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TYPE NUMBER FOR ORDERS OF LEVEL (Ny, Ns)
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ABSTRACT. Let N1 = p?ul-H,,,p , where the p; are distinct primes, u1, ..., 4w are nonnegative integers

and w is an odd integer, and N2 be a positive integer such that gcd(N1, N2) = 1. In this paper we give an
explicit formula for the type number, i.e. the number of isomorphism classes, of orders of level (N1, N2).
The method of proof involves the Siegel-Weil formula for ternary quadratic forms.
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2 TYPE NUMBER FOR ORDERS OF LEVEL (Ny, N3)

1. INTRODUCTION

Let N1 = pf“lﬂ...pfy“w"’l, where the p; are distinct primes, uq, ..., u,, are nonnegative integers and w is an
odd integer, and N is a positive integer such that ged(Ny, N3) = 1. The type number stands as a focal point
in the theory of quaternion algebras. When N; is squarefree, orders of level N; are Eichler orders and the
type number formula in this case is due to Pizer [10]. In the case N7 = p?“*1 p # 2 the type number formula
is due to Boyd [2]. Their methods of proof involved an application of the Selberg Trace Formula and the
development of the theory of optimal embeddings mod normalizers. In 2021, Li, Skoruppa and Zhou [5] gave
a weighted sum of Jacobi theta series associated with Hereditary orders is a Jacobi Eisenstein series which
has Fourier coefficients H (N 1’N2)(4n —r2), where NiNs is squarefree, and by counting zeros in Hereditary
orders they gave the type number of Hereditary orders using H™1-¥2)(D). In our contribution, we will give
a new proof of type number for orders of level (N1, Na) using the Siegel-Weil formula for ternary quadratic
forms.

We observe that for orders of level (N7, N3), the Fourier coefficients of a weighted sum of theta series
align with the Siegel-Weil average of a genus. Our paper is articulated as follows: establishing commutative
diagrams between ternary quadratic forms and orders of level (N1, N2) (N1Nz is not necessarily squarefree)
as defined by Pizer [9], employing the Siegel-Weil formula for ternary quadratic forms, further giving the
explicit formula for the Fourier coefficients. Once the coefficients have been defined, it is natural to ask if
the Fourier coefficients H (N1:N2) (D) give the type number formula. We find that counting the normalizers is
equivalent to counting representation numbers of ternary quadratic forms under a bijection. By Siegel-Weil
formula for ternary quadratic forms, we finally give an explicit formula for the type number of orders of level
(N1, No).

Now we give the definition of H(Nl’NQ)(D). Let Ny = pf“lﬂ...pﬁj“wﬂ, where the p; are distinct primes,
U7, ..., Uy are nonnegative integers and w is an odd integer, and Na be positive integer such that ged(Ny, Na) =
1. For any negative discriminant —D, H(D/f, y,) is Hurwitz class number, and fn, n, is the largest
positive integer containing only prime factors of N3Ny whose square divides D such that —D/ szvl, N, 1s still
a negative discriminant. We use f, for the exact p-power dividing fn, n,, and v,(N1Ng) = p* if p* || N1No.
Define

(11) H(N11N2)(D) = H(D/sz\fl,Ng) H AN1N2,P(D) H AN1N2,P,1(D) H AN1N2,P,2(D)a

pIN1 pIN2 p|N2
vp(N2)is odd vp(N2)is even

where in the case v, (pfR, n,) < vp(N1N2) and p | D/fX, v, then
AN Nz p(D) = ANy p,1(D) = ANy N, p2(D) = 0,

in the case v, (pf3, n,) < vp(N1N2) and pt D/ fF; v, then

—D/f?
AN, Nap(D) = 2 <1 —~ (#)) :

—D f2
AN N, p1(D) = Anyvo p2(D) = f7 <1 + <$>> ’

in the case v, (pf3, n,) = vp(N1N2) then

_ —D/fQ1 A
Ay, p(D) = ptr (1 - <$>> ,

p
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%fp —ptrNV2)=1(p 4 1) — (#ﬁvwz) (2p%fp — pr(N2)=1(p 4 1))
ANyNspa (D) = = :
vp(N2) . _ —D/f3 vp(N2) v
(p 22fp_pp(zv2) 1)(p+1)_(%> (p 2 Lf, —prr(V2)=1y(p 4 1)
ANy Nap2(D) = D1

The products run through all primes p dividing N1 and N3, respectively. All (5) are the Kronecker symbols,
and for integer m, Kronecker symbol

1 if m=+1 (mod8),
m
(5) ={ -1 if m=43 (mod8),
0  otherwise.

Set

N N. 1 1
HO(0) = === [T =) [T+,
12 D p
plN1 p|N2

and HN1:N2) (D) = 0 for every positive integer D = 1,2 (mod 4).

Theorem 1.1. The class number of orders of level (N1, N3) is
hy, N, = H(N11N2)(4)/2 4 H(Nl,Nz)(3) 4 H(N17N2)(0).

The type number of orders of level (N1, N2) is

(A( 4n))/p
Tny N, =27° e(N1Nz)—1 Z ZHN“NZ)ZM—T H—B o)

n||N1Na n|7‘ pln
r2<dn
Let —4n = —non? where —ng is a fundamental discriminant, then
A(—4n) = —ny,
B,(n) (p+ 1)purm/2=1 4w (n) =0 (mod 2),
n)=
b plep(m)=1)/2 if vp(n)=1 (mod 2),
and
2 if p=24|n,and A(—4n)=5 (mod 8),
Cp(n) = ,
1 otherwise.
When N7 and Ny are squarefree, it is the same as the type number formula in [5]. When N7 is squarefree,
it is equivalent to Pizer’s formula of type number in [10]. When N7 = p?"*1 it is equivalent to Boyd’s
formula of type number in [2]. It is very fallible to compute type number without computer. In this article

certain calculations are facilitated by SageMath. In Appendix A, we will present all the class number and
type number of orders of level N3Ny < 100, and correct errors (Tss 5, T5s g, T57 1, Ti3s 24) in Boyd’s table of
type numbers[2, p.152]. If T, n, = 1, we can give an exact formula for the representation number of n by
ternary quadratic forms. In Appendix B, we will present 157 exact formulas for the representation number
of ternary quadratic forms.
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2. TERNARY QUADRATIC FORMS

2.1. Basic knowledge. We adopt the definition of ternary quadratic forms in [4]. Let f be a ternary
quadratic form with integer coefficients, given by the equation

f(@,y,2) = az® + by® + c2® + ryz + sxz + tay.
Define f to be primitive that is ged(a, b, ¢, 7, s,t) = 1. Recall that the matrix associated with f is

20 t s
M=M=t 2b r
s r 2

Define the discriminant of f to be

det(Mf)
2

Define the divisor of f to be the positive integer

m = my = gcd(Mi1, My, M33, 2Ma3,2My3,2M;2),

d=dy = = dabc + rst — ar® — bs® — ct?.

where
M1 = 4be — r?, Mg = st — 2ar = Mso,
My = 4ac — s, M3 = rt — 2bs = My,
Msz = 4ab— 12, Mo = rs — 2ct = Mo,.

Define the level of f to be the positive integer

4.df

my

N=N;=

N is the smallest positive integer such that N M ; Lis even[4, pp.401-402]. A connection exists between the
level and discriminant, as outlined below.

Theorem 2.1. [1, Theorem 2] Let f be a primitive positive definite ternary quadratic form of level N and
discriminant d.

(2.1) N =2mopit pp*

is the prime factorization of N'. Then ng > 2 and d is of the form

(2.2) d = 2dopt  pik

with the following restrictions on exponents:
(1) do = nop — 2,dy = 2ng, or ng < dy < 2ng — 2, and
(2) for 1 <i<kmn; <d; <2n;
Furthermore, if n; is even for 0 < i < k, then either ng < dy < 2ng — 2, or d; is odd for some 1 <i <k.

Ternary quadratic forms f and g are deemed to be equivalent, f ~ g, if there is a matrix M € GL3(Z) (i.e.,
M has integer entries and det(M) = +1) such that My = MM, M". We denote Aut(f) as the finite group
of integral automorphs of f (i.e. Aut(f) comprises all M € GL3(Z) such that My = M*M;M). Equivalent
forms are considered part of the same class. In the case f ~ g, it follows that dy = d; and Ny = Ny[4,

pp.401-402]. Two integral quadratic forms are termed semi-equivalent if they are equwalent over the p-adic
integers for all primes p and equivalent over the real numbers. Semi-equivalent forms are categorized within
the same genus of forms. It is noteworthy that equivalent forms are also semi-equivalent, allowing us to refer
to a class of forms as belonging to a genus [4, pp.409-410].

Consider f as a ternary quadratic forms over Q, it can be equivalent over QQ to a diagonal form

ax? + by? + cz°.
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The Hasse invariant for f at p is defined to be
Sp(f) = (a, _1);0(()7 _1);0(07 _1)p(a7 b)p(bv C)p(cv a)p?

which exclusively depends on the equivalence class of f. Here (a,b), represents the Hilbert Norm Residue
Symbol. We say f, is isotropic if f,(x,y, z) = 0 for some non-zero elements z, y, z € Q,, , and it is anisotropic
otherwise. In this context f, denotes the localization of f at p. The modified Hasse symbol S} indicates
whether f, is isotropic or not, that is

1 if f, is isotropic,

—1 if f, is anisotropic,

Sp(f) = (=128, (f) = {

where d,, = 1 if m = n and otherwise 0. Recall that Hilbert’s reciprocity law says (a,b)oo [[,(a,b), = 1.
This results in Soo(f) [[, Sp(f) = 1. For a primitive positive definite ternary quadratic forms f, verifying
Soo(f) = 1 is straightforward. Consequently, f is anisotropic only at odd number of primes.

2.2. Bijections. We will revisit some commonly employed bijections in ternary quadratic forms, namely
Lehman’s bijection ¢, and Watson transformation A4. Prior to delving into the details of these bijections,
we must introduce the following lemma.

Lemma 2.2. [4, Lemma 2] Let f be a primitive positive definite ternary quadratic forms of level N and
divisor m. Suppose that p" || N and p’ || m for some odd prime p and positive integer i. Then [ is equivalent
to a form (a,b,c,r,s,t) with p* || a, p* | s and t, p? | b and r, and ptc. If 0 < j < i, then we can assume
that p’ || b.

Remark 2.3. Let p? || N and p" || d, it is easy to check i = g and j = h — g, i.e. f is equivalent to a form
(pYa,p"=9b, ¢, p" =97, p9s, pt), where a,b,c,r, s,t are integers and p { ac. We have three cases for p = 2. For
h = g—2, f is equivalent to a form (29 2a,b, ¢, 7,297 15,297 1¢), for g < h < 2g — 2, f is equivalent to a form
(2972q,297"b, ¢, 2" =971 29715 2971¢) and for h = 2g, f is equivalent to a form (29a,29b, c, 297, 29s, 29t),
where a,b, ¢, r, s,t are all integers and 2 { ac.

Remark 2.4. Tt is evident to extend Lemma 2.2, implying that we can assume f to be equivalent to a form
(a,b,c,r,s,t) with p' || a, p* | s and ¢, p’ | b and 7, and p ¢ for all primes p | N. Refer to [4, Lemma 1,
Lemma 2].

Let C(N,d) denote the set of all classes of primitive positive definite ternary quadratic forms of level N
and discriminant d.

Theorem 2.5. [4, Theorem 4, Theorem 5] Let N and d be given by equations (2.1) and (2.2). Suppose that
p? || N and p" || d for some odd prime p. Write d as p"d’. Then there is a one-to-one correspondence between
C(N,p"d") and C(N,p39="d"). If p =2, then there is a one-to-one correspondence between C(N,2"d') and
C(N,2397h=2q").

Let f € C(N',p"d"), p? | N' and p { d’ and p is an odd prime. In terms of Lemma 2.2, we can assume
that
f=®%a,p""9b, ¢, p" 97, p%s, pt),
with a,b,c,r, s and ¢ integers, p { ac. Define the map
¢p: C(N',p"d') — C(N',p*"d)

[ op(f)
Mf — PMfP,
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where
p9/? 0 0
P = 0 p(3g—2h)/2 0 ,
0 0 p9/?

Op(f) = (a,p? b, e, pr, p7s,p* 1),
We have three cases for p = 2. For h = g — 2 and f = (297 2a,b,¢,7,29715,29711), we have ¢o(f) =
(a,29b,29¢,297,295,29t). For g < h < 29— 2 and f = (297 2a,297"b, ¢, 2" 9%y 29715 297 1¢), we have
a2 (f) = (a,2297h=2p,2972¢, 2971y 29715 229=h=11) For h = 2g and f = (29, 29b, ¢, 297,295, 29t), we have
d2(f) = (a,b,2972¢, 2971y 29715 ), where a, b, c,7,s,t are all integers and 2t ac.
Lehman proved that ¢, is a one-to-one correspondence. It is clear that ¢, ' : C(N,p3~"d') — C(N’,p"d’)
is an inverse for ¢,. A direct corollary follows.

Corollary 2.6. Let p be a prime, and f € C(N',p"d’) where ptd’, then we have

(1) [Aut(f)| = | Aut(dp(f))]-
(2) if f and g are semi-equivalent, then ¢,(f) and ¢p(g) are semi-equivalent,

(8) let g be a prime, then f is isotropic at q if and only if ¢,(f) is isotropic at q.

These one-to-one correspondences ¢, establish a connection among the representation numbers Ry (n).

Proposition 2.7. Let f € C(pIN',p?9d’) where p is an odd prime, pt N’ and p{d'. Suppose

f=®%a,p%,c,pr,p’s, pt),
then we have

card({(w,y, z) € Z°| f(z,y,2) = pn,p? | 2}) = Ry, () (n).

