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AN ASYMPTOTIC FORMULA WITH POWER-SAVING ERROR

TERM FOR COUNTING PRIME SOLUTIONS TO A BINARY

ADDITIVE PROBLEM

RACHITA GURIA

1. Introduction

The Waring–Goldbach problem, which is the intersection of two well-known older
problems: Waring’s problem and Goldbach’s conjecture. It asks whether large inte-
gers can be written as the sum of powers of primes with a bounded number of terms.
Let us consider a prominent case of this problem: the equation of Lagrange

x21 + x22 + x23 + x24 = N (1.1)

with multiplicative restrictions. It is plausible to expect that sufficiently large inte-
gers, under certain necessary congruence conditions, can be written as the sum of
four squares of primes. Such a result of this strength remains out of reach and is still
a conjecture. However, Hua in [Hua38] proved that all large integers congruent to 5
modulo 24 can be represented as the sums of five squares of primes by Vinogradov’s
method for the ternary Goldbach problem as both the problems are considered to
be the ternary additive problems.

In contrast, we are interested in the binary additive problem. It is not possible to
distinguish the solutions of such problem in this way α + β + γ = N , where α, β, γ
run independently through three sequences and at least two of these are sufficiently
densein [1, N ]. We now briefly survey results related to the solutions of Lagrange’s
equation as a binary additive problem. In 1994, Brüdern and Fouvry in [BF94] es-
tablished that for every sufficiently large integer N , congruent to 4 modulo 24, (1.1)
admits solutions over integers, each of which is almost prime of order 34 by combin-
ing a sieve method with the Hardy-Littlewood-Kloosterman approach. Concerning
the Lagrange equation with four almost prime variables, the value 34 due to Brüdern
and Fouvry was later sharpened by Heath-Brown and Tolev in [HBT03] to 25, by
Tolev in [Tol03] to 21, by Cai in [Cai10] to 13 and by Tsang and Zhao in [TZ17] to 4 .

In 2003, Heath-Brown and Tolev in [HBT03] managed to solve the equation (1.1)
with one prime entry and each of the other three x2, x3, x4 having at most 101 prime
divisors. Tolev in [Tol03] reduced the number of prime divisors from 101 to 80,
and then Cai in [Cai10] showed that 42 is acceptable. The latest improvement has
been made in 2017 by Tsang and Zhao in [TZ17]. Combination of the circle method

2020 Mathematics Subject Classification. Primary 11P21, 11P05, 11L07, 11L20; Secondary
11N36, 11C20, 11D09.

Key words and phrases. Lattice points, binary quadratic forms, additive problems, primes,
Kloosterman fraction.

1

http://arxiv.org/abs/2410.10856v1


2 RACHITA GURIA

with Kloosterman refinement and the square sieve to control the reminder term uni-
formly for certain level D and then the use of the sieve method to produce the almost
primes have enabled them to solve the problem with one prime and each of the three
x2, x3, x4 having at most 5 prime factors.

Many other variants of the four squares theorem (see (1.1)) have been studied
as an approximation to the conjecture above. Podsypanin in [Pod75] has obtained
an asymptotic formula as a function of N for the number of solutions of (1.1) in
square-free numbers xi.

Greaves in [Gre76] applied a sieve method to solve (1.1) for integers x1, x2 and
primes x3, x4 and obtained only a lower bound for the number of representations in
this way. Shields in [Shi79], Plaksin in [Pla81] and Kovalchik in [Kov81], by different
methods, have obtained an asymptotic formula for such representations where the
authors use the multiplicative properties of the arithmetic function r(n) defined as
the number of ways n can be represented as the sum of two squares along with the
methods of Hooley and Linnik’s dispersion method. The best known result today is
due to Plaksin in [Pla84] who obtained an error term of size O (N(logN)−2.042) by
proving the following theorem under some assumptions.

