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Homogeneous Ulrich bundles on isotropic flag varieties

Xinyi Fang ∗ and Yusuke Nakayama †

Abstract

In this paper, we consider the existence problem of Ulrich bundles on a rational homoge-

neous space G/P of type B, C or D. We show that if the Picard number of G/P is greater

than or equal to 2, then there are no irreducible homogeneous Ulrich bundles on G/P with

respect to the minimal ample class.
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1 Introduction

Ulrich bundles have been studied extensively in algebraic geometry in recent years. A vector
bundle E on a complex smooth polarized projective variety (X,OX(1)) is said to be Ulrich if
Hi(X, E(−t)) vanish for all 0 ≤ i ≤ dimX and 1 ≤ t ≤ dimX . Such bundles were originally
introduced by Ulrich [26] in the context of commutative algebra. Indeed, Ulrich bundles on a
smooth projective variety X correspond to maximally generated maximal Cohen–Macaulay RX -
modules, where RX is the graded homogeneous coordinate ring of X .

There is an intriguing problem to investigate whether every smooth projective variety carries
an Ulrich bundle with respect to some polarization, as posed by Eisenbud, Schreyer and Wey-
man [14]. The problem is still open except for a few cases. Eisenbud, Schreyer and Weyman proved
that every projective curve and Veronese variety admits an Ulrich sheaf. Beauville [5] showed that
there are Ulrich line bundles and rank 2 Ulrich bundles on some surfaces and the del Pezzo three-
fold. Various other studies have also been conducted on some varieties (see [1–4,6–8,15,20–22]).

Let us consider the case that a smooth projective variety is a rational homogeneous space G/P ,
where G is a complex semi-simple linear algebraic group and P is a parabolic subgroup of G. We
first review the case that G/P has Picard number one, i.e., P is a maximal parabolic subgroup.
Then simple algebraic groups of all types have been studied. When G is of type A, G/P is
the Grassmann variety. Costa and Miró-Roig [11] investigated all irreducible homogeneous Ulrich
bundles on Grassmann varieties. In the case of type B,C or D, Fonarev [18] classified irreducible
homogeneous Ulrich bundles on isotropic Grassmann varieties. In order to do this, a criterion
for an irreducible homogeneous vector bundle to be Ulrich applicable to all G/P with Picard
number one was given in the paper. Later, Lee and Park [19] examined the cases of exceptional
types. In particular, they proved that the only homogeneous varieties G/P with Picard number
one admitting an irreducible homogeneous Ulrich bundle are the Cayley plane E6/P1 and the
E7-adjoint variety E7/P1.
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We consider the case that G/P has Picard number at least 2 and its polarization is the minimal
ample class (see subsection 2.1 for the definition of minimal ample class.). In type A, such variety
is a r-step partial flag variety F (k1, . . . , kr;n), where k1, . . . , kr, n are positive integers such that
k1 < · · · < kr < n. Coskun et al. [9]proved that F (k1, . . . , kr;n) does not carry irreducible
homogeneous Ulrich bundles with respect to the minimal ample class if r ≥ 3. Furthermore,
they classified irreducible homogeneous Ulrich bundles with respect to the minimal ample class
on certain two-step flag varieties and conjectured that the two-step flag variety F (k1, k2;n) does
not admit irreducible homogeneous Ulrich bundles with respect to the minimal ample class if
k1 ≥ 3 and k2 − k1 ≥ 3. This conjecture has not been completely solved, although Coskun
and Jaskowiak [10] gave a partially affirmative answer to this conjecture. Being motivated by
the above works, the first author [16] and the second author [23] independently gave a criterion
for an irreducible homogeneous vector bundle on G/P of all types with any Picard number to
be Ulrich with respect to any polarization. These criteria extend Fonarev’s result for rational
homogeneous spaces with Picard number one. Moreover, the second author showed that when
G is of type E6, F4 or G2, G/P does not admit irreducible homogeneous Ulrich bundles with
respect to the minimal ample class if the Picard number of G/P is greater than or equal to 2.

In this paper, we study the existence problem of Ulrich bundles with respect to the minimal
ample class on isotropic flag varieties. Here an isotropic flag variety means a rational homoge-
neous space G/P of type B, C or D. The main theorem in this paper is the following.

Theorem 1.1 (Theorem 2.3). Let G/P be an isotropic flag variety. If the Picard number of
G/P is greater than or equal to 2, then there are no irreducible homogeneous Ulrich bundles on
G/P with respect to the minimal ample class.

Combining our result with Fonarev’s [18], one obtains a complete classification of irreducible
homogeneous bundles which are Ulrich with respect to the minimal ample class on isotropic
flag varieties. In order to prove the main theorem, we use the aforementioned criterion. In
particular, we define the associated datum of an irreducible homogeneous vector bundle and use
it to analyze the existence of irreducible homogeneous Ulrich bundles. Here, we mention ACM
bundles, an extended class of Ulrich bundles. In [12], [13] and [17], irreducible homogeneous ACM
bundles on G/P with Picard number one have been investigated. Moreover, the first author [16]

characterized such bundles on G/P with any Picard number.

Plan of the paper The paper is organized as follows. In section 2, we collect some defini-
tions, notations and restate Theorem 1.1 in a precise form. In particular, we will explain the
aforementioned criterion and the associated datum of an irreducible homogeneous vector bundle.
In Section 3, we first give a concrete description of the associated datum on G/P , where G is of
type Bn, Cn or Dn. Then we prove the main theorem on a case by case basis.

Notations and conventions

• X = G/P : the rational homogeneous space with simple algebraic group G and parabolic
subgroup P ;

• Φ+: the set of positive roots;

• λi: the i-th fundamental weight;

• ρ: λ1 + · · ·+ λn;

• |M |: the number of entries in a set M or a matrix M ;
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• Mmin (resp. Mmax): the smallest (resp. largest) entry in an integer matrix M ;

• Muv: the element at the u-th row and v-th column of a matrix M ;

• lcm(x1, x2, . . . , xn): the least common multiple of integers x1, x2, . . . , xn;

• Eλ: the irreducible homogeneous vector bundle with highest weight λ;

• T λ
X : the associated datum of Eλ on X .

2 Preliminaries

Throughout this paper, all algebraic varieties and morphisms will be defined over the complex
field C.

2.1 Rational homogeneous spaces

We will prepare some notations and briefly describe the basic facts about rational homoge-
neous spaces and the polarizations of these varieties (more details see [24] and [25].). Let G be a
semi-simple linear algebraic group over the complex field C and T ⊂ G a maximal torus. We
set g :=Lie(G) and h :=Lie(T ). Let Φ be the set of roots associated with the pair (g, h) and
∆ := {α1, . . . , αn} ⊂ Φ a set of fixed simple roots. Let Φ+ be the set of positive roots. The

weight lattice Λ is the set of all linear functions λ : h → C for which 2(λ,α)
(α,α) ∈ Z for any α ∈ Φ,

where (, ) denotes the Killing form. Denote by λ1, . . . , λn ∈ Λ the fundamental weights , i.e.,
2(λi,αj)
(αj ,αj)

= δij .

Let {1, 2, . . . , n} be the index set of Dynkin nodes of G and J a subset of {1, 2, . . . , n}. Let
Φ−

J be a set consisting of negative roots α with α =
∑

j /∈J ajαj . Let

pJ := h⊕(⊕α∈Φ+gα)⊕ (⊕α∈Φ−

J
gα)

and PJ be the parabolic subgroup of G whose Lie algebra is pJ , where each gα is a one-dimensional
eigenspace with respect to the adjoint action of h. In our conventions, PJ is a maximal parabolic
subgroup of G when J is a subset of a single element. The quotient G/PJ is called a rational
homogeneous space. For example, An/P{k} is the usual Grassmann variety Gr(k, n+1). We call
G/PJ an isotropic flag variety if G is a classical algebraic group of type Bn, Cn or Dn.

Since every semi-simple linear algebraic group can be decomposed into a direct product of
simple linear algebraic groups, every rational homogeneous space G/PJ can be decomposed into
a product

G/PJ
∼= G1/PJ1

×G2/PJ2
× · · · ×Gm/PJm

of rational homogeneous spaces with simple linear algebraic groups Gi and parabolic subgroups
PJi

. Therefore, from now on, we only consider the case where G is a simple linear algebraic
group.

A rational homogeneous space G/PJ has |J | projections πj from G/PJ to G/P{j}, where |J | is
the number of elements in J . The Picard group of G/PJ is generated by Lj := π∗

jOG/Pj
(1). Hence

the Picard number of G/PJ is equal to |J |. Let ⊗j∈JL
⊗bj
j (bj > 0) be a very ample line bundle

on G/PJ . Then there is a natural embedding G/PJ ⊂ P(V ∗) with V = H0(G/PJ ,⊗j∈JL
⊗bj
j ).

If bj = 1 for every j ∈ J , we say G/PJ in its minimal homogeneous embedding and call ⊗j∈JLj

the minimal ample class. In this paper, we focus on the isotropic flag varieties in their minimal
homogeneous embeddings.
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2.2 Homogeneous vector bundles

Next, we consider vector bundles on G/PJ . In particular, we introduce an important class of
vector bundles on this variety.

Definition 2.1. Let E be a vector bundle on G/PJ . E is called homogeneous if there exists an
action of G over E such that the following diagram commutes

G× E −−−−→ E




y





y

G×G/PJ −−−−→ G/PJ .

It is evident from this definition that the tangent bundle T (G/PJ) is homogeneous. It is well
known that homogeneous vector bundles correspond to representations of parabolic subgroup.

Lemma 2.2 ( [24] Theorem 9.7). A vector bundle E of rank r on G/PJ is homogeneous if and
only if there exists a representation ρ : PJ → GL(r) such that E ∼= Eρ, where Eρ is the associated
vector bundle.

Let E be a homogeneous vector bundle on G/PJ . By the above lemma, there is a represen-
tation of PJ corresponding to E. If this representation is irreducible, we call E an irreducible
homogeneous vector bundle. We now describe all irreducible representations of PJ . Let λj (j ∈ J)
be the corresponding fundamental weights and SPJ

the semi-simple part of PJ . Then all irre-
ducible representations of PJ are

V ⊗
(

⊗j∈JL
tj
λj

)

, tj ∈ Z

where V is an irreducible representation of SPJ
and Lλj

is a one-dimensional representation with
weight λj . If λ is the highest weight of an irreducible representation V of SPJ

, we say that

λ+
∑

j∈J tjλj is the highest weight of an irreducible representation V ⊗
(

⊗j∈JL
tj
λj

)

of PJ .

In this paper, we denote Eλ by the irreducible homogeneous vector bundle arising from the
irreducible representation of PJ with highest weight λ. Unfortunately, many interesting bundles
are not irreducible. Nevertheless, it is often possible to draw conclusions about an arbitrary
homogeneous vector bundle from the irreducible case by considering a filtration (c.f. [25] Section
5). Hence we only consider the irreducible homogeneous vector bundles.

Now that the notations are ready, the main theorem is stated again.

Theorem 2.3. Let G be a linear algebraic group of type Bn, Cn or Dn and PJ a parabolic
subgroup of G that is not maximal (i.e., |J | ≥ 2). Then the isotropic flag variety G/PJ does not
admit irreducible homogeneous Ulrich bundles with respect to the minimal ample class.

2.3 Criterion for irreducible homogeneous bundles to be Ulrich

In this subsection, we review a criterion for an irreducible homogeneous vector bundle on
G/PJ to be Ulrich with respect to the minimal ample class obtained by the first author [16] and
the second author [23]. Let us first recall the definition of an Ulrich bundle.

Definition 2.4. Let X ⊂ PN be a projective variety and OX(1) the corresponding very ample
line bundle. We say E is an Ulrich bundle on X if







hi(X,E ⊗OX(−t)) = 0, for 0 < i < dimX and all t ∈ Z;
h0(X,E ⊗OX(−t)) = 0, for t ≥ 1;
hdimX(X,E ⊗OX(−t)) = 0, for t ≤ dimX.
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Let X = G/PJ ⊂ PN be a rational homogeneous space in its minimal homogeneous embed-
ding. Let Φ+

J be a set defined by

Φ+
J := {α ∈ Φ+ | (λj , α) 6= 0 for some j ∈ J}.