Proof. Let f € C(N’,p?9d'). By Lemma 2.2, assume that

f=(p%a,p%b,c,por,p9s, pt),
with a, b, ¢, r, s,t integers, and p{ ac. We have

op(f) = (a,b,p%c,pIr,p9s,1).
Suppose that there are integers x,y and z satisfying the equation

f(x,y,2) = plax® + pIby? + cz® + pIryz + pIszz + pItzy = pIn.

Since all the terms are divisible by p? expect cz2, and p { ¢, we have p? | 22. When p? | z, let (2/,y/,2') =
(z,y,2/p9), we have

p'n = f(z,y,2) = plax® + plby? + c2® + pIryz + pIsrz + pitay

= plax” + poby” + c(p?2)? + piry (72") + p?sa’ (p72") + pUta’y’
= p9(ax" + by? + pIc? + pIry' 2 + pIsa’s + ta'y)
=pép(f)(@", 1, &)

We have ¢, (f)(z',y',2") = n.

Conversely,
oy (0p(f)) = (p%a, p9b, ¢, pIr, p9s, pIt) = f.
Suppose that there are some integers x,y and z such that

Op(f)(m,y,2) = ax® + by? + pIcz? + pIryz + pIsxz + txy = n.
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Let (2/,y/,2") = (z,y,p92), we have
pin = pPép(f)(x,y, 2) = plax® + pby? + p¥e2? + p¥ryz + p¥sez + pitay
= plaz’? + pIby’? + c2'? + pIry' 2" + pIsa’ 2 + pIta'y’
= o, (dp(N(', Y, 2).

O
Remark 2.8. When g =1, p | 2 implies p | z, it is clear Ry (5)(n) = Ry(pn).
Proposition 2.9. Let f € C(29N’,p?9d') where 21 N’ and 2t d'. Suppose
f=(2%,29b,¢,297,29s, 29¢t),
we have
card({(z,y,2) € Z°|f(z,y,2) = 291,297 | 2}) = Ry, (p)(n).
Proof. The proof closely resembles that of Proposition 2.7. O

Remark 2.10. When g = 2 (resp. g = 3), 22 | 22 (vesp. 2% | 22) implies 2 | z (resp. 22 | z), we have
Ry, (5y)(n) = Ry(4n) (resp. Ry,(p)(n) = Ry(8n)).

Recallling Watson transformation [12], let Ay be a 3-dimensional lattice, where f is Ay correspondence
integral ternary quadratic form. Define A,,(f) to be the set of all  in Ay with

flx+2z)=f(z) (mod m),VzeAy.

Ap(f) is a 3-dimensional lattice [12, p.578]. Hence we can choose M so that x is in A, (f) if and only if
x = My, yin As. Let g(y) = m~' f(My), i.e.

1 1
FU' My = 5 -m”~ (My)' Mp(My),y € A;.
Theorem 2.11. [12, p.579] Watson transformation A, is a well-define mapping, that is if f ~ g, then

Am(f) ~ Am(g), and if f and g are semi-equivalent, then Ay, (f) and Ay, (g) are semi-equivalent. Futhermore,
the class number does not increase under the Watson transformation, that is, A (f) can range over the whole

of the genus of A\p,(f).

Typically, the Watson transformation functions is a surjection between two genera. However, for specific
levels and discriminants, the Watson transformation A4 becomes a bijection.

Proposition 2.12. Let N’ and d' be given by equations (2.1) and (2.2), and suppose that 4 || N' (resp.
8| N') and 16 || d’ (resp. 64 || d’'). Then Watson transformation Ay is a bijection between C(N',d’) (resp.
C(N',d")) and C(N',d’'/16) (resp. C(N'/2,d'/16)), and f is isotropic at p if and only if Ay(f) is isotropic
at p, we also have

| Aut(f)] = [Aut(Aa(f))]
Proof. See [7][Proposition 2.7]. O

3. QUATERNION ALGEBRAS

In this section commences with the fundamental knowledge on quaternion algebras. For a more compre-
hensive definition of quaternion algebras, refer to [11].
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3.1. Basic knowledge. For a given field F' of characteristic 0 and elements a,b € F*, we denote by
Q = (“?b) for the F-algebra with a basis 1,i,5,k = ij = —ji and defining relations i2 = a,j% = b. In
this paper F' specifically represents either Q or the fields Q, of the p-adic numbers where p is a prime. A

quaternion algebra @ is a central simple algebra. For the field of p-adic numbers Q, or real numbers Q,
there exist only two equivalence classes, namely the algebras M3 (Q,) of 2 x 2 matrices over Q,, or skew-fields.

The standard p-adic Hilbert symbol is denoted by (a,b),. The quaternion algebra Q, = (&T:) ~ M5(Q,) if

and only if (a,b), = 1. In the case of a quaternion algebra over Q the algebras Q) = (%’) and Q' = (“/@b/)

are isomorphic if and only if (a,b), = (a’,V’), for all p and co. A quaternion algebra @) over Q ramifies at
p if Qp, ® Q is a skew-field, and splits at p if Q, ® Q =~ M>(Q,). If it ramifies at oo, it is called definite. A
quaternion algebra () ramifies only at finitely many primes and this number is always even. Therefore, given
a set S of an even number of primes, we can find a,b in Q* such that (a,b), = —1 exactly for p in S, and

then Q = (“Tb) is a (up to isomorphism) quaternion algebra which ramifies exactly at the primes in S. The

reduced discriminant of @,disc(Q), is the product of primes at which @ ramifies.

For any element o = ¢+ zi + yj+ zk of quaternion algebra ), we define an involution @ = t — xi — yj — zk,
which satisfies @ = o and a3 = Ba for 8 € Q. The reduced trace on Q is tr(a) = a + @, and similarly the
reduced norm is n(e) = - a. If Q ~ Ms(F), and

-t 9)<a

a=(4))

Hence tr(A) = a + d,n(A) = ad — bc = det(A). We can see that a € @ is a root of the polynomial

then

22 —tr(a)x +n(a) =0

which is the reduced characteristic polynomial of a.

3.2. Orders of level (N7, N3). An ideal of quaternion algebra @ is a full Z-lattice of @, that is, a finitely
generated Z-submodule of ) which contains a basis of @) over Q. An order O in a quaternion algebra @
is an ideal which is also a ring containing Z. For the rest of this paper O will always denote a quaternion
order. If x € O, then tr(z),n(x) € Z. An order O is maximal if it is not properly contained in another
order. A quaternion division algebra @), over QQ, contains only one maximal order, which is R, + R,j with

R, = Z, +1iZ, for odd p and Ry = Z + %Zg for p = 2, where i2 = ¢, j2 = p for some (%) = —1, that is
a B .
ng{(pﬁ Oé> :aaﬂe(@p+l@p}a
then unique maximal order is

Op ~ (paﬁ g) ta,B € Ry}

Let
u a  p'p
(91()2 +1)_{<pu+16 a):a,ﬁeRp}.

where v is a nonnegative integer. One can check 01()2u+1) is an order in @, and [O, : (’)1(727”1)] = p?v,
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p.684] Let Ny = p2“t™! p2uwtl where the p; are distinct primes, w1, ..., u, are non-
negative integers and w is an odd integer, and N be a positive integer such that ged(N71, No) = 1. An order
O in Q, where @ is only ramifies at p; for 1 <i < w, is of level (N7, Na) if

(1) O,, is isomorphic (over Z,,) to O(fuiﬂ) for1 <i<w

(2) O, is isomorphic (over Z,) t (N%% % ) for pt Ny.

they are Eichler orders

Remark 3.2. If Ny is squarefree and No = 1, these correspond to maximal orders. When Nj N, is squarefree
they represent Hereditary order (or Ecihler orders with squarefree level). In the case of N7 being squarefree

For an order O in @, the definition of the codifferent OF is that

O = {a € Q: tr(a0) € Z}.
Definition 3.3. O is Gorenstein if OF is invertible

The property of being a Gorenstein order is local, i.e. O is Gorenstein if and only if O, is Gorenstein for
all primes p. Hence we have the following theorem
Theorem 3.4. An order of level (N1, N2) is Gorenstein
Proof. Let O C @ be an order of level (N7, No). If Q ramifies at p, let p?“*! || N7, we have
Op =Ly +ilp + p“§ Ly + p"ijZLy,
where 12 = ¢, j2 = p, (£) = —1. It is clear
(0%), = 5

i ij J ij
p_in—i—in—i—Q qulZ —|—2 Ty = Lp iy —i— —=Zp+ qulZ
and
Lo+ iZy + 2T+ 07, = (2, + Ty + p" T+ PHiJL,) - —— = 0, —— = I _. 0
p p pu+1 p‘] by u+1 p pu—i-l pu—i-l p
If @ ramifies at 2, then
1414 1
Oy 2 7y + ;LZZQ+2“jZQ+2“ Rl
where 12 = —3,j2 = 2. It is clear
1 1 i _ —utJ
f, o~ (= _ 2 2 u u
(092 = (5 — )22+ 522 +2 (4 12)Zg+2 & 2o
and ) ) ) N -
_ ] —" —ut]
—— = )lo+ -Zo + 27" Zo+27"=lo=0q 27" =27"=.0,.
G-t glet (4 12) e T 6 6’
If @ splits at p, let p? || N2, we have
o~ ZP ZZD
OP_(vaP Zp)
We have
Z Y/
# [ p D P
0= (7 7).
It is clear

Ly, p*”Zp: Ly, Zp.()p*” :O.Op
Ly, Ly, DLy Ly 1 0 P

L)
It is analogous for p = 2



10 TYPE NUMBER FOR ORDERS OF LEVEL (Nj, N3)

For an order O of level (N1, Na), its left O-ideals (resp. right O-ideals) are important.

Definition 3.5. For any order O of level (N1, N2) in a definite quaternion algebra @ over Q, a left O-ideal
is a ideal I which satisfies I, = Opx, for every prime number p, where x, is in the group (Q, ®g Q)™ of
units of Q, ®g . One has the analogous definitions for right O-ideal.

We define O, O’ to be of the same type if there exists a € Q* such that O’ = a~'Oa. Two orders O, O’
are of the same type if and only if they are isomorphic as Z-algebras. Locally, Two orders O, O’ are locally
of the same type or locally isomorphic if O, (9;) are of the same type for all primes p. The genus of O is the
set of orders in @ locally isomorphic to O. The type set of O is consists of isomorphism classes of orders in
genus of O. The number of the type set of O is usually called the type number of ©. The number of the
classes of left O-ideals modulo multiplication with elements of @* from the right is the class number of O,
which is only dependent on N; and Na2. Both type number T'n, n, and class number hy, n, are finite.

To derive calculation formula for them, we investigate two-sided O-ideals and two-sided principal O-ideals.

Definition 3.6. An ideal is called two-sided O-ideal if it is both left O-ideal and right O-ideal.

I is a two-sided O-ideal, if and only if there exist some in the group (Q, ®g Q)™ such that I, = Opz), =
ypO, for every prime p. Hence if I is a two-sided O-ideal, we can assume ¥y, = upx, where u, € O,, and
n(up) = n(y,)/n(x,) € ZX, hence u, € O). We have O, = y, 'Oy, = ' Opx;,. Define the normalizer of
0O, in Q, ®g Q as

N(Oyp) ={zp € (@ ®0 Q)" |x;10p$p = Op}.

Then we can state the above conclusion as follows.

Proposition 3.7. An ideal is two-sided O-ideal if and only if there exists x, € N(O,) such that I, = Opx,
for every prime p.

We introduce the following lemma concerning N(O,).

Lemma 3.8. [9, pp.104-105] If O is an order of level (N1, N2), such that

M>(Zy) if ptN1Ng,
a  p'p e o
0. = {<pu+16 Q ) |Oé,ﬂ € Rp} Zf p2 i || Ny,
=
Z / .
< o p) if p¥ | No,
PLy Ly
then
0,Qy if p{NiNa,
0 pY . u
R LAY O) OXQx if prl| N,
) =

0 1 ;
oyQ U o 0) 0, Q7 if p” Il Na.

We present an equivalent condition for two-sided principal O-ideals.

Lemma 3.9. Let O be an order of level (N1, Na). For any element x € O, then Ox is a two-sided principal
O-ideal if and only if n(x) | N1 N2, n(z) | tr(z) and for p***1 || N1, p*** || n(z), we have p**T1 | c11(x,),
for p” || N, p¥ || n(z), we have p¥ | c11(xp), where c11(xp) is the 1,1 entry of x,.
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Proof. Let Ox be a two-sided principal O-ideal. We have

O;; if p'leNg,
0 pY
X X 3 2u+1
e oy u o O)Op if p | N1,
0 1 o
oy u o O) (s if pY || Na.
Hence
Zy if ptN1No,
n(z) € Q ZX Uptizx if p*t || Ny,
ZXUpZy i p | N,

which implies n(z) || N1Na. We will prove n(x) | tr(z) and for p?**1 | Ny, p*>*“*! || n(x), we have p?*+! |

c11(xp), for p¥ || No, p¥ || n(xz) we have p¥ | c11(zp) in each Z,.
In the case x € O, since n(x) € Z,', we have n(x) | tr(x).

0 1\ n v . a b Zy Tp\”
In the case z € <p” 0> O,, we have n(z) € p*Z,. There exists (p” d) € Pz, Z such that

p
0 1 a b v .
tr(z) = tr( (p” O) (p”c d>) =p"(b+c) € p'Z,.
It implies ¢11(xp,) = p¥c, we have p¥ | c11(zp).
In the case z € <pu(:rl pO 0, Q) , we have

we) =t %) (puas T ) =) g,

It implies c11(z,) = p?“F13, we have p?**+1 | c11(zp).

Conversely, let z € O, n(z) || N1Na, n(z) | tr(z), for p?»T1 || Ny, p?“*! || n(z) we have p?**1 | ¢11(zp),
and for p || No, p¥ || n(z) we have p¥ | ci1(zp). Since Oz is a left O-ideal, we will show Oz is a two-sided
O-ideal, i.e. for every prime p we have x € N(Op).

