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SINGULARITIES OF NORMALIZED R-MATRICES AND

E-INVARIANTS FOR DYNKIN QUIVERS

RYO FUJITA

Abstract. We study the singularities of normalized R-matrices be-
tween arbitrary simple modules over the quantum loop algebra of type
ADE in Hernandez–Leclerc’s level-one subcategory using equivariant
perverse sheaves following the previous works by Nakajima [Kyoto J.
Math. 51(1), 2011] and Kimura–Qin [Adv. Math. 262, 2014]. We show
that the pole orders of these R-matrices coincide with the dimensions
of E-invariants between the corresponding decorated representations of
Dynkin quivers. This result can be seen as a correspondence of numer-
ical characteristics between additive and monoidal categorifications of
cluster algebras of finite ADE type.
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1. Introduction

1.1. The quantum loop algebra Uq(Lg) associated with a complex simple
Lie algebra g was introduced in mid 80s as the symmetry of certain quantum
integrable systems and solvable lattice models in theoretical physics. It is a
Hopf algebra deformation of the universal enveloping algebra of the loop Lie
algebra Lg = g[z±1]. The category C of finite-dimensional representations of
Uq(Lg) exhibits a very interesting monoidal structure and has been studied
intensively for several decades.

One of the remarkable features of the monoidal category C is that it
is not braided, in contrast to that of finite-dimensional representations of
Uq(g), but it is “generically braided” in the following sense. Throughout
the paper, we assume that the quantum parameter q is generic. For two
simple objects L and L′ of C , the tensor product L⊗ L′ sometimes fails to
be isomorphic to the opposite product L′ ⊗ L. However, if we replace L′

with its deformation L′(z) with a generic spectral parameter z, there always
exists a unique isomorphism

RL,L′(z) : L⊗ L′(z)
≃
−→ L′(z)⊗ L
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2 RYO FUJITA

called the normalized R-matrix between L and L′. It can be seen as a matrix-
valued rational function in z, and hence one can talk about its singularities.
Let o(L,L′) denote the pole order of RL,L′(z) at z = 1. If both RL,L′(z)
and RL′,L(z) are regular at z = 1, i.e., if o(L,L′) = o(L′, L) = 0 holds, the
objects L and L′ commute in C and the specialization RL,L′(z)|z=1 gives an
isomorphism L⊗L′ ≃ L′⊗L. Thus, one can think of the pole order o(L,L′)
as a measure of the non-commutativity between L and L′. In fact, it plays
a key role in the recent studies on the category C , especially in the theory
of monoidal categorification of cluster algebras [27] and in the construction
of generalized quantum affine Schur–Weyl duality functors [24].

Despite its importance, computing the pole order o(L,L′) for general sim-
ple objects L and L′ seems to be a difficult problem. Explicit computations
have been accomplished for fundamental modules and partially for Kirillov–
Reshetikhin modules. See [28, Appendix A] and [37] for a list of known
computations. Beyond these special classes, no systematic computations
are known at this moment as far as the author understands. The purpose
of this paper is to provide a description of the pole orders for another class
of simple modules in relation with the cluster structure of C .

1.2. To state our main result in a precise manner, we need additional ter-
minologies. From now on, we assume that g is of type ADE, and let Q be
a Dynkin quiver of the same type as g. In their seminal works [22, 23],
Hernandez–Leclerc introduced a certain monoidal subcategory C1 of C , de-
pending on (a height function of) the quiver Q, which we call the level-one

subcategory. They conjectured, and verified in several cases, that it gives
a monoidal categorification of a cluster algebra A of finite ADE type (the
same type as g), in the sense that there exists a ring isomorphism

χ̃q : K(C1)
≃
−→ A

from Grothendieck ring K(C1) to the cluster algebra A through which the
basis of K(C1) formed by the simple isomorphism classes corresponds to the
basis of A formed by the cluster monomials. The isomorphism χ̃q is given
explicitly by the truncated q-character map of [22]. The conjecture was later
verified by Nakajima [36] and Kimura–Qin [29] in full generality using the
perverse sheaves on Nakajima’s graded quiver varieties.

On the other hand, there is another kind of categorification of A, some-
times called an additive categorification. Here, we use the version due to
Caldero–Chapoton [5] and Derksen–Weyman–Zelevinsky [11] in terms of
decorated representations of the Dynkin quiver Q. Recall that a decorated
representation of Q is a pairM = (M,V ) of a usual representation M of Q
(over C) and a finite-dimensional I-graded C-vector space V , where I is the
set of vertices of Q. For two such pairs M = (M,V ) and M′ = (M ′, V ′),
the E-invariant between them is defined to be

(1.1) E(M,M′) := Ext1Q(M,M ′)⊕
⊕

i∈I

HomC(Mi, V
′
i ).

A decorated representation M is said to be rigid if E(M,M) = 0. The
theory of additive categorification of A tells us that there is a map

CC : {decorated representations of Q} → A



R-MATRICES AND E-INVARIANTS 3

called the cluster character map (a.k.a. Caldero–Chapoton map) which sat-
isfies CC(M⊕M′) = CC(M)·CC(M′) and induces a bijection between the
isomorphism classes of rigid decorated representations of Q and the cluster
monomials without frozen factors of A.

Now, we are ready to state our main result. It describes the pole orders of
the normalized R-matrices in C1 in terms of the E-invariants for the Dynkin
quiver Q.

Theorem 1.1. For any simple objects L and L′ of C1, we have

o(L,L′) = dimE(M,M′),

whereM andM′ are rigid decorated representations of Q satisfying χ̃q(L) =
CC(M) and χ̃q(L

′) = CC(M′) up to frozen factors.

To obtain the main result, we apply Nakajima’s geometric construction of
representations of Uq(Lg) [33, 34] and verify a slightly different but equiv-
alent assertion (= Theorem 2.7), where decorated representations are re-
placed with injective copresentations, following Derksen–Fei [10]. Our proof
is based on the key observation by Kimura–Qin [29], generalizing the one
by Nakajima [36], that the graded quiver variety relevant to the category
C1 is simply a vector space and its dual is identified with the space X of
injective copresentations of the Dynkin quiver Q. In the previous work [29],
this fact was crucially used to relate the equivariant perverse sheaves on X
to the Grothendieck ring K(C1) or rather its quantum deformation. In this
paper, we go one more step further to relate the geometry of X directly to
representations in C1. Namely, we interpret the deformed tensor products
of simple objects of C1 and the R-matrices between them (under a certain
condition, see §4.6) in terms of canonical operations for the equivariant per-
verse sheaves on X. The E-invariant in question appears as a transversal
slice in X.

1.3. Let x, x′ ∈ A be two non-frozen cluster variables, L,L′ prime simple
objects of C1, and M,M′ rigid indecomposable decorated representations
of Q satisfying x = χ̃q(L) = CC(M) and x′ = χ̃q(L

′) = CC(M′). The
theory of additive/monoidal categorifications tells us that the following three
conditions are mutually equivalent:

(1) x and x′ belong to a common cluster (i.e., xx′ is a cluster monomial);
(2) d(L,L′) := o(L,L′) + o(L′, L) = 0;
(3) e(M,M′) := dimE(M,M′) + dimE(M′,M) = 0.

The invariant d(L,L′) was originally introduced by Kashiwara–Kim–Oh–
Park [27]. On the other hand, the invariant e(M,M′) was considered by
Marsh–Reineke–Zelevinsky [32], which is identical to Fomin–Zelevinsky’s
compatible degree in [15]. Theorem 1.1 above implies the correspondence of
these two numerical characteristics:

(1.2) d(L,L′) = e(M,M′),

which does not seem automatic from the known categorifications results.
It would be interesting to ask if Theorem 1.1 or the equality (1.2) gener-

alize beyond the category C1 to other monoidal categorifications of cluster
algebras. At least for Kirillov–Reshetikhin modules, known computations
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suggest that such a generalization is plausible [19, §5]. Note that the left-
hand side of (1.2) makes sense for graded modules over symmetric quiver
Hecke algebras [26] and for the coherent Satake category [6] as well.

1.4. Organization. The present paper is organized as follows. In §2, we
state the main theorem (= Theorem 2.7) after reviewing some necessary
backgrounds. In §2.5, we briefly explain its cluster theoretical interpretation
to see that it is equivalent to the above Theorem 1.1. In §3, we summarize
Nakajima’s geometric construction of representations of Uq(Lg). In the final
§4, we apply the materials from §3 to study representations in the category
C1 and discuss the proof of the main theorem.

2. Algebraic preliminaries and main theorem

In this section, some necessary algebraic preliminaries are recalled before
we state our main theorem (= Theorem 2.7) in §2.4. In §2.5, we briefly
explain a cluster theoretical interpretation of Theorem 2.7 to see that it is
indeed equivalent to Theorem 1.1 in Introduction.

2.1. Representations of quantum loop algebras. Let g be a complex
simple Lie algebra and Uq(Lg) the quantum loop algebra associated with
g, which is a Hopf algebra defined over an algebraically closed field k of
characteristic 0 with q ∈ k× being a parameter. In Drinfeld’s presentation,
it is generated by the elements x±i,n, hi,m, k

±1
i with i ∈ I, n ∈ Z,m ∈ Z \ {0},

where I is a labeling set of simple roots of g. We follow [34] for the convention
of the coproduct of Uq(Lg). Throughout this paper, the quantum parameter
q is assumed to be algebraically independent over Q. Let C be the category
of finite-dimensional modules over Uq(Lg) of type 1. This is a k-linear
monoidal abelian category. We often abbreviate ⊗k as ⊗.