Note that the number of elements in Φ+
J is equal to the dimension of X .

Let Eλ be an irreducible homogeneous vector bundle on X with highest weight λ =
∑n

i=1 aiλi

and aj non-negative integer for every j /∈ J . We define a map ϕλ and its associated datum T λ
X

as follows:

ϕλ : Φ+
J → Q, α 7→

(λ+ ρ, α)

(
∑

j∈J λj , α)
, and T λ

X := Image(ϕλ),

where ρ is the half sum of all positive roots. We now state the criterion for an irreducible
homogeneous vector bundle to be Ulrich with respect to the minimal ample class.

Theorem 2.5 ( [16] Theorem 1.3, [23]). With the notations as above, the following are equivalent.
(1) Eλ is an Ulrich vector bundle with respect to the minimal ample class.
(2) T λ

X = {1, 2, . . . , dimX}.

In this paper, we consider the existence problem of Ulrich bundles with respect to the minimal
ample class. Theorem 2.5 and [16] Remark 3.4 give us a necessary condition for Eλ to be Ulrich,
that is ai ≥ 0 for any 1 ≤ i ≤ n. We use Theorem 2.5 to prove the main theorem is tightly
centered around the following criteria. Suppose Eλ is an irreducible homogeneous Ulrich bundle
on X and T λ

X is its associated datum. Then

• All entries of T λ
X must be integers;

• All integers between 1 and dimX must appear in T λ
X ;

• All entries of T λ
X are distinct.

3 Homogeneous Ulrich bundles on isotropic flag varieties

Throughout this section, we let X = G/PJ ⊂ PN be an isotropic flag variety in its minimal
homogeneous embedding, where G is a simple algebraic group of type Bn, Cn or Dn and J =
{d1, . . . , ds} ⊂ {1, 2, . . . , n}. Let Eλ be an irreducible homogeneous vector bundle on X with
highest weight λ = a1λ1+ · · ·+anλn and T λ

X its associated datum. In [16] Section 3.2, the author
explicitly describes the form of T λ

X in terms of ai for different types of G and different values of
ds. Here, we recall them for the sake of self-consistency.

For convenience, we always denote ak := ak + 1 (1 ≤ k ≤ n) and denote Mmin (resp. Mmax)
by the smallest (resp. largest) entry in a matrix M . We will prove that if the Picard number
ρ(X) = |J | = s is greater than or equal to 2, there are no irreducible homogeneous Ulrich bundles
on X with respect to the minimal ample class.

3.1 Type B
n

or C
n

When G is of type Bn or Cn, we prove the main theorem separately depending on whether
ds is n.
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3.1.1 J = {d1, . . . , ds} with ds 6= n

According to [16] Section 3.2.1 II, when J is a subset of {1, 2, . . . , n} consisting of d1, . . . , ds
with ds 6= n, the associated datum T λ

X of Eλ is of the following form. (By convention we set
d0 = 0 and ds+1 = n.)

T λ
X = {P ij , Qij (1 ≤ i ≤ j ≤ s), Ri (1 ≤ i ≤ s)}, where

P ij
uv =

dj+v−1
∑

k=di−u+1

ak

j − i+ 1
(1 ≤ u ≤ di − di−1, 1 ≤ v ≤ dj+1 − dj);

Qij
uv =

n−1
∑

k=di−1+u

ak +
n−1
∑

k=dj+v

ak + 2ean

2s+ 1− (i+ j)
(1 ≤ u ≤ di − di−1, 1 ≤ v ≤ dj+1 − dj);

Ri
uv =

n−1
∑

k=di−1+u

ak +
n−1
∑

k=di−1+v

ak + 2ean

2(s+ 1− i)
(1 ≤ u ≤ v ≤ di − di−1),

and

e =

{

1
2 if G is of type Bn,
1 if G is of type Cn.

In order to prove the nonexistence of irreducible homogeneous Ulrich bundles on X , we first
prove the following two lemmas.

Lemma 3.1. Let Eλ be an irreducible homogeneous bundle on X with highest weight λ = a1λ1+
· · ·+anλn. If Eλ is an Ulrich bundle, then for any integer 1 ≤ i ≤ s+1 and di−1+1 ≤ k ≤ di−1,
we have

lcm(1, 2, . . . , 2s− i+ 1) | ak

and lcm(1, 2, . . . , s) | ean, where lcm(x1, x2, . . . , xn) is the least common multiple of integers
x1, x2, . . . , xn.

Proof. If Eλ is an Ulrich bundle, then due to Theorem 2.5, all entries P ij
uv, Q

ij
uv and Ri

uv should
be integers and so their differences are also integers. Fix an integer i (1 ≤ i ≤ s) and let j be an
integer between i and s, then we have

P ij
u+1,1 − P ij

u,1 =
adi−u

j − i+ 1
∈ Z and Qij

u,1 −Qij
u+1,1 =

adi−1+u

2s+ 1− (i+ j)
∈ Z

for any 1 ≤ u ≤ di − di−1 − 1. Thus we obtain that

j − i+ 1 | adi−1+u and 2s+ 1− (i+ j) | adi−1+u.

Since j runs through all integers between i and s, for any 1 ≤ u ≤ di − di−1 − 1, we have

lcm(1, 2, . . . , s− i) | adi−1+u and lcm(s− i+ 1, s− i+ 2, . . . , 2s− 2i+ 1) | adi−1+u. (3.1)

Moreover, we note that

Ri
u,di−di−1

−Ri
u+1,di−di−1

=
adi−1+u

2(s− i+ 1)
∈ Z,
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hence we have

2(s− i+ 1) | adi−1+u. (3.2)

Furthermore, if i ≥ 2, let i′ be an integer between 1 and i− 1, then we have

Qi′,i−1
1,u −Qi′,i−1

1,u+1 =
adi−1+u

2s+ 1− (i′ + i− 1)
∈ Z

for any 1 ≤ u ≤ di− di−1 − 1. It follows that 2s+1− (i′+ i− 1) | adi−1+u. Since i′ runs through
all integer between 1 and i− 1, we get lcm(2s− 2i+3, 2s− 2i+4, . . . , 2s− i+1) | adi−1+u. This
together with (3.1) and (3.2) gives us

lcm(1, 2, . . . , 2s− i+ 1) | ak (3.3)

for any integer 1 ≤ i ≤ s and di−1 + 1 ≤ k ≤ di − 1. Similarly, since

Qis
1,v −Qis

1,v+1 =
ads+v

2s+ 1− (i+ s)
∈ Z,

we obtain that s− i + 1 | ads+v for any integer 1 ≤ v ≤ n− ds − 1. Since i can run through all
integers between 1 and s, we have

lcm(1, 2, . . . , s) | ak (3.4)

for any integer ds + 1 ≤ k ≤ n− 1. By combining sequences (3.3) and (3.4), we can get the first
statement of the lemma.

Next, we analyze an. Notice that for any integer 1 ≤ i ≤ s,

Qis
1,n−ds

−Ri
11 =

n−1
∑

k=di−1+1

ak + 2ean

2s+ 1− (i+ s)
−

2
n−1
∑

k=di−1+1

ak + 2ean

2(s+ 1− i)

=
ean

s+ 1− i
.

Since Qis
1,n−ds

and Ri
11 are all integers, their difference is also an integer and hence (s+1−i) | ean.

Since i can run through all integers between 1 and s, we have

lcm(1, 2, . . . , s) | ean.

Lemma 3.2. With the notations as above, if Eλ is an Ulrich bundle, then ad1
, ad2

, . . . , ads
are

s different odd numbers.

Proof. According to [16] Remark 3.4, min1≤i≤s{adi
} is the smallest entry in the associated datum

T λ
X of Eλ. Since Eλ is an Ulrich bundle, T λ

X = {1, 2, . . . , dimX} and hence min1≤i≤s{adi
} = 1.

If s = 1, then ad1
= 1 is odd. If s ≥ 2, then for any integer 1 ≤ i ≤ s− 1,

P i,i+1
min =

di+1
∑

k=di

ak

2
=

adi
+ adi+1

+
di+1−1
∑

k=di+1

ak

2
∈ Z,
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because P i,i+1
min ∈ T λ

X . By Lemma 3.1, we know that ak is even for any k ∈ [di + 1, di+1 − 1].

Hence P i,i+1
min is an integer is equivalent to say that adi

+ adi+1
is even. Therefore, all integers

adi
(1 ≤ i ≤ s) have the same parity. Note that min1≤i≤s{adi

} = 1, which means that there is
an integer t such that adt

is equal to 1. Since adi
have the same parity, all adi

(1 ≤ i ≤ s) are
odd. In addition, since adi

= P ii
min ∈ T λ

X and all entries of T λ
X are distinct, these adi

(1 ≤ i ≤ s)
are naturally different.

In order to prove the main theorem, we first analyze the associated datum of an irreducible
homogeneous bundle. Let Eλ be such a bundle, then the associated datum of Eλ consists of the
matrices P ij , Qij (1 ≤ i ≤ j ≤ s) and Ri (1 ≤ i ≤ s). By calculation, we see that

P ij
uv =

dj+v−1
∑

k=di−u+1

ak

j − i+ 1
≥

j
∑

t=i

adt

j − i+ 1
.

Since ad1
, ad2

, . . . , ads
are different odd numbers by Lemma 3.2, we have

P ij
uv ≥

1 + 3 + · · ·+ 2(j − i) + 1

j − i+ 1
= j − i+ 1. (3.5)

Similarly, we have

Qij
uv =

n−1
∑

k=di−1+u

ak +
n−1
∑

k=dj+v

ak + 2ean

2s+ 1− (i+ j)
≥

s
∑

t=i

adt
+

s
∑

t=j+1

adt
+ 2ean

2s+ 1− (i+ j)
.

According to Lemmas 3.1 and 3.2, we know ean ≥ s(s− 1) and ad1
, ad2

, . . . , ads
are different odd

numbers, hence

Qij
uv ≥

(s− i+ 1)2 + (s− j)2 + 2s(s− 1)

2s+ 1− (i + j)
=

2(s− j)2 + 2s(s− 1)

2s+ 1− (i+ j)
+ j − i+ 1.

We can further estimate the value of Qij
uv in two cases.

If j > i, then

Qij
uv ≥

2(s− j)2 + 2s(s− 1)

2s+ 1− (i+ j)
+ j − i+ 1 ≥

2s(s− 1)

2s+ 1− (1 + 2)
+ 2 = s+ 2. (3.6)

If j = i, then

Qii
uv ≥

2(s− i)2 + 2s(s− 1)

2s+ 1− 2i
+ 1 ≥

2s(s− 1)

2s− 1
+ 1 > s. (3.7)

Finally, in a similar way, we note that

Ri
uv =

n−1
∑

k=di−1+u

ak +
n−1
∑

k=di−1+v

ak + 2ean

2(s+ 1− i)
≥

2
s
∑

t=i

adt
+ 2ean

2(s+ 1− i)

≥
2(s+ 1− i)2 + 2s(s− 1)

2(s+ 1− i)
=

s(s− 1)

s+ 1− i
+ s+ 1− i

≥ 2
√

s(s− 1).

(3.8)
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Proof of Theorem 2.3 for type Bn or Cn and s ≥ 3, ds 6= n: Suppose there is an irreducible
homogeneous Ulrich bundle Eλ on X . Denote T λ

X = {P ij , Qij , Ri} by the associated datum of Eλ.

Step 1: We claim that every Qij
uv > 4 and Ri

uv > 4.
If j > i, then Qij

uv ≥ 5 by the sequence (3.6) and if j = i and s ≥ 4, then Qij
uv > 4 by (3.7).

For the case s = 3 and j = i, by (3.7) we know Qii
uv ≥ 2(3−i)2+12

7−2i + 1. It is easy to see that the

latter is always greater than 4 when 1 ≤ i ≤ 3. Hence we conclude Qij
uv > 4. At the same time,

based on the sequence (3.8), we can easily conclude that every Ri
uv is greater than 4. Therefore,

2 and 4 can only be entries of the matrices P ij .

