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Abstract. A Riemann surface X is parabolic if and only if the geodesic flow

(for the hyperbolic metric) on the unit tangent bundle ofX is ergodic. Consider
a Riemann surface X with a single topological end and a sequence αn of

pairwise disjoint, simple closed geodesics converging to the end, called cuffs.

Basmajian, the first and the third author, proved that when the lengths ℓ(αn)
of cuffs are at most 2 logn, the surface X is parabolic. One could expect that

having arbitrary large cuff lengths ℓ(αn) (think of ℓ(αn) = n!n!) would allow

the geodesic flow to escape to infinity, thus making X not parabolic.
Contrary to this and motivated by their proof of the Surface Subgroup

Theorem, Kahn and Marković conjectured that for every choice of lengths

ℓ(αn), there is a choice of twists that would make X parabolic. We show
that their conjecture is essentially true. Namely, for any sequence of positive

numbers {an}, there is a choice of lengths ℓ(αn) ≥ an such that the (relative)

twists by 1/2 make X parabolic. This result extends to the surfaces with
countably many ends while it does not hold for uncountably many ends.

1. Introduction

A Riemann surface X is parabolic if it does not support a Green’s function, which
we denote by X ∈ OG. Then, X ∈ OG if and only if the geodesic flow on the unit
tangent bundle T 1X is ergodic if and only if the Brownian motion on X recurrent
if and only if almost every geodesic on X is recurrent, see [Hop71, Nic80, Sul81,
Tsu75]. For an additional (yet partial) list of equivalent conditions to X ∈ OG see
[BHŠ22, Introduction] as well as [Bis01, Nev50, Nic89, FM01, AZ90, Sul81].

In this paper we study the type problem for infinite Riemann surfaces, that is
we would like to determine whether a Riemann surface obtained by an explicit
construction is parabolic or not. For us the Riemann surface X is equipped with
the hyperbolic metric, that is X = H/Γ where Γ is a Fuchsian group. We say that
X is infinite if Γ is not finitely generated. We assume that Γ is of the first kind,
i.e. the limit set Λ(Γ) = S1, since otherwise X is easily seen to be not parabolic.

It is known that X can be obtained by gluing countably many geodesic pairs of
pants via isometries along their cuffs (i.e. boundary geodesics of pairs of pants), see
[AR04] and also [Bas93, BŠ19, PRT12]. The geodesic pairs of pants are uniquely
determined by the cuff lengths, and the isometric gluings along two cuffs are de-
termined by a real parameter called the twist. The Fenchel-Nielsen parameters of
X are the pair of sequences ({ℓn}, {tn}), where ℓn is the length and tn is the twist
of the n-th cuff, see Figure 1 for an example. Therefore, the set of all hyperbolic
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metrics on a topological surface X (modulo isometries and markings) corresponds
to all choices of the Fenchel-Nielsen parameters.

The type problem for Riemann surfaces has been studied extensively by many
authors when the Riemann surfaces were naturally defined by either gluing con-
struction along the slits or by covering maps or other constructions motivated by
complex analysis considerations, see e.g. [AS60, Doy84, LS84, Mil77, Mer08]. In
[BHŠ22] the question of deciding when X ∈ OG from the data of its Fenchel-Nielsen
parameters ({ℓn}, {tn}) was studied. A particularly interesting class of examples
considered in [BHŠ22] are the Riemann surfaces with one infinite topological end:
the (tight) flute surfaces and Loch-Ness monsters.

1.1. Tight flute surfaces. A Riemann surface X is said to be a (tight) flute
surface, if it has countably many punctures that accumulate to a single non-isolated
topological end. We will fix the pants decomposition of X with cuffs {αn}∞n=1 as
in Figure 1. Let ℓn and tn be the length and twist parameters of αn. The twist
parameter tn, for −1/2 ≤ tn ≤ 1/2, represents the (oriented) relative length of the
arc between the feet of γ′

n and γ′′
n−1 along αn, see Figure 1. By [BHŠ22, Theorem

9.1], a flute (Riemann) surface X({ℓn}, {tn}) is parabolic if

ℓn ≤ 2 log n

for all but finitely many n, for any choise of the twists {tn}.
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Figure 1. A flute surface

Intuitively, the geodesic flow on the unit tangent bundle T 1X of X is not ergodic
if there is a “lot of space” on X for the geodesics to escape towards the end space
∂∞X. A lot of space could mean that the size of the “openings” ℓn converges to ∞
very fast. To support this intuitive reasoning, consider the zero-twist flute surface
X = X({ℓn}, {0}), i.e. tn = 0 for all n. By Theorem 9.4 of [BHŠ22], X({ℓn}, {0})
is not parabolic if,

ℓn ≥ p log n,

for a fixed p > 2 and for all but finitely many n.
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The half-twist flute surface X({ℓn}, {tn}) is defined by the condition tn = 1/2 for
all n. Basmajian, the first and the third author [BHŠ22, Theorem 9.7] established
that a half-twist flute surface X({ℓn}, {1/2}) with increasing and concave lengths of
cuffs is not parabolic if (and only if) ℓn ≥ p log n for all but finitely many n and for
a fixed p > 4. This further supports the intuitive reasoning of large cuffs preventing
the geodesic flow from being ergodic. On the other hand, the second and the third
author [PŠ23] showed that the condition that the lengths are concave cannot be
removed. Namely, [PŠ23] finds a class of half-twist flutes that are parabolic with

q log n ≥ ℓn ≥ p log n

for any q > p > 0.
In two separate discussions with Jeremy Kahn and Vladimir Marković, the fol-

lowing conjecture was made, see also Question 1.9(3) in [BHŠ22].

Conjecture 1.1 (Kahn-Marković). Given a sequence {ℓn} of non-decreasing pos-
itive numbers (possibly limn→∞ ℓn = ∞), there always exists a choice of twists
{tn} such that the geodesic flow on the unit tangent bundle of the flute surface
X({ℓn}, {tn}) is ergodic, i.e. X({ℓn}, {tn}) ∈ OG.