For objects M,N ∈ C , we say that M and N commute if the tensor
productM⊗N is isomorphic to the opposite productN⊗M . In the category
C , there are many pairs of objects in C which do not commute. Nevertheless,
the Grothendieck ring K(C ) of C is known to be a commutative domain
[16]. This particularly implies that two simple modules M and N commute
if M ⊗N is simple. In this case, we say that M and N strongly commute.

The isomorphism classes of simple modules in the category C are pa-
rameterized by the multiplicative monoid (1 + zk[z])I of I-tuples of monic
polynomials, called the Drinfeld polynomials [7, Ch. 12]. We denote by L(̟)
a simple module in C corresponding to ̟ ∈ (1+zk[z])I. In the terminology
of [7], it is an ℓ-highest weight module of ℓ-highest weight ̟. In particu-
lar, L(̟) has a distinguished generating vector, called an ℓ-highest weight
vector, uniquely up to multiple in k×. Note that the monoid (1 + zk[z])I is
generated by the elements ̟i,a := ((1− az)δi,j )j∈I for (i, a) ∈ I × k×, where
δi,j is the Kronecker delta.

2.2. Normalized R-matrices. Let z be an indeterminate. For an ob-
ject M ∈ C , we can define a new action of Uq(Lg) on the k[z±1]-module
M [z±1] :=M ⊗ k[z±1] by the formula:

x±i,n(v⊗a) := x±i,nv⊗z
na, ki(v⊗a) := kiv⊗a, hi,m(v⊗a) := hi,mv⊗z

ma,
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where v ∈M,a ∈ k[z±1]. The resulting Uq(Lg)[z
±1]-moduleM [z±1] is called

the affinization of M . We set M(z) :=M [z±1]⊗k[z±1] k(z). In what follows,

we sometimes identify the subspace M ⊗ 1 of M [z±1] with M .
For a pair (M,N) of simple modules in C , with fixed ℓ-highest weight

vectors vM ∈M and vN ∈ N , the Uq(Lg)(z)-modules M⊗N(z) and N(z)⊗
M are known to be simple, and therefore we have a unique isomorphism

RM,N (z) : M ⊗N(z)→ N(z)⊗M

satisfying RM,N (z)(vM ⊗ vN ) = vN ⊗ vM . It is called the normalized R-
matrix between M and N . Viewing it as a matrix-valued rational function
in z, one can talk about the order of its poles, which does not depend on
the choice of ℓ-highest weight vectors vM and vN . We define a non-negative
integer o(M,N) to be the pole order of RM,N (z) at z = 1, and set

d(M,N) := o(M,N) + o(N,M).

This is the same as the invariant introduced in [27] (cf. [27, Proposition 3.16]).
One may understand that the number d(M,N) measures the non-commutativity
between M and N as the following proposition suggests. We say that a sim-
ple module in C is real if it strongly commutes with itself.

Proposition 2.1 ([27, Corollary 3.17]). Let M and N be simple modules

in C . Assume that at least one of them is real. Then M and N strongly

commute if and only if d(M,N) = 0.

The following property is used later in §4.6.

Lemma 2.2 (cf. [25, Corollary 3.11(ii)]). Let M1,M2, N be simple modules

in C . Assume that M1 and M2 strongly commute. Then, we have

o(M1 ⊗M2, N) = o(M1, N) + o(M2, N),

o(N,M1 ⊗M2) = o(N,M1) + o(N,M2).

Remark 2.3. For our purpose, it is convenient to have the following char-
acterization of the number o(M,N).

Let us introduce another indeterminate u and consider the ring k[[u]] of
formal power series. Viewing k[z±1] as a subring of k[[u]] by z = eu, we
define the infinitesimal deformation of M to be

M [[u]] :=M [z±1]⊗k[z±1] k[[u]].

This is a Uq(Lg)[[u]]-module. By localization, we also get a Uq(Lg)((u))-
module M((u)). Note that M [[u]] is a k[[u]]-lattice of M((u)).

For simple modules M , N in C , the normalized R-matrix RM,N (e
u) in-

duces an isomorphism

R̂M,N : M ⊗N((u))→ N((u)) ⊗M

of Uq(Lg)((u))-modules satisfying R̂M,N (vM ⊗ vN ) = vN ⊗ vM . Then, the
number o(M,N) is equal to the non-negative integer d such that we have

udR̂M,N (M ⊗N [[u]]) ⊂ N [[u]]⊗M

and the specialization (udR̂M,N )|u=0 : M ⊗N → N ⊗M is non-zero.
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2.3. E-invariants. Let Q be an acyclic quiver. We denote by repCQ the
category of finite-dimensional representations of Q over C and by injCQ
the full subcategory of repCQ consisting of injective representations. Let
C2(injCQ) be the category of morphisms φ : I(0) → I(1) in injCQ. We refer
to an object of C2(injCQ) as an injective copresentation of Q. We regard an
object of C2(injCQ) as a cochain complex concentrated in the cohomological
degrees 0 and 1. For any φ,ψ ∈ C2(injCQ), the E-invariant between them
is defined to be the vector space

E(φ,ψ) := HomKb(injCQ)(φ,ψ[1]),

where Kb(injCQ) is the homotopy category of bounded complexes in injCQ
and [1] is the shift functor. This is a finite-dimensional C-vector space. Note
that Kb(injCQ) is naturally equivalent to the derived category Db(repCQ)
and that φ is isomorphic to Kerφ[0] ⊕ Coker φ[−1] in Db(repCQ). Since
CQ is hereditary, quotients of injective modules are injective. In particular,
Coker φ belongs to injCQ. Therefore, we have

(2.1) E(φ,ψ) ≃ Ext1Q(Kerφ,Kerψ)⊕HomQ(Kerφ,Cokerψ).

2.4. Main theorem. In what follows, we assume that g is of simply-laced
type (i.e., type ADE). An integer-valued function ξ : I→ Z is called a height

function if it satisfies |ξ(i)− ξ(j)| = 1 whenever i and j are adjacent in the
Dynkin diagram of g. A height function ξ defines a Dynkin quiver Qξ of the
same type as g in the following way. The set of vertices of Qξ is I. For an
adjacent pair (i, j) in I, we have an arrow i → j in Qξ if ξ(i) = ξ(j) + 1.
Note that we have Qξ = Qξ′ if and only if the difference ξ − ξ′ is constant.
Any Dynkin quiver arises from a height function in this way.

Example 2.4. When g is of type A3, the function ξ given by ξ(i) = i under
the standard identification I = {1, 2, 3} is a height function. The associated

quiver Qξ is depicted as Qξ = (
1
◦

2
◦oo 3

◦oo ).

Throughout this paper, we fix a height function ξ. For each i ∈ I, let
Si ∈ repCQξ be the simple representation at i, and Ii ∈ injCQξ an injective
hull of Si. Let N := Z≥0. For each pair w = (w(0), w(1)) ∈ NI⊔I = NI × NI

of I-tuples of non-negative integers, we set

Iw(0) :=
⊕

i∈I

I
⊕wi(0)
i , Iw(1) :=

⊕

i∈I

I
⊕wi(1)
i , X(w) := HomQξ

(Iw(0), Iw(1)),

where w(k) = (wi(k))i∈I ∈ NI for k = 0, 1. The automorphism group

A(w) := AutQξ
(Iw(0))×AutQξ

(Iw(1))

acts on the vector space X(w) in the natural way. Since Qξ is of finite
representation type, there are only finitely many A(w)-orbits in X(w) [10,
Corollary 2.6]. In particular, there exists a unique open orbit.

Definition 2.5. For each w ∈ NI⊔I, we denote by

φξ(w) : I
w(0) → Iw(1)

an injective copresentation in the unique open A(w)-orbit in X(w). By
definition, it is unique up to isomorphism.
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On the other hand, to each w = (w(0), w(1)) ∈ NI⊔I, we associate a
simple Uq(Lg)-module Lξ(w) in the category C by

(2.2) Lξ(w) := L

(
∏

i∈I

̟
wi(0)

i,qξ(i)
̟
wi(1)

i,qξ(i)+2

)
.

Definition 2.6 (Hernandez–Leclerc [22, 23]). The level-one subcategory Cξ,1

is defined to be the Serre subcategory of C generated by the simple modules
Lξ(w) for w ∈ NI⊔I.

By [23, Lemma 3.2], the category Cξ,1 is a monoidal subcategory of C .
The main theorem of this paper is the following.

Theorem 2.7. For any height function ξ and w,w′ ∈ NI⊔I, we have

o(Lξ(w), Lξ(w
′)) = dimE(φξ(w), φξ(w

′)).

A proof is given later in §4.6.

2.5. Cluster theoretical interpretation. In this subsection, we briefly
explain the equivalence between Theorem 1.1 and Theorem 2.7. It amounts
to giving a cluster theoretical interpretation of Theorem 2.7.

2.5.1. Cluster algebras. First, we fix our notation around the finite type
cluster algebras. Recall that we have fixed a height function ξ : I→ Z. Let
I
′ := {i′ | i ∈ I} be a copy of the set I, which serves the set of frozen indices.

Let Aξ be the cluster algebra of geometric type associated with the exchange

matrix B̃ = (bij)i∈I⊔I′,j∈I given by

bij := nij − nji, bi′j = δi,j − nij

for i, j ∈ I, where nij denotes the number of arrows from i to j in the quiver
Qξ, and δi,j is the Kronecker delta. By the Laurent phenomenon, Aξ is
the subring generated by all the cluster variables inside the ring of Laurent
polynomials in the initial cluster variables {xi | i ∈ I ⊔ I′}. See [13].