Step 2: Determine the probability of 2 in the matrices P ij .
By Lemmas 3.1 and 3.2, we know adi

is odd for any 1 ≤ i ≤ s and ak is even for any k except

d1, . . . , ds. Hence when j − i is even, the sum
∑dj+v−1

k=di−u+1 ak is odd for any 1 ≤ u ≤ di − di−1

and 1 ≤ v ≤ dj+1 − dj . Since Eλ is an Ulrich bundle, every entry P ij
uv is an integer. Notice that

the numerator of P ij
uv is

∑dj+v−1
k=di−u+1 ak,which is odd when j − i is even. Thus every P ij

uv is also

odd when j− i is even. It follows that 2 and 4 can only appear in some matrices P ij , where j− i
is odd. On the other hand, by (3.5), we have P ij

uv ≥ j − i+ 1 > 2 for any j > i+ 1. Therefore 2
can only be the smallest entry of P t,t+1 for some integer t (1 ≤ t ≤ s− 1), i.e.,

2 = P t,t+1
min = P t,t+1

11 =

dt+1
∑

k=dt

ak

2
. (3.9)

Since for any dt + 1 ≤ k ≤ dt+1 − 1, ak ≥ 2 by Lemma 3.1, we conclude that dt+1 = dt + 1.

And in this case 2 =
adt

+adt+1

2 , which means that either adt
= 1 and adt+1

= 3 or adt
= 3 and

adt+1
= 1. Similarly, from the sequence (3.5) and the parity of P ij

uv, we conclude that

4 /∈ P ij , if j − i ≥ 4 or j − i is even. (3.10)

In order to prove the nonexistence of irreducible homogeneous Ulrich bundles on X , in the
next step we try to judge that 4 does not appear in the associated datum T λ

X of Eλ.

Step 3: We prove 4 does not appear in T λ
X .

From the above arguments, we know that there exists an integer t (1 ≤ t ≤ s− 1) such that
dt+1 = dt +1 and (adt

, adt+1
) = (1, 3) or (3, 1). Hence adi

≥ 5 for any i 6= t, t+1 by Lemma 3.2.
It follows that if j ≤ t− 1 or i ≥ t+ 2, then

P ij
uv ≥

j
∑

l=i

adl

j − i+ 1
≥

5 + 7 + · · ·+ 2(j − i) + 5

j − i+ 1
= 5 + j − i ≥ 5.

And if (i, j) = (t− 3, t) or (i, j) = (t+ 1, t+ 4), then

P ij
uv ≥

j
∑

l=i

adl

j − i+ 1
≥

1 + 5 + 7 + · · ·+ 2(j − i) + 3

j − i+ 1
=

1 + 4(j − i) + (j − i)2

j − i+ 1

>
1 + 2(j − i) + (j − i)2

j − i+ 1
= j − i+ 1 = 4.

9



Combining the above analysis with the statement (3.10), we see that 4 can only appear in the
matrix P t,t+1, P t+1,t+2, P t−1,t, P t,t+3, P t−1,t+2 or P t−2,t+1. Next, we prove the nonexistence
of 4 for the following six cases.

Case (1): Suppose 4 ∈ P t,t+1.
Note that P t,t+1

11 = 2 (see (3.9)). Hence 4 would be equal to P t,t+1
12 or P t,t+1

21 . By calculation,
we find

P t,t+1
12 = 2 +

adt+1+1

2
and P t,t+1

21 = 2 +
adt−1

2
.

Due to Lemma 3.1, we know lcm(1, 2, . . . , 2s−t−1) | adt+1+1 and lcm(1, 2, . . . , 2s−t+1) | adt−1.
Since s ≥ 3, adt+1+1 and adt−1 are greater than 4, hence 4 does not appear in the matrix P t,t+1,
contrary to hypothesis.

Case (2): Suppose 4 ∈ P t+1,t+2.
In this case, 4 would be the smallest entry in P t+1,t+2, i.e.

4 = P t+1,t+2
min =

dt+2
∑

k=dt+1

ak

2
.

Thus
∑dt+2

k=dt+1
ak = 8 and P t,t+2

min =
8+adt

3 . Since Eλ is an Ulrich bundle, P t,t+2
min ∈ Z, which forces

that adt
= 1 and hence adt+1

= 3. Then there would be two identical entries P t,t+2
min and adt+1

in
the associated datum T λ

X , which contradicts Eλ being Ulrich.

Case (3): Suppose 4 ∈ P t−1,t.
The proof for this case is similar to Case (2). Using 4 = P t−1,t

min and P t−1,t+1
min ∈ Z, we get

adt
= 3 and adt+1

= 1. It follows that P t−1,t+1
min = 3 = adt

, contrary to the hypothesis that Eλ is
an Ulrich bundle.

Case (4): Suppose 4 ∈ P t,t+3.
In this case, 4 would be the smallest entry in P t,t+3, which means that

4 = P t,t+3
min =

dt+3
∑

k=dt

ak

4
=

4 +
dt+3
∑

k=dt+1+1

ak

4
.

Since adt+2
and adt+3

are greater than 5 and they are different odd numbers, the above equation
implies that dt+2 = dt+1 + 1, dt+3 = dt+2 + 1 and (adt+2

, adt+3
) = (5, 7) or (7, 5). Since Eλ is

an Ulrich bundle, P t,t+2
min =

4+adt+2

3 ∈ Z, which implies that adt+2
= 5. Hence P t,t+2

min = 3, which
coincides with adt

or adt+1
, contrary to the hypothesis that Eλ is an Ulrich bundle.

Case (5): Suppose 4 ∈ P t−1,t+2.
The proof for this case is similar to Case (4). Using 4 = P t−1,t+2

min , we can get dt = dt−1 + 1

, dt+2 = dt+1 + 1 and (adt−1
, adt+2

) = (5, 7) or (7, 5). Since P t−1,t+1
min =

4+adt−1

3 ∈ Z, we have

adt−1
= 5 and hence P t−1,t+1

min = 3. This leads to a contradiction, because P t−1,t+1 coincides
with adt

or adt+1
.

Case (6): Suppose 4 ∈ P t−2,t+1.

10



The proof for this case is similar to Case (5). Using 4 = P t−2,t+1
min and P t−1,t+1

min =
4+adt−1

3 ∈ Z,

we have adt−1
= 5 and hence P t−1,t+1

min = 3, which leads to a contradiction.
In conclusion, through detailed analysis of six different cases, we have excluded one by one

the possibility of 4 appearing in the associated datum T λ
X . Therefore, if s ≥ 3, there are no

irreducible homogeneous Ulrich bundles on X .

Next, we show that the same statement holds for any isotropic flag variety Bn/Pd1,d2
or

Cn/Pd1,d2
(d2 6= n), whose Picard number is 2.

Proof of Theorem 2.3 for type Bn or Cn and s = 2, ds 6= n: Suppose that Eλ is an
irreducible homogeneous Ulrich bundle on X := Bn/Pd1,d2

or Cn/Pd1,d2
(d2 6= n). Denote T λ

X =
{P ij , Qij , Ri} by the associated datum of Eλ. According to Theorem 2.5, T λ

X = {1, 2, . . . , dimX}.
Hence 2 would appear in T λ

X . By the hypothesis s = 2, the sequence (3.6) and (3.7), we get
every Qij

uv is always greater than 2. And by the sequence (3.8), we get Ri
uv is also greater than

2. Hence 2 could only be an entry of some matrix P ij , where 1 ≤ i ≤ j ≤ 2.
As every entry of the matrix P 11 or P 22 is odd, 2 appears as an entry of P 12. By the sequence

(3.5), we get P 12
uv is at least 2 and hence 2 should be the smallest entry in the matrix P 12. It

follows that 2 = P 12
min =

∑d2
k=d1

ak

2 . Since for any d1 + 1 ≤ k ≤ d2 − 1, ak ≥ 2 by Lemma 3.1, we
conclude that

d2 = d1 + 1 and (ad1
, ad2

) = (1, 3) or (3, 1). (3.11)

On the other hand, by Lemmas 3.1 and 3.2, it is not hard to see all entries in the matrices
P 11, P 22, Q11 and Q22 are odd. In addition, since d2 − d1 = 1, the matrix R2 has only one
entry R2

11 =
∑n−1

k=d2
ak + ean, which is odd due to Lemmas 3.1 and 3.2. Thus even numbers can

only appear in the matrix P 12, Q12 or R1. According to [16] Page 10 (3.7), we know dimX =

max{m1,m2}, where m1 :=
∑d1

k=1 ak and m2 :=
∑n−1

k=d2
ak +

∑n−1
k=d2+1 ak + 2ean. Since m1 and

m2 are odd, dimX is odd. Hence dimX − 1 is even and is the largest entry among the matrices
P 12, Q12 and R1. By comparing the largest entries of the three matrices, we find

Q12
max =

n−1
∑

k=1

ak +
n−1
∑

k=d2+1

ak + 2ean

2
> R1

max =

n−1
∑

k=1

ak

2
+

ean
2

> P 12
max =

n−1
∑

k=1

ak

2
.

Therefore, dimX − 1 = Q12
max. It follows that

R1
1,d1

=

n−1
∑

k=1

ak +
n−1
∑

k=d1

ak + 2ean

4
=

2 dimX − 2 + ad1
+ ad2

4
=

dimX + 1

2
.

As dimX is the maximum of m1 and m2 and dimX − 1 is their average, we have

(m1,m2) = (dimX, dimX − 2) or (dimX − 2, dimX).

Combing the above sequence with (3.11), it is not hard to see that either m2 + ad1
or m2 + ad2

must be equal to dimX + 1. If m2 + ad1
= dimX + 1, then

Q12
d1,1 =

n−1
∑

k=d1

ak +
n−1
∑

k=d2+1

ak + 2ean

2
=

m2 + ad1

2
=

dimX + 1

2
= R1

1,d1
.

11



If m2 + ad2
= dimX + 1, then

R2
11 =

n−1
∑

k=d2

ak + ean =
m2 + ad2

2
=

dimX + 1

2
= R1

1,d1
.

Therefore, in any case, there would always be two identical numbers in T λ
X , which is contradictory

to Eλ being Ulrich. Therefore, we are done.

3.1.2 J = {d1, . . . , ds} with ds = n

According to [16] Section 3.2.1 II Case (b), the associated datum T λ
X of Eλ is of the following

form.

T λ
X = {P̃ ij

uv, Q̃
ij
uv (1 ≤ i ≤ j ≤ s− 1), R̃i

uv (1 ≤ i ≤ s)}, where

P̃ ij
uv =

dj+v−1
∑

k=di−u+1

ak

j − i+ 1
(1 ≤ u ≤ di − di−1, 1 ≤ v ≤ dj+1 − dj);

Q̃ij
uv =

n−1
∑

k=di−1+u

ak +
n−1
∑

k=dj+v

ak + 2ean

2(s+ e)− (i+ j + 1)
(1 ≤ u ≤ di − di−1, 1 ≤ v ≤ dj+1 − dj);

R̃i
uv =

n−1
∑

k=di−1+u

ak +
n−1
∑

k=di−1+v

ak + 2ean

2(s+ e− i)
(1 ≤ u ≤ v ≤ di − di−1).

It should be noted that the matrices P̃ ij and Q̃ij can only happen when s ≥ 2.
By observing, it is not difficult to see that

R̃i
min =

2
n−1
∑

k=di

ak + 2ean

2(s+ e− i)
and Q̃ij

min =

n−1
∑

k=di

ak +
n−1
∑

k=dj+1

ak + 2ean

2(s+ e)− (i+ j + 1)
.

By calculation, we have

Q̃ij
min =

n−1
∑

k=di

ak +
n−1
∑

k=dj+1

ak + 2ean

2(s+ e)− (i+ j + 1)
=

2
n−1
∑

k=di

ak + 2ean + 2
n−1
∑

k=dj+1

ak + 2ean

4(s+ e)− 2(i+ j + 1)

=
2(s+ e− i)R̃i

min + 2(s+ e− j − 1)R̃j+1
min

4(s+ e)− 2(i+ j + 1)
.