The conjecture proposes that the influence of the twists is strong enough to make
a flute surface parabolic, even if the lengths of cuffs increase arbitrarily fast. This
conjecture was motivated by the proof of the Surface Subgroup Theorem [KM12].
Prior to the conjecture, Basmajian and the third author [BŠ19] showed that for any
sequence of lengths {ℓn} there is a choice of twists {tn} such that X({ℓn}, {tn}) has
covering group of the first kind (which is a necessary but not sufficient condition
for parabolicity).

In this paper, we prove Conjecture 1.1 under the additional assumption that
the cuff lengths can be taken larger than the assigned lengths {ℓn}, and all the
twists {tn} are equal to 1/2. The geometry of X when the lengths converge to
infinity is very sensitive to the twists. In fact, uncountably many conditions on the
lengths and twists need to hold only to guarantee that the covering group Γ is of
the first kind (see [Šar10, Theorem C]). When all the twists are 1/2, the surface is
symmetric, and the uncountably many conditions are reduced to a single condition,
which allows us to employ hyperbolic geometry estimates. Surprisingly, there are
choices of arbitrarily large cuff lengths that make the covering groups of the half-
twist flutes of the first kind, which, again, by symmetry, is equivalent to the flutes
being parabolic (see Theorem 4.1 and its proof, and Corollary 4.2).

Theorem 1.2. For every non-decreasing sequence ℓn there is a sequence ℓ′n ≥ ℓn
such that the half-twist flute surface X({ℓ′n}, {1/2}) is parabolic.

The proof of Theorem 1.2 relies on rather precise estimates on the convergence
of a nested sequence of geodesics in H using a characterization in terms of shears
from [Šar10, Theorem C] (see also [PŠ23, Proposition A.1.]). We show that ℓ′n can,
in fact, be taken arbitrarily larger than ℓn and still satisfy the conclusion of the
theorem. We also prove that only an infinite set S of twists needs to be 1/2 with
the rest of twists being 0 in order to obtain the same result (see Corollary 4.1).
Note that S can be an extremely sparse subset of N (like nk = k!k!).

Theorem 1.3. Let {ℓn}∞n=1 be a non-decreasing sequence of positive numbers with
limn→∞ ℓn = ∞. Then for every sequence of twists tn ∈ {0, 1/2} such that #{n :
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α1

β1

Figure 2. The infinite Loch-Ness monster surface

tn = 1/2} = ∞ there exist non-decreasing sequences ℓ′n and ℓ′′n satisfying ℓ′′n ≤ ℓn ≤
ℓ′n such that the surfaces X({ℓ′n}, {tn})} and X({ℓ′′n}, {tn})} are parabolic.

The construction of the sequences {ℓ′n} and {ℓ′′n} is such that it specifically
works for surfaces with zero or half twists. There is a delicate balance between
the lengths of consecutive cuffs in order to achieve parabolicity. In fact, there are
surfaces X({ℓn}, {1/2}) and X({ℓ′n}, {1/2}) with limn→∞(ℓn − ℓ′n) = 0 such that
the first surface is parabolic and the second is not.

1.2. Non-planar surfaces. Flute surfaces are planar, but the above results hold
for (non-planar) surfaces with (infinite) genus. Indeed, let X be an infinite genus
surface with a single topological end, called the infinite Loch-Ness monster surface.
Let αn be the disjoint cuffs converging to the end such that the part of X between
αn and αn+1 is homeomorphic to a torus (or a genus g surface) minus two disks.
Let βn be the geodesic which cuts off the genus between αn and αn+1. Even more
generally, we will allow that βn cuts off a higher genus but finite surface between
αn and αn+1 (see Figure 2 and Corollary 5.2).

Theorem 1.4. Let X be an infinite Loch-Ness monster surface with cuffs αn con-
verging to the topological end and cuffs βn that cut off the genus between αn and
αn+1. We assume that ℓ(βn) ≤ M < ∞ for all n. Given a sequence an of positive
numbers, there exists a choice of lengths ℓ(αn) ≥ an such that the infinite Loch-Ness
monster surface X with half-twists and chosen lengths is parabolic. Moreover, the
lengths can be chosen such that ℓ(αn) = an except on an infinite subsequence of N
where the lengths could be larger.

The above theorem is true for a surface obtained by attaching finitely many
infinite Loch-Ness monsters and/or infinite flute surfaces to a finite area bordered
surface (see Figure 3). In fact, if a surface X has countably many ends E then we
associate a bordered subsurface Xej for each end ej that is not a puncture. The
subsurface Xej accumulates only to e and has countably many closed geodesics on
its border. Other subsurfaces corresponding to other ends are attached to these
border geodesics. Each Xej is either a flute surface, a Loch-Ness monster surface,
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or a Loch-Ness monster with truncated genus and some punctures in the place of
the genus (see §2). Denote by αj,n the cuffs in Xej that accumulate to ej .

K X1

X2

X3

δ1

δ2

δ3

Figure 3. A surface with finitely many non-planar ends.

We prove a reduction theorem

Theorem 1.5. Consider a Riemann surface X with countably many ends E. Then
X ∈ OG if and only if, for each ej ∈ E, the modulus of the curve family in Xej that
connects αj,1 to ej is zero.

Using the above reduction theorem, we can extend the examples from single-
end surfaces, such as the infinite flute surfaces and the infinite Loch-Ness monster
surfaces, to all surfaces with, at most, countably many ends (see Corollary 5.4).

Theorem 1.6. Let X be a topological surface with countably many ends E. Given
a double sequence {aj,n} of positive numbers increasing in n for each fixed j, there
exists a Riemann surface structure Y on X such that

ℓ(αj,n) ≥ aj,n

and

Y ∈ OG.

