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Abstract

The thesis is devoted to two related problems.

1. The isomorphism problem for analytic discs:

Suppose V is the unit disc D embedded in the d-dimensional unit ball Bd and

attached to the unit sphere. Consider the space HV , the restriction of the Drury-

Arveson space to the variety V , and its multiplier algebra MV = Mult(HV ). The

isomorphism problem is the following: Is V1 ∼= V2 equivalent to MV1
∼= MV2

?

A theorem of Alpay, Putinar and Vinnikov states that for V without self-crossings

on the boundary MV is the space of bounded analytic functions on V . We

consider what happens when there are self-crossings on the boundary and prove

that ifMV1
∼= MV2

algebraically, then V1 and V2 must have the same self-crossings

up to a unit disc automorphism. We prove that an isomorphism between MV1

and MV2
can only be given by a composition with a map from V1 to V2. In the

case of a single self-crossing we show that there are only two possible candidates

for this map and find these candidates.

2. The embedding dimension for complete Pick spaces:

A Theorem of Agler and McCarthy states that any complete Pick space can be

realized as HV , for some V in Bd, where d can be infinite. The smallest such d

is called the embedding dimension. Given a complete Pick space can we find its

embedding dimension? Can we at least determine if it is finite or infinite?

We look into this problem for rotation-invariant spaces on the unit disc D. We

prove a general result which explicitly relates the embedding dimension with the

kernel of the space. This allows us to prove that the embedding dimension for

certain weighted Hardy-type spaces is infinite.
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List of Notations

N : the set of positive integers

R : the set of real numbers

C : the set of complex numbers

D : the open unit disc at 0 in C

D : the closed unit disc at 0 in C

T : the unit circle at 0 in C

Bd : the open unit ball at 0 in C
d

ClX : the closure of X

spanX : the linear span of X

idX : the identity map on X

IH : the identity operator on a Hilbert space H
Mult(H) : the multiplier algebra of an RKHS H
H2(D) : the Hardy space on the unit disc

H∞(V ) : the space of bounded analytic functions on V

H2
d : the Drury-Arveson space on Bd

Md : the multiplier algebra Mult(H2
d) of the Drury-Arveson space

HV : the restriction of H2
d to the variety V

MV : the subalgebra of Md of multipliers of HV

Hf : the pullback of HV , V = f(D) to D

Mf : the pullback of MV , V = f(D) to D

κf : the kernel of the RKHS Hf

Af (ξ) : 〈f(ξ), f ′(ξ)ξ〉 for a function f and ξ ∈ T
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Chapter 1

Introduction

1.1 The isomorphism problem

The main problem we are interested in is the isomorphism problem for multiplier alge-

bras of varieties in the unit ball. In this section we state this problem in the general

setting.

Let Bd, d ∈ N ∪ {∞} denote the Euclidean open unit ball in C
d, where C

d means

ℓ2(N) for d = ∞. The main function space on Bd we consider is the Drury-Arveson

space.

Definition 1.1.1. The Drury-Arveson space on Bd is

H2
d =






f(z) =

∑

α∈Nd
0

cαz
α : ||f ||2 =

∑

α∈Nd
0

|cα|2
α!

|α|! <∞






.

It is a reproducing kernel Hilbert space with kernel

κ(z, w) =
1

1− 〈z, w〉Cd

.

This space is one of the multivariate generalizations of the Hardy space H2(D) on the

unit disc, i.e., H2(D) = H2
1 . The Drury-Arveson space naturally arises in operator

theory as well as in theory of complete Pick spaces, see the survey [Sha15] or the more

recent [Har23] for an introduction.

We denote by Md = Mult(H2
d ) the multiplier algebra of H2

d . We say that V ⊂ Bd

is a (multiplier) variety if it is a joint zero set of functions from Md, i.e., there exists

E ⊂ Md such that

V = {z ∈ Bd : ϕ(z) = 0, for all ϕ ∈ E}.

Note that for d < ∞ we can replace E by a finite set (even of cardinality at most d),

see the argument in [Chi89, Chapter 5, Section 7]. In particular, such V is an analytic

variety in Bd.
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For a variety V ⊂ Bd the associated Hilbert space of functions on V is HV ⊂ H2
d :

HV = Cl span{κλ : λ ∈ V } = {f ∈ H2
d : f |V = 0}⊥.

This Hilbert space is a reproducing kernel Hilbert space of functions on V .

Next, we define the algebra associated to V :

MV = {ϕ|V : ϕ ∈ Md}.

By [DRS15, Proposition 2.6], MV is exactly the multiplier algebra Mult(HV ), and MV

is completely isometrically isomorphic to the quotient Md/JV , where

JV = {ϕ ∈ Md : ϕ|V = 0}.

Moreover, MV is contained in H∞(V ), the algebra of bounded analytic functions on

V , but might not coincide with it.

The isomorphism problem: When is MV
∼= MW equivalent to V ∼=W ?

The answer heavily depends on the notion of isomorphism for both varieties and alge-

bras. We recall a few possible notions. First, V is said to be an automorphic image of

W in Bd if there exists µ, an automorphism of Bd, such that V = µ(W ). Since µ−1 is

also an automorphism of Bd this notion is symmetric with respect to V and W . We

say that V and W are biholomorphic if there are holomorphic in Bd maps F and G

such that F |V is a bijecton from V to W and G|W is its inverse. Finally, we say that

V and W in Bd are multiplier biholomorphic if they are biholomorphic with respect to

the maps F,G which are coordinate multipliers, i.e., F,G ∈ Md × . . .×Md
︸ ︷︷ ︸

d

.

We refer to the survey by Salomon and Shalit [SS16] for an overview of the available

answers to the isomorphism problem:

• MV
∼= MW isometrically if and only if HV

∼= HW as reproducing kernel Hilbert

spaces if and only if V is an automorphic image of W , where d <∞ or V and W

have the same affine codimension, [SS16, Proposition 4.8, Theorem 4.6], [DRS15].

Similarly, Rochberg, [Roc19, Theorem 7], has shown that for ordered finite sets

V,W , HV
∼= HW if and only if V is an automorphic image of W , adding some

concrete quantitative conditions for an isomorphism to exist, such as coinciding

“normal forms” or having the same Gram matrix. Rochberg also showed that

V ∼=W if and only if all triples in V are congruent to all triples in W .

• MV
∼= MW algebraically is equivalent to V and W being multiplier biholo-

morphic for homogeneous varieties V and W if d < ∞, [SS16, Theorem 5.14],

[DRS11], [Har12].

• MV
∼= MW algebraically implies that V andW are multiplier biholomorphic, for

V and W which are irreducible varieties (or finite unions of irreducible varieties

6



and a discrete variety), [SS16, Theorem 5.5], [DRS15].

• V ∼=W via a biholomorphism that extends to be a 1-to-1 C2-map on the bound-

ary implies MV
∼= MW algebraically, for V and W — images of finite Riemann

surfaces under a holomap that extends to be a 1-to-1 C2-map on the bound-

ary, [SS16, Corollary 5.18]. This is the result of an idea from [APV03] being

generalized in [ARS08, Section 2.3.6] and culminating in [KMS13].

• For V ⊂ B∞ of the form V = f(D) with

f(z) = (b1z, b2z
2, b3z

3, . . .), where b1 6= 0 and ||b||22 = 1

MV = H∞(V ) ∼= H∞(D) if and only if
∑
n|bn|2 < ∞, while any two such

varieties are multiplier biholomorphic, [DHS15, Corollary 7.4].

It is still an open question whether V ∼= W via a multiplier biholomorphism implies

MV
∼= MW algebraically for sufficiently simple V and W . Though, it is known to be

false for V , W — discrete varieties, see [SS16, Example 5.7].