Hence, we conclude that

R̃i
min ≤ Q̃ij

min ≤ R̃j+1
min or R̃j+1

min ≤ Q̃ij
min ≤ R̃i

min (3.12)

for any 1 ≤ i ≤ j ≤ s− 1.
Similar to the previous section, we can obtain the following two lemmas, which are crucial

for the proof of our main theorem.
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Lemma 3.3. Let Eλ be an irreducible homogeneous bundle on X with highest weight λ = a1λ1+
· · ·+ anλn. If Eλ is an Ulrich bundle, then for any integer 1 ≤ i ≤ s and di−1 + 1 ≤ k ≤ di − 1,
we have

lcm(1, 2, . . . , s− i, s− i+ 2e, s− i+ 2e+ 1, . . . , 2s+ 2e− 1− i) | ak.

Proof. Let’s follow the proof of Lemma 3.1. Fix an integer i (1 ≤ i ≤ s − 1) and let j be an
integer between i and s− 1. Using the differences P̃ ij

u+1,1 − P̃ ij
u,1 and Q̃ij

u,1 − Q̃ij
u+1,1 are integers,

we get
j − i+ 1 | adi−1+u and 2(s+ e)− (i+ j + 1) | adi−1+u.

Since j runs through all integers between i and s− 1, for any 1 ≤ u ≤ di − di−1 − 1, we have

lcm(1, 2, . . . , s− i) | adi−1+u and lcm(s− i+ 2e, . . . , 2(s+ e− i)− 1) | adi−1+u. (3.13)

Moreover, since R̃i
u,di−di−1

− R̃i
u+1,di−di−1

∈ Z, we have

2(s+ e− i) | adi−1+u. (3.14)

Furthermore, when i ≥ 2, using the difference Q̃i′,i−1
1,u − Q̃i′,i−1

1,u+1 is an integer, where 1 ≤ i′ ≤ i−1,
we have 2(s+ e)− (i′+ i) | adi−1+u. Since i′ runs through all integers between 1 and i− 1, we get
lcm(2(s+ e− i) + 1, . . . , 2s+ 2e− 1− i) | adi−1+u. This together with (3.13) and (3.14) gives us

lcm(1, 2, . . . , s− i, s− i+ 2e, s− i+ 2e+ 1, . . . , 2s+ 2e− 1− i) | ak (3.15)

for any integer 1 ≤ i ≤ s− 1 and di−1 + 1 ≤ k ≤ di − 1.
Similarly, using the differences R̃s

1,v− R̃s
1,v+1 and Q̃i,s−1

1,v − Q̃i,s−1
1,v+1 are integers, we obtain that

2e | ads−1+v and s+2e− i | ads−1+v for any integer 1 ≤ v ≤ n−ds−1−1. Since i can run through
all integers between 1 and s− 1, we have

lcm(2e, 2e+ 1, . . . , s+ 2e− 1) | ak (3.16)

for any integer ds−1 + 1 ≤ k ≤ n − 1. By combining sequences (3.15) and (3.16), we complete
the proof.

Lemma 3.4. With the notations as above, if Eλ is an Ulrich bundle, then ad1
, . . . , ads−1

, ads
(=

an) are s different odd numbers.

Proof. By Lemma 3.3, we know that ak is even for any di + 1 ≤ k ≤ di+1 − 1. Using similar
arguments in Lemma 3.2, we can easily get that all integers adi

(1 ≤ i ≤ s − 1) have the same
parity. Next, let us consider the difference

Q̃s−1,s−1
min − R̃s−1

min =

∑n−1
k=ds−1

ak + 2ean

2e+ 1
−

2
∑n−1

k=ds−1
ak + 2ean

2(1 + e)
=

2e(an −
∑n−1

k=ds−1
ak)

2(1 + e)(2e + 1)
.

Because Eλ is an Ulrich bundle, the above difference should be an integer. Note that 2e
2(1+e)(2e+1)

is 1
6 , whether e = 1

2 or 1. So an−
∑n−1

k=ds−1
ak is even, which implies that an(= ads

) and ads−1
have

the same parity. Therefore, all adi
(1 ≤ i ≤ s) have the same parity. Since min1≤i≤s{adi

} = 1,

every adi
is odd. In addition, since for any 1 ≤ i ≤ s− 1, adi

= P̃ ii
min and an = R̃s

min, they are
naturally distinct.
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Now, let’s prove the nonexistence of irreducible homogeneous Ulrich bundles on X .

Proof of Theorem 2.3 for type Bn or Cn and ds = n: Suppose there is an irreducible
homogeneous Ulrich bundle Eλ on X with λ = a1λ1 + · · ·+ anλn. Denote T λ

X = {P̃ ij , Q̃ij , R̃i}
by the associated datum of Eλ. Then 2 would appear in T λ

X . By Lemmas 3.3 and 3.4, we find
that every entry of P̃ ii (1 ≤ i ≤ s− 1) is odd. In addition, if n− ds−1 = 1, then R̃s has only one

entry an. If n − ds−1 > 1, then the second smallest entry of R̃s is an−1+2ean

2e , which is greater
than or equal to 3, as an−1 ≥ 2e(1 + 2e) by the hypothesis s ≥ 2 and Lemma 3.3. Hence 2 can
only appear as the smallest entry of some P̃ ij (1 ≤ i < j ≤ s− 1), R̃i (1 ≤ i ≤ s− 1) or Q̃ij . We
first claim 2 /∈ Q̃ij .

Claim: 2 does not appear in Q̃ij .
Suppose there is a pair (i0, j0) (1 ≤ i0 ≤ j0 ≤ s − 1) such that 2 = Q̃i0,j0

min , then by the

sequence (3.12), either R̃i0
min or R̃j0+1

min must be equal to 1. On the other hand, since Eλ is an
Ulrich bundle, we have min{ad1

, . . . , ads−1
, an} = 1. Hence an = R̃s

min = 1, which implies that
j0 = s− 1. From the equality

2 = Q̃i0,s−1
min =

(s+ e− i)R̃i0
min + e

s+ 2e− i
,

we get R̃i0
min = 2 + e

s+e−i . It would not be an integer, whether e = 1
2 or 1, contrary to the

hypothesis Eλ is an Ulrich bundle. Therefore, 2 does not appear in Q̃ij .

Next, we prove that 2 does not appear in either R̃i or P̃ ij . Assume there is some i0 (1 ≤ i0 ≤

s− 1) such that 2 = R̃i0
min =

2
∑n−1

k=di0
ak+2ean

2(s+e−i0)
. Then we have 4(s+ e− i0) = 2(

∑n−1
k=di0

ak + ean).

Note that the left-hand side of the above equation is an even number and an is odd by Lemma
3.4, we must have e = 1, i.e., 2 appears in R̃i0 only if G is of type C. By substituting e = 1 into
the above equation, we get

4(s+ 1− i0) = 2

n
∑

k=di0

ak ≥ 2(s− i0 + 1)2. (3.17)

Note that for the last inequality, we use the assertion that adi0
, . . . , ads−1

, ads
(= an) are dif-

ferent odd numbers (see Lemma 3.4). From (3.17), we can deduce that i0 = s − 1. Hence
∑n

k=ds−1
ak = 4, which implies that ds−1 = n − 1 and an is equal to 1 or 3. In either case,

Q̃s−1,s−1
min =

∑n−1

k=ds−1
ak+2an

3 = 4+an

3 would not be an integer, which contradicts the hypothesis.

Assume 2 appears in some P̃ ij (1 ≤ i < j ≤ s − 1), then s ≥ 3 and 2 is equal to P̃ t0,t0+1
min

for some 1 ≤ t0 ≤ s − 2 (the reason is the same as Step 2 in the proof for the case s ≥ 3 and
ds 6= n in Section 3.1.1). Then using Lemmas 3.3 and 3.4, we can infer that dt0+1 = dt0 + 1
and (adt0

, adt0+1
) = (1, 3) or (3, 1). Since s ≥ 3, appling almost verbatim Step 3 in Section 3.1.1,

we get 4 would not appear as an entry of P̃ ij . Hence 4 can only be equal to R̃j0
min for some

1 ≤ j0 ≤ s− 1 by (3.12). Similar to the previous arguments, we would get e = 1 and j0 satisfies
s − 3 ≤ j0 ≤ s − 1. It is easy to judge that j0 6= s − 2, otherwise 4(s + 1 − j0) =

∑n
k=ds−2

ak,
which is absurd, because the left-hand side of the equality is even, but the right-hand side is odd
due to Lemmas 3.3 and 3.4.

If j0 = s − 3, then 16 =
∑n

k=ds−3
ak. As

∑n−1
k=ds−3

ak ≥ 9, an ≥ 5 and an is odd, we have
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an = 5 or 7. Then Q̃s−3,s−1
min =

∑n−1

k=ds−3
ak+2an

5 = 16+an

5 would not be an integer, whether an = 5
or 7.

If j0 = s − 1, then 8 =
∑n

k=ds−1
ak. Since an ≥ 5 and it is odd,

∑n−1
k=ds−1

= 3, an = 5 or

∑n−1
k=ds−1

= 1, an = 7. If the former happens, Q̃s−1,s−1
min =

∑n−1

k=ds−1
ak+2an

3 = 13
3 /∈ Z. If the

latter happens, the equality
∑n−1

k=ds−1
ak = 1 implies ds−1 = n − 1 and ads−1

= 1. Thus we get

t0 = s− 2 and ads−2
= 3. It leads to R̃s−2

min =

∑
n
k=ds−2

ak

3 = 3+1+7
3 = 11

3 /∈ Z, which contrary to
the hypothesis Eλ is an Ulrich bundle.

In summary, we conclude that there are no irreducible homogeneous Ulrich bundles on X
with respect to the minimal ample class.

3.2 Type D
n

When G is of type Dn, the existence problem gets more intricate due to the unique structure
of its Dynkin diagram. We need to use different methods to consider the existence of Ulrich
bundles for the following three cases.

3.2.1 J = {d1, . . . , ds} with ds ≤ n− 2

According to [16] Section 3.2.1 III Case (a), the associated datum T λ
X of Eλ is of the following

form. (By convention we set d0 = 0 and ds+1 = n.)
T λ
X = {P ij , Qij (1 ≤ i ≤ j ≤ s), Ri (1 ≤ i ≤ s)}, where

P ij
uv =

dj+v−1
∑

k=di−u+1

ak

j − i+ 1
(1 ≤ u ≤ di − di−1, 1 ≤ v ≤ dj+1 − dj);

Qij
uv =

n−2
∑

k=di−1+u

ak +
n
∑

k=dj+v

ak

2s+ 1− (i+ j)
(1 ≤ u ≤ di − di−1, 1 ≤ v ≤ dj+1 − dj);

Ri
uv =

n−2
∑

k=di−1+u

ak +
n
∑

k=di−1+v

ak

2(s+ 1− i)
(1 ≤ u < v ≤ di − di−1).

Similar to the proof of Lemma 3.1, we can get the following lemma.

Lemma 3.5. Let Eλ be an irreducible homogeneous Ulrich bundle on X with highest weight
λ = a1λ1 + · · ·+ anλn.

(i) For any 1 ≤ k ≤ d1 − 1, we have lcm(1, 2, . . . , 2s− 1) | ak.

(ii) For any integer 2 ≤ i ≤ s+ 1 and di−1 + 1 ≤ k ≤ di − 1, we have

lcm(1, 2, . . . , 2s− 2i+ 1) | ak and lcm(2s− 2i+ 3, 2s− 2i+ 4, . . . , 2s− i+ 1) | ak.

(iii) an 6= an−1 and lcm(1, 2, . . . , s) | an.
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Proof. The proof of (i) and (ii) is almost the same as the proof of Lemma 3.1, except that we
cannot figure out ak is divisible by 2(s − i + 1). This is because when di − di−1 is equal to 2,
there is only one entry in the matrix Ri.

For the statement (iii), let us compare the difference

Qis
di−di−1,n−ds

− P is
1,n−ds

=
an − an−1

s+ 1− i
.