Theorem 1.1. Let κ(N) be the number of solutions of the equation

f(p, q) + ψ(x, y) = N, (1.2)

and τ(m,N) be the number of solutions of the congruence

f(u, v) + ψ(x, y) ≡ N mod m, (uv,m) = 1, (1.3)

where f and ψ are positive definite quadratic forms with integral coefficients of dis-
criminants −∆ and −τ respectively, p and q are prime numbers, and x, y, u and v
are integers. We let pβ||(∆, 4N) and G =

∏
p|3∆N,τ p

β+1. Let the congruence (1.3)
be solvable for m = G. Then we have

κ(N) =
8π√
τ
sfS(N)

N

log2N

(
1 +

B

log0.042N

)
, (1.4)

where the singular series has the form

S(N) =
∏

p

τ(pβ+1, N)

(φ(pβ+1))2pβ+1
, and

1√
G log logN

≪ S(N) ≪ log logN, (1.5)

and sf is the area of the region f(x, y) ≤ 1 such that x, y ≥ 0 and φ is the Euler
totient function.

Our goal is here to study a similar type of problem, where we investigate the
determinant equation, i.e.,

x1x2 − x3x4 = r, (1.6)

with multiplicative constraints imposed on the variables and a non-zero r, instead
of the Lagrange equation (1.1). An important thing to note that the solutions of
both Lagrange’s equation and the determinant equation can not be considered as
the ternary problems because the terms in these equations fail to combine in a way
that satisfies certain conditions (see [Lin63, Eq. (0.1.6) and (0.1.9)]), whereas they
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perfectly fit as examples of the binary additive problem which is explained earlier.

We are interested in the number of integer points (a, b, c, d) in an expanding box
[−X,X ]4 that satisfy (1.6), where we attach an arbitrary weight in one variable, let
us say α(x1), and along with that one of x3, x4 is prime. Precisely, we want to have
an exact asymptotic formula for this problem with a strong bound on the error term
and at the same time we would like to allow r to be as large as possible with respect
to X . This seems to be the only result of this type in the literature in this direction.

Exploiting the special structure of the determinant form, we show the following.

Theorem 1.2. For an arbitrary sequence of complex numbers α(n) = O(nε), and
any non-zero integer r, let us define

Sr(X) =
∑∑∑∑

|a|,|b|,|p|,|d|≤X
ad−pb=r

α(a),
(1.7)

where a, b, d vary over the integers and p varies over primes. Then, for large X, we
have,

Sr(X) = 8
∑

1≤a≤X

∑

1≤p≤X

α(a)

a

[
min

{
X,

aX − r

p

}
−max

{
1,
a− r

p

}]

+O
(
X1+ 3

4
+ε + r

1

5X1+ 11

20
+ε
)
,

(1.8)

uniformly for all r.

If we take α(n) to be the characteristic function of primes, then we have the
following theorem regarding counting lattice points with two prime entries on the
determinant surfaces.

Theorem 1.3. Define

S(2,Z) :=

{(
p b
q d

)
∈M(2,Z) : p, q are primes

}
. (1.9)

Let ∑

γ∈S(2,Z)
det(γ)=r

||γ||∞≤X

1 =
∑

p

∑

b

∑

q

∑

d
pd−bq=r

|p|,|b|,|q|,|d|≤X

1,

where b, d vary over the integers and r is a fixed non-zero integer. Then, for large
X, we have

Sr(X) = 8Kr(li(X))2 +O
(
X1+ 3

4
+ε + r

1

5X1+ 11

20
+ε
)
, (1.10)

where Kr is an explicit constant and the logarithmic integral, denoted by li(x), is the
integral

li(x) :=

x∫

2

dt

log t
. (1.11)
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Remark 1.1. We see that for small r, precisely for r ≤ X, the error term is bounded
by X7/4+ε.

Remark 1.2. The important thing to notice here is that even if we have restricted two
of entries of the determinant equation (see (1.6)) to be prime, we still have been able
to achieve a power saving in the error term, in contrast, for the Lagrange equation
(see (1.1)) with two prime entries only the logarithmic saving of size (logN)2.042 in
the error term has been obtained.

Although, when all the variables x1, x2, x3 and x4 without any restriction run
over the integers, Ganguly and Guria in [GG, Theorem 1.1] have established an
asymptotic formula for such count with an error term of size O

(
X3/2+ε

)
as long as

r = O
(
X1/3

)
. In the same paper, they have also obtained an asymptotic formula for

one prime entry with an error term of size O
(
X5/3+ε

)
as long as r = O

(
X5/3

)
by

taking α(n) to be indicator function of primes (see [GG, Corollary 1.5]). In [BC18]
and before that in [DFI97b], sums of the form