1.2 Analytic Discs

In this paper we study the isomorphism problem in the case where V andW are analytic

discs attached to the unit sphere.

Definition 1.2.1. An analytic disc attached to the unit sphere is a variety V ⊂ Bd, d <

∞ for which there exists an injective analytic map f : D → Bd with f ′(z) 6= 0, z ∈ D

such that V = f(D), f extends to C2 up to D and

||f(x)|| = 1 ⇐⇒ |x| = 1.

We say that f is an embedding map of V .

Note that by [DHS15, Corollary 3.2] such discs meet the boundary transversally, i.e.,

〈f(ξ), f ′(ξ)〉 6= 0, ξ ∈ T.

We emphasize that V is defined to be a variety. It is not clear whether for an arbitrary

f satisfying properties from Definition 1.2.1 the image V = f(D) is a variety.

Instead of working directly with the spaces HV and MV , it is more convenient to

pull back this spaces from the variety V to the unit disc D. We denote by Hf an RKHS

on D that we get from HV by composing with f :

Hf = {h : D → C : h ◦ f−1 ∈ HV }, ||h||Hf
= ||h ◦ f−1||HV

.
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The reproducing kernel of this space is

κf (z, w) =
1

1− 〈f(z), f(w)〉 . (1.1)

We denote the multiplier algebra of this space by Mf , so that

Mf = {ϕ : D → C : ϕ ◦ f−1 ∈ MV }, ||ϕ||Mf
= ||ϕ ◦ f−1||MV

.

The isomorphism problem was partially solved in the case when f extends injectively

to D. We state the results [APV03, Proposition 2.2, Theorem 2.3] combined with the

above-mentioned fact that the transversality condition is satisfied automatically.

Theorem A. Suppose V is an analytic disc attached to the unit sphere, f is the em-

bedding map of V . If the extension of f to D is injective, then

• Hf = H2(D) with equivalent norms,

• Mf = H∞(D) with equivalent norms.

We now state our results.

Theorem 1.1. Suppose V , W are analytic discs attached to the unit sphere, and f , g

are the respective embedding maps. If Mf = Mg, then

f(ξ) = f(ζ) ⇐⇒ g(ξ) = g(ζ), ξ, ζ ∈ T.

This means that f and g have the same self-crossings on the boundary.

Theorem 1.2. Suppose V , W are analytic discs attached to the unit sphere, and f , g

are the respective embedding maps. If Mf
∼= Mg algebraically, then there exists µ, an

automorphism of the unit disc D, such that Mf = Mg◦µ with equivalent norms.

Combining these two theorems we get:

Theorem 1.3. Suppose V , W are analytic discs attached to the unit sphere, and f , g

are the respective embedding maps. If Mf
∼= Mg algebraically, then, up to a unit disc

automorphism, f and g have the same self-crossings on the boundary.

If f and g have the same self-crossings on the boundary up to a unit disc automorphism

we say that they have the same self-crossing type.

Theorem 1.3 means that for f and g with different self-crossings types the multiplier

algebras are always non-isomorphic. Hence, we found a coarse characteristic which

separates non-isomorphic cases, so that it remains to solve the isomorphism problem

only for embeddings with the same self-crossings type. The author does not know if

the same self-crossings type implies the isomorphism of the multiplier algebras.

Note that now we have a more complete solution in the injective case: Theorem 1.3

together with Theorem A give us

8



Theorem 1.4. Suppose V , W are analytic discs attached to the unit sphere, and f ,

g are the respective embedding maps and f is injective up to D. Then Mf
∼= Mg

algebraically if and only if g is injective up to D.

Next, we consider analytic discs with exactly one self-crossing on the boundary.

Since we can always apply an automorphism we assume that f(−1) = f(1) is the

self-crossing and otherwise f is injective in D. It turns out that for such maps the

isomorphism condition is rigid.

Theorem 1.5. Suppose V , W are analytic discs attached to the unit sphere, and f , g

are the respective embedding maps with the only self-crossing at ±1. Then Mf
∼= Mg

algebraically if and only if Mf = Mg◦µ, where

µ(z) =
z − α

1− αz
, or µ(z) =

β − z

1− βz

with constants α, β ∈ (−1, 1) that can be explicitly calculated in terms of f(±1), f ′(±1)

and g(±1), g′(±1).

Let us consider an example. Set

br(z) =
z − r

1− rz
, −1 < r < 1,

an automorphism of the unit disc such that br(±1) = ±1. Define

fr(z) =
1√
2

(
z2, br(z)

2
)
, r > 0.

Then, according to [DHS15, Theorem 5.2], V = f(D) is a variety with the only self-

crossing at ±1. Using Theorem 1.5 we show:

Theorem 1.6. Mfr 6= Mfs for r 6= s.

We see that, in contrast to the injective case, even for embeddings with the same self-

crossings the multiplier algebras might not coincide. Though, it does not mean that the

algebras are not isomorphic, as we still have the freedom to do unit disc automorphisms.

Let us take care of this by considering a more general version of this embedding. Set

fr,s(z) =
1√
2

(
br(z)

2, bs(z)
2
)
, r 6= s,

so that fr = f0,r. Note that

(br ◦ bs)(z) =
z − r+s

1+rs

1− r+s
1+rs

z
= b r+s

1+rs
(z).

Hence,

(fr,s ◦ b−r)(z) =
1√
2

(

z2, b s−r
1−sr

(z)2
)

= f0, s−r
1−sr

(z),

9



meaning that we get the same varieties (do z 7→ −z in case s < r). Now, for f0,r, r ∈
(0, 1) consider

t =
−1 +

√
1− r2

r
,

we have t ∈ (−1, 0) and f0,r ◦bt = ft,−t. In fact, t is unique, so that any fr,s corresponds

to a unique ft,−t, t ∈ (−1, 0) via a unit disc automorphism. For such embeddings

Theorem 1.5 takes a simpler form

Theorem 1.7. Mfr,−r
∼= Mfs,−s

algebraically if and only if Mfr,−r
= Mfs,−s

.

The author does not know whether Mfr,−r
= Mfs,−s

holds for any r and s, but it

seems plausible. If there are r and s for which Mfr,−r
6= Mfs,−s

, then Theorem 1.7

gives us an example where two embeddings with the same self-crossing type give rise

to non-isomorphic multiplier algebras.

1.3 Complete Pick spaces

A different way to look at the multiplier algebras MV comes from function theory, in

particular from the theory of complete Pick spaces.

Let H be a reproducing kernel Hilbert space on a set X with kernel κ and let M be

its multiplier algebra Mult(H). Consider the following problem. Given λ1, . . . , λn ∈ X

and a1, . . . , an ∈ C, does the interpolation problem

ϕ(λj) = aj, j = 1, . . . , n

have a multiplier solution ϕ ∈ M, ||ϕ||M 6 1?

This problem is called the Pick interpolation problem. Denote by Mϕ the operator

on H given by multiplying by ϕ. By definition the norm on M is inherited from the

operator norm, hence, ||ϕ||M 6 1 is equivalent to IH −MϕM
∗
ϕ > 0. Using this fact

together with M∗
ϕκx = ϕ(x)κx we get a necessary condition for the Pick interpolation

problem to have a solution, i.e.,

[(1− ajak)κ(λj , λk)]
n
j,k=1 > 0. (1.2)

Pick, [Pic15], showed that for the Hardy space H2(D), which has the Szego kernel

κ(z, w) =
1

1− zw̄
,

this positivity condition is also sufficient. Spaces and their kernels for which the pos-

itivity of (1.2) is sufficient for the Pick interpolation problem to have a solution are

called Pick spaces and Pick kernels respectively. It is not difficult to see that not all

spaces are Pick, e.g., the Bergman space on the unit disc, namely, the space with the

10



kernel

κ(z, w) =
1

(1− zw̄)2

is not Pick.