Since Eλ is an Ulrich bundle, the above difference should be a non-zero integer and hence
(s+1−i) | an−an−1 for any 1 ≤ i ≤ s. By the statement (ii), we know that lcm(1, 2, . . . , s) | an−1.
Therefore lcm(1, 2, . . . , s) | an.

Using Lemma 3.5, we can immediately get the following lemma.

Lemma 3.6. With the same assumption as above, then ad1
, ad2

, . . . , ads
are s different odd

numbers.

With the above lemmas, let us first consider the simple case, where the Picard number of X
is greater than 2.

Proof of Theorem 2.3 for type Dn and s ≥ 3, ds ≤ n − 2: Suppose Eλ is an Ulrich
bundle on X . Note that

Qij
uv =

n−2
∑

k=di−1+u

ak +
n−2
∑

k=dj+v

ak + an−1 + an

2s+ 1− (i+ j)
and Ri

uv =

n−2
∑

k=di−1+u

ak +
n−2
∑

k=di−1+v

ak + an−1 + an

2(s+ 1− i)
.

By Lemma 3.5, we have known that an−1 ≥ s(s− 1) and an ≥ s(s− 1), so an−1+an ≥ 2s(s− 1).
Since ds ≤ n− 2, as in the previous analysis of Section 3.1.1 Step 1, it is not difficult to obtain
that Qij

uv and Ri
uv are greater than 4 when s ≥ 3.

Note also that the matrix P ij in the associated datum of type D coincides with the matrix
P ij in the associated datum of type B, so verbatim following the proof after Step 2 of Section
3.1.1, we can conclude that 4 does not appear in the associated datum of Eλ. It follows that
there are no irreducible homogeneous Ulrich bundles on X .

Next, we deal with the complex case where the Picard number of X is 2, that is s = 2. To
this end, we need some preparatory work.

Proposition 3.7. If there exists an irreducible homogeneous Ulrich bundle on X, then d1 ≥ 2
and d2 = d1 + 1.

Proof. Suppose that Eλ is an Ulrich bundle on X . Since d2 ≤ n−2 and an−1+an ≥ 2s(s−1) = 4,
we have every Qij

uv is greater than 2 and so is Ri
uv. Hence 2 could only be an entry of some

matrix P ij , where 1 ≤ i ≤ j ≤ 2. As every entry of the matrix P 11 or P 22 is odd, 2 appear

as the smallest entry of P 12, i.e., 2 = P 12
min =

∑d2
k=d1

ak

2 , which implies that d2 = d1 + 1 and
(ad1

, ad2
) = (1, 3) or (3, 1), as ak ≥ 3 for any d1 + 1 ≤ k ≤ d2 − 1 by Lemma 3.5 (ii).

Note that dimX = |T λ
X | = 2(d1 + 1)(n − d2) + 2d1 +

d1(d1−1)
2 . If d1 were equal to 1, then

dimX is even. However by the assumption that Eλ is an Ulrich bundle, dimX should be equal
to max{

∑d1

k=1 ak,
∑n−2

k=d2
ak +

∑n
k=d2+1 ak} (see [16] Page 11 (3.15)), which implies that dimX is

odd. Hence d1 ≥ 2.
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Remark 3.8. Since d2−d1 = 1, T λ
X consists of matrices P ij , Qij(1 ≤ i ≤ j ≤ 2) and R1, where

R1 is a strictly upper triangular matrix, P 11 and Q11 are (d1 × 1)-matrices, P 22 and Q22 are
(1× (n− d2))-matrices. Moreover, from Lemmas 3.5 and 3.6, we conclude that all entries in the
matrices P 11, P 22, Q11 and Q22 are odd, which is very important for the subsequent discussion.

Proposition 3.9. If there exists an Ulrich bundle Eλ with λ = a1λ1 + · · · + anλn on X, then
the following holds:

(1) ad1
= 1, ad2

= 3, ad2+1 = 4, dimX =
∑d1

k=1 ak and dimX − 2 =
∑n−2

k=d2
ak +

∑n
k=d2+1.

(2) d1 ≥ 3 and 12 | ak for any 1 ≤ k ≤ d1 − 1.

(3) 4 | an − an−1.

Proof. Similar to the proof for the case s = 2 and ds 6= n in Section 3.1.1, it is not hard to see
dimX − 1 = Q12

max, where

Q12
max =

n−2
∑

k=1

ak +
n
∑

k=d2+1

ak

2
=

d1
∑

k=1

ak +
n−2
∑

k=d2

ak +
n
∑

k=d2+1

ak

2
.

It follows that dimX and dimX−2 are one of
∑d1

k=1 ak and
∑n−2

k=d2
ak+

∑n
k=d2+1 ak respectively,

as dimX is the maximum value between these two integers. So there are four possibilities for
ad1

, ad2
, m1 :=

∑d1

k=1 ak and m2 :=
∑n−2

k=d2
ak +

∑n
k=d2+1 ak:

(a) m1 = dimX , m2 = dimX − 2, ad1
= 3 and ad2

= 1;

(b) m1 = dimX − 2, m2 = dimX , ad1
= 1 and ad2

= 3;

(c) m1 = dimX − 2, m2 = dimX , ad1
= 3 and ad2

= 1;

(d) m1 = dimX , m2 = dimX − 2, ad1
= 1 and ad2

= 3.

For the cases (a) and (b), since

Q12
d1,1 =

ad1
+m2

2
=

dimX + 1

2
and R1

1,d1
=

m1 +m2 + ad1
+ ad2

4
=

dimX + 1

2
,

this contradicts the hypothesis that Eλ is an Ulrich bundle and hence neither possibility exists.
For the cases (c) and (d), we first prove that 4 can only be equal to P 12

12 .
Since all entries in the matrices P 11, P 22, Q11 and Q22 are odd, 4 can only appear in the

matrix R1, Q12 and P 12. Since 1, 2 and 3 appear as P 11
min, P 12

min = P 12
11 and P 22

min respectively,
4 can only be equal to the smallest entry of the matrix R1 or Q12 or the second smallest entry
of P 12, i.e., 4 is R1

min, Q12
min or min{P 12

21 , P
12
12 }. By Lemma 3.5, we know that ad1−1 ≥ 6 and

an−1 + an ≥ 4, hence P 12
21 =

∑d2

k=d1−1 ak ≥ 5 and R1
min =

∑n−2

k=d1−1
ak+

∑n
k=d1

ak

4 ≥ 6+2×4+4
4 > 4.

Claim: 4 is not equal to Q12
min, where Q12

min = Q12
d1,n−d2

=
4+

∑n−2

k=d2+1
ak+an

2 .

Suppose this were proved, then 4 can only equal to P 12
12 =

∑d2+1

k=d1
ak

2 , which implies that
ad2+1 = 4. Next, we illustrate that Case (c) is impossible. If Case (c) occurs, it is easy to find

P 12
d1,1 =

d2
∑

k=1

ak

2
=

m1 + ad2

2
=

dimX − 1

2
and Q12

d1,2 =
ad1

+m2 − ad2+1

2
=

dimX − 1

2
,
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which contradicts Eλ being an Ulrich bundle. So, only Case (d) can happen and that gives us

the first statement. Note that in this case, Q11
d1,1

=
∑n−2

k=d1
ak+

∑
n
k=d2

ak

3 =
m2+ad1

+ad2

3 = dimX+2
3 .

Since Eλ is an Ulrich bundle, Q11
d1,1

should be an integer, which implies that 3 | dimX +2. If d1

were 2, then dimX = 2(d1 +1)(n− d2) + 2d1 +
d1(d1−1)

2 = 6n− 13, which contradicts dimX +2
being divisible by 3. Hence d1 ≥ 3. It follows that the matrix R1 has at least three elements. By
comparing the difference between any two adjacent elements of the first row and last column of
R1, we can see that ak is divisible by 4 for any 1 ≤ k ≤ d1−1, as all differences must be integers.
Moreover, by Lemma 3.5, we know ak is divisible by 6, which brings us to the second statement.

In addition, since Q12
d1,n−d2

−R1
d1−1,d1

=
an−an−1−ad1−1

4 is an integer and ad1−1 is divisible by 4,
the third statement follows immediately.

It thus remains to prove our claim. If 4 were equal to Q12
min, then

∑n−2
k=d2+1 ak + an = 4. By

Lemma 3.5 (ii) and (iii), we know ak (d2 + 1 ≤ k ≤ n− 1) and an are all even. Thus there are
two possibilities:

(1) an = 2 and
∑n−2

k=d2+1 ak = 2, which implies that d2 = n− 3 and ad2+1 = 2;

(2) an = 4 and
∑n−2

k=d2+1 ak = 0, which implies that d2 = n− 2.

We say (1) cannot happen, because in this case P 12
12 =

∑d2+1

k=d1
ak

2 = 3 coincides with ad1
or ad2

.
Next, we show that (2) is also impossible for either Case (c) or (d).

Assume Cases (c) and (2) happen, then Q22
min = ad2

+ an = 5. In this case an−1(= ad2+1)

cannot be equal to 4 or 6, otherwise P 12
12 =

∑d2+1

k=d1
ak

2 would be equal to 4 or 5, which has appear
in the associated datum of Eλ. To prove that Cases (c) and (2) cannot happen, it suffices to
state that 6 does not appear in the associated datum of Eλ. If 6 appears, since 6 is even, 6
can only be R1

min, min{Q12
d1−1,n−d2

, Q12
d1,n−d2−1} or min{P 12

21 , P
12
12 }. We separately prove that all

possibilities are impossible.

If 6 = R1
min =

ad1−1+an−1+12

4 , then ad1−1 + an−1 = 12. By Lemma 3.5 (i), 6 | ad1−1, so we
have ad1−1 = an−1 = 6, this contradicts the previous argument that an−1 is not equal to 6.

If 6 = Q12
d1,n−d2−1 = 8+an−1

2 , then an−1 = 4, which is also impossible.

If 6 is equal to P 12
21 (=

4+ad1−1

2 ) or Q12
d1−1,n−d2

= (
8+ad1−1

2 ), then ad1−1 = 8 or 4, which
contradicts ad1−1 being divisible by 6.

If 6 = P 12
12 =

4+ad2+1

2 , then ad2+1 = 8. However, this leads to Q11
d1,1

=
∑n−2

k=d1
ak+

∑n
k=d2

ak

3 = 17
3

is not an integer. So in summary, 6 does not appear in the associated datum of Eλ.

Assume Cases (d) and (2) happen, then Q22
min = 7. In this case an−1 cannot be equal to 2

or 4, otherwise P 12
12 would be equal to 3 or 4, which has appear in the associated datum of Eλ.

To prove that Cases (d) and (2) cannot happen, it suffices to state that 5 does not appear in the
associated datum T λ

X = {P ij , Qij (1 ≤ i ≤ j ≤ 2), R1}.
Firstly, since Q22

min = 7, 5 does not appear in Q22.
Secondly, if 5 ∈ R1 or 5 ∈ Q11, then 5 would be equal to R1

min or Q11
min, which implies that

an−1 = 2 or an−1 = 4, which is impossible by the previous argument.
Next, if 5 ∈ Q12, then 5 would be equal to Q12

d1−1,n−d2
or Q12

d1,n−d2−1, which implies that
ad1−1 = 2 or an−1 = 2. This contradicts Lemma 3.5 (i).

Finally, since ad1−1 ≥ 6 and an−1 6= 2, we have P 11
21 = 1+ad1−1 ≥ 7 and P 22

12 = 3+an−1 6= 5.
It follows that 5 does not appear in P 11 or P 22. If 5 ∈ P 12, then 5 would be equal to P 12

12 or P 12
21 ,
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which implies that ad2+1 = 6 or ad1−1 = 6. However this leads to Q12
d1,1

= 7 or P 11
21 = 7, which

coincides with Q22
min, so it is also impossible. In summary, 5 does not appear in the associated

datum of Eλ.

Next, we prove there are some restrictions on the associated datum for an arbitrary irreducible
homogeneous Ulrich bundle. This is the key to proving that X does not carry irreducible homo-
geneous Ulrich bundles. Denote M(i, ) by the i-th row of the matrix M . We write x ∈ M(i, )
if x is an entry of M(i, ).