Finally, we remark that surfaces with countably many ends are the largest class of
surface for which the above theorem can hold. Indeed, by [Pan24] (see also [Šar24]),
if X is a Riemann surface with a Cantor set of ends and αj,n, n = 1, . . . , 2j+1, are
cuffs at level n that, for fixed r > 1, satisfy

1

n2
≳ ℓ(αj,n) ≳

jr

2j

then X /∈ OG.



6 HRANT HAKOBYAN, MICHAEL PANDAZIS AND DRAGOMIR ŠARIĆ

1.3. Overview and open questions. One of the main problems we are interested
in is to find (hopefully necessary and sufficient) conditions on the Fenchel-Nielsen
parameters of a flute surface which would imply parabolicity. The following table
summarizes some ot the recent results from [BHŠ22, PŠ23] and the current paper
in the case of symmetric surfaces.

Twists Lengths Conclusion Reference

tn = 0 no restrictions X ∈ OG ⇐⇒
∑

e−ℓn/2 = ∞ [BHŠ22]

tn = 1/2 no restrictions X ∈ OG ⇐⇒
∑

e−σn/2 = ∞ [PŠ23]

tn = 1/2 ℓn is concave X ∈ OG ⇐⇒
∑

e−ℓn/4 = ∞ [BHŠ22]

tn ∈ {0, 1/2} no restrictions X ∈ OG ⇐=
∑

e−σ̃n/2 = ∞ Thm 4.1

Table 1. Conditions for parabolicity of tight flutes.

Thus, a natural question would be the following.

Problem 1.7. Suppose X = X({ℓi}, {ti}) is a symmetric tight flute surface, i.e.,
ti ∈ {0, 1/2}. Find necessary and sufficient conditions for X ∈ OG. What if ℓn is
concave?

Below are the results related to the Kahn-Marković conjecture and the effect of
twisting (i.e., carefull choice of twists) on the type of the surface X.

Twists Lengths Conclusion Reference

t′n∈ ?? ∀{ℓn} X ∈ OG
??⇐= (ℓn, tn)⇝ (ℓn, t

′
n) Conj. 1.1

t′n∈{0, 1/2} ℓnk
= ℓnk+1 X ∈ OG ⇐= (ℓn, tn)⇝ (ℓn, t

′
n) Cor. 4.2

t′n∈{0, 1/2} ℓ′n ≥ ℓn X ∈ OG⇐= (ℓn, tn)⇝ (ℓ′n, t
′
n) Thm. 1.2

t′n∈{0, 1/2} ℓ′n = ℓn X ∈ OG
??⇐= (ℓn, tn)⇝ (ℓn, t

′
n) Conj. 1.8

Table 2. Parabolicity through twisting.

As the second and third lines in the table above suggest one may suspect that
the twists can in fact be taken to be in {0, 1/2} to guarantee that X is parabolic.
This can be thought of as a strong version of the Kahn-Marković conjecture.

Conjecture 1.8 (Basmajian, Hakobyan, Pandazis, Šarić). For every non-decreasing
sequence of lengths {ℓn}, there is a choice of twists tn ∈ {0, 1/2} s.t. X({ℓn}, {tn})
is parabolic.
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Finally, it would be interesting to find conditions on the Fenchel Nielsen parame-
ters which would guarantee that X is complete but is not parabolic. That such flute
surfaces exist was shown in [Kin11], but no explicit necessary or sufficient condition
in terms of the length or twist parameters is known.

2. Preliminaries

A Riemann surface X will always be identified with H/Γ, where H is the upper
half-plane and Γ is a Fuchsian group. The conformal hyperbolic metric (i.e. the
metric of constant curvature −1) is induced by the hyperbolic metric on H since Γ
acts by isometries on H. The Riemann surface X is said to be infinite if Γ is not
finitely generated.

A geodesic pair of pants is a bordered hyperbolic surface whose interior is home-
omorphic to a sphere minus three closed disks and whose boundary components
are either simple closed geodesics, called cuffs, or punctures. We will assume that
at least one boundary component is a cuff. Two geodesic pairs of pants P1 and
P2 with two cuffs α1 ⊂ ∂P1 and α2 ⊂ ∂P2 of equal length can be glued by an
isometry along the cuffs to form a more complicated hyperbolic surface (that is
homeomorphic to S2 minus four closed disks). The choice of gluings is determined
by a real parameter, called the twist. Namely, consider the unique orthogeodesics
from α1 to another boundary component of P1 and from α2 to another boundary
component of P2. The signed distance between the feet x1 ∈ α1 and x2 ∈ α2 of the
orthogeodesics along the identified cuffs α1 ≡ α2 divided by the common length
ℓX(α1) = ℓX(α2) is the (relative) twist t(α1) ∈ [−1/2, 1/2], where the values −1/2
and 1/2 represent the same gluing. Note that if a pair of pants has two cuffs of
equal lengths, then they can be glued by an isometry to produce a bordered surface
whose interior is homeomorphic to a torus minus a closed disk.

By taking countably many geodesic pairs of pants {Pn}n and gluing them by
isometries along the cuffs of equal lengths, we obtain an infinite Riemann surface
X. Let {αj}j be the family of the images of the cuffs in X. The hyperbolic
metric (and, by extension, the complex structure) of X is uniquely determined by
the lengths {ℓ(αj)}j and the twists {t(αj)}j . In general, the hyperbolic metric on
X may be incomplete, and the natural completion is obtained by attaching the
hyperbolic funnels to cuffs not identified with other cuffs and half-planes to bi-
infinite simple geodesics which are in the completion of the union of the pairs of
pants (see Basmajian [Bas93]). In fact, every topological pants decomposition of
a Riemann surface can be straightened to a geodesic pants decomposition of the
interior of the convex core of X, and the whole surface X is obtained by attaching
the funnels and the geodesic half-planes to the boundary components of the convex
core (see [AR04], [BŠ19]).