Let us now turn our attention to the matrix version of the Pick interpolation

problem. We consider Mm×m, the algebra of m × m multiplier matrices, so that

Mm×m = Mult(Hm). Then, the m × m Pick interpolation problem is the following:

Given λ1, . . . , λn ∈ X and A1, . . . , An ∈Mm(C), does the interpolation problem

F (λj) = Aj , j = 1, . . . , n

have an m×m multiplier solution F ∈ Mm×m, ||F ||Mm×m 6 1?

Similarly to the m = 1 case, it is possible to show the necessity of the positivity

condition

[(1−AjA
∗
k) κ(λj , λk)]

n
j,k=1 > 0.

If this condition is sufficient for all m > 1 we call the space and the respective kernel

complete Pick. We refer to the monograph of Agler and McCarthy, [AM02], for an

in-depth introduction to the study of (complete) Pick kernels, and to [Qui94, Chapter

5, Section 3] for an example of a space which is Pick but not complete Pick.

We say that an RKHS H on X with kernel κ is irreducible if κ(x, y) does not vanish

for x, y ∈ X. The connection between complete Pick spaces and our isomorphism

problem is given by the following theorem due to Agler and McCarthy, [AM00, Theorem

4.2], [AM02, Theorem 8.2].

Theorem B. Let H be a separable irreducible reproducing kernel Hilbert space on X.

Then H is complete Pick if and only if for some d ∈ N∪{∞} there is a map b : X → Bd

and a nowhere vanishing function δ : X → C such that

κ(z, w) =
δ(z)δ(w)

1− 〈b(z), b(w)〉Cd

.

Meaning that up to rescaling and composition H is essentially HV for some variety

V ⊂ Bd. Moreover, M is isometrically isomorphic to MV via the same composition.

We see that the Drury-Arveson space is, in a sense, the universal complete Pick

space. Hence, the isomorphism problem is closely related to the study of irreducible

complete Pick spaces and their multiplier algebras.

1.4 Embedding dimension

A natural question one might ask regarding Theorem B is what is the smallest d for a

given space H. Such a d is called the embedding dimension of H. The main problem is

to determine this embedding dimension for a fixed complete Pick space H or at least

11



determine if it is finite or infinite, since for finite d the Drury-Arveson space and its

multiplier algebra are a lot more tractable.

We can ask a similar question aboutM. Let us say that d is the multiplier embedding

dimension if it is the smallest d such that there is a variety V ⊂ Bd with M being

isometrically isomorphic to MV via a composition map. It is clear that the multiplier

embedding dimension can only be smaller than the embedding dimension. But, in fact,

they are equal in light of [Har17, Corollary 3.2], which implies that for complete Pick

spaces coinciding multiplier algebras mean that Hilbert spaces are rescalings of each

other.

Let us list some results regarding the embedding dimension problem. Rochberg,

[Roc17], showed that the embedding dimension of the Dirichlet space is infinite. Hartz,

[Har22], considered an even weaker notion of embedding and proved that even non-

isometric multiplier embedding dimension for the Dirichlet space is infinite.

We consider the embedding dimension problem for a class of relatively simple spaces

in one variable, namely, rotation-invariant spaces on the unit disc D.

Definition 1.4.1. We say that an RKHS H is rotation-invariant if for any f ∈ H and

ξ ∈ T, f(ξz) ∈ H and ||f(ξz)||H = ||f(z)||H.

This problem was considered in more generality (unitarily invariant spaces on the unit

ball) by Hartz [Har17].

We provide a way to find the embedding dimension for such spaces.

Theorem 1.8. Let H be a rotation-invariant irreducible complete Pick space of ana-

lytic functions on the unit disc D with kernel κ. Then the embedding dimension d is

finite if and only if
1

κ(0, 0)
− 1

κ(z, w)

is a polynomial in zw̄. Moreover, d is exactly the number of non-zero coefficients of

this polynomial.

This theorem is essentially the one-dimensional case of [Har17, Proposition 11.8].

If one relaxes the embedding conditions so that the isomorphism given by the com-

position is not necessarily isometric, then, unlike in Theorem 1.8, it is enough for

1/κ(0, 0) − 1/κ to be rational to have finite (even d = 1) embedding dimension.

Theorem 1.9. Let H be an irreducible complete Pick space of analytic functions on

the unit disc D with kernel κ. Suppose

1

κ(0, 0)
− 1

κ(z, w)
= q(zw̄)

for a rational function q with q′(0) 6= 0. If H does not extend to a larger disc, then

H = H2(D) with equivalent norms.

12



The same result holds for q analytic in a larger disc.

Theorem 1.10. Let H be an irreducible complete Pick space of analytic functions on

the unit disc D with kernel κ. Suppose

1

κ(0, 0)
− 1

κ(z, w)
= q(zw̄)

for q analytic in RD for some R > 1 with q′(0) 6= 0. If H does not extend to a larger

disc, then H = H2(D) with equivalent norms.

As an example consider a space H with

q(t) =
t

2(2 − t)
.

It gives us the Hardy space with a slightly modified norm, i.e.,

H =

{

f =

∞∑

n=0

anz
n : ||f ||2H =

|a0|2
2

+

∞∑

n=1

|an|2
}

,

but the embedding dimension of H is infinite.

Next, we consider a family of Hardy-type spaces.

Definition 1.4.2. The weighted Hardy space Hs, s ∈ R on D is

Hs =

{

f(z) =
∑

n>0

anz
n : ||f ||2s =

∑

n>0

(1 + n)−s|an|2 <∞
}

.

In particular, for s = 0 we get the regular Hardy space H2(D) and for s = −1 we get

the Dirichlet space. By [AM02, Corollary 7.41], Hs, s 6 0 are complete Pick spaces.

Similarly to [Har17, Corollary 11.9] we find the embedding dimensions of these

spaces.

Theorem 1.11. For s = 0, the embedding dimension of H0 is d = 1. For s < 0, the

embedding dimension of Hs is d = ∞.

It is also interesting to consider the non-isometric version of the question, as it allows

us to connect this problem to the isomorphism problem for analytic discs attached to

the unit sphere.

Theorem 1.12. Suppose V is an analytic disc attached to the unit sphere, f is the

embedding map of V . Then for s < 0

Hs 6= Hf .

Though, it remains unclear whether allowing f which are not smooth up to the

boundary is going to change the conclusion.
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Chapter 2

Analytic Discs

2.1 Properties of functions in Hf and Mf

We start by listing some necessary properties which must be satisfied by functions in

the Hilbert spaces Hf and the multiplier algebras Mf .

Theorem 2.1. Suppose V is an analytic disc attached to the unit sphere, and f is

its embedding map such that f(−1) = f(1). Let h be a function in Hf such that the

following limits exist

h(1) = lim
r→1−

h(r), h(−1) = lim
r→1−

h(−r).

Then h(1) = h(−1).

In particular, if h ∈ Hf extends continuously up to D, then h(1) = h(−1).

Proof. By appropriately scaling h we can assume ||h||Hf
6 1. Since Hf is an RKHS

with kernel κf we can use [PR16, Theorem 3.11] to describe the functions in Hf in

terms of the kernel:

||h||Hf
6 1 ⇐⇒

(

κf (z, w) − h(z)h(w)
)

z,w∈D
> 0.