In the case p { n(z), since n(z) € Z;, we have x € O; C N(O,).
In the case p | n(z), since n(z) | N1 N2, we have p | NyNa. For p2“tl || Ny, we have p>**! || n(x).

—1 —
a _ p'B 0 p" a _ p'B Bopila)
Let z, = <pu+15 & > € Op,. We have <p“+1 O> (p“‘Hﬁ & ) = (p‘“a 3 . Since

w\ ~1 U
p?“ T | ¢11(zp), it implies (p“qu P ) < N pﬂ) € O), ie. x € N(O,). For p’ || N2, we have

0 pu-i-lB &
~1
. _fa b 0 1 a b\ (c pUd .
p¥ | n(z). Suppose x, = (p”c d> € Op. We have (p” O) (p”c d) = (a b ) Since n(z) | tr(zx)
v e v 0 1\ [(a b :
and p¥ | c11(xp), it implies p¥ | @ and p¥ | d. Hence (p” O) (p”c d) €O, ie. v € N(Op). O

Remark 3.10. For v = 0 or v = 1, when p | n(z) and n(z) | tr(z), it implies p | ¢11(xp). That is for p | tr(c)
and p | n(«), it implies p | o, likewise for p | ad and p | (a + d), it implies p | a.

Fix an order O of level (N7, N3), then all two-sided O-ideal form a group, which is denoted by J. The
number of elements of group J(0)/Q* is 2¢(NV1N2)[9 Theorem 2.20]. All two-sided principal O-ideal form a

subgroup, which is denoted by B(0). We have the following proposition for card(B(0)/Q*) and Aut(O)
which will be used in proving type number formula.
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Theorem 3.11. Let O be an order of level (N1, N2), and m(O) be the number of left O-ideal classes
containing a two-sided O-ideal. Then we have

3.1 1(B(0)/0%) = 2o
(3.1) car(()/(@)—m
(3.2) card(®B(0)/Q*) = / L”’;)
n”NZlN2 ore card(O*)
r2<dn

where po(n,r) be the number of zeros of ® —rx +n in O, Y. is taken over all elements = which satisfy for
p?ut || Ny, p? Tl || n(x), it entails p>*** | c11(zy), and for p? || Na, p¥ || n(x), it entails p° | c11(zp). We
also have

e(N1N2) car X
(3.3) card(Aut(0)) = 2 2m((9§l(0 )

Proof. For (3.1), see [5, Proposition 2.14].
For (3.2), using Lemma 3.9 we have

B(0)/Q* = {02Q* |z € O,n() || NiNa,n(x) | tr(@), p* ™ | e11(zp), p” | era(p)}

where the last two conditions means that for p***! || Ny, p?“™! || n(z) we have p?“™! | ¢11(zp) , and for
p¥ || No, p¥ || n(xz) we have p¥ | ¢11(zp). Since two-sided O-ideal Oz = Oy if and only if y = ax, where
a € O, we will prove that there are only +1 € O* N Q* which times any € N(QO) such that satisfy
br € N(O). For any q € Q, we have n(qz) = ¢z, hence it is clear when Nj Ny is squarefree. For p || Ny No,
suppose p { n(x), and b # +1,b € Q* such that bx satisfies the conditions, then v is even, p¥ || No, p*/? || b
0
U

(1) Oy . Since x € O,, this is a contradiction. Hence there are just a € O such that

OzQ* = OazxQ* with az satisfying the conditions. We have

_ #H{z € On(@) || NN, n(z) | tr(@), p** | eni(@p), " | ena(zp)}
card(O*)

and bx €

card(B(0)/Q%)

Similarly, to prove (3.3), since
Aut(0) = {2Q*|z € O,z 'Oz = O},
using Proposition 3.7 and Lemma 3.9 we have

{z € Olz7'0x = 0} = {z € Oln(z) || NiN2,n(z) | tr(z),p* " | c11(2p),p” | e11(zp)}

and
x 10z =
card(B(0)/Q*) = Ha e glrd(O(z) 9}

Moreover O* N Q* = {£1} implies
_ #H{2Q*|z € 0,270z = O}

card(B(0)/Q*) = card(O% J{£1})
Since card(B(0)/Q*) = 2¢N1N2) /i (0), we have
(3.4) card(Aut(0)) = H{zQ* |z € 0,27 0z = O} = 20 eard(0*)

2m(0)
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By (3.1), (3.2) and (3.3), we have
TNy, Ng
TNl N2 — 27€(N1N2) Z 28(N1N2)
p=1

TNy, Ny

— 9—e(N1iNz2) Z card (Ou)/@x)

TN1 \Ng /

27€(N1N2) O p(’)(n,T)
; m(O) Z card(O);)

n||[N1N2 n|r
r2<dn

1 TNy Ng
PR IEpY IR
card(Aut(0O,,))
n||N1N2 n|r
r?<dn

In Section 4 and 5, we will prove that caculating

TNy, Ny

Z po(n,r)
= card(Aut(0O,,))
is equivalent to
Ry(4n —1r?)
2 [ Aut(f)]

Fe€G 4N Ny 16(N, N2)2,N}
4. TERNARY QUADRATIC FORMS AND QUATERNION ORDERS
2u1+1 21 +1

In this section, let N; = pj ..Do , where the p; are distinct primes, uq,...,u, are nonnegative
integers and w is an odd integer, and N2 is a positive integer such that ged(Ny, N2) = 1. Denote N{ = p;...py.

4.1. three bijections between orders of level (N1, N2) and ternary quadratic forms. In this section,
prior to introducing three bijections between orders of level (N7, N2) and ternary quadratic forms for given
N7 and N,, we first establish the following proposition.
Proposition 4.1. Let
O =7+ Zoy + Zog + Zas C Q
be an order of level (N1, Na), then there exist tr(a)) = tr(ay) = 0, and tr(a}) =1, such that
O =7+ 7o + Zoy, + Zas,.

Proof. See [7][Proposition 4.1]. O

Unless otherwise stated, we assume that for an order of level (N1, Nao), we have O = Z+ Zay + Zas + Zas
and tr(ag) = tr(ag) = 0,tr(as) = 1. For an order of level (N1, N3), where O = Z + Zay + Zas + Zas € Q,
lattice O° = O N Q° = Zay + Zag + Z(2as — 1), where Q° = {a € Q : tr(a) = 0}, is an even integral
positive definite lattice, when equipped with the bilinear form (z,y) — tr(z7). We have the following
ternary quadratic form

foo =n(zar + yas + z(2a3 — 1))
=n(a)z? + n(az)y? + (4n(as) — 1)22 + 2tr(agaz)yz + 2tr(aaz)zz + tr(aas)zy,
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and the Gram matrix of foo
tr(aar)  tr(aqaz) 2tr(o1 )
My, = tr(aoar)  tr(aetm) 2tr(aga)
2tr(agar) 2tr(asaz) 4tr(aszasz) — 2
For an order of level (N1, N2) O = Z + Zay + Zas + Zas € Q, define the lattice
S=7Z+20 =7Z+ Z2c1 + Z2c5 + Z2a3,
then lattice S° = (Z + 20) N Q° = Z2a; + Z2as + Z(2a3 — 1) is an even integral positive definite lattice,
when equipped with the bilinear form (z,y) — tr(zg). We have the following ternary quadratic form
fso =n(z(2a1) + y(2a2) + 2(2as — 1))
= 4n(aq)z? + 4n(az)y? + (4n(as) — 1)22 + 4tr(agaz)yz + 4tr(aiaz)zz + 4tr(oqaz)zy,
and the Gram matrix of fgo is
dtr(aqar) 4dtr(aog)  4dtr(oqas)
My, = | 4tr(agan) dtr(agaz)  4tr(azas)
dtr(azar) Atr(azaz) 4dtr(asaz) — 2
Proposition 4.2. Let O,0' C Q be orders. Suppose O, are isomorphic (resp. locally isomorphic), then
foo, fon (or foo, fon) are equivalent (resp. semi-equivalent).

Proof. See [7][Proposition 4.2]. O

If f is a non-degenerate ternary quadratic form integral over Z, we define Cy(f) to be the even Clifford
algebras over Z associated with f. Subsequently, Co(f) is an order in a quaternion algebra over Q. For more
detailed definition of Clifford algebra, refer to [11, Chapter 22] and [6, Chapter 1]. Conversely, consider that
O = Z+7Ze, +Zey +Zes is an order in a quaternion algebra Q. Then A = OfNQP represents a 3-dimensional
Z-lattice on Q. If OF = (e}, €}, €b, €4) where ¢/ is the dual basis of e;, then A = (e}, e}, €4). Define a ternary
quadratic form fo associated to O by

fo = discrd(0) - n(ze] + yeh + zeh).

Theorem 4.3. [11, Main Theorem 22.1.1] Let R be a principal ideal domain. The maps f — Co(f) and
O — fo are inverses to each other and the discriminants satisfy discrd(O) = d(fo). Furthermore, the maps
give a bijection between analogousity classes of non-degenerate ternary quadratic forms integral over R and
isomorphism classes of quaternion R-orders.
Assume that f = (a,b,¢,7,5,t),df = d. We have
e% =rey — be, eges = aeq,
eg = ses — ac, eze; = beg,
eg = tez — ab, e1eo = ce3.
By the definetion of dual basis, it follows that Of > O and tr(ef) = 1,tr(e}) = tr(e}) = tr(e}) = 0, where
dejy, = d — 2(abc + rst) + (ar + st)ey + (bs + rt)es + (ct + r$)es,
del = ar + st — 2ae; — teg — ses,
dely = bs + 1t — te; — 2bey — res,
dely = ct +1rs — se; — reg — 2ces,
and
n(Ne}) = Na,tr(Ne4,Neh) = Nr,
n(Neb) = Nb,tr(NejNel) = Ns,
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n(Nejs) = Ne,tr(NejNel) = Nt.

Recalling O contains a basis of Q over Q, it follows that (e}, e}, e4) form a Q—basis for the trace-zero elements
of @ (that is, (i, j, k) can be represented by (e, e}, e) over Q). Some properties of even Clifford algebras
follow.

Theorem 4.4. (1) fo is positive definite if and only if O is positive definite.
(2) 2card(Aut(0)) = | Aut(fo)|.
(3) O ramifies at p if and only if fo is anisotropic at p.
(4) fo is primitive if and only if O is Gorenstein.

4.2. Commutative diagrams for 44 N1 N,. In this section, we construct commutative diagrams involving
My, My and Cj under the condition 4 1 N3 Na. We begin by providing a detailed characterization of the
genera to which fpo, fgo and fo belong.

Proposition 4.5. For an order O we denote foo by f.
(1)Let O C QN be an order of level (N1, N2) where 24 N1 N2, then df = (N1N2)?, Ny = 4NNy and f is
anisotropic only in the p-adic field for p | Ni. The genus which f belongs to is denoted by G AN, Na, (N, N2)2 N -
(2)Let O C Qny be an order of level (N1, Na) where 2 || N1Ny, then dy = (N1 N2)?, Ny = 2N1 Ny and f is
anisotropic only in the p-adic field for p | Ni. The genus which f belongs to is denoted by GaNy Na, (N1 N2)2, N -

Proof. We only prove the second, and the frist case be proved similarly. Let O C Qn; be an order of level
(N1, Na).
In the case p?“*! || Ny where p # 2, then

Op =Ly +ilp + p“§ Ly + p"ijZLy,

where i2 = ¢, j2 = p, and (5) = —1. We have

2 2u+1, 2 2 _
ff;—ezzr —p™" Tyt +ep2u+ 127 = fp,

where f ~ g means that f and g are equivlent over the p-adic integers Z,. It follows that dy, =

4ep™t2 my = dup® . Hence vy(dy,) = 4u+ 2,v,(my,) = 2u+ 1 and S3(f,) = —1. We have f, is

anisotropic. For 2 || Ny, we have

02 =7y +

1414 . 1+,
5 Lo +JZ2+TJZm
where i? = —3, 52 = 2, and
f?3x2—2y2—222—2yz?x2—3y2—322?x2+5y2+522?w2+y2+22.

It follows that dy, =4, my, =4, and va(dy,) = 2,v2(my,) = 2. We can see fo is anisotropic.
In the case p¥ || N3 and 2 || N2, then
] ZP ZP
Op = (vap Zp)

0 (10 0 1 0 0
OP_ZP(O —1 +ZP 00 +ZP pv 0/’

f?—ﬁ—ﬂw=h-

and

It follows that
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We have dy, = p*”,my, = p", then v,(dy,) = 2v,vp(my,) = v and va(dy,) = 2,v2(my,) = 2. Tt is clear f, is

isotropic.
In the case p 1 N1 Na, then
Ly Ly
o=(2 z)
1 0 0 1 0 0
0 ~
o=, (O _1> 1z, (O O) +2, (1 O) .

2
ff;—aj —yz = fp.

IR

and

It follows that

We have dy, = 1,my, = 1, then v,(dy,) = 0,v,(my,) = 0 and f, is isotropic. Since v,(dy, ), vp(my,) are
GLs(Z,)-invariants of ternary quadratic forms [0, p.4], we have

dy = (N1N2)?, Ny = 2N No.
The genus which f belongs to is denoted by Gan, Ny, (N, N2)2, N - O

For 4 1 N1 N, in a positive definite quaternion algebra @ Ny, we choose a complete set of representatives
{Ou}u:w---Twl,Nz for these types of orders of level (N1, N2). Then we have the map M as follows.
In the case 21 N1 Na, then
Mo : {Ou}p=1,2..Tn, vy = GaNiNo, (N1 N2)2,N]
Ou C RNy = foo € Gany N, (N1 N2)2, N -
In the case 2 || N1 N2, then
Mo : {Ou}p=1.2.. Tn, n, = G2N, No (N1 N2)2,N!
Ou CQn; fog € GleNg,(N1N2)2,N{-
The proof of following proposition is analogous.
Proposition 4.6. For an order O we denote fso by f. Let O C Qn; be an order of level (N1, N3) where

44 N1Nay, then dy = 16(N1N2)?, Ny = 4N1No and f is anisotropic only in the p-adic field for p | Ni. The
genus which f belongs to is denoted by Gy, N, 16(N, N2)2, N -

Proof. In the case 21 NN, then
f 3 —z? — 4yz.
In the case 2 | Na, then
f 3 —z2 — 8yz.
In the case 2 | Ny, then
f o~ 322 —8(y? + 22 + yz),
and the rest of proof is analogous. |

For 4 4+ N1 Ns, in a positive definite quaternion algebra Qp, we choose a complete set of representatives
{Ou}u=1,2..Ty, n, for these types of orders of level (N1, N2). Then we have the map M as follows.