When we need to add either funnels or the half-planes, the Fuchsian group Γ is
of the second kind, and the convex core of X is a proper subset of X. In the case
when the convex core is the whole surfaces X, then Γ is of the first kind, and X is
the union of countably many pairs of pants. We are mainly interested in the groups
of the first kind. The pair of sequences ({ℓ(αn) > 0}, {t(αn) ∈ (−1/2, 1/2]}) are
called the Fenchel-Nielsen parameters and they determine X.

A Green’s function on a Riemann surfaceX is a harmonic function g : X\{z0} →
R with g(z) = − log |z−z0|+o(1) for z ∈ X near the fixed point z0 ∈ X and g(z) → 0
as z leaves every compact subset of X. A Riemann surface X is said to be parabolic,
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in notation X ∈ OG, if it does not support a Green’s function (see [AS60]). It is
known that X ∈ OG if and only if the geodesic flow on the unit tangent bundle
T 1(X) is ergodic (see [Nic80], [Sul81]).

A topological end of a Riemann surface X is an equivalence class of nested
components {Unj

}nj
given by the complements of compact sets {Kn}n that form

an exhaustion of X (see [Ric63]). We say such an end is accumulated by genus if
each Unj corresponding to the end has positive genus. The space of ends E is a
closed subset of a Cantor set, and X ∪E is a compact set containing X as an open,
dense subset. An end e ∈ E is simple if it corresponds to a puncture or a funnel,
i.e., if it is not accumulated by other ends or a genus.

We are interested in the case when E is countable. We consider the isolated
points of E . If an isolated end e1 is not simple, then it is accumulated by genus.
Then, there exists a sequence of cuffs {αk}k accumulating to the end e1 that are
the boundary components of a sequence of components {Uj}j of the complements
of compact exhaustion {Kn}n of X that determines the end e1. The part of X
between any two adjacent cuffs is a finite surface with a genus. The first cuff cuts
out an infinite Loch-Ness monster surface with end e1, denoted by Xe1 (see Figure
4).

α1

α1α1
α1

α2

α2

α3

β1

Xe1

Xe2
Xe3

e1

e2 e3
e4

e14

e24

e34

Figure 4. A decomposition into subsurfaces.

Next, we consider isolated points of E ′, where E ′ is the set of non-isolated points
of E . If an end e2 ∈ E ′ is isolated in E ′ and accumulated by simple ends ek2 in E , then
there is a choice of a sequence of cuffs cutting off the components of the complement
of a compact exhaustion defining e2. Each cuff of the sequence bounds a tight flute
surface with one boundary geodesic (which is the cuff) and one topological end
e2. Each two adjacent cuffs bound a geodesic pair of pants with one puncture (see
Figure 4). If an end e3 ∈ E ′ is isolated in E ′ and accumulated by both genus and
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simple ends, then again, we can find a sequence of cuffs that accumulate to the end
such that between any two adjacent cuffs, we have a finite surface with genus and
punctures. The first cuff cuts out a surface Xe3 , which is a Loch-Ness monster with
punctures (see Figure 4).

If an isolated point e4 ∈ E ′ is accumulated by a sequence of non-simple ends
ek4 ∈ E \ E ′, then we cut out along the cuffs βk the corresponding (Loch-Ness
monster) surfaces of the ends ek4 . We obtained a bordered surface Xe4 with one
cuff cutting it off from X and with countably many boundary geodesics βk. Again,
there is a sequence of cuffs αn ⊂ Xe4 accumulating to the end e4 such that between
any two adjacent cuffs, we have a finite subsurface (see Figure 4).

If an isolated end e5 ∈ (E ′)′ is accumulated by a sequence of ends ek5 that are
isolated in E ′, then we can cut off these ends along cuffs {βk}k to obtain the surface
Xe5 with a sequence of cuffs {αn}n converging to the end e5 (see Figure 5).

e5

Xe15

Xe25

Xe35

e15

e25

e35

α1
α2 α3

β1
β2

β3

Figure 5. A decomposition into subsurfaces.

By continuing this process indefinitely we can make every end to be isolated at
a certain stage (over countably many ordinals), see [Kec95, page 34].

Thus to any end e, there corresponds a subsurface Xe, which accumulates to e
whose boundaries are cuffs that are used to cut off subsurfaces from the ends that
are isolated before e and that has a sequence of disjoint cuffs accumulating to e as
in Figures 4 and 5.

3. A reduction from countably many to a single end

When X has countably many topological ends, we find a necessary and sufficient
condition for X ∈ OG expressed in terms of one end at a time.
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Let {Xn}∞n=1 be an exhaustion of X by finite area bordered geodesic subsurfaces.
Let Γn be the curve family in Xn \ X1 that connects ∂X1 and ∂Xn. Recall that
X ∈ OG if and only if mod(Γn) → 0 as n → ∞ ([AS60]).

Definition 3.1. Let Γ∞ be the family of curves in X \X1 that starts at a single
point of ∂X1 on one side and accumulate to a unique topological end of X on the
other side.

We prove

Theorem 3.2. Let X be any Riemann surface. Then

X ∈ OG if and only if mod(Γ∞) = 0.

Proof. Assume that X ∈ OG. Then mod(Γn) → 0 as n → ∞. Since each curve in
Γn extends to a curve in Γ∞, it follows that

0 ≤ mod(Γ∞) ≤ mod(Γn).

By letting n → ∞, we conclude that mod(Γ∞) = 0.
Assume that mod(Γ∞) = 0. If X /∈ OG, then there exists a non-constant

harmonic function u : X \ X̄1 → R whose boundary values are 0 on ∂X1 and
that satisfies 0 < u < 1 on X \ X̄1 (see [AS60, page 204, Theorem IV.6C]). The
function u is the limit of the solutions un to the Dirichlet problem in Xn \ X1

with boundary values 0 on ∂X1 and 1 on ∂Xn. If u
∗ is a local harmonic conjugate

of u, then [d(u + iu∗)]2 is a holomorphic quadratic differential on X \ X1 whose
horizontal trajectories are locally given by u∗ = const (see [Šar24, Theorem 4.2]).
The quadratic differential [d(u+iu∗)]2 is integrable since, in the natural parameter,
the du-length of each u∗ = const is at most 1, and the du∗-length of ∂X1 is finite
since ∂X1 is compact.