In particular, using (1.1), for two points z, w ∈ D we obtain

(
1

1−||f(z)||2 − |h(z)|2 1
1−〈f(z),f(w)〉 − h(z)h(w)

1
1−〈f(w),f(z)〉 − h(w)h(z) 1

1−||f(w)||2 − |h(w)|2

)

> 0.

As this condition implies that the determinant is positive, we have:

(
1

1− ||f(z)||2 − |h(z)|2
)(

1

1− ||f(w)||2 − |h(w)|2
)

−
∣
∣
∣
∣

1

1− 〈f(z), f(w)〉 − h(z)h(w)

∣
∣
∣
∣

2

> 0. (2.1)

15



Now let us take z = 1− x,w = −1 + y for x, y > 0. Expanding f around 1 and −1 we

get

f(1− x) = f(1)− f ′(1)x+
f ′′(1)
2

x2 + o(x2),

f(−1 + y) = f(−1) + f ′(−1)y +
f ′′(−1)

2
y2 + o(y2).

Thus,

1− ||f(1− x)||2 =

2Re〈f(1), f ′(1)〉x − (||f ′(1)||2 +Re〈f(1), f ′′(1)〉)x2 + o(x2). (2.2)

Similarly,

1− ||f(−1 + y)||2 =
− 2Re〈f(−1), f ′(−1)〉y − (||f ′(−1)||2 +Re〈f(−1), f ′′(−1)〉)y2 + o(y2). (2.3)

Note that by [DHS15, Proposition 3.1, Corollary 3.2], A = 〈f(1), f ′(1)〉 > 0 and B =

−〈f(−1), f ′(−1)〉 > 0. Let us set

C = ||f ′(1)||2,
2F = 〈f(1), f ′′(1)〉,
D = ||f ′(−1)||2,
2G = 〈f(−1), f ′′(−1)〉.

We get

1− ||f(1− x)||2 = 2Ax− (C + 2ReF )x2 + o(x2), (2.4)

1− ||f(−1 + y)||2 = 2By − (D + 2ReG)y2 + o(y2). (2.5)

Finally, noting that f(1) = f(−1) and setting E = 〈f ′(1), f ′(−1)〉, we get

1− 〈f(1− x), f(−1 + y)〉 = Ax+By + Exy − F̄ x2 −Gy2 + o(x2) + o(y2). (2.6)

Expanding the brackets in (2.1) we get

1

1− ||f(z)||2
1

1− ||f(w)||2 −
∣
∣
∣
∣

1

1− 〈f(z), f(w)〉

∣
∣
∣
∣

2

> (2.7)

|h(w)|2
1− ||f(z)||2 +

|h(z)|2
1− ||f(w)||2 − 2Re

(

h(z)h(w)

1− 〈f(z), f(w)〉

)

(2.8)
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To annihilate the highest order term in (2.7) we set Ax = By = t > 0. Hence,

1

1− ||f(z)||2 =
1

2t− C+2ReF
A2 t2 + o(t2)

=

1

2t

(

1 +
C + 2ReF

2A2
t+ o(t)

)

. (2.9)

Similarly,

1

1− ||f(w)||2 =
1

2t− D+2ReG
B2 t2 + o(t2)

=

1

2t

(

1 +
D + 2ReG

2B2
t+ o(t)

)

. (2.10)

Finally,

1

1− 〈f(z), f(w)〉 =
1

2t+
(

E
AB

− F̄
A2 − G

B2

)

t2 + o(t2)
=

1

2t

(

1 +

(
F̄

2A2
+

G

2B2
− E

2AB

)

t+ o(t)

)

. (2.11)

Hence,

∣
∣
∣
∣

1

1− 〈f(z), f(w)〉

∣
∣
∣
∣

2

=
1

4t2

(

1 +

(
ReF

A2
+

ReG

B2
− ReE

AB

)

t+ o(t)

)

. (2.12)

Substituting (2.9), (2.10) and (2.12) into (2.7) we get

1

4t2

((

1 +
C + 2ReF

2A2
t+ o(t)

)(

1 +
D + 2ReG

2B2
t+ o(t)

)

−

(

1 +

(
ReF

A2
+

ReG

B2
− ReE

AB

)

t+ o(t)

))

=

1

4t

(
C

2A2
+

ReF

A2
+

D

2B2
+

ReG

B2
− ReF

A2
− ReG

B2
+

ReE

AB
+ o(1)

)

=

1

8t

(
C

A2
+

D

B2
+

2ReE

AB

)

+ o

(
1

t

)

. (2.13)

Similarly, expanding only up to o(1) in (2.9), (2.10), (2.11) and substituting into (2.8)

we get

1

2t
|h(w)|2(1 + o(1)) +

1

2t
|h(z)|2(1 + o(1)) − 1

2t
2Re(h(z)h(w))(1 + o(1)) =

1

2t

(

|h(z)|2 + |h(w)|2 − 2Re(h(z)h(w))
)

+ o

(
1

t

)

=

1

2t
|h(z) − h(w)|2 + o

(
1

t

)

. (2.14)
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Thus, replacing (2.7) with (2.13) and (2.8) with (2.14) we get

1

8t

(
C

A2
+
D

B2
+

2ReE

AB

)

+ o

(
1

t

)

>
1

2t
|h(z) − h(w)|2 + o

(
1

t

)

.

This is equivalent to

|h(z)− h(w)|2 6
1

4

(
C

A2
+
D

B2
+

2ReE

AB

)

+ o(1).

Explicitly writing z = 1− t/A and w = −1 + t/B we get

∣
∣
∣
∣
h

(

1− t

A

)

− h

(

−1 +
t

B

)∣
∣
∣
∣

2

6
1

4

(
C

A2
+
D

B2
+

2ReE

AB

)

+ o(1), t > 0. (2.15)

In particular, taking the limit as t → 0 for h that have radial limits at ±1 with

||h||Hf
6 1 we get

|h(1) − h (−1)|2 6 1

4

(
C

A2
+
D

B2
+

2ReE

AB

)

.

It follows by scaling that in general we have

|h(1)− h (−1)|2 6 1

4

(
C

A2
+
D

B2
+

2ReE

AB

)

||h||2Hf
,

for all h ∈ Hf with radial limits at ±1. Note that such functions are dense in Hf , since,

for example, all κfz , z ∈ D, (1.1), are continuous in D.

We conclude that there is a bounded functional on Hf , let us denote the respective

function by ϕ ∈ Hf , such that 〈h, ϕ〉Hf
= h(1)−h(−1) for h ∈ Hf that have the limits

h(1) = lim
x→0+

h(1 − x), h(−1) = lim
y→0+

h(−1 + y).

To finish the proof of the theorem it remains to show that ϕ = 0. Indeed, for any z ∈ D

ϕ(z) = 〈ϕ, κfz 〉Hf
= 〈κfz , ϕ〉Hf

= κfz (1) − κfz (−1) = 0.

Corollary 2.2. In the setting of Theorem 2.1 we have

κf
1− t

A

− κf−1+ t
B

→ 0, t→ 0.

in the w∗ topology.

Proof. From (2.15) it follows that

κf
1− t

A

− κf−1+ t
B

, t→ 0.
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is bounded in norm. Hence, since linear combinations of κfz , z ∈ D are dense in Hf ,

the conclusion follows from Theorem 2.1. �

An immediate corollary of Theorem 2.1 is the following

Theorem 2.3. Suppose V is an analytic disc attached to the unit sphere, and f is its

embedding map. Let f(ξ) = f(ζ) for two distinct ξ, ζ ∈ T. If h is a function in Hf that

is continuous up to D, then h(ξ) = h(ζ).