Proposition 3.10. Let Eλ be an Ulrich bundle with λ = a1λ1 + · · · + anλn on X and T λ
X =

{P ij , Qij (1 ≤ i ≤ j ≤ 2), Ri (1 ≤ i ≤ 2)} the associated datum of Eλ. Then

for any x ∈ P 12(1, ),we have x+ l ∈ P 12(1, ) or P 22(1, ) for l = 1, 2. (*)

Proof. We prove the proposition by induction on x. By the proof of Proposition 3.7, we know
that the smallest element P 12

11 in P 12(1, ) is 2. From the proof of Proposition 3.9, we find that
3 = ad2

∈ P 22(1, ) and 4 = P 12
12 ∈ P 12(1, ). Therefore, 2 satisfies the assertion (*). Suppose the

assertion (*) is true for any y with y < x and y ∈ P 12(1, ). Since all entries of the matrices P ii

and Qii (i = 1, 2) are odd, at least one of y + 1 and y + 2 must lie in P 12(1, ) by induction. So
we say that the induction hypothesis implies the following two consequences:

1○ For any y (y < x), we have y ∈ P 12(1, ) or y ∈ P 22(1, ).

2○ Let y1 and y2 be two adjacent integers in P 12(1, ). If y1 and y2 are less than x, then y1−y2
is less than or equal to 2.

As any integer x ∈ P 12(1, ) corresponds to an integer 2x− 1 ∈ P 22(1, ), 2○ is equivalent to say
that the difference between any two adjacent integers in P 22(1, ) less than 2x − 1 is not more
than 4. Next, we prove the assertion (*) is also true for x ∈ P 12(1, ).

Case 1: Suppose x is odd. Then x − 1 is even. According to the assertion 1○, we have
x − 1 ∈ P 12(1, ) and thus by the induction hypothesis x + 1 ∈ P 12(1, ) or P 22(1, ). On the
other hand, by 1○, we know x− 2 ∈ P 12(1, ) or P 22(1, ). Since x is odd and x ∈ P 12(1, ), we
must have x − 2 ∈ P 22(1, ), otherwise there would be two adjacent odd numbers a (a ≤ x− 4)
and b (b ≥ x + 2) in P 22(1, ), which contradicts to the assertion 2○ that b − a ≤ 4. Using the
assertion 2○ again, we find that x + 2 ∈ P 22(1, ), because x − 2 ∈ P 22(1, ) and x ∈ P 12(1, ).
Thus, if x is odd, the assertion (*) is indeed true for x.

Case 2: Suppose x is even. We can assume that x ≥ 4. In order to prove the assertion (*),
it suffices to show that neither x+ 1 nor x+ 2 appear as entries of Q11, Q22, R1, P 11, P 12(2, )
and Q12. Let’s prove it in the following steps.

Step 2.1: We claim that neither x+ 1 nor x+ 2 appear as entries of Q11, Q22 and R1.
To prove the claim, it suffices to show that the smallest entry of Q11, Q22 or R1 is greater

than x + 2. Since x ∈ P 12(1, ), we can write x as P 12
1,v =

∑d2+v−1

k=d1
ak

2 , where 1 ≤ v ≤ n − d2. If

v < n − d2, then
∑n−2

k=d1
ak ≥ 2x. By Proposition 3.9, we get ad1−1 ≥ 12, ad1

= 1, an ≥ 2 and
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an−1 + an ≥ 8. Thus, we have

Q11
min =

∑n−2
k=d1

ak +
∑n

k=d2
ak

3
=

2
∑n−2

k=d1
ak − ad1

+ an−1 + an

3
≥

4x− 1 + 8

3
> x+ 3,

Q22
min =

n−2
∑

k=d2

ak + an =

n−2
∑

k=d1

ak − ad1
+ an ≥ 2x− 1 + 2 ≥ x+ 5,

R1
min =

∑n−2
k=d1−1 ak +

∑n
k=d1

ak

4
=

ad1−1 + 2
∑n−2

k=d1
ak + an−1 + an

4
≥

12 + 4x+ 8

4
= x+ 5.

For the first two inequalities, we use the assumption x ≥ 4. If v = n− d2, then
∑n−1

k=d1
ak = 2x.

Similarly, we have

Q11
min =

2
∑n−1

k=d1
ak − ad1

+ an − an−1

3
≥

4x− 1 + 4

3
> x+ 2,

Q22
min =

n−1
∑

k=d1

ak − ad1
+ an − an−1 ≥ 2x− 1 + 4 ≥ x+ 7,

R1
min =

ad1−1 + 2
∑n−1

k=d1
ak + an − an−1

4
≥

12 + 4x+ 4

4
= x+ 4.

Here we use the inequalities an − an−1 ≥ 4 and x ≥ 4.

Step 2.2: We claim that neither x+ 1 nor x+ 2 appear as entries of P 11 and P 12(2, ).
First of all because all entries of P 11 are odd, we have x + 2 /∈ P 11, as x is even. Assume

x + 1 ∈ P 11, then x + 1 is the second smallest element in P 11, i.e., x+ 1 = P 11
21 =

∑d1

k=d1−1 ak,

which implies that ad1−1 = x. Then P 12
21 =

∑d2
k=d1−1

ak

2 = x+4
2 . Since x ≥ 4, we have x+4

2 ≤ x.
However, by the assertion 1○, x+4

2 should lie in P 12(1, ) or P 22(1, ). This is a contradiction.
Hence neither x+ 1 nor x+ 2 are entries of P 11.

Further, we claim neither x + 1 or x + 2 are entries of P 12(2, ). Assume x + 1 ∈ P 12(2, ),

then x + 1 is the smallest entry in P 12(2, ), i.e., x + 1 = P 12
21 =

∑d2

k=d1−1 ak, which implies
that ad1−1 = 2x − 2. However, this contradicts that ad1−1 is divisible by 12 (see Proposition
3.9), because x is even. Assume x + 2 ∈ P 12(2, ), similarly we have ad1−1 = 2x. Suppose

x = P 12
1,v =

∑d2+v−1

k=d1
ak

2 , then
∑d2+v−1

k=d1
ak = 2x. Hence

Q12
d1−1,v =

∑n−2
k=d1−1 ak +

∑n
k=d2+v ak

2

=

∑n−2
k=d2

ak +
∑n

k=d2+1 ak + ad1−1 + 2ad1
+ ad2

−
∑d2+v−1

k=d1
ak

2

=
dimX − 2 + 2x+ 5− 2x

2
=

dimX + 3

2
.

However, on the other hand, we have

P 12
d1,1 =

∑d2

k=1 ak
2

=

∑d1

k=1 ak + ad2

2
=

dimX + 3

2
.

Note in the above equalities, we use the assertions in Proposition 3.9 (1). This leads us to the
conclusion that x+2 /∈ P 12(2, ), because two identical numbers Q12

d1−1,v and P 12
d1,1

appear in T λ
X .
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Step 2.3: We claim that neither x+ 1 nor x+ 2 appear as entries of Q12.
We prove this claim by contradiction. If the claim is not true, then x + 1 or x + 2 must

be equal to Q12
min. So we begin by estimating the value of Q12

min. Let us write x as P 12
1,v. If

v < n− d2, then
∑n−2

k=d1
ak ≥ 2x. It follows that

Q12
min =

∑n−2
k=d1

ak + an

2
≥

2x+ 2

2
= x+ 1.

If v = n− d2, then
∑n−1

k=d1
ak = 2x. It follows that

Q12
min =

∑n−2
k=d1

ak + an

2
=

∑n−1
k=d1

ak + an − an−1

2
≥

2x+ 4

2
= x+ 2.

From the above two inequalities, we can derive the following:

• If x+ 1 is Q12
min, then x =

∑n−2

k=d1
ak

2 = P 12
1,n−d2−1 and an = 2.

• If x+ 2 is Q12
min, then there are three possibilities:

(1) x =
∑n−1

k=d1
ak

2 = P 12
1,n−d2

and an − an−1 = 4,

(2) x =
∑n−2

k=d1
ak

2 = P 12
1,n−d2−1 and an = 4,

(3) x+ 1 =
∑n−2

k=d1
ak

2 = P 12
1,n−d2−1 and an = 2.

We will show that none of these possibilities exist.
Suppose x+1 = Q12

min. Then we rule out this possibility by proving x+2 does not appear in
the associated datum T λ

X . Assume x+2 appears in T λ
X , then x+2 ∈ P 12, Q12 or R1, as x+2 is

even. By the proof in Step 2.1, we know R1
min ≥ x+4 and hence x+2 /∈ R1. Assume x+2 ∈ P 12,

then according to x = P 12
1,n−d2−1, we have x+ 2 = P 12

1,n−d2
or x+ 2 = P 12

21 .If the former happens,
then an−1 = 4, which contradicts an − an−1 being divisible by 4. If the latter happens, then
ad1−1 = 2x. In this case, we would have P 11

21 = Q12
d1−1,n−d2

= 2x + 1, which is a contradiction.

Hence x + 2 /∈ P 12. Assume x + 2 ∈ Q12, then according to x + 1 = Q12
min = Q12

d1,n−d2
, we

have x + 2 = Q12
d1−1,n−d2

or x + 2 = Q12
d1,n−d2−1. If the former happens, then ad1−1 = 2, which

contradicts ad1−1 being divisible by 12. If the latter happens, then an−1 = 2. In this case, we
would have an−1 = an, which is a contradiction. Hence x + 2 /∈ Q12. In summary, x + 2 does
not appear in T λ

X .

Suppose x+2 = Q12
min. Then we first rule out the possibility (1) by calculating the dimension

of X . On the one hand, according to the possibility (1) and Proposition 3.9, we have

dimX − 2 =

n−2
∑

k=d2

ak +

n
∑

k=d2+1

ak = 2

n−1
∑

k=d1

ak − 2ad1
− ad2

+ an − an−1 = 4x− 1.

Hence dimX = 4x + 1. On the other hand, from the assertion 2○ and the equalities 2 = P 12
11 ,

x = P 12
1,n−d2

, we can deduce that n−d2 ≥
x
2 . This together with d1 ≥ 3 gives us dimX = |T λ

X | =

2(d1 + 1)(n− d2) + 2d1 +
d1(d1−1)

2 ≥ 4x+ 9. Thus, the possibility (1) cannot happen. We next
rule out the possibilities (2) and (3) by proving x + 4 does not appear in the associated datum
T λ
X . Assume x + 4 appears in T λ

X , then x + 4 ∈ P 12, Q12 or R1. For the possibilities (2) and
(3), since x 6= P 12

1,n−d2
, R1

min ≥ x+ 5 by the proof in Step 2.1, hence x+ 4 /∈ R1. Further, since
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x + 2 = Q12
min = Q12

d1,n−d2
and ad1−1 ≥ 12, Q12

d1−1,n−d2
≥ x + 8. Hence if x + 4 ∈ Q12, then we

must have x+4 = Q12
d1,n−d2−1 or x+4 = Q12

d1,n−d2−2, x+3 = Q12
d1,n−d2−1. If the former happens,

then an−1 = 4. If the latter happens, then an−1 = 2. Because an is 4 or 2, whether the former or
the latter occurs would contradict to an − an−1 being divisible by 4. Assume x+ 4 ∈ P 12, then
x+4 = P 12

1,n−d2
or x+4 = P 12

21 . If the former happens, then
∑n−1

k=d1
ak = 2x+8 and an−an−1 = 4

for both possibilities (2) and (3). Using Proposition 3.9, we get dimX = 4x+9. However, on the
other hand, since x 6= P 12

1,n−d2
, we have n− d2 ≥ x

2 +1 and hence dimX = |T λ
X | ≥ 4x+17. This

leads to a contradiction. If the latter happens, then ad1−1 = 2x+ 4. Write x as P 12
1,v. Using the

similar argument in Step 2.2, we would get two identical numbers Q12
d1−1,v = P 12

d1,2
= dimX+7

2 ,
which is a contradiction. To sum up, none of the above possibilities exist. Then we are done.