∑

n1

∑

n2

∑

n3

∑

n4

ni∈Ni1≤i≤4
n1n4−n2n3=r

α(n1)β(n2)f(n3)g(n4)
(1.12)

were studied and asymptotic formulae for such sums were obtained. Here, Ni =
[Ni/2, Ni], α and β are arbitrary sequences, and f, g are smooth functions satisfying
suitable decay conditions on their derivatives. One may compare our theorems with
[BC18, Corollary 1] or [DFI97a, Theorem 1], where, two sequences are arbitrary
and the other two are smooth weights of the form f(n3) and g(n4) (as in (1.12)).
Note that if we apply these results in our situations, we obtain an error term that
is rather poor. For example, [BC18, Corollary 1] gives an error term of the order
O
(
X1+49/50+ε

)
.

The following two corollaries are direct consequences of Theorem 1.2.

Corollary 1.4. We have,

∑∑∑

1≤a,b,c≤X

Λ

(
ab± r

c

)
α(a) =

∑

p prime

∑

1≤a≤X

α(a)

a

X∫

1

w

(
xp∓ r

a

)

+O
(
X1+ 3

4
+ε + r

1

5X1+ 11

20
+ε
)
,

(1.13)

uniformly for all non-zero integer r and a, b, c vary over the integers, and the weight
function w satisfies the conditions (3.7)-(3.10).

Corollary 1.5. For any non-zero integer r, we have

∑∑∑

1≤a,b,p≤X

α

(
ap± r

b

)
=

∑

1≤p≤X

∑

n∈Z

α(n)

n

X∫

1

w

(
xp± r

n

)

+O
(
X1+ 3

4
+ε + r

1

5X1+ 11

20
+ε
)
,

(1.14)
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where a, b vary over the integers and p varies over primes, and the function w satisfies
the conditions (3.7)-(3.10).

1.1. Method of the proofs of Theorem 1.2 and Theorem 1.3. Let us briefly
outline the method of the proof. The main idea is to exploit the special structure of
the determinant equation (1.6) that enables us to transform our sum into the aver-
age of the sums of the Kloosterman fractions over primes p after using the Poisson
Summation formula.

At first, we isolate terms for which p|a and bound them trivially. Now, we are
left with the terms which satisfy the condition (a, p) = 1. The basic idea is to
use Fourier analysis. To do so we first approximate this sum by a weighted sum
by introducing a smooth function w in the those variables without any restriction,
namely b, d, which runs over integers, that approximates the indicator function 1[1,X]

to within an acceptable error term (see §3.2). Now, we replace d by (r+pb)/a, using
the determinant equation and the congruence condition b ≡ −rp̄(mod a) arises as
we already have the condition (a, p) =1. At this stage, a trivial estimation gives
Sw(X, r) ≪ X2+ε. Next, we use the Poisson summation formula to evaluate the
sum over b as only the variable b runs over integers. We separate the zero frequency
and the non-zero frequencies. The zero frequency yields the main term, whereas in
regard to the non-zero frequencies, the key observation is that the sum over primes p
along with sum over modulus a is precisely the average of the sums of Kloosterman
fractions over primes. Next our plan is to implement Lemma 2.2 to get a power-
saving error term. It requires some work because of the condition Q4/3 ≥ X ≥ Q1/2.

We also need a good bound for
(
F̂da1,t

(
n
da1

))′

( see (5.23)) which appears after

summation by parts in the sum over p in terms of of t, a1 and n as the intervals over
which the variables run are long and the direct application of integration by parts is
not enough.

Acknowledgements. The author thanks Satadal Ganguly, Valentin Blomer, Pieter
Moree, Alina Ostafe, Prahlad Sharma and Igor Shparlinski for helpful comments. She
is grateful to Max Planck Institute for Mathematics in Bonn where this work was
carried out for its hospitality, excellent working atmosphere and financial support.

2. Preliminaries

In this section we recall some standard formulae and lemma from the literature
which will be required in the proofs of our results.

Lemma 2.1. (Application of Poisson summation)

Suppose that both f , f̂ are in L1(R) and have bounded variation. Then

∑

n≡α(mod a)
n∈Z

f (n) =
1

a

∑

n∈Z

e
(αn
a

)
f̂
(n
a

)
(2.1)

where both the series converge absolutely.