Mo : {Ou}p=12..Tx, vy = GanNy N, 16(N, N2)2, N}
0, C QN{ = fsg € G4N1N2,16(N1N2)2,N;-
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Recallling Proposition 2.12, Watson transformation A4 is a bijection between C'(4N1 N2, 16(N1N2)?)(resp.
C(4N1N2, 16(N1N2)2)) and C(O(4N1N2, 16(N1N2)2))(resp. C(2N1N2, 16(N1N2)2)) when 2 J[ N1N2 (resp.
2 || N1 N2). We have the following proposition.

Proposition 4.7. Let O be an order of level (N1, N3), where 4 1 N1 Na, then A\y(fs0) = foo.
Proof. See [7][Proposition 4.5]. O

Proposition 4.8. For an order O we denote Co(f) by f. Let O C Qny be an order of level (N1, N2) where
4+ N1Na, then df = (N1N2)?, Ny = 4NNy and f is anisotropic only in the p-adic field for p | Ni. The
genus which f belongs to is denoted by Gan, N, Ny N, N -

Proof. In the case p>“*! || Ny, then
f ~ 6p2u+1.’L'2 _ y2 4 622.
p
In the case 2 || Ny, then
f 3 627 — (y* + 2% — y2).
In the case p¥ || Na, then
f o~ —p'a® —y.
In the case 2 | Nz, then
f~ =222 —yz.
P
The rest of proof is analogous. O

Recallling Proposition 2.5, ¢, is a bijection between C(N’,p?9d') and C(N’,p?d’). A proposition follow.

Proposition 4.9. (1)Let O be an order of level (N1, N3), where 21 N1Na, i.e. N1Ny = plll...pﬁg, and the
pi are distinct odd primes, then ¢p, o ...0 ¢p, (foo) = fo.

(2)Let O be an order of level (N1, Na), where 2 || NNy, i.e. NyNy = 2p''...plm and the p; are distinct odd
primes, then ¢p, o ...0 ¢p, © Pa(foo) = fo.

Proof. Suppose that N1 No = p9 (Although N1 N2 = p9 implies ¢ is odd, it will not affect our proof). By
Proposition 2.2, assume fo = (pYa, b, ¢, r, p9s, p9t) be a primitive, positive definite ternary quadratic form of
level 4pY and discriminant pY. Recalling ¢,:

¢, ((p%a,b,c,r,p%s, p?t)) = (a, p?b, pPc, por, p?s,p’t), p 1 ac.
We have disc(O) = p9, and
O =7+ Zey + Zes + Zes,

with
e =rer — be, esez = pJaey,
e% = pIses — pYac, ese; = beg,
eg = pItes — pYab, eijes = ces.
Then

ey =1 —2(abe + pIrst) + (ar + pIst)e; + (bs + rt)es + (ct + rs)es,
€} = ar + pIst — 2ae; — teg — ses,
ey =bs+rt —teg — 12)—262 - 1%63,
2c

! T
63—Ct+7"8—561—ﬁ62—ﬁ63.
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We have tr(e}) = tr(e}) = tr(ef) =0, and
n(e}) = a, tr(plegpdes) = por,
n(pley) = pb, tr(plesel) = ps,
n(pley) = pe, tr(eypien) = pit.

We will show that
O = Zey + Ze', + Zplely, + LpYes.

It is clear
€5 1 —2(abc+ pIrst) ar+pIst bs+rt ct+rs 1 1
el | ar + pst —2a —t -5 al_u e
pleh | p9(bs + rt) —pIt —2b —r ea | TP | e
pIel pI(ct +rs) —ps —r —2c es3 es3

Since dy,, = pY, we have
dabe + pIrst — ar® — pIbs® — plct? = 1.
It is not hard to check that
det(M,) = —2(4abc + pIrst — ar® — pbs® — p9ct?®) + (dabe + pIrst — ar? — pIbs® — pYct?)? = —1.
Hence
O = Zejy + Zey + Zpel, + Zpel,
where tr(e}) = tr(p9eh) = tr(pe}) = 0, and
foo = n(ze) +ypeh + zpey)
=n(ey)a” +n(p?eq)y” +n(p?es)z? + tr(p?espIeh)yz + tr(eypdes)az + tr(eypIes)zy
= az? + pIby? + plcz® + pIryz + pIszz + pitay.

It is analogous for discrd(O) = 2. Let fo = (2a,b, c,r,4s,4t) be a positive definite ternary quadratic forms
of level 8 and discriminant 2. Recalling ¢o:

b5 ((2a,b, ¢, r,4s,4t)) = (a,8b, 8¢, 8r, 8s, 8t),2{ ac.

We have
O = Ze|, + Ze'| + Z2¢4 + Z.2¢},
foo = n(ze + ype, + zpes)

= n(e})2?® + n(2eh)y* + n(2es) 2% + tr(2e52eh )y z + tr(e) 25 )z + tr(e) 2€h )y

= az? 4 2by? + 2¢2% + 2ryz + 4sxz + Atay.
It follows

fso = A (foo) = ax® + 8by* 4 8c2? + 8ryz + 8sxz + Stay.

For O is an order of level (N1, N3), the proof is analogous by Remake 2.4. |

By Proposition 4.7 and Proposition 4.9, we establish the following commutative diagrams among My, M,
and Clifford algebras using A\ and ¢.
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Theorem 4.10. Denote ¢p, ©...0 ¢p,. (resp. ¢p, ©...0 ¢y 0 ¢Pa) by On,N,, where N1 Ny = plll...pﬁg (resp.
NiNy = 2p111...pf;;‘) and the p; are distinct odd primes. In a positive definite quaternion algebra Qn:, we
choose a complete set of representatives {O#}#:172___TN1’N2 for these types of orders of level (N1, N3). We
establish the following commutative diagrams.

In the case 21 N1 No, we have

Co
{Oubu=12...7n, vy — GaNI N2, N1 No, N}

M() —1
lMl \ l‘leNQ
A4
G4N1N2,16(N1N2)2,N{ I G4N1N27(N1N2)2,N{

In the case 2 || N1 N2, we have

Co

{OH}M:I,Z..TNLNQ G4N1N2,N1N2,N{

M
lMO \ l%iw

G2Ny Na (N1N2)2, N <5 GaN, N2, 16(N1 N2)2, N
4

By Corollary 2.6, Proposition 2.12 and Theorem 4.4, direct corollarys follow.
Corollary 4.11. My and My are bijections, and
2card(Aut(Q)) = | Aut(foo)| = | Aut(fg0)]-

Corollary 4.12. Let |G| denote the number of classes in genus G.
In the case 21 N1 No, we have

|Gan, Na,16(Ny N2)2, N7 | = |Gany No (81 8202 N7 | = |Gany Ny Ny Na N L= T N -
In the case 2 || Ny N2, we have
|Gon, N, (N1 N2)2, N | = [Gan, Mo 16(N N2 N | = |Gany Ny Ny Na N | = TNy N -

4.3. Commutative diagrams for 4 | N1 N,. In this section, we construct commutative diagrams involving
M; and Cy under the condition 4 | Ny No. We begin by providing a detailed characterization of the genera
to which foo, fso and fo belong.

Proposition 4.13. For an order O we denote foo by f. Let O C Qn; be an order of level (N1, N2) where
4| N1Na, then dy = (N1N2)?, Ny = N1 Ny and f is anisotropic only in the p-adic field for p | N{. The genus
which f belongs to is denoted by G, N, (N N»)2, N -

Proof. In the case 22“*! || Ny, we have
f 3 3% — 2% (2 1 22 —y2).
In the case 2V || N3, we have
f~—a?—2%sz.
P
The rest of proof is analogous. O

Remark 4.14. For 2 1 N1 Na, G 4N, N»,16(N1 N2)2, vy coincides with G, 4N, (N,-4N,)2 N7 This implies that the
image of map M; for orders of level (N1, No) and map Mj for orders of level N - 4N3 belong to the same
genus.
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Proposition 4.15. For an order O we denote fso by f. Let O C Qn; be an order of level (N1, No) where
4 | NyNa, then dy = 16(N1N2)?, Ny = 4N1 Ny and f is anisotropic only in the p-adic field for p | Ni. The
genus which f belongs to is denoted by Gy, N, 16(Ny N»)2, N -
Proof. In the case 22*! || Ny, we have
f 3 3% — 223 (2 22 — y2).
In the case 2¥ || N3, we have
f~—x? =22y,
P
The rest of proof is analogous. O

Remark 4.16. when 4 | N1 N3, A4 does not act as a bijection such that Ay(fg0) = foo. The reason behind
this will be elucidated later..

Proposition 4.17. For an order O we denote fo by f. Let O C Qny be an Eichler order of level (N1, N2)
where 4 | N1 Na, then df = 16(N1N3)?, Ny = 4N1 Ny and f is anisotropic only in the p-adic field for p | Nj.
The genus which f belongs to is denoted by Gan, N, Ny N, N -

Proof. In the case 224! || Ny, we have

fry3-2Ta? = (Y7 + 2% —y2).

In the case 2 || N2, we have
f~ =27y
P

The rest of proof is analogous. O
Recallling Proposition 2.5, ¢9 is a bijection between C'(N',229d’) and C(N’,2972d'). A proposition follows.

Proposition 4.18. Let O be an order of level (N1, N3), where 4 | N1 Na, i.e. N1Ny = 210pl11...pi;“, and the
pi are distinct odd primes, then ¢p, o ... 0 ¢p, 0 P2(fs0) = fo.

Proof. Suppose that Ny Ny = 2972 where g > 4, (Despite the implication that N3 No = p9~2 necessitates an
odd g, it does not impact our proof). Let fo = (297 2a,b,c,r,29715,2971t) be a positive definite ternary
quadratic forms of level 29 and discriminant 2972. Recalling ¢o:

¢2_1((2972a, b,c,r,297 15,297 1)) = (a,29b,29¢, 297, 295,29t),2 | ac.

We have
O =7+ Zeq + Zes + Zes,
where
e% =re; — be eses = 297 2qey
e% =29"1gey — 29 2¢¢ eze1 = beg
e3 =297 tes — 29 2ab e1es = Ce3.
Hence

ey =1 —2(abe + 297st) + (ar + 29st)e; + (2bs + 2rt)ex + (2¢t + 2rs)es,
e} = ar + 29st — 2ae; — 2tes — 2ses,
el = 2bs + 2rt — 2te; — 23—3262 — 5=zes,

/ T 2c
€3 = 2ct + 2rs — 2se1 — 55762 — 5=z €3.
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We have tr(e}) = tr(e}) = tr(ef) =0, and
n(e}) = a,tr(2972e429-2¢}) = 297 2r,
n(29-2¢4) = 2972b, tr(29 2efef) = 297 1s,
n(2972e}) = 297 2¢, tr(e} 297 2¢}) = 297 1¢.
It is analogous to check that
O = Zey + Ze, + 729 e}y + 729 %€,
We will show
7+ 20 = 72e, + Zey + 7297 ely 4+ 7297 ey,
It is not hard to check that
2ep + rel + 297 sel, + 297 el = 2 — dabe — 297st + ar® + 29bs® + 29¢t?
and

dy, =4- 2972abe + 2297 2pgt — 297 2% — 22972pg? — 9297242 — 9972

we have
re) =1 — 2ef — 29 Lsely — 297 el
and 2 1 r. Hence
Z + 20 = 72e(, + Ze), + 7297 ely + 729 ey,
and
SO = Ze\ + 7297 el 4+ 7297 el
We have
fso = n(ze) +y29 el + 2297 tel)

=n(e})r? +n(29 teh)y? +n(29 7 e})2? + tr(29 1 eh29Tel )y z + 2tr(e) 29 Le) w2 + tr(ef 29 ey

= ax? + 29by* + 29¢2? + 29ryz 4 29sw2 + 29ty
If O is an order of level (N1, N3), the proof is analogous to the above by Remake 2.4. O

By Proposition 4.18, we establish the following commutative diagram.

Theorem 4.19. Denote ¢p, © ... 0 ¢p, 0 P2 by ¢n,N,, where Ny Ny = 2l°pl11...pfff and the p; are distinct
odd primes. In a positive definite quaternion algebra QQn;, we choose a complete set of representatives
{OM}M:172~~~TN1,N2 for these types of orders of level Ny No. We establish the following commutative diagram.

Co
{Outu=1.2..1n, vy — GaNI N2, N1 No, N}

My 1
\ l%”z
G AN, N2,16(N1N2)2, N

Remark 4.20. In the case 4 | N1 Ny, if A4 is a bijection such that A\4(fs0) = foo, it follows Tn, N, = TN, N, /4
for 4 || N2, and it is a contradiction.

By Corollary 2.6 and Theorem 4.4, direct corollarys follow.
Corollary 4.21. M is a bijection, and
2card(Aut(0)) = | Aut(fg0)].
Corollary 4.22. We have

|GaN, Na 16(Ny N2)2 N7 | = |Gany Ny Ny No N L = T N -
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4.4. Zeros in orders and representation numbers of ternary quadratic forms.

