x1, x2, . . .} then U(x) =

⊕

1≤s≤t
Es,t(x) and

W (x) =
⊕

t
E−∞,t(x), and we have V (x) = V ′(x) =

⊕

1≤s≤t
Es,t(x) ⊕

⊕

t
E−∞,t(x) as desired.
Now if e points in the direction of the tail but is not surjective then

because as above we had im V (e) = W (x1), it must be that U(x1) 6= 0.
On the other hand, if e points in the opposite direction of the tail and
is not injective then we have L1

n−∞
= L1

nj
= V (x1) for all j ∈ Z≤0

and L1
m1

= L1
mi

= kerV (e) for all i ∈ Z>0 while L1
m0

= 0. Therefore
kerV (e) = U(x1) which is nonzero by hypothesis.

In either case, U is not the zero representation. Since V is inde-
composable, it must be that W is the zero representation. But since
z0 /∈ {x1, x2, . . .}, this means that V (z0) = W (z0) = 0, contradiction. ⋄

Corollary 4.2 If Ω is a quiver, x0, x1, . . . is a tail of Ω, and V is a locally
finite-dimensional indecomposable representation of Ω such that V (x0) 6= 0
then it cannot be that dimV (xn) < dimV (xn+1) for any n ≥ 0.

Proof: Suppose dimV (xn) < dimV (xn+1) for some n ≥ 0 and let a be
the arrow connecting xn and xn+1. Then V (a) is either not surjective,
if a : xn → xn+1 or not injective, if a : xn+1 → xn. This contradicts
Corollary 4.1. ⋄

Theorem 2 If Ω is a finitely branching tree quiver and V is a locally
finite-dimensional indecomposable representation of Ω then V is FLEI.

Proof: Since Ω is a finitely branching tree quiver, it is the union of a
finite quiver and finitely many infinite tails. If on a tail x0, x1, . . . we
have V (xn) 6= 0 for some n, then by [GS23, Lemma 4.2] it must be that
V (x0) 6= 0. Since V is indecomposable, by Corollary 4.2 the dimension
can never increase along this tail, and since V is locally finite-dimensional,
the dimension must stabilize. However by Corollary 4.1, all maps on this
tail are either injective or surjective, so after the dimensions stabilize all
maps must be isomorphisms. Since there are only finitely many such tails,
for all but finitely many arrows a ∈ Ω1 we have that V (a) is an isomor-
phism, and hence V is FLEI by definition. ⋄
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5 Infinite Gabriel’s Theorem for Locally

Finite-Dimensional Representations

Theorem 3 (Locally Finite-Dimensional Infinite Gabriel’s Thm.)
Let Ω be a connected quiver. The category rep(Ω) has unique representa-
tion type if and only if Ω is a generalized ADE Dynkin quiver (see Figure
1) and in this case, taking dimension vectors gives a bijection between
the set of isomorphism classes of indecomposable representations and the
positive roots of Ω (as defined in [GS23]).

Proof: Suppose that Ω is a generalized ADE Dynkin diagram. If Ω
has underlying graph An, Dn, E6, E7, or E8 then the desired conclusion is
obtained by appealing to [Gab72] and [Rin16] as in the proof of [GS23,
Theorem 2]. If Ω has underlying graph A∞, A∞,∞, or D∞, then Ω is
in particular a finitely branching tree quiver, hence by Theorem 2, every
locally finite-dimensional indecomposable representation of Ω is FLEI. In
[GS23, Section 3], we classified the FLEI indecomposables of A∞,∞ and
D∞ and showed in [GS23, Proposition 7.4]1 that taking dimension vectors
gives a bijection between these indecomposables and the positive roots of
Ω in this case.

Conversely, if the underlying graph of rep(Ω) is not a generalized ADE
Dykin diagram, then as in the proof of [GS23, Theorem 2], we note that Ω
contains a finite subquiver Ω′ which is not an ADE Dynkin diagram, and
therefore has two non-isomorphic indecomposable representations with
the same dimension vector, which we emphasize here can be taken to be
finite-dimensional. Extending these representations by zero outside of Ω′

gives two non-isomorphic locally finite-dimensional indecomposable rep-
resentations of Ω with the same dimension vector. ⋄

6 Future Work

In [GS23] we showed that when Ω is an eventually outward finitely branch-
ing tree quiver, the category Rep(Ω) is infinite Krull-Schmidt and all inde-
composables are FLEI. In [BLP11] it was proved that for any quiver Ω, the
category rep(Ω) is infinite Krull-Schmidt, and in Theorem 2 we showed
that if Ω is a finitely branching tree quiver then all indecomposables are
also FLEI.

This leaves the question: can we classify the indecomposable rep-
resentations of finitely branching tree quivers which are not eventually
outward? As we showed, any such indecomposable which is locally finite-
dimensional is automatically FLEI, but are there not locally finite-dimensional
indecomposables in this case? This question is even interesting in the case
when the underlying graph of Ω is A∞,∞, and is made potentially more

1Note that although “eventually outward” is a hypothesis of Proposition 7.4, the condition

is not necessary and indeed not even used in the proof.
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difficult by the fact that Rep(Ω) is not infinite Krull-Schmidt in this case,
as we showed in [GS24, Section 8].
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