Proof. See, e.g., [IK04, Theorem 4.4 and Exercise 4]. �
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Lemma 2.2. For any integer a > 0 and every ε > 0, we have

∑

q∼Q

∣∣∣∣∣∣∣∣

∑

1≤p≤X
(p,q)=1

e

(
ap̄

q

)
∣∣∣∣∣∣∣∣
≪

(
1 +

a

XQ

) 1

2 (
Q

1

2X
11

8 +Q
7

6X
2

3

)
(aQ)ε, (2.2)

for Q
4

3 ≥ X ≥ Q
1

2 .

Proof. See [Irv14, Theorem 1.4]. �

3. The main steps of proof of Theorem 1.3

Let us define
Sr(X) :=

∑∑∑∑

1≤a,b,p,d≤X
ad−pb=r

α(a),
(3.1)

and as noted already in the introduction,

Sr(X) = 8Sr(X). (3.2)

To prove Theorem 1.3, it is enough to prove that

Sr(X) =
∑

1≤a≤X

∑

1≤p≤X

α(a)

a

[
min

{
X,

aX − r

p

}
−max

{
1,
a− r

p

}]

+O
(
X1+ 3

4
+ε + r

1

5X1+ 11

20
+ε
)
.

(3.3)

3.1. Contribution of the terms when p|a. We will now examine the impact of
the terms for which p|a so that later we will only focus on the case when (a, p) = 1.
Hence, we have the sum

∑∑∑∑

1≤a,b,p,d≤X
ad−pb=r

p|a

α(a) =
∑∑∑

1≤b,p,d≤X
kpd−pb=r

p|r

∑

1≤k≤X
p

α(pk)

=
∑

1≤p≤X
p|r

∑

1≤k≤X
p

α(pk)
∑

1≤b≤X
pk|(bp+r)

1

≪ Xε
∑

1≤p≤X
p|r

∑

1≤k≤X
p

X

k

≪ X1+ε,

(3.4)

since there are ω(r) = O (Xε) values of p that contribute in the sum over p and
α(n) = O(Xε). Hence,

Sr(X) = S(0)
r (X) +O

(
X1+ε

)
, (3.5)

where
S(0)
r (X) =

∑∑∑∑

1≤a,b,p,d≤X
ad−pb=r
(a,p)=1

α(a)
(3.6)
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We next introduce a nice suitable weight function w to the variables b and d in our

sum S
(0)
r (X) and we use the same weight function as in [GG, §3]. Let us recall the

weight function w.

3.2. Introducing a weight function. Let w : R → R be a smooth function satis-
fying the following conditions:

(1) w(x) = 0 if x 6∈ (1−H,X +H), (3.7)

(2) w(x) = 1 if x ∈ [1, X ], (3.8)

(3) 0 < w(x) < 1 if x ∈ (1−H, 1), or if x ∈ (X,X +H), (3.9)

(4) w(j)(x) ≪j H
−j for every j ≥ 1, (3.10)

where X > 0 is a large number and H is a parameter to be fixed later subject to the
condition √

X ≤ H ≤ X. (3.11)

Remark 3.1. Finally, our choice will be H = max
{
X

3

4 , r
1

5X
11

20

}
.

We define next

Sw(X, r) =
∑

1≤a≤X

∑

1≤p≤X

∑

b∈Z

∑

d∈Z
ad−pb=r
(a,p)=1

α(a)w(b)w(d)

=
∑

1≤a≤X

∑

1≤p≤X

∑

b∈Z

b≡−rp̄(mod a)
(a,p)=1

α(a)w(b)w

(
r + pb

a

)
,

(3.12)

where we eliminate d and interpret the equality as a congruence modulo a.

Proposition 3.1. We have,

S(0)
r (X) = Sw(X, r) +O

(
HX1+ε

)
. (3.13)

Proof. We first make the easy observation that the total contribution of the terms
for which at least one of the variables b, r+pb

a
is zero is O(τ(r)X).

We will now look into the contribution of the terms for which at least one of the
variables b, r+pb

a
is in (1 − H, 1) ∪ (X,X + H). Let us first consider the case when

r+pb
a

∈ (1−H, 1) ∪ (X,X +H). Then we have,
∑∑∑

1≤a,p,b≤X
r+pb

a
∈(1−H,1)∪(X,X+H)

pb≡−r(mod a)

α(a) ≪ Xε
∑

1≤a≤X

∑

n+r
a

∈(1−H,1)∪(X,X+H)

n≡−r(mod a)

τ(n)

≪ Xε
∑

1≤a≤X

∑

k∈(1−H,1)∪(X,X+H)

1

≪ HX1+ε.