Proposition 4.23. Let O be an order of level (N1, N2), po(n,r) be the number of zeros of x?> — rz +n in
O, then we have

2
Ry (n) po(nzr ,7),
that is
Ry, (4n — 7‘2) = po(n,r)
Proof. Let

fso = n(z(2a1) + y(202) + 2(2a3 — 1))
= 4n(ay)x? + 4n(ag)y® + (4n(az) — 1)2° + 4tr(aemz)yz + dtr(agaz)ez + dtr(a o)y,

In the case n = 1,2 (mod 4), we have fgo = —2° (mod 4). Hence Rj_,(n) =0
In the case n =0 (mod 4), we have 2 | z, 2 | r and

n=n(z(201) + y(2a2) + 2(2a3 — 1)) = 4n(xaq + yas + §(2a3 - 1)).

We have za +yas+2(2a3—1) € O°, and L+zay+yas+3%(2a3—1) € O. Since tr(a8) = n(a+8)—n(a)—n(B),

then
n —+ r?

4 )

n= n(g +2(200) + y(202) + 2(2a3 — 1)) =

and r
tr(5 +2(201) + y(202) + 2(205 — 1)) =7

Conversely, if

n+r2

n(zay +yas + zas +t) = )

and
tr(zaq + yag + zas +t) =r.
We have tr(zas) + 2t = 2t + z = r, hence t = 5=, and
r—2z
n =4n(za; + yaz + za3 + T) —r? =n(z(201) + y(2a2) + 2(2a3 — 1)).
In the case n =3 (mod 4), we have 2t z and 2. Since

n(z(201) + y(2a2) + 2(2as — 1)) = n(2za; + 2yas +2za3 — z+1r —r) = n(2za; + 2yas +2zaz — 2z +1) — 7.

Then za; + yas + zasg — ZET € O and we have

zZ—=r n+r?
n(zay + yas + zag — ) = R
and
z—7r
tr(zaq + yag + zas — 5 )=r.
Conversely, if
n + r2

n(ray + yas + zaz +t) = T

and
tr(zay + yas + zag +t) =1

We have tr(zas) + 2t = 2t + z = r. Hence t = 5=, and

z—r
n = 4n(ra; + yog + zaz — T) —r? = n(z(2) + y(2a2) + 2(203 — 1)).
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It follows Ry_,(n) = po("ffz ,T). O

Let O be an order of level (N1, N3), by Corollary 4.21, Corollary 4.11, and Proposition 4.23, we have
T

Ai\[? po(’n,,'l") _ 271 Z Rj(4n_’r2)

= card(Aut(0,,)) [Aut(f)]

FEG N, Ny 16(Ny N2)2 ]
5. THE SIEGEL—WEIL FORMULA FOR TERNARY QUADRATIC FORMS

When NN, is squarefree, Li, Skoruppa and Zhou[5] proved that, for all Eichler orders with a same
squarefree level in a definite quaternion algebra over the field of rational numbers, a weighted sum of Ja-

cobi theta series associated with these orders is a Jacobi Eisenstein series which has Fourier coefficients
HWNGN2) (4, — ),

Theorem 5.1. [5, Main Theorem] Let N and F be two squarefree positive integers which are coprime,
where N has an odd number of prime factors. Use Ty g for the type number of Eichler orders of level F'
in Qn, where Qn ramifies only at the primes which divides N. Choose a complete set of representatives
O,(n=1,2,..,Tn ) for these types of Eichler orders. Let

bo, = Z po, (n,r)q"¢"

n,reZ
dn—r3>0

where po, (n,r) is the number of zeros of z? —rz+n in O,. Then we have

TN, F
s 90
5.1 7Y% :278(NF) H(N,F) 4n — 2\, nr
(5-1) Z card(Aut(0,,)) Z (4n —=17)a" ¢,
p=1 n,reZ
An—r2>0

where e(NF) is the number of prime factors of NF, and card(Aut(0,)) is the number of elements in the
group of automorphisms of O,,.

However, in the general case, it is difficult to explicitly determine the Fourier coeflicients of the Jacobi
Eisenstein series. It is essential to revisit the Siegel-Weil formula for ternary quadratic forms, considering G
a genus of positive ternary forms with the discriminant dg.

Rs(n) n
> e =arM (@) | [[ dew(n).
2 TAui(f)] Vao L
This sum should be interpreted as the finite sum resulting from taking a single representative from each

equivalence class of forms. The product on the right is over all primes, the mass of the genus M(G) is
defined by

1
M(G) = 2 TRy

and dg,p(n) denotes the p-adic local representation density, defined by
1
dap(n) = = {(z,y,2) € 73 :ax® +by® + 22 +ryz +svz+try =n (mod ph)}|
p

for sufficiently large ¢, and az? + by? + c2% + ryz + sxz + tzy can be chosen to be any form € G. Siegel
demonstrated that when ged(2d,p) = 1, then

] = {GHD+F(E) =D i n=p1L
et (3 +1)1 - 75) if n=Ip*+pil.
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This section is dedicated to the calculation of local representation densities. Some propositions can be proved
by [13, Theorem 3.1], but here we give the proof by directly computing.

5.1. Computing local representation densities at an odd prime. In order to compute

d_€12 Hp2utly2 _ep2utlz2 p (n)
and
d—w2—p”yz,p(n)7

we will employ established lemmas.

Lemma 5.2. [, Lemma 3.2] Let p be an odd prime not dividing c. For t > 1, we have
.2 — t ¢
card({0 < x <p'lz“=c¢ (mod p')}) =1+ <—>
p
Lemma 5.3. Let p be an odd prime not dividing c. We have
p—1 2
> (HEE) =1
=0 p

Proposition 5.4. Let u be a nonnegative integer, (%) = —1, and pt m. We have

0 if n=mp*k<u
k(1 — (= if n=mp** k<u,
d_..2 2u+142 _ep2utln2 (n): pQ(,k (pl)) f p2k 1 B
xt+p yroep =P pu (1+§) Zf n=mp +ak2ua

p2u—k (1 — (%)) if n=mp** k>u.
Proof. Let n = p'm, where pt m. When [ is even (resp. odd), let | = 2k (resp. | = 2k + 1).
In the case | =2k + 1 < 2u + 1, we have

1
d_ca2pprutiy2_eprutiz2 p(pm) = WHO <a,y,z<phi—ea® +pP Ty — p® T2 = p*im (mod p')}.

It implies
2k+1 _
d75m2+p2u+1y275p2u+1227p(p m) =0.

For u > 0, we have

1
d_car yprutiyz —eprutiz2 p(p'm) = o< @,z < pi—er® +p7 Ty — ep? T2 = p'm (mod p')}

1
—7|{0§w<p“,0§y72<pt —eax? +p* Ny — ™2 =p'Pm (mod p'?)}

—2 ur12 2u12_ -2

—p |{0<fcy72<p t—ex® +p ep =p"?m (mod p' )}

pml{oﬁw,y,ZQf’Q:—ew +pM Tyt — ™12 = m (mod p' )}

— 1—2
= pd_6w2+p2u71y2_6p2uflz2)p(p m)

In the case | = 2k < 2u + 1, when [ = 0, we have

1
d_carqprutiyz_gprutiz2 p(m) = 7|{0 <ay,z<pi—e® +p7 My —ep®™ T2 =m (mod ph)}|

I{O <zy,z<pia’=—em+ ey —Ep* T2 (mod p')}|
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t t
p—1lp—1 2utl,2 _ 2

1 —em + ep*t Ty p2utly?

= 2 > (1 » )
y=0 2z=0
—-m
—1- (22,
p
Hence for [ = 2k < 2u + 1,, we have
2k k k —-m
d_€12+p2u+1y2_€p2u+1z2)p(p m) =D d7612+p2u—k—1y2,Ep2u—2k—122)p(m) =p (1 - (7))

In the case | > 2u+ 1, we have

! o [—2u
d75m2+p2u+1y27€p2u+122’p(p m) =D d—em2+py2—epz2,p(p m)

Since
1
d75m2+py275p22,p(plm) = ﬁ'{o S r,Y,2 < pt : _€x2 +py2 - szz = plm (HlOd pt)}|

1

1
= wl0<zyz< Pt —ea® +py’ —ep2® =p'Pm (mod p'~?)}|

1 _ _ B
=p3ﬁ|{0§w,y72<pt Pi—e’ +py’ —ep2® =p'Pm (mod p'~?)}|
1

- Ed*6m2+py2*€m2>:0(pl72 )-

Hence for [ =2k +1 > 2u+ 1, we have

dfezzqtpz“*ly?fep?“*lzz,p(p2k+1m) = pud—ew2+py2—epz2,p(p2k+172um) = pzuikd—em2+py2—epzz,p(pm)'
Since
d _ i 0< t._ .2 2 2 d t
7ezz+py275pzz,p(pm) - th |{ <zy,z2<pi—ex” +py Epz- =pm (mo p )}|
1
= p2ﬁ|{0 <my,z<pThi—epr® +y? —ez? =m  (mod p')}
1
= WHO <zy,z<pliy =m+epr? + ez’ (mod ph}
t_1pto1
1 X m + epr? + ez?
= otz Z Z(1+( -))
p =0 2z=0 p
1
=14 -.
p
We get

_ 1
d_612+p2u+1y2_6p2u+122)p(p2k+1m) = p2u k(l + 1—?)

For | = 2k > 2u + 1, we have

d_€12+p2u+1y2_€p2u+1z2)p(p2km) = pud,ezerpyz,epzzﬁp(pk_mlm) = pzr_kd,ezhrpyz,épzz’p(m) = p2u_k(1—(—)).
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It implies
0 if n=mp*tlk<u
PF1 = (51)) if n=mp* k<u,
d75m2+p2“+1y275p2“+1z2,p(n) = p2u7k(1 + %) if n= mp2k+1, k>u,

pru—k 1—(%)) if n=mp** k> u.

Proposition 5.5. Let vo =0 (mod 2) be a nonnegative integer, and p{m. Then

0 if n=mp*tl 2k +1 < vy,
p’%l—k(%)) if n=mp*, 2k < v,
p”7071 _|_p”70 — pro—k=2 _ puo—k-1 if n= mp2*+1 2k + 1 > vy,
pE A p T ()T —p i = mp, 2k > v

d,mQ —pYOyz,p (n) =

Let v1 =1 (mod 2) be a nonnegative integer, and ptm. Then

0 if n=mp?**tt 2k +1 < vy,
J 7 p’%l—k(%)) if n=mp** 2k < v,
_m2—pv1yz,p(’ﬂ) = 2pu12—1 . pvl—k—2 _ pv1—k—1 lf n = 7,np2lc+17 2k +1 > v1,

vy —1

2p— 7 —puht +(%)p”17k71 if n=mp?* 2k > v,.

Proof. Let n = p'm, where p{m. When [ is even (resp. odd), let [ = 2k (resp. [ = 2k + 1).
In the case vy = 0, we have
—z? —yz~x2+y2+zz.
P
Hence
oy (GG
o (%-1-1)(1—#) it n=mp?*tL,

In the case vy > 0 and [ = 0, we have

1
Az —proyzp(m) = {0 < 2y, 2 < p:—a? +pPy? —p*z?=m  (mod p")}|

= ml0<myz< plia®=—m+pPy? —p™z®  (mod p')}

p'—1p'—1

1 —-m +pvoy2 _ p’U()Z2
= > 2 (L ) )
y=0 2z=0

—m

=14+ (—).
(p)
In the case vg > 0 and | = 2k + 1 < vg, we have

1
Ftm) = — {0 < z,y,2 <p': =2 + py? — p™2? = p*'m  (mod p')}|.

d_y2peoys (P
x pPyz,p p2t

It implies
d,mz,puoyzﬁp(p%—"lm) =0.
For t > 3 and vy > 2, we have

1
dfzzfpvoyz,p(plm) = ﬁl{o < r,Y,2 < pt : _:EQ +pvoy2 _pUOZQ = plm (HlOd pt)}|
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1
:ﬁ|{0§x<pt*1,0§y,z<pt —x? 4 pro 2y — pUom22 = pl2y (mod pt=2)}|

t—2

1
=p57|{0§w,y72 <p' =2t p T —p 2 =p' P m (mod p'?)}

—2

{0 <,y z<p™2: =2 +p* %y —p™ 222 =p'>m  (mod p'~?)}|

_p2t2

:pd—;ﬂz—p“() 2yz, p(pl 2m)

In the case vg > 0 and | = 2k < vg, we have
-m
d_wz—lﬂv“yzm(p2km) = pkd—mz—p%*%yzm(m) = pk(l + (7))

In the case vg > 0 and | > vg, we have

d_z2_proyz,p (plm) = pvo/zdﬂc? —yz,p (pl—v0/2m)'

Hence
0 if n=mp*tl 2k +1 < vy,
p B pk(l—l—(%)) if n=mp?, 2k < vy,
,z2fpvoyz,p(n) - ——1 _|_p"’70 _pvo—k—2 pvofkfl if n= mp2k+1, 2% +1> 00,

p? +p7_1+( m)(pro—k=1) — pro=k=1 if 5 =mp?* 2k > v.
It is analogous when v; = 1 (mod 2).
In the case | = 2k < vy, we have
Aty p(U710) = P anye () = PP (14 ().
In the case | = 2k + 1 < v1, we have

d,mQ,pm yzﬁp(p%“m) =0.