Let ∆+ denote the set of positive roots of g and αi ∈ ∆+ the i-th
simple root. Since Aξ is of finite type, the set of non-frozen cluster vari-
ables of Aξ is finite and in bijection with the set of almost positive roots
∆≥−1 := ∆+ ∪ {−αi | i ∈ I}. See [14]. Let x[α] denote the cluster vari-
able corresponding to α ∈ ∆≥−1. For example, we have x[−αi] = xi and

x[αi] = x−1
i (
∏
j∈I x

nij

j x
nji

j′ + xi′
∏
j∈I x

nji

j ) for each i ∈ I. For a positive

root α =
∑

i∈I aiαi, the cluster variable x[α] is the one having
∏
i∈I x

ai
i as

its denominator. The cluster variables x[α] (α ∈ ∆≥−1), xi′ (i ∈ I) are
grouped into several subsets of constant cardinality 2|I|, called the clusters.
A cluster always contains the frozen variables {xi′ | i ∈ I}. A monomial
of cluster variables of a common cluster is called a cluster monomial. The
cluster monomials form a free Z-basis of Aξ, and equivalently, the cluster
monomials without frozen factors form a free Z[xi′ | i ∈ I]-basis of Aξ.

2.5.2. Additive categorification. For M ∈ repCQξ, its dimension vector is
dimM :=

∑
i∈I(dimMi)αi. By Gabriel’s theorem, for each α ∈ ∆+, there

exists an indecomposable object Mξ[α] ∈ repCQξ uniquely up to isomor-
phism satisfying dimMξ[α] = α, and the set {Mξ [α] | α ∈ ∆≥−1} gives a
complete system of indecomposable objects of repCQξ. For v = (vi)i∈I ∈ NI,
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we set Cv :=
⊕

i∈IC
vi . Recall that a decorated representation of Qξ is a pair

M = (M,V ) of M ∈ repCQξ and a finite-dimensional I-graded C-vector

space V . We set Mξ[α] := (Mξ[α], 0) for α ∈ ∆+ and Mξ[−αi] := (0,Cδi)
for i ∈ I, where δi = (δi,j)j∈I ∈ NI is the delta function at i. Then, the set
{Mξ[α] | α ∈ ∆≥−1} gives a complete system of indecomposable decorated
representations of Qξ.

For a decorated representation M = (M,V ) of Qξ, its cluster character
CC(M) is defined as in [11]:

CC(M) :=
∑

v∈NI

χ(Grv(M))
∏

i∈I⊔I′ ,j∈I

x
g̃i(M)−bijvj
i ,

where χ(Grv(M)) is the Euler characteristic of the submodule Grassmannian
Grv(M), i.e., the complex projective variety parametrizing subrepresenta-
tions of M of dimension vector

∑
i∈I viαi, and (g̃i(M))i∈I⊔I′ is the so-called

extended g-vector ofM. In our case, it is explicitly written as

g̃i(M) = dimVi − dimMi +
∑

j∈I

nij dimMj , g̃i′(M) = dim
⋂

a

Ker(a|M )

for each i ∈ I, where a runs over the set of arrows of Qξ whose source is i.
By [5, 11], we have CC(M⊕M′) = CC(M) · CC(M′) for any decorated
representations M,M′, and CC(Mξ[α]) = x[α] for all α ∈ ∆≥−1. Recall
the E-invariant for decorated representations defined in (1.1). By [32], two
cluster variables x[α] and x[α′] belong to a common cluster if and only if
we have E(Mξ [α],Mξ [α

′]) = E(Mξ [α
′],Mξ [α]) = 0. The map CC gives a

bijection between the isomorphism classes of rigid decorated representations
of Qξ and the cluster monomials without frozen factors of Aξ.

Remark 2.8. The following remark is used later in §4.6. It is well known
that there is a partial ordering ≤ξ of the set ∆

+ with the following property:

we have α ≤ξ α
′ if Ext1Qξ

(Mξ [α],Mξ [α
′]) 6= 0. We can extend it to the set

∆≥−1 so that we have α ≤ξ −αi for any α ∈ ∆+ and i ∈ I. Then, for
α,α′ ∈ ∆≥−1, we have α ≤ξ α

′ whenever E(Mξ [α],Mξ [α
′]) 6= 0.

2.5.3. Interpretation by injective copresentations. To each φ ∈ C2(injCQξ),
we assign a decorated representationM(φ) of Qξ by

M(φ) := (Kerφ,Cc), where ci := dimHomQξ
(Si,Coker φ).

Comparing (1.1) and (2.1), we find that

(2.3) E(φ,ψ) ≃ E(M(φ),M(ψ))

holds for any φ,ψ ∈ C2(injCQξ). For each α ∈ ∆+, let φξ[α] be a minimal
injective resolution of Mξ[α]. For each i ∈ I, we set φξ[−αi] := (0 → Ii)

and νi := (Ii
id
−→ Ii). By construction, we have M(φξ [α]) =Mξ[α] for any

α ∈ ∆≥−1 andM(νi) = 0 for any i ∈ I.
The set {φξ [α] | α ∈ ∆≥−1} ⊔ {νi | i ∈ I} forms a complete system of

indecomposable objects of C2(injCQξ). Since the category C2(injCQξ) is
Krull–Schmidt, each object decomposes into a finite direct sum of indecom-
posable objects in a unique way. For each φ ∈ C2(injCQξ), we define

CC(φ) := CC(M(φ))
∏

i∈I

x
mi(φ)
i′ ,
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where mi(φ) denotes the multiplicity of the factor νi in φ.

Lemma 2.9. The map w 7→ CC(φξ(w)) gives a bijection from NI⊔I to the

set of cluster monomials of Aξ.

Proof. We say that an injective copresentation φ is rigid if E(φ, φ) = 0.
By [10], φ ∈ X(w) is rigid if and only if φ ≃ φξ(w) (see also §4.5 below).
Therefore, the set {φξ(w) | w ∈ NI⊔I} gives a complete system of rigid
injective copresentations of Qξ. On the other hand, we know that φ is rigid
if and only if M(φ) is rigid by (2.3), and that M(φ) ≃ M(ψ) if and only
if [φ] − [ψ] ∈

∑
i∈I Z[νi] in the Grothendieck group of C2(injCQξ). Having

these remarks, the assertion now follows from the results explained in the
second paragraph of §2.5.2. �

2.5.4. Monoidal categorification. The following theorem was originally con-
jectured by Hernandez–Leclerc [22] when Qξ has a sink-source orientation.
For this case, it was proved by Hernandez–Leclerc [22] for type A, D4, and
by Nakajima [36] for all type ADE. For general ξ, some results were ob-
tained by Hernandez–Leclerc [23] and Brito–Chari [4]. In full generality, it
was proved by Kimura–Qin [29].

Theorem 2.10. There is a ring isomorphism χ̃q : K(Cξ,1)
≃
−→ Aξ satisfying

χ̃q(Lξ(w)) = CC(φξ(w))

for all w ∈ NI⊔I. In particular, χ̃q induces a bijection between the simple

isomorphism classes of Cξ,1 and the cluster monomials of Aξ.

2.5.5. Conclusion. Now, it is easy to see that Theorem 1.1 and Theorem 2.7
are mutually equivalent by Theorem 2.10 and (2.3).

3. Geometric preliminaries

In this section, we give a brief review of the geometric construction of
finite-dimensional representations of Uq(Lg) by means of equivariant con-
structible sheaves on the graded quiver varieties due to Nakajima. Basic
references are [33, 34]. There are no new results in this section.

3.1. Notation. Let V •
C denote the category of Z-graded C-vector spaces

V =
⊕

k∈Z V
k of finite total dimension, i.e.,

∑
n∈Z dimV n < ∞, whose

morphisms are homogeneous linear maps. Let t be an indeterminate. For
V ∈ V •

C , its graded dimension is defined to be

gdim(V ) :=
∑

n∈Z

(dimV n)tn.

This is an element of N[t±1]. For V,W ∈ V •
C and l ∈ Z, we denote by

Homl(V,W ) the space of C-linear maps f : V →W of degree l, i.e., satisfying
f(V n) ⊂W n+l for all n ∈ Z. Let

G(V ) := Hom0(V, V )× =
∏

n∈Z

GL(V n).

In what follows, a variety always means a complex algebraic variety. When
a complex algebraic group G acts on a variety X, we say that X is a G-
variety. We set pt := SpecC and view it as a G-variety with the trivial



10 RYO FUJITA

action. Given a field k and a G-variety X, we denote by Db
G(X,k) the

bounded G-equivariant derived category of constructible k-complexes on X
in the sense of Bernstein–Lunts [2] (see also [1, Ch. 6]). This is a triangulated
category equipped with a t-structure whose heart is identical to the category
PervG(X,k) of G-equivariant perverse sheaves on X. For any objects F ,
G ∈ Db

G(X,k), we set

Hom•
G(F ,G) :=

⊕

n∈Z

Homn
G(F ,G), Hom•

G(F ,G)
∧ :=

∏

n∈Z

Homn
G(F ,G)

where Homn
G(F ,G) := HomDb

G
(X,k)(F ,G[n]) with [1] being the shift func-

tor. We also use the notations H•
G(F) := Hom•

G(kX ,F) and Ĥ•
G(F) :=

Hom•
G(kX ,F)

∧, where kX is the constant k-sheaf (of rank one). When
F = kX , we recover the G-equivariant cohomology ring of X and hence

write H•
G(X,k) = H•

G(kX) and Ĥ•
G(X,k) := Ĥ•

G(kX).
For a group homomorphism f : H → G, we have the associated functor

Resf : D
b
G(X,k) → Db

H(X,k) of equivariance change. When f is the inclu-
sion of a subgroup or the quotient by a normal subgroup, we denote it by
ForGH or InflHG respectively. When f is understood from the context, we often
drop Resf from the notation for the sake of simplicity. For instance, we often
denote Hom•

H(Resf (F),Resf (G)) and H•
H(Resf (F)) simply by Hom•

H(F ,G)
and H•

H(F) respectively. The following fact is used several times below.