(3.14)
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The case when b is in (1−H, 1) ∪ (X,X +H) is similar. Therefore, we have

S(0)
r (X) = Sw(X, r) +O

(
HX1+ε

)
. (3.15)

�

Our task now is to evaluate Sw(X, r) asymptotically.

3.3. Application of Poisson summation. We apply the Poisson summation for-
mula (i.e., Lemma 2.1) to the sub-sum over the variable b and obtain the following
expression from (3.12).

Sw(X, r) =
∑

1≤a≤X

∑

1≤p≤X

(a,p)=1

α(a)
∑

b∈Z
b≡−rp̄(mod a)

w(b)w

(
r + pb

a

)

= Aw(X, r) +Bw(X, r),

(3.16)

where we separate the zero frequency and define

Aw(X, r) :=
∑

1≤a≤X

∑

1≤p≤X

(a,p)=1

α(a)

a
F̂a,p (0) , (3.17)

and the non-zero frequency is defined by

Bw(X, r) :=
∑

1≤a≤X

∑

1≤p≤X

(a,p)=1

α(a)

a

∑

n∈Z
n 6=0

e

(−nrp̄
a

)
F̂a,p

(n
a

)
, (3.18)

where we define for any positive integer a and any integer c

Fa,c(x) := w(x)w

(
r + cx

a

)
. (3.19)

3.4. The main term. In the following proposition we will see that we can extract
a main term of size X2 from Aw(X, r). This will be proved in the next section.

Proposition 3.2. We have,

Aw(X, r) =
∑

1≤a≤X

∑

1≤p≤X

α(a)

a

[
min

{
X,

aX − r

p

}
−max

{
1,
a− r

p

}]
+O

(
HX1+ε

)
.

(3.20)

3.5. The error term. The following is the main proposition of this paper where
we have used the estimation for the exponential sum over p̄ for large moduli, i.e.,
Lemma 2.2.

Proposition 3.3. We have

Bw(X, r) ≪ X
7

4
+ε +

X2+ 1

2
+ε

H
+ r

1

2

(
X

H

) 3

2

X
7

8
+ε. (3.21)
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3.6. Proof of the theorem. We analyze the error term Bw(X, r) in two cases. We
first make an observation that for r ≤ HX1/4,

Bw(X, r) ≪ X
7

4
+ε +

X2+ 1

2
+ε

H
. (3.22)

In that case, the optimal choice of H is

H = X
3

4 , (3.23)

by comparing (3.22) with O (HX1+ε) (see (3.13)). However, in the complimentary
situation,

Bw(X, r) ≪ r
1

2

(
X

H

) 3

2

X
7

8
+ε, (3.24)

and we make an optimal choice of H to be

H = r
1

5X
11

20 . (3.25)

Hence, the theorem follows from Proposition 3.2 and Proposition 3.3, taking into
account (3.2), (3.5), (3.13), (3.16), (3.23) and (3.25).

4. The main term and the proof of Proposition 3.2

Using (3.17), we write Aw(X, r) as

Aw(X, r) =
∑

1≤a≤X

∑

1≤p≤X

α(a)

a
F̂a,p (0)−

∑

1≤a≤X

∑

1≤p≤X

p|a

α(a)

a
F̂a,p (0)

(4.1)

Now we trivially bound the second term using the properties of the weight function
w. Thus, we have

Aw(X, r) =
∑

1≤a≤X

∑

1≤p≤X

α(a)

a
F̂a,p (0) + O(X1+ε). (4.2)

Using the properties of the weight function w, it follows from (3.17)

Aw(X, r) =
∑

1≤a≤X

∑

1≤p≤X

α(a)

a

X∫

1

w

(
r + px

a

)
dx+O

(
HX1+ε

)

=
∑

1≤a≤X

∑

1≤p≤X

α(a)

a

min{X,(aX−r)/p}∫

max{1,(a−r)/p}

1dx+O
(
HX1+ε

)

=
∑

1≤a≤X

∑

1≤p≤X

α(a)

a

[
max

{
1,
a− r

p

}
−min

{
X,

aX − r

p

}]
+O

(
HX1+ε

)
.