In the case [ > vy, we have

ri-- —
d—w2—pvlyz,p(plm):p 2 d—m2—pyz,p(pl U1+1m)'

Since

1
dfmzfpyz,p(plm) = Fl{o < T,Y,z < pt : —1'2 —pyz = plm (mOd pt)}|

1 B . _
=2 S0 <oy e <p e —yz=pTim (mod ')
11 ) . .
_5'm|{0§x7y¢<pt Pi—2® —pyz=p'?m  (mod p'~?)}|

1 2

= Zd—w2—yz,p(pl72m) - ];d—m2—pyz,p(pl7 m)a

it is essential to calculate d_,2_,,. ,(m) and d_,2_,,,, ,(pm). We have
1
dfzzfpyz,p(m) = ﬁ'{o <w,y,2 < pt D —x” +py2 _pz2 =m (mOd pt)}|

|{0<wy72<p 2’ = —m+py®> —pz® (mod p')}|
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p'=1p'—1 2 2
—m+py® —pz
- LY Yot
y=0 z=0
—m
p

and
1
d—m2—pyz,p(pm) = WHO < Y,z < pt : _'IQ +py2 - p22 =pm (HlOd pt)}|
1 _
— 0 S ays < iprt P - = od p )|

1 - -
:p2t—2|{0§$7y,2<pt iyP=m4 2% —pa®  (mod p'Th}Y|

tl _1pt- 1_q
Z Z (1+( m—i—pw +z))

t— 1_1

1 P m + 22

—1- = Y ()

1
=1--.
p
For | =2k + 1 > vy, we have
vy —1
2oy p (0 im) = p77 (2 — plrr = D/27RTL i ml)/27ky

For | = 2k > vy, we have

vy —1

vt 11} /2— =\ (o 1)/2-
d_m2—p”1yz,p(p2km) =p 2 (2 —plr= D2k 4 (7) pli TR,

Hence we get

0 if n=mp*tl 2k+1 < v,

1+ (=2 if n=mp** 2k < v,

dfzzfpvlyzp(n) = 317 ( P )) p 1
5 2p 5 _p'ulfk72 _ pvlfkfl if n= mp2k+1, 2%k + 1 Z v,

vy —1

2p 7 —p R (=R i = mp®* 2k > vy

5.2. Computing local representation densities at 2. In order to compute
dgxz,22u+3(y2+z2+yz)12(n)
and

d71272“0+2y272(n>5

we will employ established lemmas.

Lemma 5.6. [, Lemma 2.1] Let ¢ =1 (mod 2), and t > 3. Then

card({0 <z < 2%|2* =c¢  (mod 2%)}) =2 (1 + (g)) .
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Lemma 5.7. [1, Theorem 4.1, Theorem 4.2][3, Lemma 2.4] Let n = 4°m, and 41 m. We have

3 if m=7 (mod8),
d_y2_y o 35—k if m=3 (mod3),
532 if m=1,2 (mod4).
2 if m=7 (mod38),
d_z2_9y: o 2 — 2% if m=3 (mod ),
2— 521 if m=1,2 (mod4).
3 if m=7 (mod8),
d_z2_4y. o( 3 - 2,1%1 if m=3 (mod ),
3—52 if m=1,2 (mod4).

= if m=3 (mod8),
0 if m=7T (mod8),
o if m=1,2 (mod4).

d3y2 —2(y2+224+yz),2 (n) =

Lemma 5.8. Let u be a nonnegative integer, we have

d3mz —22u3 (y24 224 y2),2 (4n) = 2d3mz —22ut1(y24 22 4y2),2 (n) .

Proof.

d3z2 _92ut3(y2 422 4yz) 2 = |{O <y, z <2t 327 - 223 (y? + 22 4 yz) =4n (mod 24)}]

22t
- 22t|{0<33<2t L0<y, 2z <2t =32 =22y 22 ryz) =n (mod 2077)}
=24 4 S{0<2,y,2<27%: -2 —2%z=n (mod 2" %)}

= 2d,3m2,22u+1 (y2+22+yz)12(n)

Lemma 5.9. Let v be a nonnegative integer, we have

d_m2_2v+2yz72(4n) = 2d_w2_2uyz)2(n).

Proof.

d_z2_gvi2y, o(4n) = 22t |{0 <az,y,2<2: — 22y, =4n  (mod 2')}|

:22t|{O<I<2t ! 0<y,2<2t'—$ —2%yz=n (HlOd 2t72)}|

=2-4. 422t|{0 <my,z<27% -2 2%z =n  (mod 272)}|
= 2d,z2,2uyzﬁg(n)
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Proposition 5.10. Let u be a nonnegative integer, n = 4'm, and 4t m, then we have

2042 if m=3 (mod 8),2] < 2u,

0 if m=1,2,5,6,7 (mod 8),2] < 2u,
d3m2_22u+3(y2+22+yz))2(4lm) = { 22ut2-l if m=3 (mod8),20>2u+2,

0 if m=7 (mod8),20>2u+2,

3. 22u+17l Zf m = 172 (InOd 4),21 > 2u + 2.

Proof. Let n = 4'm, where 4 { m.
When 2] < 2u + 3, we have
d312_22u+3(y2+22+yz))2(4lm> = 2ld3mz_22u+372z(y2+22+yz)72(m).

In the case 2u+ 3 — 2] > 3, i.e. 21 < 2u, when m = 1,2,5,6,7 (mod 8), we have

d312,22u+3721(y2+zz+yz)72(m) =0.
When m =3 (mod 8), we have

l

l
d312722u+3(y2+22+yz)12(4 m) =2 d3m2_22u+372z(y2+22+yz)72(m)

2l
= ﬁHO <y, z <2t :32% = 22322 4 22 Lyz)y=m (mod 29}
2!
= ﬁHO <y,z<2t:322 = 223202 L 22 Ly +m (mod 29}
— 2l+2'

In the case 2u+3 — 2l =1, i.e. 2] = 2u + 2, we have

l _ 9l
d3$2_22u+3(y2+z2+yz))2(4 m) =2 dgxz,Q(y2+zz+yz)72(m).

In the case 2] > 2u + 2, we have

l _ ou+l l—u—1
d3m2722“+3(y2+z2+yz),2(4 m) =2 d312_2(y2+22+yz))2(4 m)

Hence
2!+2 if m=3 (mod 8),2l < 2u,
0 if m=1,2,5,6,7 (mod 8),2] < 2u,
32 —g2ut3(y2 422 4y 2(4im) = § 22021 if m=3 (mod8),2l>2u+2,
0 if m=7 (mod38),20>2u+2,
3.2%utl=l if m=1,2 (mod 4),2] > 2u+2.
a
Remark 5.11. We note that when n is not a negative discriminant, i.e. n = 1,2 (mod 4), we have
dgz2 _92ut3(y2422442)2(n) = 0. Let n = 4*m be a negative discriminant, where —m is a fundamental

discriminant, i.e. m = 0,3 (mod 4) and when 4 | m, mg = m/4 is not a negative discriminant. We can
rewrite Proposition 5.10 as follows.

2k (1 - (32)) if m=3 (mod4),2k < 2u,
k 0 if mo=1,2 (mod 4),2k < 2u,

gz g2t 2z y2) 2 (47M) = 4 o1 g (1= (=2)) if m=3 (mod4),2k > 2u,
3. 92u—k if mo=1,2 (mod 4),2k> 2u.
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Proposition 5.12. Let vo =0 (mod 2) be a nonnegative integer, n = 4'm, and 4t m, then we have

2!+2 if m=7 (mod8),2l <wy— 2,

0 if m=1,2,3,5,6 (mod 8),2]l <wvy— 2,

32! if m=7 (mod 8),2l = vy,
d_ya_gupray, o(4lm) = 2 f m=3 (mod8),2 =,

0 if m=1,2 (mod 4),2] = vy,

3. 2vo/2 if m=7 (mod8),2l >y +2,

3.2v0/2 _guotl=l f m =3 (mod 8),2l > vy + 2,

3-(2v0/2 —2v=l)y  if m=1,2 (mod 4),2l> vy + 2.

Let v; =1 (mod 2) be a nonnegative integer, n = 4'm, and 4 { m, then we have

2l+2 if m=7 (mod8),2l <wvy +1,
0 if m=1,2,3,56 (mod 8),2l <wv; +1,
d_p2_guit2,, o(4'm) = ¢ 2(1H3)/2 if m=7 (mod8),2l>wv; +1,

21 H3)/2 _guitl=l  4f =3 (mod 8),2l > vy +1,
2(iH3)/2 _ 3. 9ui—l 4f m=1,2 (mod4),2l>uv; +1.

Proof. Let n = 4'm, where 4 { m.
When 2] < vy + 2, we have

d_12_2v0+2yz)2(4lm) = 2ld712,2u0+2721y%2(m).
In the case vg +2 — 20 >4, i.e. 2l < vy — 2, and m = 1,2,3,5,6 (mod 8), we have

d_wz_2v0+2fzzyz72(m) =0

When m =7 (mod 8), we have

d_12_2v0+2yz72(4lm) = 2ld7m2,2v0+2721yz)2(m)

2!
= ﬁHO <ayy,z <2t —a® - 2wty = (mod 24)}
2!
= ﬁHO <y,z<2tig?= 2272 ;o (mod 24}
=22,

In the case vg + 2 — 21 = 2, i.e. 2] = vy, we have

d,m2,2vo+2yzﬁz(4lm) = 2ld712,4y272(m).

In the case 21 > vy + 2, we have

d—w2—2vo+2yz,2(4lm) = 2v0/2+1d7127y%2(4l—1—v0/2m)'

31
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Hence we get

2042 if m=7 (mod8),2l<vy— 2,

0 if m=1,2,3,5,6 (mod 8),2] <wy— 2,

3.2 if m=7 (mod8),2l= vy,

2! if m=3 (mod8),2l =1y,
dga-grorys2(4'm) = 0 if m:1,2( (mod)4),21—v0,

3.2v0/2 if m=7 (mod8),2l>vy+2,

3.2v0/2 _gvotl=l if ;=3 (mod 8),2l > vy + 2,

3-(2u/2 vty if m=1,2 (mod4),2l>vy+2.

When 2] < v; + 2, we have
d71272“1+2yz,2(4lm) = 2ld71272“1+2*2lyz,2(m)'

In the case v1 +2—20 > 3,ie. 2l <wv; —1,and m=1,2,3,5,6 (mod 8), we have

d—z2—2“1+2*21yz,2(m) = 0.
When m =7 (mod 8), we have

d—z2—2“1+2*21yz,2(m) =4
In the case v1 +2 — 21 =1, i.e. 2l = vy + 1, we have

d_po_guitzy0(4'm) = 2'd_42 . o(m).
In the case 21 > v; + 2, we have
d_go_gurizy, o(4m) = 200D/2q s oo (41D 2y,

Hence we get

Ql+2 if m=7 (mod8),2l <wvy+1,
0 if m=1,2,3,5,6 (mod8),2l <wv; +1,
d_y2_guitz,. o(4'm) = ¢ 211 H3)/2 if m=7 (mod8),2l>uv, +1,

2(iH3)/2 _guitl=l if 4 =3 (mod 8),2 > v +1,
243)/2 _g.9ui=l §f m=1,2 (mod4),2]l> v +1.

Remark 5.13. It is analogous that we can rewrite Proposition 5.12 as follows.

2k (1 + (=) if m=3 (mod4),2k<uvy—2,

0 if mpg=1,2 (mod4),2k <wvy—2,
d_y2_guotzy. o(4Fm) = { 3. 2v0/2 if m=7 (mod 8),2k > vy,
3.2v0/2 _guotl=k  if ;=3 (mod 8),2k > vy,

3. (2v0/2 —uotl=ky if my=1,2 (mod 4),2k > vo.

M (14 (32)) if m=3 (mod4),2k<uv; —1,

0 if mp=1,2 (mod4),2k <wv —1,
d_y2_gutzy. o(4Fm) = { 2(1+3)/2 if m=7 (mod8),2k>uv +1,

2(v1+3)/2 _ guit+1-k if m=3 (mod8),2k>uv +1,

2(ni43)/2 _ g guitl=k if ypy=1,2 (mod 4),2k > vy + 1.
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5.3. Computing some other local representation densities. The following propositions are used in
the proof of type number formula in Section 7.

Proposition 5.14. Let u be a nonnegative integer, and (%) = —1, where p is an odd prime, then we have

d_eprurigziyz_e2 p(1) = d_eprurigayye_co p(4) =14 %
Let v be a nonnegative integer, then we have
d_poar (1) = d_pogyop(d) = 1 — %.
Proof. We have

1
d_eprutiz2iyz_ep2 (1) = FHO <zy,z<pt—ep Tt oyt —e2? =1 (mod p')}|

1
= FHO <zy,z<p iy’ =1+ep*Tla? 4 e2? (mod pt)}|

t_1pt—1
1K 1+ ep?utipg? 4 €22
= 2 2 1+ )
p y=0 2z=0 p
1
p
and
1 U
doprar—yep(D) = {0 Sy, 2 < Pl —pta® +y7 =2 =1 (mod p")}|
1
= {0 <z y,2<p':y” =1+p"a® + 2% (modp)}|
p
1 p'—=1p'—1 14 pPoa? 4 22
MM
p z2=0 z=0 p
P
The rest is analogous. O

Proposition 5.15. Let u be a nonnegative integer, then we have
3
d3-22“+3m2—(y2+z2+yz),2(1) == 5.
Let v be a nonnegative integer, then we have
1
d72“+2m27yz,2(1) = 5
Proof. Tt is not hard to check that when c is odd, we have
Ho<wy,z<2':9>+22+yz=c (mod 2"} =3.2"!
and
Ho<y,z<2':yz=c (mod 2"} =2""1.
Hence we get
3

d3»22“+312—(y2+z2+yz),2(1) = d3-2x27(y2+z2+yz),2(1) = d3x272(y2+z2+yz),2(2) = 57
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and
1
d—2”+2m2—yz,2(1) = d72x27yz,2(1) = d71272yz,2(2) = 5
g
6. THE SIEGEL-WEIL TYPE FORMULA
This section present the proof of the following theorem.
Theorem 6.1. Let Ny = p?“ﬁl...pfu““l, where the p; are distinct primes, uq, ..., Uy, aT€ nonnegative integers

and w is an odd integer, and Na be a positive integer such that gcd(N1, N2) = 1. Use Tn, n, for the type
number of orders of level (N1, N3). Choose a complete set of representatives O,(pn = 1,2,...,Tn, n,) for
these types of orders, and po, (n,r) is the number of zeros of z? —rz+n in O,. Then we have

TNy, Ny

po,(n,r) 9—e(N1N2) Fr(NuN2) (4, 12

; card(Aut(0,))

where e(N1N2) is the number of prime factors of N1Na, and card(Aut(O,,)) is the number of elements in
the group of automorphisms of O,,.
Before proving this theorem, we possess the explicit formula for the mass of orders of level (N7, N»).