There is a positive measure set of non-singular horizontal trajectories that start
at ∂X1 and converge to the topological boundary of X in the other direction.
Indeed, let e1 and e2 be two ends in the accumulation of a horizontal trajectory r.
The two ends are separated by a finite set of simple closed (hyperbolic) geodesics
on X, and the trajectory r will cross infinitely many times the (hyperbolic) collar
neighborhood of a single closed geodesic. The |d(u+iu∗)|-length of each arc of r that
connects the two boundary components of the collar is bounded below. Therefore,
the length of the trajectory r is infinite. Since there are countably many simple
closed geodesics on X and [d(u + iu∗)]2 is integrable, it follows that there can be,
at most, a zero-measure set of such trajectories. Since the modulus of the above
family of horizontal trajectories is positive (see [Šar24, Theorem 4.2]), it follows by
the monotonicity of the modulus that mod(Γ∞) > 0. This is a contradiction. Thus
X ∈ OG. □

For a Riemann surface X whose space of ends E is countable, the above theorem
can be used to express the parabolicity condition in terms of conditions on {Xe}e∈E′ .
We prove

Theorem 3.3. Let X be a Riemann surface whose space of ends E is countable.
Let αe be the boundary geodesic of the subsurface Xe (that cuts off Xe from the
subsurfaces in the previous generations) corresponding to an end e ∈ E ′ and let Γe

be the family of arcs in Xe connecting αe to the end e. Then

X ∈ OG
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if and only if

(1) mod(Γe) = 0, for all e ∈ E ′.

Proof. Assume that (1) holds. By Theorem 3.2, X ∈ OG if and only if mod(Γ∞) =
0. Recall that Γ∞ consists of curves that have one endpoint in a compact subset ofX
and accumulate to a single topological end in the other direction. This implies that
Γ∞ overflows ∪e∈E′Γe. It follows that mod(Γ∞) ≤

∑
e∈E′ mod(Γe) = 0. Therefore

X ∈ OG.
Assume that X ∈ OG. Let e ∈ E ′. Let K be a finite subsurface of X that

contains cuff αe that is on the boundary of Xe. Since the curve families Γe ⊂ Xe

is a subfamily of the curve family Γ∞ that connects K with the topological ends,
it follows that mod(Γe) = 0. □

4. Parabolic flute surfaces with arbitrary large cuffs

In this section, X is a flute surface with cuffs {αn}∞n=1 as in Figure 1. We
establish that when the twists around αn are all 1/2 then the lengths ℓn of the cuffs
αn can be chosen to be larger than any prescribed sequence of positive numbers
with X ∈ OG. This answers the original question of Kahn and Marković of whether
one can find flute surfaces with arbitrarily large cuffs.

First, we establish a sufficient condition for parabolicity for arbitrary flute sur-
faces with zero or half twists, generalizing the result for half-twist surfaces from
[PŠ23]. We say that a flute surface is a symmetric flute surface with infinitely
many half-twists if ti ∈ {0, 1/2} for i ≥ 1, and #{i : ti = 1/2} = ∞ (see Figure 6).
Note that for such a surface, there always exists an increasing sequence of positive
integers {nk} such that

ti =

{
1/2, if i = nk,

0, otherwise.
(2)

t1 = 0

t2 = 0 t3 = 1
2

t4 = 1
2

t5 = 0
t6 = 1

2

Figure 6. The half and zero twists flute surface.

Theorem 4.1. Suppose X = X({ℓn}{tn}) is a symmetric surface with infinitely
many half twists as in (2). Then for every non-decreasing sequence ℓn we have that
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X({ℓn}, {tn}) ∈ OG, provided

∞∑
k=1

e−σk/2 = ∞,(3)

where σk = ℓnk
− ℓnk−1

+ . . .+ (−1)k−1ℓ1.

Proof. Let ∆1 and ∆2 be ideal geodesic triangles in the upper half-plane H with
disjoint interiors and the common boundary side geodesic g. We choose the orien-
tation of the geodesic g such that ∆1 is on its left side. Consider the orthogonal
projections p1 and p2 of the third vertices of ∆1 and ∆2 to the common geodesic
g. The shear s(g) on the geodesic g of the pair (∆1, ∆2) is the signed hyperbolic
distance (with respect to the orientation of g) from p1 to p2 (see [Pen93], [Šar10]).
Note that the shear s(g) is independent of the orientation of g.

The symmetric flute surface X can be divided into the front and back sides by
geodesics connecting the punctures (see Figure 6). The dividing geodesics partition
each pair of pants (except the first one) into two isometric regions: the front and the
back pentagons with four right angles and one zero angle. There is an orientation
reversing isometry of X, which pointwise fixes the dividing geodesics and maps
each front pentagon to the corresponding back pentagon. The front side X∗ of X
is planar, and we fix a single lift of the front side X∗ to the universal covering H.
The lift X̃∗ is an infinite ideal polygon (see Figure 7), and the covering map is a
conformal map of the polygon onto X∗. Let {g2n−1} be the (infinite) geodesics in

H that are lifts of the cuffs αn and intersect X̃∗, and {g2n} the geodesics which
share the initial endpoint with g2n−1 and the terminal endpoint with g2n+1.