(4.3)
Thus we conclude Proposition 3.2.
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5. The error term and the proof of Proposition 3.3

We begin analyzing the sum Bw(X, r). For that we first prove a simple yet crucial
lemma that limits the size of the length of the dual sums over n in Bw(X, r). The

lemma below shows that F̂a,p

(
n
a

)
is negligibly small if n≫ X1+ε/H .

Lemma 5.1. We have

F̂a,c(y) ≪k H
1−ky−k

(
1 +

∣∣∣ c
a

∣∣∣
k−1

)
, (5.1)

for every integer k ≥ 1, where Fa,c(y) is defined in (3.19). In particular, by taking
k = 1, we have the bound

F̂a,c(y) ≪k y
−1. (5.2)

Proof. Using (3.19) we integrate by parts k times, getting

F̂a,c(y) =
1

(−2πiy)k

k∑

j=0

∞∫

−∞

w(j)(x)
( c
a

)k−j

w(k−j)

(
r + cx

a

)
e(−xy)dx.

Note that w(k)
(
r+cx
a

)
= 0 unless r+cx

a
∈ (1 − H, 1) ∪ (X,X + H), and so w(k)

(
cx
a

)

vanishes outside two intervals of length O
(∣∣a

c

∣∣H
)
each and by (3.10), we obtain the

bound O(
∣∣ c
a

∣∣k−1
y−kH1−k) for the term corresponding to j = 0. Now we consider

the other summands. Since w(j)(x) is non-zero only in the intervals (1 −H, 1) and
(X,X + H) for every j ≥ 1, all these terms together contribute only O(y−kH1−k),
again by (3.10). �

We now focus on Bw(X, r). Interchanging the order of summation,

Bw(X, r) :=
∑

1≤a≤X

α(a)

a

∑

06=n≪X1+ε

H

∑

1≤p≤X
(a,p)=1

e

(−nrp̄
a

)
F̂a,p

(n
a

)
+O

(
X−100

)
. (5.3)

We first divide the terms in Bw(X, r) according to (nr, a) = d such that d ≥ 1.

Bw(X, r) =
∑

d≥1

∑

1≤a≤X

α(a)

a

∑

06=n≪X1+ε

H
(a,nr)=d

∑

1≤p≤X
(a,p)=1

e

(−nrp̄
a

)
F̂a,p

(n
a

)
+O

(
X−100

)

=
∑

d≥1

1

d

∑

06=n≪X1+ε

H
d|nr

∑

1≤a1≤
X
d

(a1,nr/d)=1

α(da1)

a1

∑

1≤p≤X
(a1,p)=1

e

(−(nr/d)p̄

a1

)
F̂da1,p

(
n

da1

)

+O
(
X−100

)

(5.4)
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We now divide the range of the variable a1 into dyadic intervals and we write

Bw(X, r) =
∑

d≥1

1

d

∑

Q dyadic
Q≤X

d

∑

06=n≪X1+ε

H
d|nr

∑

a1∼Q
(a1,nr/d)=1

α(da1)

a1

∑

1≤p≤X
(a1,p)=1

e

(−(nr/d)p̄

a1

)
F̂da1,p

(
n

da1

)

+O
(
X−100

)
.

(5.5)
Now our plan is to apply Lemma 2.2. For that we separate the terms in Bw(X, r)
for which Q4/3 ≥ X . Thus we write Bw(X, r) as

Bw(X, r) = B1,w(X, r) +B2,w(X, r) +O
(
X−100

)
, (5.6)

where

B1,w(X, r) :=
∑

d≥1

1

d

∑

Q dyadic
Q≤X3/4

∑

06=n≪X1+ε

H
d|nr

∑

a1∼Q
(a1,nr/d)=1

α(da1)

a1

∑

1≤p≤X
(a1,p)=1

e

(−(nr/d)p̄

a1

)
F̂da1,p

(
n

da1

)
,

(5.7)
and

B2,w(X, r) :=
∑

d≥1

1

d

∑

Q dyadic
X3/4<Q≤X

d

∑

06=n≪X1+ε

H
d|nr

∑

a1∼Q
(a1,nr/d)=1

α(da1)

a1

∑

1≤p≤X
(a1,p)=1

e

(−(nr/d)p̄

a1

)
F̂da1,p

(
n

da1

)
,

(5.8)
We first bound the sum B1,w(X, r) trivially.