Lemma 3.1 ([1, Lemma 6.7.4]). Let f : H → G be a group homomorphism

and F ∈ Db
G(X,k). If H•

G(F) is free over H•
G(pt,k), we have

H•
H(F) ≃ H•

G(F) ⊗H•
G
(pt,k) H

•
H(pt,k),

where H•
G(pt,k)→ H•

H(pt,k) is induced from f .

3.2. Graded quiver varieties. For V = (Vi)i∈I, W = (Wi)i∈I ∈ (V •
C )

I,
we consider the space of linear maps

M•(V,W ) :=
⊕

i,j∈I,cij<0

Hom−1(Vi, Vj)⊕
⊕

i∈I

(
Hom−1(Vi,Wi)⊕Hom−1(Wi, Vi)

)
,

where (cij)i,j∈I is the Cartan matrix of g. The groups

G(V ) :=
∏

i∈I

G(Vi), G(W ) :=
∏

i∈I

G(Wi)

act on M•(V,W ) by conjugation. Let µ : M•(V,W ) →
⊕

i∈IHom
−2(Vi, Vi)

be the G(V )-equivariant map given by

µ((Bj,i), (ai), (bi)) := (
∑

j∈I,cij<0Bi,jBj,i + biai)i∈I,

where Bj,i ∈ Hom−1(Vi, Vj), ai ∈ Hom−1(Vi,Wi), and bi ∈ Hom−1(Wi, Vi).
We say that a point ((Bj,i), (ai), (bi)) ∈ µ

−1(0) is stable if there is no non-
zero Z-graded linear subspace V ′

i ⊂ Vi for any i ∈ I such that Bj,i(V
′
i ) = 0

for any j ∈ I with cij < 0. The group G(V ) acts freely on the (possibly
empty) open subset µ−1(0)st ⊂ µ−1(0) of stable points. The quotient

M•(V,W ) := µ−1(0)st/G(V )
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is a smooth quasi-projective G(W )-variety. It can be identified with a quo-
tient in the geometric invariant theory. In particular, it comes with a natural
projective G(W )-equivariant morphism

(3.1) πV,W : M•(V,W )→M•
0(V,W ) := SpecC[µ−1(0)]G(V ).

Both varieties M•(V,W ) and M•
0(V,W ) only depend on the graded dimen-

sion vector of V . Therefore, we write M•(v,W ) := M•(V,W ), M•
0(v,W ) :=

M•
0(V,W ), and πv,W := πV,W when v = (gdim(Vi))i∈I ∈ N[t±1]I.
A geometric point of the affine variety M•

0(v,W ) corresponds to a closed
G(V )-orbit in µ−1(0). Let M•

0(v,W )reg be the smooth open subvariety of
M•

0(v,W ) corresponding to free orbits. It is non-empty if and only if

(3.2) M•(v,W ) 6= ∅ and (gdim(Wi))i∈I − C(t) · v ∈ N[t±1]I,

where C(t) := ( t
cij−t−cij

t−t−1 )i,j∈I is the quantum Cartan matrix. The set

Λ+(W ) := {v ∈ N[t±1]I | the condition (3.2) is satisfied}

is finite. For v ∈ Λ+(W ), the morphism πv,W restricts to an isomorphism

(3.3) π−1
v,W (M•

0(v,W )reg)
≃
−→M•

0(v,W )reg.

For v,v′ ∈ N[t±1]I, we have a natural closed embedding M•
0(v,W ) ⊂

M•
0(v + v′,W ). Taking the unions over v ∈ N[t±1]I, we define

M•(W ) :=
⊔

v

M•(v,W ), M•
0(W ) :=

⋃

v

M•
0(v,W ).

These unions are essentially finite as M•(v,W ) 6= ∅ only for finitely many
v and M•

0(v,W ) stabilizes for sufficiently large v. The morphisms (3.1) are
unified into a G(W )-equivariant projective morphism

πW : M•(W )→M•
0(W ).

The locally closed subvarieties {M•
0(v,W )reg}

v∈Λ+(W ) give a finite strat-
ification of M•

0(W ). Note that M•
0(0,W )reg = {0} is the unique closed

stratum.
In what follows, we assume that k is an algebraically closed field con-

taining Q(q) as in §2.1. Consider the proper push-forward (πW )!kM•(W )

of the constant k-sheaf on M•(W ) and let L′W := pH•((πW )!kM•(W )) de-
note its total perverse cohomology. By the decomposition theorem, this is
a semisimple object in PervG(W )(M

•
0(W ),k). More precisely, we have

(3.4) L′W ≃
⊕

v∈Λ+(W )

Lv,W ⊠ ICv,W ,

where ICv,W ∈ D
b
G(W )(M

•
0(W ),k) is the intersection cohomology complex

of M•
0(v,W )reg and Lv,W is a non-zero finite-dimensional k-vector space.

Note that IC0,W is the skyscraper sheaf k{0} at the origin 0 ∈M•
0(W ).
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3.3. Nakajima’s homomorphism. For each W ∈ (V •
C )

I, we consider the
completed Yoneda algebra Hom•

G(W )(L
′
W ,L

′
W )∧. Note that this is the com-

pletion of an N-graded algebra Hom•
G(W )(L

′
W ,L

′
W ) with a semisimple 0-th

component Hom0
G(W )(L

′
W ,L

′
W ) ≃

∏
v∈Λ+(W ) Endk(Lv,W ). In particular,

each Lv,W can be regarded as a simple module over Hom•
G(W )(L

′
W ,L

′
W )∧

and the set {Lv,W }v∈Λ+(W ) gives a complete system of simple modules.

Theorem 3.2 (Nakajima [33]). There is a homomorphism of k-algebras

ϕ′
W : Uq(Lg)→ Hom•

G(W )(L
′
W ,L

′
W )∧

satisfying the following property. For any v ∈ Λ+(W ), the pullback (ϕ′
W )∗Lv,W

is a simple Uq(Lg)-module in C isomorphic to L(
∏
i∈I,n∈Z̟

mi,n

i,qn ), where the

multiplicities mi,n ∈ N are determined by the formula
(∑

n∈Zmi,nt
n
)
i∈I

= (gdim(Wi))i∈I − C(t) · v.

In particular, when v = 0, we have (ϕ′
W )∗L0,W ≃ L(̟W ), where

(3.5) ̟W :=
∏

i,∈I,n∈Z

̟
dimWn

i

i,qn .

Proof. The k-algebra homomorphism ϕW is obtained as the composition of
(i) a completion of the homomorphism in [33, Theorem 9.4.1] from Uq(Lg) to

the convolution algebra K̂G(W )(Z•(W ))k of the completed G(W )-equivariant
K-theory (see [17, §4.6] for details), where Z•(W ) := M•(W )×M•

0(W )M
•(W )

is the Steinberg type variety, (ii) the G(W )-equivariant Chern character map

(suitably twisted by the Todd classes) from K̂G(W )(Z•(W ))k to the convo-

lution algebra Ĥ
G(W )
• (Z•(W ),k) of the completed G(W )-equivariant Borel–

Moore homology (equivariant version of [9, Theorem 5.11.11]), and (iii) the

completion of an isomorphism between H
G(W )
• (Z•(W ),k) and Hom•

G(W )(L
′
W ,L

′
W )

(equivariant version of the isomorphism in [9, §8.6]). The desired property
is due to [33, Theorem 14.3.2]. �

3.4. Deformed standard modules. For each ̟ ∈ (1 + zk[z])I, the stan-

dard module (also known as the local Weyl module in the sense of Chari–
Pressley [8]) M(̟) is defined. It is the largest ℓ-highest weight module in
C and it has L(̟) as a unique simple quotient.

Fix W ∈ (V •
C )

I. Let T (W ) = C×idW denote the one-dimensional torus
of non-zero scalar matrices in G(W ) and i0 : {0} → M•

0(W ) the inclusion.
The action of T (W ) on M•

0(W ) is trivial. Through the Yoneda product and

the functor For
G(W )
T (W ) , the algebra Hom

•
G(W )(L

′
W ,L

′
W )∧ acts on Ĥ•

T (W )(i
!
0L

′
W ).

Via ϕ′
W , this yields a geometric realization of the deformed standard module

M(̟W )[[u]] (recall the definition of M [[u]] from Remark 2.3 and ̟W from
(3.5)) as follows.

Theorem 3.3 (Nakajima [35]). We have

(ϕ′
W )∗Ĥ•

T (W )(i
!
0L

′
W ) ≃M(̟W )[[u]]

as Uq(Lg)[[u]]-modules, where the action of u on the left-hand side is given

by the product with a non-zero element of H2
T (W )(pt,k).



R-MATRICES AND E-INVARIANTS 13

Proof. This follows from [35, Theorem 2 and Remark 2.15] and a completion.