By the front-to-back symmetry of X, it follows that the family of curves that
connects a finite area subsurface of X with the non-simple topological end (in the
case of flute surface, the non-simple topological end is accumulated by punctures)
has zero modulus if and only if the curve family connecting a finite area sub-polygon
of X̃∗ to the boundary at infinity not corresponding to punctures has zero modulus.
Indeed, the orientation-reversing conformal map of X, which maps X∗ to the back
side of X, transfers allowable metrics for X to allowable metrics for X∗ with a
multiplicative constant 2. Therefore, one family has zero modulus if and only if
the other family has zero modulus. The conformal image X̃∗ of X∗ is an ideal
polygon in H with countably many ideal vertices corresponding to the punctures.
The closure of X̃∗ in H∪ R̂ in addition to its vertices contains either a single point
in R̂ = R ∪ {∞} (which is the accumulation of the vertices) or an interval. If it is
a point, then the modulus of the above family is zero, and X is parabolic. Hence,
the covering group is of the first kind. If the closure contains an interval, then X is
not parabolic, and the covering group is of the second kind. Thus, the symmetric
flute surface is parabolic if and only if its covering group is of the first kind (for
more details, see [PŠ23]).

Therefore, the only thing we need to prove is that the infinite polygon X̃⋆ ac-
cumulates to one point on R̂ in addition to its ideal vertices. The fronts of the
geodesic boundaries αn of X lift to the curves α̃n in the universal cover H. These
lifts α̃n lay on corresponding geodesics we call g2n−1 (see Figure 7). Then define
the geodesics g2n to connect the initial point of g2n−1 and the terminal point of
g2n+1. The result is a nested sequence of geodesics gn such that gn and gn+1 share
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an endpoint and no three geodesics have a common endpoint. We compute the
shears s(gn) for n ≥ 2 of the geodesics gn.

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11

Figure 7. Isometric lift of the front of X to D.

The orthogeodesic arc ηn from g2n−1 to g2n+1 is on the lift of the front side

X̃⋆ (see Figure 7). The ηn, α̃2n−1, and α̃2n+1 make up three sides of a geodesic

pentagon in X̃⋆ that has four right angles and one zero angle. The orthogeodesic
ray from the vertex of any of these pentagons with a zero angle to ηn separates
it into two Lambert quadrilaterals. For each such pentagon, the sides on g2n−1

and g2n+1 have lengths ℓn
2 and ℓn+1

2 . Using a hyperbolic trigonometry formula for
Lambert quadrilaterals [Bus10, page 38, Theorem 2.3.1(i)] gives

ℓ(ηn) = sinh−1
( 1

sinh ℓn
2

)
+ sinh−1

( 1

sinh ℓn+1

2

)
.

It follows that for large n,

(4) e−
ℓn+1

2 ≲ ℓ(ηn) ≲ e−
ℓn
2 .

We define the cross-ratio of a quadruple of points (a, b, c, d) in R̂ by

cr(a, b, c, d) =
(b− a)(d− c)

(b− c)(d− a)
.

If g is the geodesic with endpoints (a, c), and if ∆1 is the ideal triangle with vertices
{a, c, d} and ∆2 is the ideal triangle with vertices {a, b, c}, then the shear along e
with respect to ∆1 and ∆2 is (see [ŠWW24]))

s(g) = log cr(a, b, c, d).

Use a Möbius map to map the quadruple of points (a, b, c, d) onto (−R,−r, r, R)
for some 0 < r < R. Then the distance ρ between the geodesic |z| = r and |z| = R
is given by

ρ = log
R

r
.
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On the other hand, we have

es(g) = cr(−R,−r, r, R) =
(R− r)2

4rR
.

The above gives

es(g) = sinh2
ρ

2
.

Since ηn → 0 as n → ∞, it follows that s(g2n) < 0 for large enough n and

(5) s(g2n) = log sinh2
ℓ(ηn)

2
.

We orient all geodesics {gn} to the left as seen from g1. Consider g2n−1 that
contains the lift of a cuff αn such that nk = n for some even k and the corresponding
quadrilateral as in Figure 8. Let A be the initial point of g2n−3, and D the terminal
point of g2n+1. Call P the foot of the orthogedoesic from point A to the geodesic
g2n−1 and S the foot of the orthogeodesic from pointD to g2n−1. Let B ∈ g2n−3 and
Q ∈ g2n−1 be the endpoints of orthogeodesic ηn−1. Call R ∈ g2n−1 and C ∈ g2n+1

the endpoints of ηn (see Figure 8). Note that ηn−1 and ηn belong to the boundary

sides of the polygon X̃∗, and that the points (R,P, S,Q) appear in that order for
the orientation of g2n−1.

The choice of the half-twists and because the index of gi has remainder 1 under
division by 2 guarantees that the arc PS is contained in arc RQ (see Figures 7 and
8). Note that s(g2n−1) is the signed distance from P to S for the orientation of
g2n−1. If P comes before S for the orientation of g2n−1, then s(g2n−1) = ℓ(PS)
and

ℓ(QR) = ℓ(QP ) + ℓ(RS)− ℓ(PS),

where ℓ(·) is the positive distance. If P comes after S, then s(g2n−1) = −ℓ(PS)
and

ℓ(QR) = ℓ(QP ) + ℓ(RS) + ℓ(PS).

By the above two equalities and ℓ(QR) = ℓn/2, we obtain

(6) s(g2n−1) = sinh−1 1

sinh ℓ(ηn−1)
+ sinh−1 1

sinh ℓ(ηn)
− ℓn

2
.

Consider g2n−1 that contains the lift of a cuff αn such that nk = n for some odd
k and the corresponding quadrilateral in Figure 9. Call the vertices of the quadri-
lateral not on geodesic g2n−1, points A and D to the left and right, respectively.
Let P be the foot of the orthogeodesic from point A to geodesic g2n−1, and let S
be the foot of the orthogeodesic from point D to the same geodesic. Call B and Q
the endpoints of the orthogeodesic ηn−1 from g2n−3 to g2n−1. Then call R and C
the endpoints of the orthogeodesic ηn from g2n−1 to g2n+1 (see Figure 9).

The choice of the half-twists and because the index of gi has remainder 1 under
division by 2 guarantees that the arc QR is contained in arc PS (see Figures 7 and
9). From Figure 9, analogous to the case above, we obtain

(7) s(g2n−1) = sinh−1 1

sinh ℓ(ηn−1)
+ sinh−1 1

sinh ℓ(ηn)
+

ℓn
2
.