Proof. Consider a disc automorphism µ such that µ(−1) = ξ, µ(1) = ζ. Then g = f ◦µ
satisfies the conditions of Theorem 2.1. Note that h ◦ µ belongs to Hg (Hf

∼= Hg as

RKHS by ◦µ). h ◦ µ is continuous up to D as well, so it satisfies the conditions of

Theorem 2.1. We conclude (h ◦ µ)(−1) = (h ◦ µ)(1), which is exactly h(ξ) = h(ζ). �

From this result we can infer that the same must hold for multipliers.

Theorem 2.4. Suppose V is an analytic disc attached to the unit sphere, and f is its

embedding map. Let f(ξ) = f(ζ) for two distinct ξ, ζ ∈ T. If ϕ is a function in Mf

that is continuous up to D, then ϕ(ξ) = ϕ(ζ).

Proof. Consider h(z) = κf0 (z). By definition h(ξ) = h(ζ) 6= 0. Note that ϕh ∈ Hf is

continuous up to D, so that ϕ(ξ)h(ξ) = ϕ(ζ)h(ζ). Dividing by h(ξ) = h(ζ) 6= 0 we get

ϕ(ξ) = ϕ(ζ). �

2.2 Proof of Theorem 1.1

Theorem. Suppose V , W are analytic discs attached to the unit sphere, and f , g are

the respective embedding maps. If Mf = Mg, then

f(ξ) = f(ζ) ⇐⇒ g(ξ) = g(ζ), ξ, ζ ∈ T.

This means that f and g have the same self-crossings on the boundary.

Proof of Theorem 1.1. The result follows from Theorem 2.4. Let us write f as f =

(f1, . . . , fd). Note that zj ∈ Md, j = 1, . . . , d, so that if we compose with f we get

fj ∈ Mf , j = 1, . . . , d. Since Mf = Mg, by Theorem 2.4, g(ξ) = g(ζ) =⇒ fj(ξ) =

fj(ζ), j = 1, . . . , d, which means exactly f(ξ) = f(ζ). Exchanging f , g and repeating

this argument we get the desired equivalence. �

2.3 Proof of Theorem 1.2

First, we show that analytic discs are irreducible.

Lemma 2.3.1. If V is an analytic disc attached to the unit sphere, then V is irreducible

in the sense of [SS16, Section 5.1], i.e., for any regular point λ ∈ V , the intersection of

zero sets of all multipliers vanishing on a small neighborhood V ∩Bε(λ) is exactly V .
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Proof. Suppose V is not irreducible. This means that there is λ ∈ V and ε > 0 such

that the intersection of zero sets of all multipliers vanishing on V ∩ Bε(λ) is a proper

subset of V . Hence, there is v ∈ V and ϕ ∈ Md such that ϕ|V ∩Bε(λ) = 0 but ϕ(v) 6= 0.

Let f be the embedding map of V . Then, v = f(a) for some a ∈ D. Consider a function

ψ = ϕ ◦ f , it is analytic in D. Since ϕ|V ∩Bε(λ) = 0, then ψ|f−1(Bε(λ)) = 0. But the

set f−1(Bε(λ)) is open in D, which means that ψ = 0. This contradicts the fact that

ψ(a) = ϕ(v) 6= 0. �

Now, we can prove Theorem 1.2.

Theorem. Suppose V , W are analytic discs attached to the unit sphere, and f , g are

the respective embedding maps. If Mf
∼= Mg algebraically, then there exists µ, an

automorphism of the unit disc D, such that Mf = Mg◦µ with equivalent norms.

Proof of Theorem 1.2. Suppose that Mf
∼= Mg algebraically. This is equivalent to

MV
∼= MW . Denote by Φ : MV → MW the isomorphism. By Lemma 2.3.1, the

varieties V and W are irreducible. Thus, by [SS16, Theorem 5.5], there are maps

F,G : Bd → Bd with multiplier coefficients, i.e., Fj , Gj ∈ Md, j = 1, . . . , d, such that

F ◦G = idV , G ◦ F = idW and the composition with these maps gives us Φ, i.e.,

Φ(ϕ) = ϕ ◦ F, ϕ ∈ MV , Φ−1(ψ) = ψ ◦G, ψ ∈ MW .

To go back to the unit disc we define

µ = g−1 ◦G ◦ f : D → D,

so that

µ−1 = f−1 ◦ F ◦ g : D → D.

Since f−1, g−1 are analytic on V , W respectively, we see that µ is an analytic bijection

from D onto itself, and, hence, a disc automorphism.

By definition,

ϕ ∈ Mg◦µ ⇐⇒ ϕ ◦ µ−1 ◦ g−1 ∈ MW ⇐⇒ ϕ ◦ µ−1 ◦ g−1 ◦G ∈ MV ⇐⇒

ϕ ◦ µ−1 ◦ g−1 ◦G ◦ f ∈ Mf ⇐⇒ ϕ ∈ Mf .

Since Φ is continuous as a homomorphism of semi-simple Banach algebras and the

norms on Mf ,Mg are inherited from MV ,MW we conclude that Mf = Mg◦µ with

equivalent norms. �

2.4 A semi-invariant for analytic discs

Define Af (ξ) = 〈f(ξ), f ′(ξ)ξ〉, ξ ∈ T. From [DHS15, Corollary 3.2] we know that

Af (ξ) > 0 for embedding maps f . This function on the circle turns out to be an impor-
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tant semi-invariant for Mf . First, we show how it changes under disc automorphisms.

Lemma 2.4.1. Suppose f is an embedding map, µ is a disc automorphism

µ(z) = λ
α− z

1− ᾱz
, λ ∈ T, α ∈ D.

Then

Af◦µ(ξ) = Af (µ(ξ))
1− |α|2
|α− ξ|2 .

Proof. Expand

Af◦µ(ξ) = 〈f(µ(ξ)), (f ◦ µ)′(ξ)ξ〉 = 〈f(µ(ξ)), f ′(µ(ξ))µ′(ξ)ξ〉 =

〈f(µ(ξ)), f ′(µ(ξ))µ(ξ)µ
′(ξ)
µ(ξ)

ξ〉 =

µ′(ξ)
µ(ξ)

ξAf (µ(ξ)).

Hence, it is enough to show
µ′(ξ)
µ(ξ)

ξ =
1− |α|2
|α− ξ|2 .

Indeed,

µ′(z) = λ
|α|2 − 1

(1− ᾱz)2
,

so that
µ′(z)
µ(z)

=
|α|2 − 1

(α− z)(1− ᾱz)
.

Thus,
µ′(ξ)
µ(ξ)

ξ =
|α|2 − 1

(α− ξ)(1− ᾱξ)
ξ =

|α|2 − 1

(α− ξ)(ξ̄ − ᾱ)
=

1− |α|2
|α− ξ|2 ,

which finishes the proof. �

Theorem 2.5. Suppose V , W are analytic discs attached to the unit sphere, and f ,

g are the respective embedding maps. If Mf = Mg with equivalent norms, then for

ξ, ζ ∈ T such that f(ξ) = f(ζ) (and so Theorem 1.1 implies g(ξ) = g(ζ)) we have

Af (ξ)

Af (ζ)
=
Ag(ξ)

Ag(ζ)
.

Let us introduce a notation we use in the proof. For two quantities A,B > 0 depending

on some parameters, we write A ≍ B whenever there exists a constant C > 0 that is

independent of the parameters such that A 6 CB and B 6 CA.

Proof. In light of Lemma 2.4.1, it is enough to prove this theorem for ξ = 1, ζ = −1.
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Consider a metric on D induced by Hf , see [AM02, Lemma 9.9]:

df (z, w) =

√

1− |κf (z, w)|2
κf (z, z)κf (w,w)

.