Note that H•
G(W )(i

!
0L

′
W ) ≃ H

G(W )
• (π−1(0),k) is free over H•

G(W )(pt,k) by [33,

§7.1] and hence Lemma 3.1 is applicable. �

3.5. Tensor product. LetW,W ′ ∈ (V •
C )

I. We identify the one-dimensional
torus T (W ′) ⊂ G(W ′) with the subtorus idW ⊕ C×idW ′ of G(W ⊕W ′). By

[39, Lemma 3.1], the T (W ′)-fixed locus M•
0(W ⊕W

′)T (W
′) is identical to

M•
0(W )×M•

0(W
′). Consider the attracting locus

A±(W,W ′) := {x ∈M•
0(W ⊕W

′) | lim
s→0

(idW ⊕ s
±1idW ′)x exists.},

which is Zariski closed by [39, 3.5]. We have A±(W,W ′) = A∓(W ′,W ).
Consider the diagram

(3.6) M•
0(W )×M•

0(W
′)

p′±
←−− A±(W,W ′)

h′±
−−→M•

0(W ⊕W
′),

where h′± is the inclusion and p′±(x) := lims→0(idW ⊕ s
±1idW ′)x, and the

hyperbolic localization (p′±)!(h
′
±)

∗ ≃ (p′∓)∗(j
′
∓)

! in the sense of Braden [3].
By [39, Lemma 4.1], (p′±)!(h

′
±)

∗L′W⊕W ′ is a semisimple complex and

(3.7) pH•((p′±)!(h
′
±)

∗L′W⊕W ′) ≃ L′W ⊠ L′W ′

in PervG(W )×G(W ′)(M
•
0(W ) ×M•

0(W
′)). The isomorphism (3.7) (together

with [1, Proposition 6.7.5]) yields the isomorphisms

Ĥ•
G(W )×G(W ′)(i

!
0(p

′
−)!(h

′
−)

∗L′W⊕W ′) ≃ Ĥ•
G(W )(i

!
0L

′
W )⊗̂Ĥ•

G(W ′)(i
!
0L

′
W ′),

Ĥ•
G(W )×G(W ′)(i

!
0(p

′
+)!(h

′
+)

∗L′W⊕W ′) ≃ Ĥ•
G(W ′)(i

!
0L

′
W ′)⊗̂Ĥ•

G(W )(i
!
0L

′
W ),

where ⊗̂ denotes the completed tensor product and i0 denotes the inclusions
of the origin (into suitable varieties). A sheaf-theoretic interpretation of the
results from [34] tells us that these isomorphisms are compatible with the
structures of Uq(Lg)-modules, given through the homomorphism ϕ′

W⊕W ′

on the left-hand sides, and through (ϕ′
W ⊗ ϕ

′
W ′) ◦∆ and (ϕ′

W ′ ⊗ ϕ′
W ) ◦ ∆

respectively on the right hand sides, where ∆ is the coproduct of Uq(Lg). In

particular, applying For
G(W )×G(W ′)
T (W ′) , we get the following from Theorem 3.3.

(We can freely use Lemma 3.1 here, as the freeness assumption is satisfied,
see [33, §7.1], [34, Theorem 3.10(1)].)

Theorem 3.4 (Nakajima [34]). We have

(ϕ′
W⊕W ′)∗Ĥ•

T (W ′)(i
!
0(p

′
−)!(h

′
−)

∗L′W⊕W ′) ≃M(̟W )⊗ (M(̟W ′)[[u]]),

(ϕ′
W⊕W ′)∗Ĥ•

T (W ′)(i
!
0(p

′
+)!(h

′
+)

∗L′W⊕W ′) ≃ (M(̟W ′)[[u]]) ⊗M(̟W )

as Uq(Lg)[[u]]-modules, where the action of u on the left-hand sides is given

by the product with a non-zero element of H2
T (W ′)(pt,k).

4. Proof of main theorem

In this section, we prove our main theorem (= Theorem 2.7) applying
the geometric construction reviewed in the previous section. In §4.1, we
recall the key observation due to Kimura–Qin [29], which enables us to
translate the constructions with equivariant perverse sheaves on the graded
quiver varieties to those on the spaceX(w) of injective copresentations of the
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Dynkin quiver Qξ through the Fourier–Laumon transformation explained in
§4.2. Then, we obtain a sheaf theoretic interpretation of deformed simple
modules and their tensor products in §§4.3–4.4. In §4.5, we observe that the
E-invariant appears as a transversal slice in X(w). The proof ends in §4.6,
where we have a sheaf theoretic interpretation of R-matrices in question
under a certain condition (4.5).

4.1. Graded quiver varieties for Cξ,1. Recall that we have fixed a height
function ξ : I → Z and the notations from §2.4. For each vertex i ∈ I, let
Pi ∈ rep(CQξ) be a projective cover of Si. For each w ∈ NI⊔I, we set

X ′(w) := HomQξ
(Pw(1), Iw(0)),

where Pw(1) :=
⊕

i∈I P
⊕wi(1)
i . Note that the vector spaces X(w) and X ′(w)

are dual to each other through the Nakayama functor. Moreover, the group
AutQξ

(Pw(1)) is naturally identified with AutQξ
(Iw(1)) and hence the group

A(w) defined in §2.4 acts on X ′(w) as well. For v ∈ NI, let Grv(I
w(0))

denote the submodule Grassmannian of Iw(0), which is a smooth connected
projective variety by [38, Theorem 4.10]. Consider an A(w)-variety

F (v,w) := {(N,ψ) ∈ Grv(I
w(0))×X ′(w) | Imψ ⊂ N},

together with an A(w)-equivariant projective morphism

pv,w : F (v,w) → X ′(w)

given by the second projection (N,ψ) 7→ ψ.
Given w ∈ NI⊔I, we choose an I-tuple of Z-graded vector spacesWξ(w) =

(Wξ(w)i)i∈I ∈ (V •
C )

I satisfying

gdim(Wξ(w)i) = wi(0)t
ξ(i) + wi(1)t

ξ(i)+2

for all i ∈ I. Note that Λ+(Wξ(w)) ⊂ (Ntξ(i)+1)I holds. For v = (vi)i∈I ∈

NI, we put vtξ+1 := (vit
ξ(i)+1)i∈I.

The following observation due to Kimura–Qin [29], generalizing the one
by Nakajima [36], is of fundamental importance in our discussion below.

Proposition 4.1 ([29, Propositions 3.1.1 & 3.1.4]). For any w ∈ NI⊔I and

v ∈ NI, we have isomorphisms of varieties

M•
0(Wξ(w)) ≃ X

′(w), M•(vtξ+1,Wξ(w)) ≃ F (v,w),

through which the morphism πvtξ+1,Wξ(w)
corresponds to the morphism pv,w,

and the actions of G(Wξ(w)) correspond to the actions of the standard Levi

subgroup G(w) :=
∏
i∈I,k∈{0,1}AutQξ

(I
wi(k)
i ) of A(w).

In what follows, we identify the variety M•
0(Wξ(w)) with the variety

X ′(w) through the isomorphism in Proposition 4.1, and identify G(w) with

G(Wξ(w)). Note that the functor For
A(w)
G(w) : D

b
A(w)(X,k) → Db

G(w)(X,k) is

fully faithful for any A(w)-variety X (cf. [1, Theorem 6.6.15]).

Corollary 4.2. For any w ∈ NI⊔I, the object L′Wξ(w)
is in the essential

image of the functor For
A(w)
G(w) : PervA(w)(X

′(w),k)→ PervG(w)(X
′(w),k).



R-MATRICES AND E-INVARIANTS 15

Proof. Recall the decomposition (3.4). For any vtξ+1 ∈ Λ+(Wξ(w)), we
know that the simple perverse sheaf ICvtξ+1,Wξ(w)

appears as a direct sum-

mand of a shift of (pv,w)!kF (v,w) ∈ D
b
A(w)(X

′(w),k) thanks to Proposition 4.1

and the isomorphism (3.3). Thus ICvtξ+1,Wξ(w)
is in fact A(w)-equivariant

and so is L′Wξ(w)
. �

In particular, the functor For
A(w)
G(w) gives a k-algebra isomorphism:

(4.1) Hom•
G(w)(L

′
Wξ(w)

,L′Wξ(w)
)∧ ≃ Hom•

A(w)(L
′
Wξ(w)

,L′Wξ(w)
)∧.

4.2. Fourier–Laumon transform. We regard the vector spaces X ′(w) as
an (A(w)×C×)-variety, where C× acts simply by the scalar multiplication.
Note that this action factors through the surjective homomorphism

A(w) × C× → A(w) given by (g, s) 7→ g · (idPw(1) , sidIw(0)).

The space X(w) = X ′(w)∗ is also viewed an (A(w) × C×)-variety by the
dual action. Consider the A(w)-equivariant Fourier–Laumon transform

ΦX′(w) : D
b
A(w)×C×(X

′(w),k)
≃
−→ Db

A(w)×C×(X(w),k)

introduced in [30] (see also [1, §6.9]). We define

Lw := Φw(L
′
Wξ(w)

), where Φw := For
A(w)×C×

A(w) ◦ΦX′(w) ◦ Infl
A(w)×C×

A(w) .

Since Φw sends A(w)-equivariant simple perverse sheaves on X ′(w) bijec-
tively to the ones on X(w), Lw is an A(w)-equivariant semisimple perverse
sheaf on X(w). Letting ICv,w := Φw(ICvtξ+1,Wξ(w)

) and Lv,w := Lvtξ+1,Wξ(w)
,

the functor Φw translates (3.4) into

Lw ≃
⊕

v

Lv,w ⊠ ICv,w

where v runs over the set of elements v ∈ NI satisfying vtξ+1 ∈ Λ+(Wξ(w)).
Since X(w) has finitely many A(w)-orbits and the stabilizer Aut(φ) of each
closed point φ is connected, the intersection cohomology complexes of orbit
closures exhaust the simple A(w)-equivariant perverse sheaves on X(w).
When v = 0, we have

IC0,w = Φw(k{0}) ≃ kX(w)[dimX(w)].