Consider g2n−1 that contains the lift of a cuff αn such that tn = 0 and the
corresponding quadrilateral in Figure 10. Call the vertices of the quadrilateral not
on geodesic g2n−1, points A and D to the left and right, respectively. Let P be the
foot of the orthogeodesic from point A to geodesic g2n−1, and let R be the foot of
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B Q

S

P

R
C

A

D

g2n−1

Figure 8. s(g2n−1) = ℓ(PQ) + ℓ(RS)− ℓn
2 if tn = 1

2 and nk = n
for some even k.

the orthogeodesic from point D to the same geodesic. Call B and Q the endpoints
of the orthogeodesic ηn−1 from g2n−3 to g2n−1. Then call C the endpoint on g2n+1

of the orthogeodesic ηn from g2n−1 to g2n+1 (see Figure 10).

From Figure 10 we obtain

(8) s(g2n−1) = sinh−1 1

sinh ℓ(ηn−1)
+ sinh−1 1

sinh ℓ(ηn)
.

It will be enough to prove that the sequence of nested geodesics {gn}∞n=1 (see
Figure 7) does not accumulate in H. It is immediate that

∑∞
n=1 ℓ(ηn) = ∞ im-

plies that X̃⋆ has only one point of accumulation on R̂ in addition to its vertices.
Therefore we assume that

∑∞
n=1 ℓ(ηn) < ∞ in the rest of the proof. This implies

that

(9) 1 ≤
∞∏

n=1

(1 + ℓ(ηn)) < ∞.

By [Šar10], the sequence {gn}∞n=1 does not accumulate in H if and only if the
piecewise horocyclic path obtained by concatenating the horocyclic arcs between
the adjacent geodesics gn−1 and gn has infinite length (see also [PŠ23, Proposition
A.1]). Denote by sn = s(gn) the shear of gn with respect to the ideal quadrilateral
whose vertices are the ideal endpoints of gn−1 and gn+1 for n ≥ 2. We do not define
the shear of g1. We start the piecewise horocyclic path on g1 such that the part in
the wedge between g1 and g2 has length 1/es1 . By [Šar10] and [PŠ23, Proposition
A.3], the length of the part of the piecewise horocyclic path hn between gn and
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S

R C

D

Q

P

B

A

g2n−3

g2n−1

g2(n+1)−1

Figure 9. s(g2n−1) = sinh−1 1
sinh ℓ(ηn−1)

+ sinh−1 1
sinh ℓ(ηn)

+ ℓn
2 if

tn = 1
2 and nk = n for some odd k.

gn+1, denoted by ℓ(hn), is

ℓ(hn) =

{
e−s1−s2−...−sn , if n is odd,

es1+s2+...+sn , if n is even.
(10)

We will use, for x > 0, the inequalities esinh
−1 1

sinh x > 2
x and sinhx > x to get a

lower estimate of the length of the piecewise horocyclic path ℓ(h).
We first estimate ℓ(h2n). By the above, we have

ℓ(h2n) = es2n+···+s1

and we partition the sum of the first 2n shears into n consecutive groups s2j+s2j−1

for j = 1, . . . , n. For x > 0, we have the inequalities esinh
−1 1

sinh x > 2
x and sinhx > x.

Together with (5)–(8), this gives

es2n = sinh2
ℓ(ηn)

2
>

[ℓ(ηn)]
2

4

and

es2n−1 >
2

ℓ(ηn−1)

2

ℓ(ηn)
ean ,

where

an =

 0, if n ̸= nk

ℓn/2, if n = nk, k odd
−ℓn/2, if n = nk, k even
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R

C

D

Q

P

B

A

g2n−3

g2n−1

g2(n+1)−1

Figure 10. s(g2n−1) = sinh−1 1
sinh ℓ(ηn−1)

+ sinh−1 1
sinh ℓ(ηn)

if tn = 0.

Then we have

es2n+s2n−1 >
ℓ(ηn)

ℓ(ηn−1)
ean

which gives

es2n+...+s1 >
ℓ(ηn)

ℓ(η1)
ean+···+a1 .

By summing over all n = nk with k odd and using the inequality ℓ(ηn) > e−
ℓn
2 ,

we get

(11)
∑
odd k

es2nk
+...+s1 > C

∑
odd k

e−
σk−1

2 .

By (5)–(8), the inequalities e− sinh−1 1
sinh x > x

5 and e− sinh−1 1
sinh x

sinh x
2

> 1
1+x for small

x > 0, and ℓ(ηnk
) > e−

ℓnk+1

2 ≥ e−
ℓnk+1

2 using an argument similar to the above,
we obtain for even k

(12)
∑

even k

e−s2nk−1−...−s1 > C
∑

even k

e−
σk+1

2 .

By summing (11) and (12) we obtain for some constant C > 0 that the piecewise
horocyclic path has length ℓ(h) greater than

C

∞∑
k=1

e−
σk
2
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and the assumption of the theorem implies that it is of infinite length. Thus X̃∗

accumulates to exactly one point in addition to its vertices. This implies that X is
parabolic. □

Figure 11. A symmetric end surface with half twists.

Theorem 4.1 implies that Kahn-Marković conjecture holds for every {ℓn} satis-
fying (15). In particular, we have the following.

Corollary 4.2. Suppose {ℓn} is a non-decreasing sequence which has a subsequence
{ℓnk

} s.t. for k ≥ 1 we have

ℓn2k−1
= ℓn2k

.(13)

Then for the twists {tn} given by (2) the flute surface X({ℓn}, {tn}) is parabolic.