It is easy to see that since Hf is complete Pick, we have

df (z, w) = sup
{
|ϕ(z)| : ϕ ∈ Mf , ||ϕ||Mf

6 1, ϕ(w) = 0
}
.

We have a similar metric dg for g instead of f . Since Mf = Mg with equivalent norms,

we conclude that the metrics df and dg are equivalent, meaning that the identity map

between (D, df ) to (D, dg) is bi-Lipschitz. Hence, d
2
f and d2g are equivalent as well, i.e.,

1− (1− ||f(z)||2)(1− ||f(w)||2)
|1− 〈f(z), f(w)〉|2 ≍ 1− (1− ||g(z)||2)(1 − ||g(w)||2)

|1− 〈g(z), g(w)〉|2 , z, w ∈ D.

Similarly to Theorem 2.1 we consider z = 1− x,w = −1+ y for x, y > 0 with x, y → 0.

Repeating the insight from Theorem 2.1 we set

x =
t

Af (1)
, y =

t

Af (−1)
,

for t > 0, t→ 0. This way, we have

1− ||f(z)||2 = 2t+ o(t), 1− ||f(w)||2 = 2t+ o(t), 1− 〈f(z), f(w)〉 = 2t+ o(t).

Thus,

(1− ||f(z)||2)(1− ||f(w)||2)
|1− 〈f(z), f(w)〉|2 =

(2t+ o(t))(2t + o(t))

|2t+ o(t)|2 = 1 + o(1), t→ 0.

We conclude that

d2f

(

1− t

Af (1)
,−1 +

t

Af (−1)

)

= o(1), t→ 0.

Next, we look at what happens to d2g. Set a =
Ag(1)
Af (1)

, b =
Ag(−1)
Af (−1) . We need to prove

that a = b. We expand

1−||g(z)||2 = 2at+o(t), 1−||g(w)||2 = 2bt+o(t), 1−〈g(z), g(w)〉 = (a+ b) t+o(t).

Thus,
(1− ||g(z)||2)((1 − ||g(w)||2))

|1− 〈g(z), g(w)〉|2 =
4ab

(a+ b)2
+ o(1),

and so

d2g

(

1− t

Af (1)
,−1 +

t

Af (−1)

)

= 1− 4ab

(a+ b)2
+ o(1), t→ 0.
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Since d2g ≍ d2f = o(1), t→ 0, we must have

4ab

(a+ b)2
= 1.

It remains to notice that

4ab

(a+ b)2
= 1 ⇐⇒ (a+ b)2 = 4ab ⇐⇒ (a− b)2 = 0 ⇐⇒ a = b.

We conclude that a = b, which means
Af (1)
Ag(1)

=
Af (−1)
Ag(−1) , as we wanted. �

2.5 Proof of Theorem 1.5

Theorem. Suppose V , W are analytic discs attached to the unit sphere, and f , g are

the respective embedding maps with the only self-crossing at ±1. Then Mf
∼= Mg

algebraically if and only if Mf = Mg◦µ, where

µ(z) =
z − α

1− αz
, or µ(z) =

β − z

1− βz

with constants α and β that can be explicitly calculated in terms of f(±1), f ′(±1) and

g(±1), g′(±1).

Proof of Theorem 1.5. The fact that Mf = Mg◦µ implies Mf
∼= Mg algebraically is

evident for any automorphism µ. Thus, we prove the other implication.

Suppose Mf
∼= Mg algebraically. By Theorem 1.2, it means that there is a disc

automorphism µ such that Mf = Mg◦µ with equivalent norms. We claim that there

are only two possible choices for µ as in the statement of the theorem.

First, if Mf = Mg◦µ, then, by Theorem 1.1, f and g ◦ µ must have the same

self-crossings on the boundary. But the only self-crossings for f and g are ±1, which

means that µ(1) = ±1 and µ(−1) = ∓1. We classify such µ.

Lemma 2.5.1. An automorphism µ satisfies µ(1) = 1, µ(−1) = −1 if and only if there

is α ∈ (−1, 1) such that

µ(z) =
z − α

1− αz
.

Proof. The fact that µ of such form satisfies µ(1) = 1, µ(−1) = −1 is clear.

Now suppose we know µ(1) = 1 and µ(−1) = −1. A general disc automorphism

has the form

µ(z) = λ
α− z

1− ᾱz
, λ ∈ T, α ∈ D.

We have

λ
α− 1

1− ᾱ
= 1, λ

α+ 1

1 + ᾱ
= −1.
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It is equivalent to

λ(α− 1) = 1− ᾱ, λ(α+ 1) = −1− ᾱ.

Subtracting one from another we get λ = −1 and substituting it back to the equations

we get α = ᾱ, meaning α ∈ (−1, 1). This finishes the proof. �

We go back to the proof of the theorem. Since µ(1) = ±1 and µ(−1) = ∓1, either

µ or −µ satisfies the requirements of Lemma 2.5.1. Hence, either

µ(z) =
z − α

1− αz
, α ∈ (−1, 1)

or

µ(z) =
β − z

1− βz
, β ∈ (−1, 1).

It remains to notice that α and β both have only one possible value. Indeed, if Mf =

Mg◦µ, then in light of Theorem 2.5

Af (1)

Af (−1)
=

Ag◦µ(1)
Ag◦µ(−1)

. (2.16)

If we consider µ(z) = (z−α)/(1−αz), then (2.16) together with Lemma 2.4.1 gives

us
Af (1)

Af (−1)
=

Ag(1)

Ag(−1)

(
α+ 1

1− α

)2

,

so that

α =

√

Af (1)Ag(−1)−
√

Af (−1)Ag(1)
√
Af (1)Ag(−1) +

√
Af (−1)Ag(1)

. (2.17)

Similarly, if we consider µ(z) = (β − z)/(1 − βz), then

Af (1)

Af (−1)
=
Ag(−1)

Ag(1)

(
β + 1

1− β

)2

,

so that

β =

√
Af (1)Ag(1)−

√
Af (−1)Ag(−1)

√

Af (1)Ag(1) +
√

Af (−1)Ag(−1)
. (2.18)

2.6 Proof of Theorem 1.6

Theorem. Mfr 6= Mfs for r 6= s.

Proof of Theorem 1.6. In light of Theorem 2.5 it is sufficient to prove that for r > s > 0

Afr(1)

Afr(−1)
6= Afs(1)

Afs(−1)
.
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Evaluating at ±1 we get fr(1) = fr(−1) = 1√
2
(1, 1) and

f ′r(1) =
1√
2

(

2, 2
1 + r

1 − r

)

, f ′r(−1) = − 1√
2

(

2, 2
1− r

1 + r

)

.

Hence,

Afr(1)

Afr(−1)
=

1 + 1+r
1−r

1 + 1−r
1+r

=
1 + r

1− r

is strictly increasing for r ∈ (0, 1), which finishes the proof. �

2.7 Proof of Theorem 1.7

Theorem. Mfr,−r
∼= Mfs,−s

algebraically if and only if Mfr,−r
= Mfs,−s

.

Proof. Note that

fr,−r(−z) = f−r,r(z) =
1√
2
(b−r(z)

2, br(z)
2), (2.19)

so that if f ′r,−r(1) = (z1, z2), then f
′
r,−r(−1) = −(z2, z1). Since

fr,−r(1) = fr,−r(−1) =
1√
2
(1, 1),

we get

Afr,−r
(1) = Afr,−r

(−1). (2.20)

Let us apply Theorem 1.5 to fr,−r and fs,−s. Calculating α, β from (2.17), (2.18)

and using (2.20) we get α = β = 0. Thus, in light of (2.19), Theorem 1.5 implies

that Mfr,−r
∼= Mfs,−s

algebraically if and only if either Mfr,−r
= Mfs,−s

or Mfr,−r
=

Mf−s,s
.