We define a k-algebra homomorphism ϕw : Uq(Lg)→ Hom•
A(w)(Lw,Lw)

∧

to be the following composition:

ϕw : Uq(Lg)
ϕ′
Wξ(w)

−−−−→ Hom•
G(w)(L

′
Wξ(w)

,L′Wξ(w)
)∧

(4.1)
−−−→ Hom•

A(w)(L
′
Wξ(w)

,L′Wξ(w)
)∧

Φw−−→ Hom•
A(w)(Lw,Lw)

∧.

4.3. Deformed simple modules. For the sake of brevity, we set T (w) :=
T (Wξ(w)) ⊂ G(w) = G(Wξ(w)) and Mξ(w) := M(̟Wξ(w)). The latter is

compatible with the notation (2.2) as we have Lξ(w) = L(̟Wξ(w)) (com-

pare (2.2) with (3.5)). Recall the generic element φξ(w) ∈ X(w) from Def-
inition 2.5. For a closed point φ ∈ X(w), let iφ : {φ} → X(w) denote the
inclusion.
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Proposition 4.3. We have

ϕ∗
wĤ

•
T (w)(Lw) ≃Mξ(w)[[u]], ϕ∗

wĤ
•
T (w)(i

∗
φξ(w)

Lw) ≃ Lξ(w)[[u]]

as Uq(Lg)[[u]]-modules, where the action of u on the left-hand sides is given

by the product with a non-zero element of H2
T (w)(pt,k).

Proof. In this proof, we abbreviate T (w), X(w), iφξ(w) as T , X, i respec-
tively. The first isomorphism follows from Theorem 3.3 through the trans-
form Φw. In fact, as Φw(k{0}) ≃ kX [dimX], we have

Ĥ•
T (i

!
0L

′
Wξ(w)

) = Hom•
T (k{0},L

′
Wξ(w)

)∧
Φw
≃ Hom•

T (kX ,Lw)
∧ ≃ Ĥ•

T (Lw).

We shall show the second isomorphism. The functor i∗ yields a homo-
morphism

Ĥ•
T (Lw) = Hom•

T (kX ,Lw)
∧ a
−→ Hom•

T (i
∗kX , i

∗Lw)
∧ = Ĥ•

T (i
∗Lw)

of modules over the Yoneda algebra Hom•
A(w)(Lw,Lw)

∧. We recall that

A(w)φξ(w) is the unique open A(w)-orbit in X(w) and the stabilizer of
φξ(w) is connected. Therefore, the constant perverse sheaf kX [dimX] is the
unique simple object of PervA(w)(X(w)) whose stalk at φξ(w) is non-zero.
Thus, we have i∗ICv,w = 0 if v 6= 0 and hence i∗Lw = L0,w ⊠ i∗kX [dimX].

Now, we see that Ĥ•
T (i

∗Lw) ≃ L0,w ⊗ k[[u]] as k[[u]]-modules, and that a
is surjective as its restriction to the summand L0,w ⊠ IC0,w ⊂ Lw yields

an isomorphism. As a Uq(Lg)-module, Ĥ•
T (i

∗Lw) is a limit of iterated self-
extensions of the simple module Lξ(w).

Let Nξ(w) denote the kernel of the quotient homomorphism Mξ(w) →
Lξ(w). The Uq(Lg)-moduleNξ(w) does not contain Lξ(w) as its composition
factor. SinceM 7→M [[u]] is an exact functor, we have a short exact sequence

0→ Nξ(w)[[u]]
b
−→Mξ(w)[[u]]

c
−→ Lξ(w)[[u]] → 0

of Uq(Lg)[[u]]-modules.
We compare the homomorphisms a and c. For any positive integer n,

we consider the base change from k[[u]] to the truncated polynomial ring
k[[u]]/(un) to obtain the rigid arrows in the following diagram:

Nξ(w)[[u]]/(u
n) � � bn // Mξ(w)[[u]]/(u

n)
cn // //

≃
��

Lξ(w)[[u]]/(u
n)

θn
��✤
✤

✤

Ĥ•
T (Lw)/u

nĤ•
T (Lw)

an // // Ĥ•
T (i

∗Lw)/u
nĤ•

T (i
∗Lw),

where the upper row is exact. We know that both Lξ(w)[[u]]/(u
n) and

Ĥ•
T (i

∗Lw)/u
nĤ•

T (i
∗Lw) are iterated self-extensions of Lξ(w) of the same

length n (as Uq(Lg)-modules) and that the image of bn does not contain
Lξ(w) as a composition factor. Therefore, there exists a unique isomor-
phism θn of Uq(Lg)-modules represented by the dashed arrow in the diagram.
Taking the limit n → ∞, we get the desired isomorphism of Uq(Lg)[[u]]-
modules. �
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4.4. Tensor product. Let w,w′ ∈ NI⊔I. We fix decompositions I(w+w
′)(k) =

Iw(k) ⊕ Iw
′(k), k ∈ {0, 1}, to get

(4.2) X(w + w′) = X(w) ⊕X(w′)⊕X(w,w′)+ ⊕X(w,w′)−,

whereX(w,w′)+ := HomQξ
(Iw

′(0), Iw(1)) andX(w,w′)− := HomQξ
(Iw(0), Iw

′(1)).

Then we have X(w + w′)T (w
′) = X(w) ⊕X(w′). Consider the diagram

X(w) ⊕X(w′)
p±
←−− X(w) ⊕X(w′)⊕X(w,w′)±

h±
−−→ X(w + w′),

where h± is the inclusion and p± is the projection.

Proposition 4.4. Let φ := φξ(w)⊕ φξ(w
′) ∈ X(w) ⊕X(w′). We have

ϕ∗
w+w′Ĥ•

T (w′)(i
∗
φ(p+)!(h+)

∗Lw+w′) ≃ Lξ(w) ⊗ (Lξ(w
′)[[u]]),

ϕ∗
w+w′Ĥ•

T (w′)(i
∗
φ(p−)!(h−)

∗Lw+w′) ≃ (Lξ(w
′)[[u]]) ⊗ Lξ(w).

as Uq(Lg)[[u]]-modules, where the action of u on the left-hand side is given

by the product with a non-zero element of H2
T (w′)(pt,k).

Proof. The assertion follows from Theorem 3.4, Proposition 4.3 and an ana-
log of [31, Proposition 10.1.2]. For completeness, we give some details.
Consider the decomposition

X ′(w + w′) = X ′(w) ⊕X ′(w′)⊕X ′(w,w′)+ ⊕X ′(w,w′)−,

whereX ′(w,w′)+ := HomQξ
(Pw(1), Iw

′(0)) andX ′(w,w′)− := HomQξ
(Pw

′(1), Iw(0)).

Then we have X ′(w + w′)T (w
′) = X ′(w) ⊕X ′(w′). Under the identification

X ′(w + w′) = M•
0(Wξ(w + w′)) in Proposition 4.1, we have

A±(Wξ(w),Wξ(w
′)) = X ′(w) ⊕X ′(w′)⊕X ′(w,w′)±,

and p′± in (3.6) is the projection to X ′(w)⊕X ′(w′). Through the Nakayama
functor, X(w,w′)± is dual to X ′(w,w′)±. The dual of the diagram (3.6) is
identified with

X(w) ⊕X(w′)
tp′±
−−→ X(w) ⊕X(w′)⊕X(w,w′)±

th′±
←−− X(w + w′)

where tp′± is the inclusion and th′± is the projection with respect to the
decomposition (4.2). By [1, Proposition 6.9.13], we have

(4.3) (Φw ⊠ Φw′) ◦ (p′±)! ◦ (h
′
±)

∗ ≃ (tp′±)
∗ ◦ (th′±)! ◦Φw+w′[−d±],

where d± := dimX(w,w′)± − dimX(w,w′)∓. Since the diagram

X(w) ⊕X(w′)⊕X(w,w′)±
h± //

p±

��

X(w + w′)

th′∓
��

X(w) ⊕X(w′)
tp′∓ // X(w) ⊕X(w′)⊕X(w,w′)∓

is cartesian, we have the base change isomorphism

(4.4) (tp′∓)
∗ ◦ (th′∓)! ≃ (p±)! ◦ (h±)

∗.

Combining (4.3) with (4.4), we see that the Fourier–Laumon transform in-
duces an isomorphism

Ĥ•
T (w′)(i

!
0(p

′
∓)!(h

′
∓)

∗L′Wξ(w+w′)) ≃ Ĥ•
T (w′)((p±)!(h±)

∗Lw+w′).
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By Theorem 3.4 and the first isomorphism in Proposition 4.3 (or rather, by
the discussion before Theorem 3.4), we get an isomorphism

ϕ∗
w+w′Ĥ•

T (w′)((p+)!(h+)
∗Lw+w′) ≃ ϕ∗

wH
•(Lw)⊗ ϕ

∗
w′Ĥ•

T (w′)(Lw′)

of Uq(Lg)[[u]]-modules. Applying the functor i∗φ ≃ i
∗
φξ(w)

⊠ i∗φξ(w′), we obtain

ϕ∗
w+w′Ĥ•

T (w′)(i
∗
φ(p+)!(h+)

∗Lw+w′) ≃ ϕ∗
wH

•(i∗φξ(w)Lw)⊗ϕ
∗
w′Ĥ•

T (w′)(i
∗
φξ(w′)Lw′).

