A NOTE ON THE ADMISSIBILITY OF SMOOTH SIMPLE RG-MODULES

MIHIR SHETH

ABSTRACT. Let G be a p-adic reductive group and R be a noetherian Jacobson $\mathbb{Z}[1/p]$ -algebra. In this note, we show that every smooth irreducible R-linear representation of G is admissible using the finiteness result of Dat, Helm, Kurinczuk and Moss for Hecke algebras over R.

Unless mentioned otherwise, all rings are commutative with unity. A *p*-adic reductive group is the group of rational points of a reductive group defined over a non-archimedean local field of residue characteristic p > 0. Let R be a ring and G be a *p*-adic reductive group. Let RG denote the group algebra. An RG-module π is called *smooth* if every $v \in \pi$ is fixed by some compact open subgroup in G, and *admissible* if for every compact open subgroup $K \subseteq G$, π^K is a finitely generated R-module.

For a compact open subgroup $K \subseteq G$, let $H_R(G, K)$ denote the Hecke algebra of compactly supported *R*-valued *K*-biinvariant functions on *G* equipped with the convolution product and $Z_R(G, K)$ denote its center. The Hecke algera $H_R(G, K)$ is an associative *R*-algebra with unity. The following theorem is the joint work [2, Theorem 1.2] of Dat, Helm, Kurinczuk and Moss (see also [1]):

Theorem 1. For any noetherian $\mathbb{Z}[1/p]$ -algebra R and any compact open subgroup $K \subseteq G$, the Hecke algebra $H_R(G, K)$ is a finitely generated module over $Z_R(G, K)$ and $Z_R(G, K)$ is a finitely generated R-algebra.

As an application of Theorem 1, we prove the following result:

Theorem 2. If R is a noetherian Jacobson $\mathbb{Z}[1/p]$ -algebra, then any smooth simple RG-module π is admissible.

Recall that a ring is called Jacobson if every prime ideal is the intersection of the maximal ideals which contain it. The examples of noetherian Jacobson $\mathbb{Z}[1/p]$ -algebras include all fields of characteristic not equal to p as well as finitely generated algebras over such fields such as $\mathbb{F}_l[T_1, \ldots, T_n]$ or finite rings such as $\mathbb{Z}/l^m\mathbb{Z}$ with $l \neq p$ for which Theorem 2 is a new result. When $R = \mathbb{C}$, Theorem 2 is a classical result in the representation theory of p-adic groups. The case when R is any field of characteristic not equal to p is given in [8, Proposition 4.10]. We remark that Theorem 2 does not hold for representations over a field of characteristic p, see [4].

Theorem 2 follows from the following Corollary to Theorem 1:

Corollary to Theorem 1. Let R be a noetherian Jacobson $\mathbb{Z}[1/p]$ -algebra, and M be a simple (left) module over $H_R(G, K)$. Then M is a finitely generated R-module.

²⁰⁰⁰ Mathematics Subject Classification. 22E50, 11F70, 20C08.

MIHIR SHETH

Proof. To ease the notation, let us write $H = H_R(G, K)$ and $Z = Z_R(G, K)$. Choose a surjective map $H \twoheadrightarrow M$ of R-modules. Let \mathfrak{m} be the kernel of the surjection $H \twoheadrightarrow M$ and $\mathfrak{m}_Z := \mathfrak{m} \cap Z$. Note that \mathfrak{m}_Z is a two-sided ideal of Z because Z is the center of H. We claim that $\frac{Z}{\mathfrak{m}_Z}$ is a field. Let $\overline{z} := z + \mathfrak{m}_Z \in \frac{Z}{\mathfrak{m}_Z}$ be a non-zero element. Then \overline{z} is also non-zero in $\frac{H}{\mathfrak{m}}$. So the left H-submodule $H\overline{z}$ of $\frac{H}{\mathfrak{m}}$ generated by \overline{z} is equal to $\frac{H}{\mathfrak{m}}$ because $\frac{H}{\mathfrak{m}}$ is simple. Therefore, there exists $h \in H$ such that $\overline{h}\overline{z} = \overline{1}$ in $\frac{H}{\mathfrak{m}}$.

Consider the $\frac{Z}{\mathfrak{m}_Z}$ -algebra $\frac{Z}{\mathfrak{m}_Z}[\bar{h}]$ generated by \bar{h} . It is commutative because $\frac{Z}{\mathfrak{m}_Z}$ is commutative. Moreover, as $\frac{H}{\mathfrak{m}}$ is a finitely generated $\frac{Z}{\mathfrak{m}_Z}$ -module and $\frac{Z}{\mathfrak{m}_Z}$ is noetherian, $\frac{Z}{\mathfrak{m}_Z}[\bar{h}]$ is a finitely generated $\frac{Z}{\mathfrak{m}_Z}$ -module. Hence, \bar{h} is integral over $\frac{Z}{\mathfrak{m}_Z}$, i.e.