Proof. By (13) we have σ2k = ℓn2k
− ℓn2k−1

+ . . . + ℓn2
− ℓn1

= 0, and e−σ2k = 1
for k ≥ 1. Hence (15) holds and X({ℓn}, {tn}) ∈ OG. □

5. Loch-Ness monster surfaces and basic end surfaces

In this section, we consider the Loch-Ness monster Riemann surface X with cuffs
αn converging to the infinite end such that the subsurface Yn ⊂ X with boundaries
αn and αn+1 has genus one. Let βn be the cuff in Yn that cuts off the genus of Yn.
In other words, αn, αn+1, and βn are on the boundary of a pair of pants.

We can form the Loch-Ness monster surface by starting from the bordered surface
X0, which has one end at infinity, a sequence of cuffs αn converging to infinity, and
between any two cuffs αn and αn+1 there is a closed boundary geodesic βn. Then,
to X0, we can attach a genus one surface to each βn. The surface X0 can have a
puncture instead of βn at arbitrary places. We call this surface X0 the basic end
surface.

It is also possible to attach a higher genus surface to a border βn of X0 and even
an infinite surface. In fact, in Section 1 we associated to each topological end e of
X a basic end surface Xe.

Theorem 5.1. Let X0 be a basic end surface with cuffs {αn}n converging to the end
with increasing lengths ℓn and border closed geodesics {βn}n with lengths bounded
above, where some βn can be punctures. Assume that the twists of X0 around the
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cuffs αn with respect to the orthogeodesics from βn are in {0, 1/2} with infinitely
many twists tnk

= 1/2. Then the modulus of the curve family in X0 connecting α1

to the point at infinity is zero under the condition that
∞∑
k=1

e−σk/2 = ∞,(14)

where σk = ℓnk
− ℓnk−1

+ . . .+ (−1)k−1ℓ1.

Proof. Since the surfaceX0 is symmetric, it is enough to prove that the curve family
in the front half X∗

0 has zero modulus. The front half X∗
0 is planar and simply

connected (since the genus is cut off by βn). Therefore X∗
0 has a conformal image

X̃∗
0 in H, which is an infinite polygon. It is enough to prove that the accumulation

of X̃∗
0 on R̂ is a single point. This follows if the lifts of αn do not accumulate in H.

We form the same zig-zag pattern as in the case of the flute surface by drawing extra
geodesics between two lifts of the cuffs. The geodesics {gn}n have asymptotically
the same distance ℓ(ηn) as in the case of the flute surface because ℓ(βn) is bounded

above. Therefore, the accumulation set of X̃∗
0 is a single point on R̂. The modulus

of the curve family is zero. □

The above theorem has an immediate corollary for the Loch-Ness monster sur-
faces.

Corollary 5.2. Let X0 be a basic end surface as above with ℓn = ℓ(αn) increasing
and closed boundary geodesics βn with ℓ(βn) bounded above. Assume that the twists
tn ∈ {0, 1/2} with infinitely many twists tnk

= 1/2. Let X be a Loch-Ness monster
surface obtained by attaching to each βn an arbitrary surface with a finite area (and
no boundary). Then

X ∈ OG

provided that
∞∑
k=1

e−σk/2 = ∞,(15)

where σk = ℓnk
− ℓnk−1

+ . . .+ (−1)k−1ℓ1.

Proof. The basic end surface satisfies the condition that the modulus of the curve
family going to its end is zero. The attached surface can have a genus going to
infinity, but each individual attached surface does not have an infinite end. There-
fore, the curve families in the attached surfaces going to infinity have zero modulus
as well. By Theorem 3.3, the surface X is parabolic. □

In fact, the proof of the above theorem only requires that the cuffs αn lift to
geodesics that do not accumulate in H. It is possible that ℓ(βn) are unbounded,
and this still to be true.

We are also in a position to have a general theorem regarding the parabolicity
of surfaces with countably many ends that have arbitrarily large sequences of cuffs
going to every topological end.

Theorem 5.3. Let X be a Riemann surface with at most countably many ends E.
Assume that each subsurface Xej for ej ∈ E ′ has a sequence of cuffs αj,n converging
to ej with increasing lengths ℓj,n = ℓ(αj,n) and twist in {0, 1/2} with infinitely many
twists equal to 1/2. If ℓj,n satisfy (15) for each j then X is parabolic.
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Proof. By Theorem 3.3, it is enough to prove that the family of curves starting on
the boundary geodesic of Xej that is attached to an end surface in the previous
level and going to the end ej has zero modulus. This follows from the condition
(15) by Theorem 5.1. □

We note that the condition (15) is satisfied for arbitrarily large cuffs in each end.
One example of accomplishing this is to make infinitely many pairs of adjacent cuffs
equal to each other while keeping the other lengths as assigned by some double
sequence of positive numbers {aj,n} increasing in n for each fixed j.

Corollary 5.4. Let X be a topological surface with countably many ends E. Let
Xej be the end surface corresponding to ej ∈ E ′ and let {αj,n}∞n=1 be the cuffs
in Xej accumulating to ej. Given a double sequence {aj,n} of positive numbers
increasing in n for each j, there exists a Riemann surface structure on X such that
ℓ(αj,n) ≥ aj,n and X ∈ OG.

Moreover, if nj,k is an infinite subsequence and if we choose ℓ(αj,n) = aj,n for
all n ̸= nj,k − 1, and ℓ(αj,nj,k−1) = ℓ(αj,nj,k

) then X ∈ OG.

References

[AS60] L. Ahlfors and L. Sario, Riemann surfaces, Princeton Mathematical Series, No. 26

Princeton University Press, Princeton, N.J. 1960.

[AR04] V. Álvarez and J. Rodŕıguez, Structure theorems for Riemann and topological surfaces,

J. London Math. Soc. (2) 69 (2004), no. 1, 153-168.
[AZ90] K. Astala and M. Zinsmeister, Mostow rigidity and Fuchsian groups. C. R. Acad. Sci.

Paris Sér. I Math. 311 (1990), no. 6, 301-306.

[Bas93] A. Basmajian, Hyperbolic structures for surfaces of infinite type, Trans. Amer. Math.
Soc. 336 (1993), no. 1, 421-444.
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