Proposition 6.2. [3, Proposition 25]

hNy,Noy

; card%@ix) B N;ivz (1 B l) 11 (H 119) '

p|N1 p p| N2

Then by Theorem 3.11, we have

TNy,Noy hny, Ny

1 1
R 2178(N1N2) _
; card(Aut(O,,)) Z card(O))

=1

and
IR 1 v NN 1 1
M(G4N1N2,16(N1N2)2,N{) = 5 Z m =2 e T H (1 — 2—?> H (1 + 5) .
n=1 p|N1 p|N2
By Proposition 4.23, we only prove that
Z Ry(D) _ 2—e(N1N2)—1H(N1,N2)(D)7

| Aut(f)]

f€G4N1N2,16(N1N2)2,N1
where D = 4n — r2. When N; Ns is squarefree, it is clear by [5, Theorem 1.2], and recalling that

_D/f12\’1,N2

D2 wh—p-l-\ =) Ch-r=l)
H(N17N2)(D) = H(D/f]%h,Nz) H <1 B (M>> H < > |
p|N2

-1
p|N1 p p

If p?“+1 || Ny, we have

Gany Ny, 16(y N)2, N 1q(n) - dG4N1N2,16<N1N2/p2“>2,N{ 7(1(”)
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for all prime ¢ # p, and
M(Gany N, 16(NiN2)2,N;)  M(Gan, Ny, 16(Ny Na/p2v)2,N)
da

)

4N,16(N1N32)2, N \/ G4N,16(N1N2/p2u)2,zv{

hence we only compare dg ,(n), and it is analogous when p¥ || Na.
Let p?“*1 || Ny, where p # 2. By Proposition 5.4, in the case vp(pf?\,hm) < wp(NiN2) and p | D/ f% y,, we
have
d_€$2+p2u+ly2_6p2u+lz2)p(D) = 0.
In the case v, (pfR, n,) < vp(N1N2) and pt D/ f3; n,, we have

2
d—6I2+p2"+1y2—6p2u+1Z2,p(D) - fp d—€m2+py2—epz2,p(D)'
In the case v, (pfR, n,) = vp(N1N2), we have
d—em2+p2“+1y2—ep2“+1z2,p(D) = p2ud,Ex2+py2,Epzzyp(D).

It is analogous when p? || Na. Let p* || Na2, where p # 2, and vg = 0 (mod 2). By Proposition 5.5, in the
case vp(PfX, n,) < Up(N1N2) and p | D/ f3, y,, we have

d—m2—p”0yz,p(D) — O
In the case v, (pfR, n,) < Up(N1N2) and pt D/ f3; n,, we have

(o (252
d

_ 2
2fp + <7D/QN1N2) —1

dfofp“Oyz,p(D) = —a? *pyzﬁp(D)'

Since

2pfp —p—1- (#ﬁv%) 2fp-p-1)= (2fp+ <#ﬁl%> —1) <p— (Lf}v%))

p
we have
—D/f? —_D/f? _D/f2
fg (1+ ( /£N1N2)> (2fp+ ( /?;N1N2> _ 1) <p_ ( /Z)N1N2)> _D/f2
. 7.]02 1+ NiN2
_D/f12\71N2 p—l —Jp P

1 2 *D/f12\71N2 _
n the case vp(pfx, n,) = vp(N1N2) and | —=2 | = 0, we have

) —p T (p 1)

d
2pfp—p—1

d_y2_peoysp(D) (D).

—x2—pyz,p
We have " "
f—p—1 p2 frlp+) —p*p+1) _ (= fr—p* Hp+1)

p—1 2pfp—p—1 p—1
_ 2
When (%) # 0, we have

p? L f(p+1)—pro? (1 — (71)/];%“2 ))
d

d
_ 2
2, + (%) 1

—12—p”0yz,p(D) = —12—pyz,p(D)'
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we have
_ 2 » _ 2
2pfp—p—1— (%) (2fp—p—1) pTO*lfp(p—l—l)—p”“*l (1_ ( D/£N1N2)>

p—1 ' —D/fiyn
e (2

0% fy - ) p+1) (7‘”?“‘”2) pE 1y —p ) (p+1)

p—1
Let p** || Na,p # 2, and v; = 1 (mod 2). By Proposition 5.5, in the case v,(pf3, n,) < vp(N1Nz) and
D | D/f]%,lN2, we have
d_y2_pviys (D) =0,
In the case v, (pfx, n,) < Up(N1N2) and pt D/ f3; y,, we have

(i (24
= d

d—m2—p“1 yz,p(D) = _D/f2 _I2_pyz’p(D)’
N1 N
Y T
_ 2
and it is analogous. In the case v, (pfx, n,) = vp(N1N2) and <%> =0, we have
v1+1
2p 2 fy—pntt—p
d_p2_poiysp(D) = 2p;p m— d_y2_pyz p(D).
We have
vtl w141 V1 utl v1
2pfp—p—1 2p 2 fp—p" " —p" 2p 2 f—p"(p+1)
p—1 2pfp—p—1 p—1

_ 2
When (%) # 0, we have

o _ 2
27 fp =" (1 - (W»
d_m2_pl’1yz,p(D) = *D/f12\711\72 d
2fp+(— =) -1

(D).

—x2—pyz,p

Hence

—D/§R vi-1 or— -D/f%
2pfp—p—1- (%) 2fp—p—1) 2p7 f—p~} (1— (7;“”2))

p—1 ' —D/fyw
T ET
vi+1 o —D/f? vy —1 or—
27 fy—p" M+ 1) - (%) (2077 fp—p" " (p+1))
The rest of proof for p = 2 is analogous by Remark 5.11 and Remark 5.13.
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7. PROOF OF TYPE NUMBER FORMULA

We will give the proof of the formula for type number. By (3.1), (3.2), (3.3), Corollary 4.11, Corollary
4.21 and Proposition 4.23, we have

TNy,Noy
TN11N2 :2*8(N1N2) Z 28(N1N2)
p=1
TNy, Ny
— 2~ ¢(NilN2) Z m(O,)card(B(0,)/Q™)
p=1
TNy, Ny / P (n T)
D T i o~ 7
s NNy card(O})
r?<dn
TNy, Ny po(n,r ! 0 (n ’]")
Y Z O— 9—e(N1N2) Z 5> po(n,r)
X
AT card(Aut(0,)) = Y S card(O)
n<3  r2<an n>4  p2<ap

d Ty, v Rfso (4n)

SRR DED S LR ICTEL P DD D e

n|[N1N2  n|r n||[N1 Ny p=1
n<3  r2<4n n>4

here when n > 4, if n(z) | tr(z) and 4n(z) > tr(x)?, it necessitates that tr(z) = 0. The remaining task is to
compute

e Ry, (n)

Z Z |AUthS

’ﬂHNlNQ n= 1

In order to compute this sum, the following two lemmas are required.

Lemma 7.1. Let O be an order of level (N1, Na), n || N1Na, where n > 4. Here n = plll...pﬁgl and the p;
are distinct primes. Denote

Ro(n) ={z € Olr € N(O), n(x) =n,n(x) | tr(x)}.
Then we have

card(Ro (1)) = Ry, o...00,,, (f0) (4720,
where 6y, (n),0 = 1 if va(n) = 0 and otherwise d,,n),0 = 0.

Proof. For n > 4, if n(z) | tr(z) and 4n(x) > tr(z)?, it necessitates that tr(z) = 0. Let p*“*! || Ny, and
p?%*L || n, where p # 2. By Proposition 4.9, we have

O = Zey + Ze' + Zey + Zes,
where tr(e}) = tr(e}) = tr(e5) = 0 and
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here p{ ac, 21 c. It is not to check
S =7+ 72¢€) + 72€4 + Zey,

fso(z,y,2) = p**“Tlax? 4+ p?*Tly? + c2? + p?“Tlryz + p?Tlsaz + p?“ Ty,

bp(f0)(@,y,2) = az® + by? + p*lez? + ryz 4+ p? swz + p* iy,

For simplicity, here ej is equivalent to e} in Proposition 4.9, and e (resp.e}) is equivalent to pJe; (resp.
pJeh) in Proposition 4.9. Consider that

Op = Lpeg + Lpey + Lpeh + Lpely ~ {<p“flﬁ pa5> ta,f € Ry}

U
Since n(<pu$15 pf)) =n(a)—p**'n(B) and p f n(e}), we have p f c11(e5). Since p?*+1 | tr(ehel), p* T |
tr(eseh), and tr(e}) = tr(eh) = 0, we have p?**! | c11(e}) and p?“+! | c1q(eh).
By Proposition 2.7, we have

card({(z,y,2) € Zg|f50($,y, z) = 4n7p2u+1 | 2}) = R¢p(fso)(4n/]92u+1).
We will show
card({(z,y,2) € Z*|fso(z,y, 2) = 4n,p** ! | 2}) = card({x € Olz € N(O,),n(x) = n,n(z) | tr(z)}).

Suppose there exists (z,y,2) such that fgo(z,y,z) = 4n and p?**! | 2, it is not hard to check 2 | z,
zel +yeh + (2/2)el € O, tr(we) +yeh+ (2/2)e}) = 0, and n(ze] +yeh+ (2/2)ef) = n. Since p?“T! | z implies
p?Th | crq(we) + yeh + (2/2)eh), we have xe) + yeh + (2/2)el € N(O,).

Conversely, if ze| +yeb+zes € N(Op), n(xe) +yeh+zeh) = n, tr(ze) +yeh+zeh) = 0, and p>* T | ¢y (zef +
yeh+zeh), we have p?“T1 | ¢11(zeh). Since p 1 ci1(e}), it implies p?“*! | 2. Hence n(2xe} + 2yeh +2zef) = 4n,
i.e. there exists (2z,2y, 2) such that fgo(27,2y, z) = 4n and p?“*+1 | 2.

Similarly, when p? || N2 and p" || n, where p # 2, we have

b

a
Op = Zpel, + Lpe' + Lpeh + Lpes ~ {(p”c d

) ta,b,e,d €7y}

Since n( ( ve Z) = ad — p"be, and p { n(ey), we have p f c11(e}). Since p¥ | tr(ehel), p¥ | tr(ese)), and
tr(e}) (e5) = 0, we have p? | c11(e}) and p¥ | c11(ehy). The rest is analogous.
When =2, it is analogous. Let 22“*! || N and 2% || n, we have 22+ || Ny _,, 246 || Ny, and

O = Zey + Ze' + Zey + Zes,
S =7+ 72¢} + Z2ey + Zes,
fso(z,y, 2) = 224 T3ax? + 224 T3by? 4 22 + 224 F3py s 4 223500 4 22431y,
2 (fso)(x,y, 2) = ax® + by? + 22Tl ez 4 ryz + 224 2spz + 2292y,
where 21 a, ¢, tr(e}) = tr(e}) = tr(e}) =0, and
n(e}) = 224 la, tr(ehes) = 224+2r,

n(eh) = 224+ p tr(ehel) = 22425,

n(ey) = c, tr(e)ey) = 224+,
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Consider that

2u
O = Loy + T, + Tocly + Tocly =~ {(2““ﬂ &ﬂ) .o, B € Ry).

Since n(<2uflﬁ 2a5)) = n(a) — 224Fn(B), 2 t n(e}) and tr(es) = 0, we have 2 { c11(e}). Since 22412 |
tr(ehel), 22412 | tr(ehe)), and tr(e}) = tr(eh) = 0, we have 22%F1 | ¢1q(e}) and 2241 | ¢1y(eh).
By Proposition 2.9, we have

Card({(xa Y, Z) € Zg|fso (Ia Y, Z) = 4717 22u+2 | Z}) = R¢2(fso)(n/22u+l)-
We will prove
card({(z,y, 2) € Z°|fso(x,y, 2) = 4n,2°“*? | 2}) = card({z € O|z € N(O3),n(z) = n,n(z) | tr(z)}).

Suppose there exists (x,y, z) such that fso(x,y,2) = 4n and 22472 | 2, it is not hard to check ze} + yeb +
zey/2 € O and tr(we] +yeh+ zes/2) = 0,n(we] +yeh+ zeh/2) = n(2ze| +2yeh + zefs) /4 = n. Since 224+ | 2,
we have 224t | ¢y (e + yeh + zey/2), i.e. xze| + yeh + zes /2 € N(O,).

Conversely, if ze) + yeh + zey € N(O2),n(xe] + yeh + zey) = n,tr(ze) + yeb + zeh) = 0, and 224+ |
c11(we) +yeh + zehy), we have 224+ | ¢q1(ze}). Since 21 c11(e}), it implies 224! | z. Hence n(2ze} + 2yeh +
2ze}) = 4n(ze) + yeh + z€4) = 4n, i.e. there exists (z,vy,2z) such that fgo(z,y,22) = 4n and 2242 | (2z).

Similarly, when 2V || N2 and 27 || n, we have

a b

Op = Z266 =+ Zzell + ZQG/Q + Z26/3 =~ {(21}0 d

) taybye,d € Zao}.

a b

2% d

2vFL | tr(ese)), and tr(e}]) = tr(ey) = 0, we have 2 | c11(€}) and 2V | c11(€h). The rest is analogous.
By induction we have

Ry 0,00y, (f50)(42000) = {z € Olz € N(Op,), ..z € N(O,,),n(z) = n,n(x) | tr(x)}.