Together with the second isomorphism in Proposition 4.3, we get the first
desired isomorphism. The other isomorphism is verified similarly. �

4.5. Slice and E-invariant. For any w ∈ NI⊔I and any closed point φ ∈
X(w), we have an A(w)-equivariant linear map

fφ : EndQξ
(Iw(0))⊕EndQξ

(Iw(1))→ X(w) given by fφ(a, b) := b ◦ φ− φ ◦ a.

This is equal to the derivation of the action map A(w) ∋ g 7→ g · φ ∈ X(w)
at g = 1. By [10], we have X(w)/ Im fφ ≃ E(φ, φ) as vector spaces. In
particular, φ is rigid (i.e., E(φ, φ) = 0) if and only if the A(w)-orbit of φ is
open in X(w), that is when φ ≃ φξ(w).

In what follows, we consider the special case when φ = φξ(w)⊕ φξ(w
′) as

in the previous section. The decomposition (4.2) induces the corresponding
decomposition of E(φ, φ) again by [10]. Namely, letting

ǫ : X(w + w′)→ X(w + w′)/ Im fφ ≃ E(φ, φ)

be the quotient map, we have

ǫ(X(w)) ≃ E(φξ(w), φξ(w)) = 0, ǫ(X(w′)) ≃ E(φξ(w
′), φξ(w

′)) = 0,

ǫ(X(w,w′)+) ≃ E(φξ(w
′), φξ(w)), ǫ(X(w,w′)−) ≃ E(φξ(w), φξ(w

′)).

Choose a linear subspace E± of X(w,w′)± stable under the action of the
torus T (w) × T (w′) such that the map ǫ restricts to isomorphisms E+ ≃
E(φξ(w), φξ(w

′)) and E− ≃ E(φξ(w
′), φξ(w)) respectively. We define

S := φ+ (E+ ⊕ E−), S± := φ+ E±,

which are affine subspaces of X(w+w′) stable under the action of the torus
T (w)× T (w′). Let

{φ}
i±
−→ S± j±

−→ S
iS−→ X(w + w′)

denote the inclusions.

Lemma 4.5. With the above notation, we have a natural isomorphism

i∗φ(p±)!h
∗
± ≃ i

!
±j

∗
±i

∗
S [e±]

of functors from Db
A(w+w′)(X(w + w′),k) to Db

T (w)×T (w′)({φ},k), where

e± := 2(dimX(w,w)± − dimE±).

Proof. A proof can be parallel to that of [18, Lemma 7.7]. �

For F ∈ Db
A(w+w′)(X(w + w′),k), we define

F|S := i∗SF [dimS − dimX(w + w′)].
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Proposition 4.6. With the above notation, we have

ϕ∗
w+w′Ĥ•

T (w′)((i+)
!(j+)

∗Lw+w′|S) ≃ Lξ(w)⊗ (Lξ(w
′)[[u]]),

ϕ∗
w+w′Ĥ•

T (w′)((i−)
!(j−)

∗Lw+w′|S) ≃ (Lξ(w
′)[[u]])⊗ Lξ(w).

as Uq(Lg)[[u]]-modules.

Proof. The assertion follows from Proposition 4.4 and Lemma 4.5. �

Corollary 4.7. Let w,w′ ∈ NI⊔I. If we have E(φξ(w), φξ(w
′)) = E(φξ(w

′), φξ(w)) =
0, then Lξ(w) and Lξ(w

′) strongly commute. In particular, any simple mod-

ule Lξ(w) of the category Cξ,1 is real.

Proof. Under the assumption, we have S = S± = {φξ(w + w′)}, and there-

fore (i+)
!(j+)

∗Lw+w′|S coincides with i∗φξ(w+w′)Lw+w′ up to a shift. Then

Propositions 4.3 & 4.6 yield

Lξ(w) ⊗ Lξ(w
′) ≃ ϕ∗

w+w′H•(i∗φξ(w+w′)Lw+w′) ≃ Lξ(w +w′). �

Note that the above Corollary 4.7 and its converse follow from Theo-
rem 2.10 as well, although we do not rely on it in our proof.

Lemma 4.8. Assume that we have

(4.5) E(φξ(w), φξ(w
′)) = 0 or E(φξ(w

′), φξ(w)) = 0.

Then S meets A(w + w′)-orbits in X(w + w′) transversally. Moreover, we

have S ∩A(w + w′)φ = {φ} with φ = φξ(w) ⊕ φξ(w
′).

Proof. Our discussion here mimics that of [20, 2.2] for the Slodowy slice.
By the symmetry, we may assume E(φξ(w), φξ(w

′)) = 0. Then, we have
E− = {0} and S = S+. In particular, the action of the torus T (w′) contracts
the whole S to the unique fixed point φ.

Note that EndQξ
(Iw(0))⊕EndQξ

(Iw(1)) is the Lie algebra of A(w) for any

w ∈ NI⊔I. In our case, the derivation dα of the action map α : A(w+w′)×
S → X(w + w′) at (1, φ) is identical to the map

EndQξ
(I(w+w

′)(0))⊕ EndQξ
(I(w+w

′)(1))⊕ E → X(w + w′)

given by (a, b, ψ) 7→ fφ(a, b) + ψ. Since Im fφ ⊕ E = X(w + w′), this is
surjective. Using the contracting action of the torus T (w′), we can conclude
that the derivation dα is surjective at (1, x) for any x ∈ S. This implies
the first assertion. The last assertion follows from an argument analogous
to the proof of [9, Proposition 3.7.15]. �

The following proposition plays a key role in the proof of our main theorem
in the next subsection.

Proposition 4.9. Under the assumption (4.5), Lw+w′|S is a semisimple

perverse sheaf on S containing both kS [dimS] and k{φ} as summands, where

φ := φξ(w) ⊕ φξ(w
′) as above.

Proof. For simplicity, we put w̃ := w + w′ in this proof. By Lemma 4.8,
S is a transversal slice through φ. By [21, Theorem 5.4.1], ICv,w̃|S is a
simple perverse sheaf for any possible v and hence Lw̃ a semisimple perverse
sheaf. It contains IC0,w̃|S = kS [dimS] as a summand. It remains to show
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that ICv,w̃|S = k{φ} for some v. To this end, it is enough to show that

the intersection cohomology complex IC(Ō) of the closure of the orbit O :=
A(w̃)φ coincides with ICv,w̃ for some v because we know O ∩ S = {φ} by
the last assertion of Lemma 4.8. In view of Proposition 4.1, it suffices to
show that a shift of IC(Ō) appears as a summand of Φw̃((pv,w̃)!kF (v,w̃)) for

a suitable v ∈ NI.
By symmetry, we may assumeE(φξ(w

′), φξ(w)) = 0. PutK := Ker(φξ(w))

andK ′ := Ker(φξ(w
′)). By (2.1), we know that Ext1Qξ

(K,K), Ext1Qξ
(K ′,K ′)

and Ext1Qξ
(K ′,K) all vanish. Let v ∈ NI be the dimension vector of K. We

shall show that a shift of IC(Ō) appears in Φw̃((pv,w̃)!kF (v,w̃)) for this v. By

definition, F (v, w̃) is a vector subbundle of the trivial bundle Grv(I
w̃(0)) ×

X ′(w̃) over the quiver Grassmannian Grv(I
w̃(0)). Let F (v, w̃)⊥ denote its

annihilator subbundle in Grv(I
w̃(0)) × X(w̃). By [29, Lemma 3.1.7], it is

described as

F (v, w̃)⊥ = {(N,ψ) ∈ Grv(I
w̃(0))×X(w̃) | N ⊂ Kerψ}.

By [1, Corollary 6.9.14 & Proposition 6.9.15], Φw̃((pv,w̃)!kF (v,w̃)) is isomor-

phic to a shift of (p⊥v,w̃)!kF (v′,w̃)⊥ , where p
⊥
v,w̃ : F (v, w̃)

⊥ → X(w̃) denotes the

second projection (N,ψ) 7→ ψ.
Now, we have to prove that a shift of IC(Ō) occurs in (p⊥v,w̃)!kF (v,w̃)⊥ .

We need additional notations. For a, b ∈ NI (resp. NI⊔I), we write a ≤ b
if ai ≤ bi for all i ∈ I (resp. ai(k) ≤ bi(k) for all (i, k) ∈ I × {0, 1}). For
M ∈ repCQξ, we define its Betti vector bM = (bM (0), bM (1)) ∈ NI⊔I by

bM,i(k) := dimExtkQξ
(Si,M) for k ∈ {0, 1} and i ∈ I. Let ρM ∈ X(bM )

denote the minimal injective resolution of M . For any a = (a(0), a(1)) ∈

NI⊔I such that a(0) ≤ a(1), let νa ∈ X(a) be an injection Ia(0) → Ia(1).
With these notations, it is easy to see that any ψ ∈ X(w) decomposes as
ψ ≃ ρM ⊕ νw−bM with M = Kerψ.