Proposition 5.2. We have

B1,w(X, r) ≪ X7/4+ε. (5.9)

Proof. Using (5.2), we have

B1,w(X, r) ≪
∑

d≥1

∑

Q dyadic
Q≤X3/4

∑

06=n≪X1+ε

H
d|nr

1

n

∑

a1∼Q
(a1,nr/d)=1

∑

1≤p≤X
(a1,p)=1

1

≪ X7/4+ε,

(5.10)

since there are τ(nr) = O (Xε) many values of d that contribute to the sum over
d. �

The following proposition is the main result of this section.

Proposition 5.3. We have

B2,w(X, r) ≪
X2+ 1

2
+ε

H
+ r

1

2

(
X

H

) 3

2

X
7

8
+ε. (5.11)
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Proof. To bound B2,w(X, r), we first use the summation by parts in the sum over p

to separate F̂da1,p

(
n
da1

)
. Therefore,

B2,w(X, r) =
∑

d≥1

1

d

∑

Q dyadic
X3/4<Q≤X

d

∑

06=n≪X1+ε

H
d|nr

∑

a1∼Q
(a1,nr/d)=1

α(da1)

a1
F̂da1,X

(
n

da1

) ∑

1≤p≤X
(a1,p)=1

e

(−(nr/d)p̄

a1

)

+
∑

d≥1

1

d

∑

Q dyadic
X3/4<Q≤X

d

∑

06=n≪X1+ε

H
d|nr

∑

a1∼Q
(a1,nr/d)=1

α(da1)

a1

X∫

1

(
F̂da1,t

(
n

da1

))′ ∑

1≤p≤t
(a1,p)=1

e

(−(nr/d)p̄

a1

)
dt.

(5.12)
Next we estimate the first term. Applying (5.2) and Lemma 2.2,

∑

d≥1

1

d

∑

Q dyadic
X3/4<Q≤X

d

∑

06=n≪X1+ε

H
d|nr

∑

a1∼Q
(a1,nr/d)=1

∣∣∣∣
α(da1)

a1

∣∣∣∣
∣∣∣∣F̂da1,X

(
n

da1

)∣∣∣∣

∣∣∣∣∣∣∣∣

∑

1≤p≤X
(a1,p)=1

e

(−(nr/d)p̄

a1

)
∣∣∣∣∣∣∣∣

≪ r
1

2

(
X

H

) 1

2

X
7

8
+ε.

(5.13)

Now we focus on the second term of (5.12). First we obtain a bound for
(
F̂da1,t

(
n
p

))′

.

We have

(
F̂da1,t

(
n

da1

))′

=

∫
x

da1
w(x)w′

(
r + tx

da1

)
e

(
− nx

da1

)
dx. (5.14)

Using integration by parts

(
F̂da1,t

(
n

da1

))′

= − 1

2πi

da1
n

∫
1

da1
w(x)w′

(
r + tx

da1

)
e

(
− nx

da1

)
dx

− 1

2πi

da1
n

∫
x

da1
w′(x)w′

(
r + tx

da1

)
e

(
− nx

da1

)
dx

− 1

2πi

da1
n

∫
x

da1

t

da1
w(x)w′′

(
r + tx

da1

)
e

(
− nx

da1

)
dx.

(5.15)

Now we bound the three terms separately. By the properties of the weight function
w (see (3.9), (3.10)), we know that

w′

(
r + tx

da1

)
6= 0 ⇐⇒ r + tx

da1
∈ (1−H, 1) ∪ (X,X +H), (5.16)
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and the length of the integral is Hda1
t

. Hence, we have the bound for the first term.

− 1

2πi

da1
n

∫
1

da1
w(x)w′

(
r + tx

da1

)
e

(
− nx

da1

)
dx

≪ da1
n
.
1

da1
.
Hda1
t

.
1

H

≪ da1
nt

.

(5.17)

Next, to bound the second term of (5.15), we use that fact (see (3.10)) that the
length of the integral is H , since

w′(x) 6= 0 ⇐⇒ x ∈ (1−H, 1) ∪ (X,X +H), (5.18)

and

x

da1
≪ X

t
(5.19)

from the support of w′
(

r+tx
da1

)
(see (3.9)). Therefore, we have

− 1

2πi

da1
n

∫
x

da1
w′(x)w′

(
r + tx

da1

)
e

(
− nx

da1

)
dx

≪ da1
n
.
X

t
.H.