Note that because of (2.19)

〈fr,−r(z), fr,−r(w)〉 = 〈f−r,r(z), f−r,r(w)〉,

whence,

κfr,−r = κf−r,r ,

meaning Hfr,−r
= Hf−r,r

with the same inner product, which means Mfr,−r
= Mf−r,r

isometrically.

We conclude that Mfr,−r
∼= Mfs,−s

algebraically if and only if Mfr,−r
= Mfs,−s

.�
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Chapter 3

Embedding dimension

3.1 Preliminary results

In this section we study properties of the rotation-invariant spaces of analytic functions

on the unit disc.

We start with a well-known result about kernel positivity, see [MS17, Lemma 20].

Lemma 3.1.1. Suppose κ : D× D → C is given by

κ(z, w) =
∞∑

n=0

cn(zw̄)
n,

cn ∈ C are such that κ is well-defined, i.e., lim supn→∞ |cn|
1

n 6 1. Then κ is positive

semi-definite if and only if cn > 0, n > 0.

For the sake of convenience, we present a short proof here.

Proof. If cn > 0, n > 0, then κ is clearly positive semi-definite. We now prove the

converse. By [AM02, Theorem 2.53] there is a Hilbert spaceH and a function g : D → H
such that

κ(z, w) = 〈g(z), g(w)〉H .

Since κ is analytic in z and the image g(w), w ∈ D spans H, g is analytic. Hence,

g(z) =
∑

n>0

gnz
n, gn ∈ H,

so that

κ(z, w) =
∑

n,m>0

〈gn, gm〉Hznw̄m.

In particular, cn = 〈gn, gn〉H = ||gn||2H > 0. �

Now we can provide a complete description of rotation-invariant spaces.
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Theorem 3.1. Let H be an RKHS of analytic functions on D with kernel κ. Then H
is rotation-invariant if and only if the kernel κ is given by

κ(z, w) =
∑

n>0

cn(zw̄)
n, cn > 0. (3.1)

Moreover, if any (and, therefore, both) of these conditions are true, then for all cn 6= 0

we have zn ∈ H, ||zn||2 = 1
cn
, and these monomials form an orthogonal basis in H.

The first part of the theorem is the special case of [Har17, Lemma 2.2] with the dimen-

sion being equal to 1.

Proof. Note that H is rotation-invariant if and only if for any ξ ∈ T we have

κ(ξz, ξw) = κ(z, w), z, w ∈ D.

Hence, the sufficiency of (3.1) is clear. We now prove necessity.

Since H is a space of analytic functions, κ is analytic in the variables z and w̄

separately. Hence, by the Hartogs’s theorem, κ(z, w̄) is analytic in D
2. In particular,

κ(z, w) =
∑

n,m>0

cnmz
nw̄m,

for z, w ∈ rD with small enough r > 0. Since H is rotation-invariant, κ(ξz, ξw) =

κ(z, w), ξ ∈ T, so that

∑

n,m>0

cnmz
nw̄m =

∑

n,m>0

cnmξ
n−mznw̄m, z, w ∈ rD.

This implies cnm = cnmξ
n−m, n,m > 0 for any ξ ∈ T. Hence, cnm = 0 if n 6= m. Thus,

setting cn = cnn, we get

κ(z, w) =
∑

n>0

cn(zw̄)
n, z, w ∈ rD.

Since for a fixed w ∈ D the function κ(z, w) is analytic in D, this series extends to

z ∈ D. We conclude that

κ(z, w) =
∑

n>0

cn(zw̄)
n, z, w ∈ D.

It remains to notice that since κ is positive semi-definite, then, by Lemma 3.1.1, cn >

0, n > 0.

By [PR16, Theorem 3.11], a function f : D → C belongs to an RKHS H with

||f ||H 6 L if any only if

κ(z, w) − f(z)f(w)

L2
, z, w ∈ D.

28



is positive semi-definite.

We consider f(z) = zn, n > 0. If cn = 0, then for any L > 0 the kernel

κ(z, w) − (zw̄)n

L2

is not positive semi-definite by Lemma 3.1.1, which means zn /∈ H. If cn > 0, then the

kernel

κ(z, w) − cn(zw̄)
n

is positive semi-definite by Lemma 3.1.1, so zn ∈ H and ||zn||2 6 1
cn
. But for L2 < 1

cn

the kernel

κ(z, w) − (zw̄)n

L2

is not positive semi-definite by Lemma 3.1.1. We conclude that ||zn||2 = 1
cn
.

If zn, zm ∈ H, n 6= m, then, by rotation-invariance, for any ξ ∈ T

〈zn, zm〉H = 〈(ξz)n, (ξz)m〉H = ξn−m〈zn, zm〉H.

Thus, zn ⊥ zm in H.

Denote by Hpol the subspace of H spanned by zn, cn 6= 0. It remains to prove that

the orthogonal complement of Hpol in H is 0. Suppose f ∈ H⊥
pol. Note that for any

z ∈ D κz ∈ Hpol, so f(z) = 〈f, κz〉 = 0, hence, f = 0. �

Note that for a general RKHS H of analytic functions on D even if polynomials

belong to H, they are not necessarily dense in H. As an example, consider the Hardy

space H2(D) and take any f /∈ H2(D), analytic in D. We put H = H2(D) ⊕ Cf with

the direct sum inner product, i.e.,

〈g + af, h+ bf〉H = 〈g, h〉H2(D) + ab̄, g, h ∈ H2(D), a, b ∈ C.

Then H is a Hilbert space of functions analytic in D. Moreover, it is an RKHS with

kernel

κH(z, w) =
1

1− zw̄
+ f(z)f(w), z, w ∈ D.

It remains to notice that by construction f ∈ H is orthogonal to polynomials. Hence,

polynomials are not dense in H.

3.2 Proof of Theorem 1.8

Theorem. Let H be a rotation-invariant irreducible complete Pick space of analytic

functions on the unit disc D with kernel κ. Then the embedding dimension d is finite

if and only if
1

κ(0, 0)
− 1

κ(z, w)
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is a polynomial in zw̄. Moreover, d is exactly the number of non-zero coefficients of

this polynomial.

Proof of Theorem 1.8. We are looking for the smallest integer d such that there is a

map b : D → Bd and a rescaling function δ : D → C such that

κ(z, w) =
δ(z)δ(w)

1− 〈b(z), b(w)〉 . (3.2)

We can always compose b with an automorphism of Bd, which will give us a different

embedding b with a different rescaling function δ but with the same dimension d. In

particular, to determine the embedding dimension for a rotation-invariant H on D it is

enough to consider only embeddings b with b(0) = 0.

By Theorem 3.1,

κ(z, w) =
∑

n>0

cn(zw̄)
n,

where cn = 1
||zn||2

H

, zn ∈ H and cn = 0, zn /∈ H. Since H is irreducible, c0 = κ(0, 0) 6= 0.

Hence, we can rescale H by a positive constant so that c0 = 1. Note that this means

κ0(z) = 1 = κ(0, 0).

Putting w = 0 into (3.2) together with b(0) = 0 we see that δ(z)δ(0) = 1, which

implies that δ(z) = ξ for some ξ ∈ T. Substituting it back to (3.2) we get

κ(z, w) =
1

1− 〈b(z), b(w)〉 . (3.3)

Since c0 = 1,
1

κ(z, w)
= 1−

∑

n>1

rn(zw̄)
n.