Proof of Theorem 2.3 for type Dn and s = 2, ds ≤ n−2: Suppose there exists an Ulrich
bundle Eλ on X . Let T λ

X be the associated datum of Eλ. Then any integer between 1 and dimX
should appear in T λ

X . In particular, for the integer x = P 12
1,n−d2

, x + 1 and x+ 2 should appear

as entries of P 12(1, ) or P 22(1, ) by Proposition 3.10. Since one of the integers x+ 1 and x+ 2
is even, at least one of them would lie in P 12(1, ), as every entry in P 22(1, ) is odd. However,
this is obvious impossible, because x is the largest entry in P 12(1, ) by our choice. Therefore we
conclude that there are no irreducible homogeneous Ulrich bundles on X .

3.2.2 J = {d1, . . . , ds} with ds = n− 1 or ds = n, ds−1 6= n− 1

Let 0 < d1, . . . , ds−1 < n − 1 be an increasing sequence of integers. In type Dn, note that
G/P{d1,...,ds−1,n−1} is isomorphic to G/P{d1,...,ds−1,n} as a projective variety. Therefore, we only
consider the existence problem for the case G is of type Dn and J = {d1, . . . , ds} with ds = n−1
in this paper.

According to [16] Section 3.2.1 III Case (b), the associated datum T λ
X of Eλ is of the following

form. (By convention we set d0 = 0 and ds+1 = n.)
T λ
X = {P̃ ij (1 ≤ i ≤ j ≤ s), Q̃ij (1 ≤ i ≤ j ≤ s, i 6= s), R̃i (1 ≤ i ≤ s)}, where

P̃ ij
uv =

dj+v−1
∑

k=di−u+1

ak

j − i+ 1
(1 ≤ u ≤ di − di−1, 1 ≤ v ≤ dj+1 − dj);

Q̃ij
uv =

n−2
∑

k=di−1+u

ak +
n
∑

k=dj+v

ak

2s− (i+ j)
(1 ≤ u ≤ di − di−1, 1 ≤ v ≤ dj+1 − dj);

R̃i
uv =

n−2
∑

k=di−1+u

ak +
n
∑

k=di−1+v

ak

2(s− i) + 1
(1 ≤ u < v ≤ di − di−1).

Note that the matrices Q̃ij appear in T λ
X only if s is greater than 1.

Firstly, in order to show the main theorem, we prepare some lemmas like Lemma 3.5 and 3.6.

Lemma 3.11. Let Eλ be an irreducible homogeneous Ulrich bundle on X with highest weight
λ = a1λ1 + · · ·+ anλn.

(i) For any 1 ≤ k ≤ d1 − 1, we have lcm(1, 2, . . . , 2s− 2) | ak.

(ii) For any integer 2 ≤ i ≤ s and di−1 + 1 ≤ k ≤ di − 1, we have

lcm(1, 2, . . . , 2s− 2i) | ak and lcm(2s− 2i+ 2, 2s− 2i+ 3, . . . , 2s− i) | ak.
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(iii) If s ≥ 2, then lcm(1, 2, . . . , s) | an.

Proof. The proof of (i) and (ii) is similar to the proof of Lemma 3.5. For the statement (iii), let
us compare the difference

Q̃i,s−1
1,ds−ds−1

− P̃ is
di−di−1,1 =

an
s+ 1− i

.

Since Eλ be an Ulrich bundle, the above difference should be an integer and hence (s+1− i) | an
for any 1 ≤ i ≤ s− 1. Then we are done.

Using Lemma 3.11, we conclude the following immediately.

Lemma 3.12. With the same assumption as above, then ad1
, ad2

, . . . , ads
are s different odd

numbers.

Next, we will prove the following proposition.

Proposition 3.13. Let Eλ be an irreducible homogeneous Ulrich bundle on X with λ =
∑n

i=1 aiλi.
If s ≥ 2, then we have di = di−1 + 1 for every 1 ≤ i ≤ s. In particular, we obtain di = i for
every 1 ≤ i ≤ s.

Proof. Since Eλ is an Ulrich bundle, all entries in the associated datum T λ
X should be integers.

We first determine the parity of each entry of R̃i, P̃ ij and Q̃ij . By Lemma 3.11, we know that
as long as s ≥ 2, ak is even for any integer k except d1, . . . , ds. By observing the concrete form
of R̃i

uv and using Lemmas 3.11 and 3.12, we can easily determine that the numerator of R̃i
uv is

odd, which implies that every R̃i
uv is odd, as R̃i

uv is an integer. Moreover, for any integer i and
j (1 ≤ i ≤ j ≤ s), as long as j − i is even, it is easy to tell by Lemmas 3.11 and 3.12 that the
numerator of P̃ ij

uv is odd, and therefore every entry of P̃ ij is also odd. Similarly, when j − i is
odd, every entry of Q̃ij is odd. This tells us that the number of odd numbers in T λ

X is at least

∑

1≤i≤s

|R̃i|+
∑

1≤i≤j≤s
j−i is even

|P̃ ij |+
∑

1≤i≤j≤s
j−i is odd

|Q̃ij |,

where |M | represents the number of entries in a matrix M . It follows that the number of even
numbers in T λ

X is at most
∑

1≤i≤j≤s
j−i is odd

|P̃ ij |+
∑

1≤i≤j≤s,i6=s
j−i is even

|Q̃ij |.

Note that for any integer i and j (1 ≤ i ≤ j ≤ s), |P̃ ij | is always equal to |Q̃ij |. So the number
of odd numbers in T λ

X minus the number of even numbers is greater than or equal to

∑

1≤i≤s

|R̃i|+ |P̃ ss| =

s
∑

i=1

(di − di−1)(di − di−1 − 1)

2
+ ds − ds−1 ≥ 1.

On the other hand, since Eλ is an Ulrich bundle, T λ
X = {1, 2, . . . , dimX}. Hence the number

of odd numbers in T λ
X minus the number of even numbers is at most 1. This together with the

above equality tells us di = di−1 + 1 for every 1 ≤ i ≤ s.

From Proposition 3.13, we can see that the matrix R̃i is empty for any 1 ≤ i ≤ s. In ad-

dition, P̃ ij and Q̃ij are both (1 × 1)-matrices with only one entry P̃ ij
11 =

∑j

k=i
ak

j−i+1 and Q̃ij
11 =
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∑n−2

k=i
ak+

∑n
k=j+1

ak

2s−(i+j) respectively. And since ds = n − 1 and ds = s by Proposition 3.13, we have

s = n− 1. Note that for type Dn, n is naturally greater than or equal to 4 and hence s ≥ 3.

Proof of Theorem 2.3 for type Dn and ds = n− 1: Suppose Eλ is an Ulrich bundle on
X . We first estimate the value of Q̃ij

11 in terms of s. If s ≥ 5, then according to Lemma 3.11

(iii), an ≥ 2s(s− 1). Hence Q̃ij
11 ≥ an

2s−2 ≥ s, which is great than 4. If s is equal to 3 or 4, then
an ≥ s(s− 1). By Lemma 3.12, ad1

, ad2
, . . . , ads

are s different odd numbers. Therefore

Q̃ij
11 >

(s− i)2 + (s− j)2 + s(s− 1)

2s− (i+ j)
= j − i+

2(s− j)2 + s(s− 1)

2s− (i+ j)
.

If i = j, then the latter is greater than or equal to 2
√

s(s−1)
2 . If j > i, then the latter is greater

than 1 + s
2 . Therefore, when s = 3 or s = 4, we always have Q̃ij

11 > 2. It follows that 2 can only

appear as P̃ t0,t0+1
11 for some integer t0 (1 ≤ t0 ≤ s−1). This implies that either at0 = 1, at0+1 = 3

or at0 = 3, at0+1 = 1. Applying almost verbatim the proof after Step 2 of Section 3.1.1, we get 4
does not appear in any matrix P̃ ij . On the other hand, from the above analysis, we see that only
when s is equal to 3 or 4, 4 can appear as Q̃ij

11 for some pair (i, j), where 1 ≤ i ≤ j ≤ s (i 6= s)

and j − i is even. Hence we have the inequality 4 > (s−i)2+(s−j)2+s(s−1)
2s−(i+j) . Substituting s = 3 or

s = 4 and the possible pairs (i, j) into this inequality, we find that only s = 3 and (i, j) = (1, 1)

satisfy this inequality. That is to say that 4 is equal to Q̃11
11 =

∑
2

k=1
ak+

∑
4

k=2
ak

4 , which means

that a4 = 6, a2 = 1 and a1 + a3 = 8. It leads to that P̃ 13
11 =

∑
3

k=1
ak

3 = 3, which coincides with
at0 or at0+1. In summary, we conclude that there are no irreducible homogeneous Ulrich bundles
on X .

3.2.3 J = {d1, . . . , ds} with ds−1 = n− 1 and ds = n

First we notice that when J is the set {d1, . . . , ds} with ds−1 = n− 1 and ds = n, the Picard
number of X = G/PJ is naturally greater than or equal to 2. According to [16] Section 3.2.1 III
Case (d), the associated datum T λ

X of Eλ is of the following form.

T λ
X = {P̂ ij , Q̂ij (1 ≤ i ≤ j ≤ s− 1), R̂i (1 ≤ i ≤ s− 1)}, where

P̂ ij
uv =

dj+v−1
∑

k=di−u+1

ak

j − i+ 1
(1 ≤ u ≤ di − di−1, 1 ≤ v ≤ dj+1 − dj);

Q̂ij
uv =

n−2
∑

k=di−1+u

ak +
n
∑

k=dj+v

ak

2s− 1− (i+ j)
(1 ≤ u ≤ di − di−1, 1 ≤ v ≤ dj+1 − dj);

R̂i
uv =

n−2
∑

k=di−1+u

ak +
n
∑

k=di−1+v

ak

2(s− i)
(1 ≤ u < v ≤ di − di−1).

First of all, let us prepare the following lemma.

Lemma 3.14. Let Eλ be an irreducible homogeneous Ulrich bundle on X with highest weight
λ = a1λ1 + · · ·+ anλn.

(i) For any 1 ≤ k ≤ d1 − 1, we have lcm(1, 2, . . . , 2s− 3) | ak.
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(ii) For any integer 2 ≤ i ≤ s− 1 and di−1 + 1 ≤ k ≤ di − 1, we have

lcm(1, 2, . . . , 2s− 2i− 1) | ak and lcm(2s− 2i+ 1, 2s− 2i+ 2, . . . , 2s− i− 1) | ak.

(iii) lcm(1, 2, . . . , s− 1) | an − an−1.

Proof. The proof of (i) and (ii) is similar to the proof of Lemma 3.5. For the statement (iii), let
us compare the difference

Q̂i,s−1
1,ds−ds−1

− P̂ i,s−1
di−di−1,1

=
an − an−1

s− i
.

Since Eλ is an Ulrich bundle, the above difference should be an integer and hence (s−i) | an−an−1

for any 1 ≤ i ≤ s− 1. Then we are done.

Remark 3.15. From Lemma 3.14, it is easy to find that when s is greater than or equal to 4,
ak is even for any integer 1 ≤ i ≤ s− 1 and k ∈ [di−1 + 1, di − 1].

When s is equal to 3, ak is even for any integer 1 ≤ k ≤ d1 − 1 by Lemma 3.14 (i). If

d2−d1 ≥ 2, then R̂2 is not empty. Since for any 1 ≤ u < d2−d1, R̂
2
u,d2−d1

=
∑d2−1

k=d1+u
ak+ad2

+ad3

2

is an integer and ad2
has the same parity as ad3

by Lemma 3.14 (iii),
∑d2−1

k=d1+u ak is even for
any 1 ≤ u < d2 − d1. It follows that ak is even for any integer d1 + 1 ≤ k ≤ d2 − 1.

When s is equal to 2, since d1 = n − 1 and n ≥ 4, we have d1 ≥ 3. By comparing the
difference between any two adjacent elements of the first row and last column of R̂1, we can see
that all ak (1 ≤ k ≤ d1 − 1) are even. In summary, as long as s is greater than or equal to 2, we
always have ak is even for any integer 1 ≤ i ≤ s− 1 and k ∈ [di−1 + 1, di − 1].

Using Lemma 3.14 and Remark 3.15, we obtain the non-trivial result.