1

H2

≪ da1X

ntH
.

(5.20)

From the support of w′′
(

r+tx
da1

)
(see (3.9), (3.10)), we see that

tx

da1
≪ X, (5.21)

and the length of the integral is Hda1
t

. Hence, we have the bound for the last term
of (5.15).

− 1

2πi

da1
n

∫
x

da1

t

da1
w(x)w′′

(
r + tx

da1

)
e

(
− nx

da1

)
dx

≪ da1
n

X

da1

Hda1
t

1

H2

≪ da1X

ntH
.

(5.22)

Combining (5.15), (5.17), (5.20) and (5.22), we obtain

(
F̂da1,t

(
n

da1

))′

≪ da1X

ntH
. (5.23)
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Now, in order to apply Lemma 2.2, we first take out the integral over t outside the
a1-sum and we decompose the t integral into two parts.

∑

d≥1

1

d

∑

Q dyadic
X3/4<Q≤X

d

∑

06=n≪X1+ε

H
d|nr

X∫

1

∑

a1∼Q
(a1,nr/d)=1

α(da1)

a1

(
F̂da1,t

(
n

da1

))′ ∑

1≤p≤t
(a1,p)=1

e

(−(nr/d)p̄

a1

)
dt

=
∑

d≥1

1

d

∑

Q dyadic
X3/4<Q≤X

d

∑

06=n≪X1+ε

H
d|nr

X1/2∫

1

∑

a1∼Q
(a1,nr/d)=1

α(da1)

a1

(
F̂da1,t

(
n

da1

))′ ∑

1≤p≤t
(a1,p)=1

e

(−(nr/d)p̄

a1

)
dt

+
∑

d≥1

1

d

∑

Q dyadic
X3/4<Q≤X

d

∑

06=n≪X1+ε

H
d|nr

X∫

X1/2

∑

a1∼Q
(a1,nr/d)=1

α(da1)

a1

(
F̂da1,t

(
n

da1

))′ ∑

1≤p≤t
(a1,p)=1

e

(−(nr/d)p̄

a1

)
dt.

(5.24)
Trivially bounding the sum over p in the first term, we have by (5.23)

∑

d≥1

1

d

∑

Q dyadic
X3/4<Q≤X

d

∑

06=n≪X1+ε

H
d|nr

X1/2∫

1

∑

a1∼Q
(a1,nr/d)=1

α(da1)

a1

(
F̂da1,t

(
n

da1

))′ ∑

1≤p≤t
(a1,p)=1

e

(−(nr/d)p̄

a1

)
dt

≪ X2+1/2+ε

H
.

(5.25)
At last we focus on the second term of (5.24) and the main contribution will come
from this term. We are ready to apply Lemma 2.2 to get a cancellation in our sum
which now satisfies the condition Q4/3 ≥ t ≥ Q1/2.

∑

d≥1

1

d

∑

Q dyadic
X3/4<Q≤X

d

∑

06=n≪X1+ε

H
d|nr

X∫

X1/2

∑

a1∼Q
(a1,nr/d)=1

α(da1)

a1

(
F̂da1,t

(
n

da1

))′ ∑

1≤p≤t
(a1,p)=1

e

(−(nr/d)p̄

a1

)
dt

≪
∑

d≥1

1

d

∑

Q dyadic
X3/4<Q≤X

∑

06=n≪X1+ε

H
d|nr

X∫

X1/2

∑

a1∼Q
(a1,nr/d)=1

∣∣∣∣
α(da1)

a1

∣∣∣∣
∣∣∣∣
(
F̂da1,t

(
n

da1

))′∣∣∣∣

∣∣∣∣∣∣∣∣

∑

1≤p≤t
(a1,p)=1

e

(−(nr/d)p̄

a1

)
∣∣∣∣∣∣∣∣
dt

≪ r
1

2

(
X

H

) 3

2

X
7

8
+ε.

(5.26)
Combining (5.12), (5.13), (5.24), (5.25) and (5.26) we arrive at the proposition. �



COUNTING LATTICE POINTS WITH TWO PRIME ENTRIES 15

5.1. Proof of Proposition 3.3. Proposition 3.3 directly follows by bringing to-
gether Proposition 5.2 and Proposition 5.3.
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