Let us consider the subset U of F (v, w̃)⊥ consisting of pairs (N,ψ) such
that (i) N ≃ K, (ii) Ext1Qξ

(Kerψ/N,K⊕Kerψ/N) = 0, and (iii) bKerψ/N ≤

bK ′ . Since K is a generic representation and the functions mapping (N,ψ) ∈
F (v, w̃)⊥ to dimExt1Qξ

(Kerψ/N,K⊕Kerψ/N) and bKerψ/N are upper semi-

continuous, U is an open subset. Moreover, it is non-empty as (K,φ) ∈ U
and hence dense in the smooth connected variety F (v, w̃)⊥. We claim that,
for any (N,ψ) ∈ U , there is an isomorphism ψ ≃ φ. Once the claim is
verified, we have p⊥v,w̃(U) = O, which implies p⊥v,w̃(F (v, w̃)

⊥) = Ō. Therefore

a shift of IC(Ō) must contribute to (p⊥v,w̃)!kF (v,w̃)⊥ as desired.

We prove the claim. Assume (N,ψ) ∈ U . By the conditions (i) and (ii),
we have Kerψ ≃ K ⊕ C, where C := Kerψ/N . Then, we have

ψ ≃ ρK⊕C ⊕ νw̃−bK⊕C
= ρK ⊕ ρC ⊕ νw−bK ⊕ νw′−bC .

As φξ(w) ≃ ρK⊕νw−bK , we have ψ ≃ φξ(w)⊕ψ
′, where ψ′ := ρC⊕νw′−bC ∈

X(w′). Since φξ(w
′) is in the unique open orbit in X(w′), it follows that

bC = bKerψ′ ≥ bKerφξ(w′) = bK ′. The condition (iii) forces bC = bK ′ , which

implies that C shares the same dimension vector as K ′. Again by (ii), we
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have Ext1Qξ
(C,C) = 0 and hence C ≃ K ′. This implies ψ′ ≃ ρK ′⊕νw′−bK′ ≃

φξ(w
′). Thus, we obtain ψ ≃ φξ(w)⊕ ψ

′ ≃ φξ(w) ⊕ φξ(w
′) = φ. �

4.6. Proof of Theorem 2.7. Our goal is to show the equality

(4.6) o(Lξ(w), Lξ(w
′)) = dimE(φξ(w), φξ(w

′))

for any w,w′ ∈ NI⊔I. We first prove it under the assumption (4.5), where
we obtain a sheaf theoretic interpretation of R-matrices as a byproduct.

Proposition 4.10. Under the assumption (4.5), the equality (4.6) holds.

Proof. For simplicity, we put L := Lξ(w) and L′ := Lξ(w
′) in this proof.

Let φ := φξ(w)⊕ φξ(w
′) as before and i : {φ} → S denote the inclusion. We

have the following morphisms arising from the adjunction unit/counit:

η : kS [dS ]→ i∗i
∗kS [dS ] = k{φ}[dS ], ε : k{φ} = i!i

!kS [2dS ]→ kS [2dS ],

where dS := dimS. We also abbreviate Lw+w′|S as L, and T (w′) as T .
First, we consider the case when E(φξ(w), φξ(w

′)) = 0. In this case, we

have S+ = {φ}, S− = S and hence (i+)
!(j+)

∗L = i∗L, (i−)
!(j−)

∗L = i!L.
Moreover, we have i∗L ≃ p∗L with p : S → {φ} being the obvious morphism
(cf. [12, Proposition 2.3]). By Proposition 4.6, we have

L⊗ L′[[u]] ≃ Ĥ•
T (p∗L) ≃ Hom•

T (kS [dS ],L)
∧,(4.7)

L′[[u]]⊗ L ≃ Ĥ•
T (i

!L) ≃ Hom•
T (k{0},L)

∧.(4.8)

Choose ℓ-highest weight vectors vL ∈ L and vL′ ∈ L′. We shall identify the
images of vL⊗vL′ (resp. vL′⊗vL) under the isomorphism (4.7) (resp. (4.8)).
Recall the isomorphism ϕ∗

w+w′L0,w+w′ ≃ Lξ(w+w
′) from Theorem 3.2. Con-

sider the 1-dimensional subspace (L0,w+w′)0 ⊂ L0,w+w′ corresponding to the
ℓ-highest weight space of Lξ(w +w′). We have the embedding of the corre-
sponding summand ι : kS[dS ] = (L0,w+w′)0 ⊠ kS [dS ] ⊂ L. By construction,
this contributes to the ℓ-highest weight spaces of L ⊗ L′[[u]] and L′[[u]] ⊗ L.
More precisely, we have the following commutative diagrams:

L⊗ L′[[u]]
≃

(4.7)
// Hom•

T (kS [dS ],L)
∧

k[[u]](vL ⊗ vL′)
≃ //

?�

inclusion

OO

Hom•
T (kS [dS ],kS [dS ])

∧,
?�

ι∗

OO

L′[[u]]⊗ L
≃

(4.8)
// Hom•

T (k{φ},L)
∧

k[[u]](vL′ ⊗ vL)
≃ //

?�

inclusion

OO

Hom•
T (k{φ},kS[dS ])

∧,
?�

ι∗

OO

where ι∗ means the post-composition with ι. Since Hom•
T (kS [dS ],kS [dS ])

∧

is generated over k[[u]] by the identity idkS [dS ] ∈ Hom0
T (kS [dS ],kS [dS ]), we

may assume that the isomorphism (4.7) sends the vector vL⊗vL′ to idkS [dS ].
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By the same reason, the isomorphism (4.8) sends the vector vL′ ⊗ vL to

ε ∈ HomdS
T (k{φ},kS [dS ]). Then, the following diagram commutes:

L⊗ L′((u)) oo ? _

R̂L,L′

��

L⊗ L′[[u]]
≃

(4.7)
// Hom•

T (kS [dS ],L)
∧

ε∗

��
L′((u))⊗ L oo ? _L′[[u]]⊗ L

≃

(4.8)
// Hom•

T (k{φ},L)
∧,

where ε∗ denotes the pre-composition with ε. Indeed, the homomorphism ε∗

intertwines the Uq(Lg)[[u]]-actions (given through ϕw+w′), and sends ι∗idkS [dS ]
(= the image of vL⊗ vL′) to ι∗ε (= the image of vL′ ⊗ vL). The above com-

mutative diagram implies R̂L,L′(L⊗L′[[u]]) ⊂ L′[[u]]⊗L. By Remark 2.3, we
obtain o(L,L′) = 0 = E(φξ(w), φξ(w

′)) as desired.
Next, we consider the remaining case when E(φξ(w

′), φξ(w)) = 0. Then
we have S+ = S and S− = {φ}. Similarly, there are isomorphisms

L⊗ L′[[u]] ≃ Hom•
T (k{φ},L)

∧,(4.9)

L′[[u]]⊗ L ≃ Hom•
T (kS [dS ],L)

∧,(4.10)

under which the vector vL⊗ vL′ corresponds to ι∗ε, and the vector vL′ ⊗ vL
corresponds to ι∗idkS [dS ]. Let c ∈ k be a scalar determined by the equation

ε ◦ η = cudS idkS [dS ]

in Hom2dS
T (kS [dS ],kS [dS ]). Then, the diagram

L⊗ L′((u)) oo ? _

cudS R̂L,L′

��

L⊗ L′[[u]]
≃

(4.9)
// Hom•

T (k{φ},L)
∧

η∗

��
L′((u)) ⊗ L oo ? _L′[[u]]⊗ L

≃

(4.10)
// Hom•

T (kS [dS ],L)
∧

commutes because η∗ intertwines the Uq(Lg)[[u]]-actions and sends ι∗ε (=

the image of vL ⊗ vL′) to ι∗(cu
dS idkS [dS ]) (= the image of cudSvL ⊗ vL′).

The specialization of η∗ at u = 0 is equal to its non-equivariant version
η∗ : Hom•(k{φ},L) → Hom•(kS [dS ],L) (use Lemma 3.1), which is non-zero
as L contains k{φ} as a summand by Proposition 4.9. Therefore, we have

c 6= 0 and hence udS R̂L,L′(L⊗ L′[[u]]) ⊂ L′[[u]]⊗ L with (udS R̂L,L′)|u=0 6= 0.
By Remark 2.3, we obtain o(L,L′) = dS = dimE(φξ(w), φξ(w

′)). �

Finally, we treat the general case. Let φξ(w) = φξ(w
(1)) ⊕ · · · ⊕ φξ(w

(l))

and φξ(w
′) = φξ(w

′(1)) ⊕ · · · ⊕ φξ(w
′(l′)) be decompositions in C2(injCQξ)

with all the summands indecomposable. Then, by Corollary 4.7, we have the
corresponding factorizations Lξ(w) ≃ Lξ(w

(1))⊗· · ·⊗Lξ(w
(l)) and Lξ(w

′) ≃

Lξ(w
′(1))⊗ · · · ⊗ Lξ(w

′(l′)). By Lemma 2.2, we have

(4.11) o(Lξ(w), Lξ(w
′)) =

∑

1≤k≤l

∑

1≤k′≤l′

o(Lξ(w
(k)), Lξ(w

′(k′))).

On the other hand, we have an obvious isomorphism

(4.12) E(φξ(w), φξ(w
′)) ≃

⊕

1≤k≤l

⊕

1≤k′≤l′

E(φξ(w
(k)), φξ(w

′(k′))).
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For indecomposables, the assumption (4.5) is always satisfied by Remark 2.8
and (2.3). Therefore, by Proposition 4.10, we have

o(Lξ(w
(k)), Lξ(w

′(k′))) = dimE(φξ(w
(k)), φξ(w

′(k′)))

for any 1 ≤ k ≤ l and 1 ≤ k′ ≤ l′. Thus, together with (4.11) and (4.12), we
get (4.6) for general w,w′ ∈ NI⊔I, completing the proof of Theorem 2.7.
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