We conclude that

1− 1

κ(z, w)
=
∑

n>1

rn(zw̄)
n.

From (3.3) we get

1− 1

κ(z, w)
= 〈b(z), b(w)〉,

whence

〈b(z), b(w)〉 =
∑

n>1

rn(zw̄)
n. (3.4)

Since b is analytic and b(0) = 0,

b(z) =
∑

n>1

bnz
n,
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where bn ∈ Bd, so that

〈b(z), b(w)〉 =
∑

n,m>1

〈bn, bm〉znw̄m.

It follows from (3.4) that the vectors bn are orthogonal and ||bn||2 = rn.

We conclude that if 1− 1/κ is not a polynomial, i.e., infinitely many of the rn 6= 0,

then there are infinitely many non-zero orthogonal vectors bn ∈ Bd, so d = ∞.

If 1 − 1/κ is a polynomial and rn1
, . . . , rnk

are the non-zero coefficients, then

bn1
, . . . , bnk

are non-zero and orthogonal, whence d > k. On the other hand, d 6 k,

since we can take

b(z) =
(√
rn1

zn1 , . . . ,
√
rnk

znk
)
.

3.3 Proof of Theorem 1.10

Theorem. Let H be an irreducible complete Pick space of analytic functions on the

unit disc D with kernel κ. Suppose

1

κ(0, 0)
− 1

κ(z, w)
= q(zw̄)

for q analytic in RD for some R > 1 with q′(0) 6= 0. If H does not extend to a larger

disc, then H = H2(D) with equivalent norms.

Proof of Theorem 1.10. We rescale H by a positive constant so that κ(0, 0) = 1. The

space H is clearly rotation-invariant,

κ(z, w) = 1 +
∑

n>1

cn(zw̄)
n, cn > 0.

We need to prove that there are constants 0 < ε < M <∞ such that

ε < cn < M, n > 1.

Since H is complete Pick,

1− 1

κ(z, w)
=
∑

n>1

rn(zw̄)
n, rn > 0,

∑

n>1

rn 6 1.

Notice that (

1−
∑

m>1

rmz
m

)(

1 +
∑

n>1

cnz
n

)

= 1, z ∈ D.
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Comparing the coefficients of zn, n > 1 we get

cn =
n−1∑

m=0

cmrn−m, n > 1. (3.5)

In particular, cn > cn−1r1, n > 1. Since c0 = 1 and r1 > 0 we conclude, by induction,

that cn > 0, n > 0. Similarly, applying induction, we get cn 6 1, n > 0. Indeed,

c0 = 1, and if c0, . . . , cn−1 6 1, then

cn =
n−1∑

m=0

cmrn−m 6

n−1∑

m=0

rn−m 6

∞∑

m=1

rm 6 1.

It remains to show that cn are bounded from below for n→ ∞. Note that

µ =
∑

n>1

nrn = q′(1) <∞. (3.6)

We also claim
∑

n>1

rn = q(1) = 1. (3.7)

If not, then q(1) < 1, hence, |q(z)| 6 q(1) < 1, z ∈ D. Together with q being analytic

in RD we get that there is R̃ ∈ (1, R) such that |q(z)| < 1, z ∈ R̃D. Thus,

κ(z, w) =
1

1− q(zw̄)

extends analytically to R̃D, a contradiction with the fact that H does not extend to a

larger disc.

Together (3.5), (3.6), (3.7) and c1 > 0 imply, by the Erdös-Feller-Pollard theorem,

[Fel68, Chapter XIII, Section 11], that cn → 1/µ, n → ∞. Since 1/µ > 0 and cn >

0, n > 0 we conclude that there is ε > 0 such that cn > ε, n > 0. This finishes the

proof. �

3.4 Proof of Theorem 1.9

Theorem. Let H be an irreducible complete Pick space of analytic functions on the

unit disc D with kernel κ. Suppose

1

κ(0, 0)
− 1

κ(z, w)
= q(zw̄)

for a rational function q with q′(0) 6= 0. If H does not extend to a larger disc, then

H = H2(D) with equivalent norms.

Proof of Theorem 1.9. We use the notation from the proof of Theorem 1.10 and rescale

so that κ(0, 0) = 1.
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We have q(1) =
∑

n>1 rn 6 1, so that |q(z)| 6 1, z ∈ D. This means that the poles

of q lie outside D. Since there are finitely many of them, q is analytic in a larger disc

and we can apply Theorem 1.10. �

3.5 Proof of Theorem 1.11

Recall that the weighted Hardy space Hs, s ∈ R on D is

Hs =

{

f(z) =
∑

n>0

anz
n : ||f ||2s =

∑

n>0

(1 + n)−s|an|2 <∞
}

.

Theorem. For s = 0, the embedding dimension of H0 is d = 1. For s < 0, the

embedding dimension of Hs is d = ∞.

Proof of Theorem 1.11. The statement for s = 0 is evident, since the space H0 is

exactly the Drury-Arveson space H2
d with d = 1, meaning that b(z) = z is the map in

question.

Let us now fix s < 0. Note that the kernel is given by

κ(z, w) =
∑

n>0

(1 + n)s(zw̄)n, z, w ∈ D.

If d <∞, by Theorem 1.8, we must have

1− 1

κ(z, w)
= p(zw̄),

for some polynomial p, p(0) = 0. Note that p′(0) 6= 0. But then, by Theorem 1.9,

we must have Hs = H2(D) with equivalent norms, which contradicts the fact that

||zn||Hs = (1 + n)−s → ∞. �

3.6 Proof of Theorem 1.12

Theorem. Suppose V is an analytic disc attached to the unit sphere, f is the embedding

map of V . Then for s < 0

Hs 6= Hf .

Proof of Theorem 1.12. Suppose the opposite is true, i.e., Hs = Hf . First, by Theorem

2.3, f has to be injective, since z ∈ Hs is injective and continuous up to D. For injective

f , by Theorem A, Hf = H2(D) while Hs 6= H2(D), which gives a contradiction. �

33



34



Chapter 4

Conclusion

This thesis has delved into the isomorphism problem for multiplier algebras associated

with varieties in the unit ball, focusing specifically on the case of analytic discs attached

to the unit sphere. Our results have provided new insights into the relationship between

the geometric properties of these varieties, such as their self-crossing types, and the

algebraic structure of their associated multiplier algebras.

We established (Theorem 1.3) that for analytic discs with different self-crossing

types, the corresponding multiplier algebras are non-isomorphic, thus offering a coarse

criterion to distinguish between non-isomorphic cases. However, the question of whether

the same self-crossing type necessarily implies isomorphism of the multiplier algebras

remains open and warrants further investigation. Additionally, we have proven a rigid-

ity result (Theorem 1.5) for analytic discs with a single self-crossing, which states that,

in this case, there are always at most two candidates for an isomorphism map.

We also examined the embedding dimension problem for complete Pick spaces.

We considered rotation-invariant spaces on the unit disc and established a general

result (Theorem 1.8) that explicitly relates the embedding dimension with the kernel

of the space. We showed (Theorem 1.9, Theorem 1.10) that under mild conditions on

the embedding map the resulting rotation-invariant space on the unit disc is, in fact,

the Hardy space with an equivalent norm. By using these two results, we were able

to demonstrate (Theorem 1.11) that the embedding dimension for certain weighted

Hardy-type spaces is infinite. Lastly, we made a connection between the embedding

dimension and the isomorphism problem. We showed (Theorem 1.12) that weighted

Hardy-type spaces cannot arise from analytic discs attached to the unit sphere.
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