$$\bar{h}^n + \bar{a}_{n-1}\bar{h}^{n-1} + \ldots + \bar{a}_0 = 0,$$

for some $n \in \mathbb{N}$ and $\bar{a}_{n-1}, \bar{a}_{n-2}, \ldots, \bar{a}_0 \in \frac{Z}{\mathfrak{m}_Z}$. Multiplying both sides of the above by \bar{z}^{n-1} and using that $\frac{Z}{\mathfrak{m}_Z}$ commutes with \bar{h} , we obtain that

$$\bar{h} + \bar{a}_{n-1} + \bar{a}_{n-2}\bar{z} + \ldots + \bar{a}_0\bar{z}^{n-1} = 0.$$

Hence $\overline{h} = -(\overline{a}_{n-1} + \overline{a}_{n-2}\overline{z} + \ldots + \overline{a}_0\overline{z}^{n-1}) \in \frac{Z}{\mathfrak{m}_Z}.$

Now the field $\frac{Z}{\mathfrak{m}_Z}$ is a finitely generated *R*-algebra. One of the characterizations of Jacobson rings implies that $\frac{Z}{\mathfrak{m}_Z}$ is a finitely generated *R*-module [3, Theorem 10]. Since $\frac{H}{\mathfrak{m}}$ is finite over $\frac{Z}{\mathfrak{m}_Z}$, we get that $\frac{H}{\mathfrak{m}} \cong M$ is also a finitely generated *R*-module.

Proof of Theorem 2. Since G has a fundamental system of neighborhoods of identity consisting of open pro-p subgroups, it is enough to show that π^K is a finitely generated R-module for $K \subseteq G$ an open pro-p subgroup. Let $K \subseteq G$ be an open pro-p subgroup such that $\pi^K \neq 0$. Since π is simple and $p \in \mathbb{R}^{\times}$, π^K is a simple $H_R(G, K)$ -module by [7, I.6.3]. Hence, π^K is a finitely generated R-module by the Corollary to Theorem 1.

Remark 3. The requirement for R to be Jacobson in Corollary to Theorem 1 is necessary. Indeed, if R is a commutative ring and if all simple modules over $H_R(G, K)$ are finitely generated R-modules for all p-adic reductive groups G and compact open subgroups K, then R is Jacobson. The following proof of this converse statement was communicated to us by M.-F. Vignéras: By Satake [6, §8], if G is a classical simple group with trivial center and $K \subseteq G$ a natural maximal compact subgroup, then $H_R(G, K)$ is a polynomial ring over R in m variables where m is the rank of a maximal split torus in G. Thus, a finitely generated R-algebra A is a quotient of some $H_R(G, K)$. If A is a field, then A is a simple module over $H_R(G, K)$, and hence a finitely generated R-module by assumption. This means that R is Jacobson.

Remark 4. Let $R = \mathbb{Z}_l$ with $l \neq p$ and $G = \operatorname{GL}_2(\mathbb{Q}_p)$. As R is not Jacobson, Remark 3 suggests that G admits a smooth irreducible \mathbb{Z}_l -representation that is not admissible. Indeed, let $K = \operatorname{GL}_2(\mathbb{Z}_p)$. By [5, Proposition 2.1], $H = H_R(G, K) \cong$ $R[T_0, T_0^{-1}, T_1]$. One can make $M \coloneqq \mathbb{Q}_l$ into a simple H-module by defining the action via the surjective map $H \twoheadrightarrow \mathbb{Q}_l$ which takes T_0 to 1 and T_1 to l^{-1} . However, note that M is not a finitely generated R-module. By choosing a prime l so that the pro-order of K is invertible in R, there exists a smooth simple RG-module π such that $\pi^K \cong M$ as H-modules [7, I.4.4 and I.6.3]. Since π^K is not a finite R-module, π is non-admissible.

Acknowledgments: The author thanks Radhika Ganapathy and M.-F. Vignéras for many helpful discussions.

References

- J.-F. Dat, D. Helm, R. Kurinczuk, G. Moss, *Finiteness for Hecke algebras of p-adic groups*, J. Amer. Math. Soc. 37 (2024), 929-949.
- [2] J.-F. Dat, D. Helm, R. Kurinczuk, G. Moss, Local Langlands in families: the banal case, available at https://arxiv.org/pdf/2406.09283.
- [3] M. Emerton, Jacobson rings, available at http://www.math.uchicago.edu/~emerton/pdffiles/jacobson.pdf
- [4] E. Ghate, D. Le, M. Sheth, Non-admissible irreducible representations of p-adic GL_n in characteristic p, Represent. Theory 27 (2023), 1088-1101.
- [5] E. Große-Klönne, On the universal module p-adic spherical Hecke algebras, Amer. J. Math. 136 (2014), no. 3, 599-652.
- [6] I. Satake, Theory of spherical functions on reductive algebraic groups over p-adic fields, Publ. Math. I.H.E.S. 18 (1963) 1-69.
- [7] M.-F. Vignéras, Représentations l-modulaires d'un groupe réductif p-adique avec l ≠ p, Progress in Mathematics, 137 (Birkhäuser Boston, Inc., Boston, MA, 1996).
- [8] M.-F. Vignéras, G. Henniart, Representations of a reductive p-adic group in characteristic distinct from p, Tunisian J. Math., 4(2) (2022) 249-305.

Department of Mathematics, Indian Institute of Science, Bangalore - 560012, India.

Email address: mihirsheth@iisc.ac.in