Lemma 3.16. With the same assumption as Lemma 3.14, then ad1
, ad2

, . . . , ads
are s different

odd numbers.

Proof. First we notice that adi
= P̂ ii

min (1 ≤ i ≤ s − 1) and ads
= Q̂s−1,s−1

min . Because Eλ is an
Ulrich bundle, adi

(1 ≤ i ≤ s) are s different positive integers. Moreover, since Eλ is an Ulrich
bundle, we have min1≤i≤s{adi

} = 1 by [16] Remark 3.4. So to prove this lemma it suffices to
show that adi

(1 ≤ i ≤ s) have the same parity. By Remark 3.15, we see that ak is even for
any integer 1 ≤ i ≤ s − 1 and k ∈ [di−1 + 1, di − 1]. Since Eλ is an Ulrich bundle, P̂ i,i+1

min is an
integer, which implies that all adi

(1 ≤ i ≤ s − 1) have the same parity. In addition, Lemma
3.14 (iii) tells us that as long as s ≥ 3, ads

(= an) and ads−1
(= an−1) have the same parity.

Therefore, if s ≥ 3, then ad1
, ad2

, . . . , ads
have the same parity. For the case s is equal to 2,

because R̂1
1,d1

=
∑d1−1

k=1
ak+ad1

+ad2

2 is an integer and ak is even for any 1 ≤ k ≤ d1 − 1 by Remark
3.15, ad1

and ad2
naturally have the same parity.

As a consequence of Lemmas 3.14 and 3.16, we obtain the following.

Corollary 3.17. With the same assumption as Lemma 3.14. If the matrix R̂i is not empty,
then every entry of R̂i is greater than 2. In particular, if s ≥ 4, then every entry of R̂i is greater
than 4.
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Proof. Note that the matrix R̂i is not empty is equivalent to say di− di−1 ≥ 2. By Lemma 3.16,
for any 1 ≤ i ≤ s− 1 and 1 ≤ u < v ≤ di − di−1, we have

R̂i
uv =

n−2
∑

k=di−1+u

ak +
n
∑

k=di−1+v

ak

2(s− i)
>

s−2
∑

t=i

adt
+

s
∑

t=i

adt

2(s− i)

≥
(s− 1− i)2 + (s+ 1− i)2

2(s− i)
= 2 +

(s− 1− i)2

(s− i)
.

Therefore, every entry of R̂i is greater than 2. If moreover s ≥ 4, then by Lemma 3.14 (i) and
(ii), we have ak ≥ s(s− 1) for any integer 1 ≤ i ≤ s − 1 and k ∈ [di−1 + 1, di − 1]. Thus every
entry R̂i

uv satisfies

R̂i
uv ≥

s−2
∑

t=i

adt
+

s
∑

t=i

adt
+ s(s− 1)

2(s− i)
≥

(s− 1− i)2 + (s+ 1− i)2 + s(s− 1)

2(s− i)

≥ 2

√

1 +
s(s− 1)

2
> 4.

Before proving the main theorem, let’s prove a simple case.

Proposition 3.18. If s is 2 or 3, then there are no irreducible homogeneous Ulrich bundles on
X with respect to the minimal ample class.

Proof. Suppose there exists an Ulrich bundle Eλ on X . Let T λ
X be the associated datum of Eλ.

If s is 2, then T λ
X consists of P̂ 11, Q̂11 and R̂1. By Remark 3.15 and Lemma 3.16, we see that

a1, . . . , an−2 are even and an−1, an are odd. Thus all entries of P̂ 11 and Q̂11 are odd. Hence 2
can only appear in R̂1. However, by Corollary 3.17, we know it is impossible.

If s is 3, then T λ
X consists of P̂ ij , Q̂ij (1 ≤ i ≤ j ≤ 2) and R̂i (i = 1, 2). Similarly, from

Remark 3.15 and Lemma 3.16, we can easily judge that all entries of P̂ ii and Q̂ii (i = 1, 2) are
odd. Morover, since every entry of R̂i is greater than 2 by Corollary 3.17, 2 can only appear as
the smallest entry of P̂ 12 or Q̂12.

If 2 is equal to P̂ 12
min, then d1 = d2−1 = n−2 and (ad1

, ad2
) = (1, 3) or (3, 1). In this case, R̂2

is empty. In addition, the second smallest element in P̂ 12 is P̂ 12
21 (=

∑d2
k=d1−1

ak

2 ), which is greater

than 4, as ad1−1 ≥ 6 by Lemma 3.14 (i). Hence the candidate of 4 can only be Q̂12
min or R̂1

min. If

4 = Q̂12
min =

ad1
+an

2 , then an is 5 or 7, because ad1
is 1 or 3. This results in Q̂11

min =
∑n

k=n−2
ak

3
being either equal to 3 or not an integer. However, in either case, it contradicts the assumption

that Eλ is an Ulrich bundle. If 4 = R̂1
min =

∑n−2

k=d1−1
ak+

∑n
k=d1

ak

4 , then we must have ad1−1 = 6,

ad1
= 1, ad2

= 3 and an = 5. It follows that Q̂11
min is equal to 3, this leads to a contradiction.

If 2 is equal to Q̂12
min, then d1 = n− 2 and (ad1

, an) = (1, 3) or (3, 1). In this case, R̂2 is also

empty. In addition, since ad1−1 ≥ 6, the second smallest element Q̂12
d1−1,1 in Q̂12 is greater than

4. Hence the candidate of 4 can only be P̂ 12
min or R̂1

min. If 4 = P̂ 12
min, then ad2

is 5 or 7. This

results in Q̂11
min being either equal to 3 or not an integer, which is impossible. If 4 = R̂1

min, then

we must have ad1−1 = 6, ad1
= 1, ad2

= 5 and an = 3. This makes Q̂11
min equal to 3, contrary to

hypothesis.

26



Proof of Theorem 2.3 for type Dn and ds−1 = n − 1, ds = n: In Proposition 3.18, we
have proved the main theorem for the cases s = 2 and s = 3. From now on, we assume that s is
greater than or equal to 4 and assume there exists an Ulrich bundle Eλ on X . From Corollary
3.17, we first determine that 2 and 4 can only be entries of P̂ ij or Q̂ij .

Case 1: If there is a pair of integers (i, j) such that 2 = P̂ ij
min, we can infer that (i, j) =

(t, t + 1) for some 1 ≤ t ≤ s− 2, dt+1 = dt + 1 and adt
+ adt+1

= 4. Further, we can infer that
an ≥ 5, since an is different from adi

for 1 ≤ i ≤ s − 1. By the same argument as Step 3 in
Section 3.1.1, we get 4 would not appear as an entry of P̂ ij . Therefore, 4 appears as the smallest
entry of Q̂ij for some 1 ≤ i ≤ j ≤ s− 1. By simple calculation, we find that every entry in Q̂ij

satisfies the following inequality:

Q̂ij
uv ≥

{

(s−i)2

s−i = s− i, if j = s− 1;
(s−i+1)2+(s−j−2)2

2s−1−(i+j) = j − i+ 3 + 2(s−j−2)2

2s−1−(i+j) , if j ≤ s− 2.
(3.18)

Moreover, note that when j − i is even, every entry of Q̂ij is odd. Hence from the inequality
(3.18), we can infer that if 4 lies in Q̂ij , then the candidate for the pair (i, j) is either (s−2, s−1),

(s− 3, s− 2) or (s− 4, s− 1) and 4 = Q̂ij
min =

∑n−2

k=di
ak+

∑
n
k=dj+1

ak

2s−1−(i+j) .

Case 1.1: Suppose (i, j) is (s − 2, s − 1). Then from the above equality and the assertion
ak ≥ s(s − 1) for any k 6= d1, d2, . . . , ds (see Lemma 3.14 (i) and (ii)), we can deduce that
ds−2 = n − 2 and ads−2

+ an = 8. Since an ≥ 5, we have ads−2
is 1 or 3. This implies that t is

s− 3 or s− 2. Hence ads−3
+ ads−2

= 4 or ads−2
+ ads−1

= 4. If the former happens, then

Q̂s−3,s−1
min =

ads−3
+ ads−2

+ an

3
=

4 + an
3

.

If the latter happens, then

Q̂s−2,s−2
min =

ads−2
+ ads−1

+ an

3
=

4 + an
3

.

Since an is 5 or 7, 4+an

3 is either equal to 3 or not an integer, contrary to hypothesis.

Case 1.2: Suppose (i, j) is (s − 3, s − 2). Then for the same reason as in Case 1.1, we can
infer that ds−l = n − l for any 0 ≤ l ≤ 3 and ads−3

, ads−2
, ads−1

, an are 1, 3, 5, 7 up to a
permutation. It implies that t = s− 3 or t = s− 2. Thus ads−2

is 1 or 3. However, in either case

Q̂s−3,s−3
min =

∑n−2
k=ds−3

ak +
∑n

k=ds−2
ak

5
=

16 + ads−2

5

is not an integer. This is a contradiction.

Case 1.3: Suppose (i, j) is (s − 4, s − 1). Then for the same reason as in Case 1.2, we can
infer that ds−l = n − l for any 0 ≤ l ≤ 4 and ads−4

, ads−3
, ads−2

, an are 1, 3, 5, 7 up to a
permutation. It implies that t = s − 4 or t = s − 3. If t = s − 4, then ads−4

+ ads−3
= 4 and

ads−2
+ an = 12. Thus Q̂s−3,s−1

min =
12+ads−3

3 is either equal to 5 or not an integer, contrary to
hypothesis. If t = s− 3, then ads−3

+ ads−2
= 4 and ads−4

+ an = 12, which implies that an = 5

or an = 7. Similarly, we have Q̂s−3,s−1
min = 4+an

3 is either equal to 3 or not an integer, contrary to
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hypothesis.

Case 2: If there is a pair of integers (i, j) such that 2 = Q̂ij
min, We can infer that (i, j)

can only be (s − 2, s − 1) according to the inequality (3.18). Then we have ds−2 = n − 2 and
(ads−2

, an) = (1, 3) or (3, 1). Now we look for a candidate element in Q̂ij or P̂ ij that should be
4.

Case 2.1: Suppose 4 lies in some Q̂ij . Then the possible choice for (i, j) is (s− 3, s− 2) or
(s − 4, s − 1) by the inequality (3.18). In either case, using the equality ads−2

+ an = 4 and a

similar argument in Case 1, we can infer that ads−3
is either 5 or 7. Then Q̂s−3,s−1

min =
4+ads−3

3 is
either equal to 3 or not an integer, contrary to hypothesis.

Case 2.2: Suppose 4 lies in some P̂ ij . First, we note that when j − i is even, every entry of
P̂ ij is odd. Hence 4 ∈ P̂ ij implies j − i is odd. On the other hand, since (ads−2

, an) = (1, 3) or
(3, 1), we have adl

≥ 5 for any 1 ≤ l ≤ s and l 6= s− 2, s by Lemma 3.16. Hence when j ≤ s− 3,
we get

P̂ ij
uv ≥

j
∑

l=i

adl

j − i+ 1
≥

5 + 7 + · · ·+ 2(j − i) + 5

j − i+ 1
= 5 + j − i ≥ 5.

And when s− 2 ≤ j ≤ s− 1 and j − i ≥ 2, we have

P̂ ij
uv ≥

j
∑

l=i

adl

j − i+ 1
≥

1 + 5 + 7 + · · ·+ 2(j − i) + 3

j − i+ 1
= 4 +

(j − i)2 − 3

j − i+ 1
> 4.

Hence from the assumption 4 ∈ P̂ ij , we can derive that (i, j) is (s− 3, s− 2) or (s− 2, s− 1) and

4 = P̂ ij
min =

∑dj

k=di
ak

j−i+1 . If (i, j) = (s− 3, s− 2), then
∑ds−2

k=ds−3
ak = 8 and hence Q̂s−3,s−1

min = 8+an

3 .

If (i, j) = (s − 2, s − 1), then
∑ds−1

k=ds−2
ak = 8 and hence Q̂s−2,s−2

min = 8+an

3 . Because an is 1 or

3, 8+an

3 is either equal to 3 or not an integer, contrary to hypothesis. In summary, we complete
the proof.
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