Since n( >) = ad — 2°bc, 2 t n(ey), and tr(e}) = 0, we have 2 { cii(e}). Since 2°F1 | tr(ehel),

It is clear
card({z € Olz € N(Op,), ...,z € N(Op,, ), n(z) = n,n(z) | tr(z)}) = Ro(n).
|
Lemma 7.2. Let O be an order of level (N1, N3), n || Ny Na, where n > 4. Here n = p*...plm and the p; are
distinct primes, we have
TNy, Ny R oo . 46v2(n),0 1— (M)
i:z Ppi0- “bpm(fsﬂ)( ) _ 27e(N1N2)71H(N1,N2)(4n) p /p
s | Aut(¢p, ... 0 dp,, (fSﬁ))| By(n)Cp(n)

pln
Proof. Recalling Siegel-Weil formula:

Z A7) Aut 47TM(G)\/g [1der(n)

According to Corollary 2.6, it can be verified that when 2 n, M (G)\/Z remains constant. Consequently,
our focus is solely on local representation densities. In the case p?“*! || n, where p # 2, by Proposition 5.14

and Proposition 5.4 we have
1
d_em2+p2u+ly2_€p2u+lz27p(4n) = pu(l =+ 5)
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and
l 1
d—ep2“+1m2+y2—ez2,p(4 ) =1+ 2—?,
where [ = 0,1. Hence
1 —
d_€p2u+112+y2_6227p (4 ) =D ud_€$2+p2u+1y2_6p2u+122)p(4n).

In the case p || n, where p # 2. Here n = p”*m. By Proposition 5.14 and Proposition 5.5 we have

-m
d—g2_proyzp(4n) = "/ <1 " (T) /p)

and

Hence

l 1- (%) /p Vo
d_prozz_yz p(4') = md*ﬂfp”oyz,p(zlp m)

In the case p** || n, where p # 2. Here n = p”*m. By Proposition 5.14 and Proposition 5.5 we have

_ 1
dfzzfpvlyz,p(zlpvlm) = p(v1 1)/2(1 - 5)

and

1
l
d—p”1w2—yz,p(4 ) - 1 - 1—?
Hence
(v1—1)

d*P“0m27yz,p(4l) =p /Qdfzzfp”yzyp(zlpvlm)'

In the case 22%*! || n, here 4n = 4%+ . 2m. By Proposition 5.15 and Proposition 5.10 we have
and

d3-22“+3z27(y2+z2+yz),2(1) =

: 2u+3 4u+6 2u+1 1 _ 4
Since 2°%*° || 4n, 2*1° || df and 2°%T || dy, (f), we have Vg =2 ;- Hence

N W

2d3,22u+3z2,(y2+zz+yz))2(1) = 2_ud3m2,22u+3(y2+z2+yz))2(4’n).
In the case 2% || n, here 4n = 4v0/2+1m By Proposition 5.15 and Proposition 5.12 we have
3-2/2  if m=7 (mod8),
d_ g2 _guot2y, o(470/2Tm) = { gv0/2+1 if m=3 (mod8),
3.200/2-1 if m=1,2 (mod 4),

and )
d—2“0+2m2—yz,2(1) = 5 .

Since 2v0F2 || 4n, 22v0F4 || df, and 2V || d , we have L_ —2 /4 Hence
f bn(f) Ao (5) dy

2.270/24_ o gugiey, o(470/2Fm) if m=7 (mod8),
2d72“0+2m27'g2,2(1) = 2_U0/2_1d_12_2v0+2yz72(4”0/2+1m) if m=3 (mod 8),
2270/ s gugizy, o(49/2m) if m=1,2 (mod 4).
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In the case 2V || n, here 4n = 4("1+1/2 . 2m. By Proposition 5.15 and Proposition 5.12 we have

d_m2_2v0+2yz)2(4(v1+1)/2 -2m) = g(vi—1)/2
and

1
d—2“0+2m2—yz,2(1) = 5

Since 2U1+2 || 4n, 22174 || dy, and 2°* || dy,, (5), we have n 1(f) =2 ‘é—’;. Hence

2d72v0+2m2,y272(1) = 27(U171)/2d,m2,2v0+2y272(4(U1+1)/2 . 2m)

If p2“*+1 || n or p”t || n, it becomes evident to verify condition

When 2% || n, it is clear to check

1—(=m /2 v . o

AP iy a (82 )i m=T (mod 8),
2d_prginrryen() = § o F2 s (02 m) i m=3 (mod 9)

1-(=5™)/2 v ;

2”0_/(2721(2)+1)d*m2 2vot2yz (402 m) if m=1,2 (mod 4).

That is

D 2.2 — —222 —x v +2 4'00 .E m
2d_ vo+2, 2( ) 2v0/2 1( t )C ( )d 2_9vg ( 2+ ) ( )

1 /2 v , _
md_m2_2vo+2y’z)2(4 o/241m) if m=1,2 (mod 4).

O

We will give the complete proof of the formula for type number. By (3.1), (3.2), (3.3), Corollary 4.11,
Corollary 4.21, Proposition 4.23, Lemma 7.1 and Lemma 7.2, we have

TNy, Ny
TN17N2 — 27€(N1N2) Z 28(N1N2)
p=1
TNy, Ny
=23 (O, )BT
s ~ poln.r)
9—e(N1N2) Z m(0,) Z Lo
p=1 n||[N1 N2 n|r C&I’d(OM)
r2<dn
T po(n,r) T s ' po(n,r)
of —e(N1N3) o\
ZZZ F2W Ym0, Y 5
N card(Aut(0,,)) = NN, T card(O))
n<3 r2<4n n>4 p2<an

T Rfso (4n)

A ID VD D LE IS P DI Dl e

nl[N1Nz  nlr n||[N1Ny p=1
n<3  r2<4n n>4
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TNy, Ny R¢n(f50)(46v2(n)’0)
I

=2 cMN)=1 N N g N (g — ) 4 YN | Aut(én(fs0))]

nl[N1Nz  nlr n||[N1 Ny p=1
n<3 r2an n>4
_ (A(*‘ln)) /p
—e(N1N2)—1 H (N1, Nz)(4n_ r )_|_ 92— e(N1N3)— H (Ny, N2)(4TL) P
|NZN Z ||NZN H By(n)Cp(n)
V1N T n||N1N2 p|n
n<3 r2§4n n>4
(A( 4n))/p
—e(N1N2)—1 H (N1, Nz)
> > ) | L EROAC)

n||[N1 N2 n|r pln
r?<dn
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APPENDIX A. hn, n, AND T, N, FOR ORDERS OF LEVEL NjNj

43

The following results were calculated by SageMath employing the type number formula. We correct errors
(T33 5, T3 8, T57 1, T133 24) in Boyd’s table of type numbers[2, p.152].

Table 1: hy, n, and Ty, n, for orders of level (N7, N3) where

N1Ny <100
Level N1 N2 th N TN1 N Level N1 N2 th N TN1 N
2 2 1 1 1 56 7 8 6 4
3 3 1 1 1 56 8 7 4 2
b) ) 1 1 1 57 3 19 4 3
6 2 3 1 1 57 19 3 6 2
6 3 2 1 1 58 2 29 3 2
7 7 1 1 1 58 29 2 7 3
8 8 1 1 1 59 59 1 6 6
10 2 5 1 1 60 3 20 6 2
10 5 2 1 1 60 5 12 8 3
11 11 1 2 2 61 61 1 5 4
12 3 4 1 1 62 2 31 4 2
13 13 1 1 1 62 31 2 8 5
14 2 7 2 1 63 7 9 6 3
14 7T 2 2 2 65 5 13 6 3
15 3 5 2 1 65 13 5 6 3
15 5 3 2 2 66 2 33 4 2
17 17 1 2 2 66 3 22 6 2
18 2 9 1 1 66 11 6 10 3
19 19 1 2 2 66 66 1 4 2
20 5 4 2 1 67 67 1 6 4
21 3 7 2 2 68 17 4 8 3
21 7 3 2 1 69 3 23 4 2
22 2 11 1 1 69 23 3 8 5
22 11 2 3 2 70 2 35 4 2
23 23 1 3 3 70 5 14 8 3
24 3 8 2 1 70 7 10 10 3
24 8 3 2 2 70 70 1 2 1
26 2 13 3 2 71 71 1 7 7
26 13 2 3 2 72 8 9 4 2
27 27 1 2 2 73 31 6 4
28 7T 4 3 2 74 2 37 5 3
29 29 1 3 3 74 37 2 9 4
30 2 15 2 1 75 3 25 6 3
30 3 10 4 2 76 19 4 9 4
30 ) 6 4 2 77 7 11 6 4
30 30 1 2 1 7 1 7 8 3
31 31 1 3 3 78 2 39 6 2
32 32 1 2 2 78 3 26 8 3
33 3 11 2 1 78 13 6 12 4
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35
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43
44
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Table 2: hy, n, and Ty, N, for orders of level p?" 1Ny

Level N1 No hy,n, TnN,,N,

5 5 1 1 1
15 3 5 2 1
27 33 1 2 2
35 5 7 4 3
125 5 1 9 7
135 33 5 10 4
189 37 12 6
243 35 1 14 10
250 5 2 25 9
343 71 25 16
405 5 34 36 11
750 5 6 100 18
972 3 4 81 25
1000 58 100 28
1331 113 1 102 54
2187 37 1 122 70
3125 5 1 209 117
4116 712 588 7
16807 7° 1 1201 625
35152 133 2% 4056 1027
78125 57 1 5209 2667
322102 11° 2 36603 9272
823543 77 1 58825 29584
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APPENDIX B. REPRESENTATION NUMBERS OF TERNARY QUADRATIC FORMS

If the class number of a genus is one, an exact formula for the representation number of n by ternary
quadratic forms can be provided. The type number is 1 if its level (N7, N3) belongs to the following set: (2,
1), (2, 3), (2, 5), (2, 7), (2,9), (2, 11), (2, 15), (2, 23), (3, 1), (3, 2), (3, 4), (3, 5), (3, 8), (3, 11), (5, 1), (5,
2), (5,4), (7, 1), (7, 3), (8, 1), (8, 5), (13, 1), (30, 1), (42, 1), (70, 1), (78, 1). Herein, we provide the explicit
formulas for the representation numbers of 157 ternary quadratic forms.

Table 3: Genera with one class

Genus Ny dy Ry(n)

Gg,64,2 4.2 16 - 22 R(3.3,3,—2,—2,—2)(n) = 12HZV (n)
Gs2,2 4-2 2 Rii11,1,0)(n) = 12H 1) (8n)
Gaa2 2.2 22 R(1,1,1,000) (n) = 12H®D(4n)
Go4.576.2 4-2-3 16 - (2-3)? R385 -8,00(n) =3H®3(n
G24,192,2 4-2-3 16-22-3 R1,5,8,-5,00)/(n) =3H®¥(3n
G24,18,2 4-2-3 2.3 R(1,1,6,00,-1)(n) =3H®Y(8n
G24.6.2 4-2-3 2.3 R(1,1,2,0,0,-1)(n) = 3HZ% (24n
G12,36,2 2-2-3 (2-3)? R(2,2,3,0,0,—2)(n) = 3HZ3) (4n
G12,12,2 2-2-3 22.3 R(1,2,2,-2,0,0)(n) = 3HZ3)(12n
G40,1600,2 4-2-5 16 (2-5)* Ruiia1,2,44)(n) = 2H®9) (n)
Gioso2  4:2°5 16225 Rs.4.7,—4,-a,0)(n) = 2HZ®) (5n)
G40,50,2 4-2-5 252 R(23.3,1,2,2)(n) = 2H*%) (8n)
G40,10,2 4-2-5 2-5 R(i1,3,-1,-1,0)(n) = 2HZ) (40n)
G20,100,2 2-2-5 (2-5)? R(1,5,5,0,0,0)(n) = 2H25) (4n)
G20,20,2 2-2-5 22.5 R(1,1,5,00,0)(n) = 2H 25 (20n)
G56,3136,2 4-2-7 16-(2-7)2 2R(3,19,19,—18,—2,—2)(n) = 3H 27 (n)
Gsoaas2  4-2-7 16227 2R(5,5,5,2,2.2)(n) = 3HZ1 (Tn)
Gs6,98,2 4-2-7 272 2R(333,-1,-1,—1)(n) = 3HZ7(8n)
Gs6,14,2 4.2.7 2.7 2R(11,51,1,1)(n) = 3H@7(56n)
G28)19672 2 . 2 . 7 (2 . 7)2 2R(315751,47,21,2) (TL) = 3H(2’7) (4TL)
Gas 28,2 2.2.7 22.7 2R(2.2,3.2.2.2)(n) = 3H*7)(28n)
G72,5184,2 4.2-3° 16-(2-3%) Rs.11,20,4,8,8) (n) = HZ9(n)
Gr2,162,2 4-2-32 2-(3%)? R(1,7,7.51,1)(n) = H®9(8n)
G36,324,2 2-2-3? (2-3?) R(2,5,9,0,0,—2)(n) = HZ9(4n)
Gss,7744,2 4-2-11 16-(2-11) R(s,11,24,0,—8,0)(n) = H®1 (p)
Gigs,704,2 4-2-11 16-2%-11 R1,8,24,-8,0,0)(n) = HZM (11n)
Ggg,242,2 4-2-11 2112 R(1,3,22,0,0,—1)(n) = HZ1) (8n)
Ggs,22,2 4-2-11 2-11 R(1,2,3,0,—1,0)(n) = HZ1(88n)
G44)48472 2-2-11 (2 . 11)2 R(2 6,11,0,0,—2) (TL) H(2 11)(4”)
Gaa,44,2 2-2-11 2211 R(1,2,6,—2,0,0)(n) = H®(44n)
G120,144002 4-2-3-5  16-(2-3-5)*  2R(11,11,35,—10,—10,2) (1) = H®19) (n)
Gi2048002 4-2-3-5  16-22-3-5%  2R(g1217,48,5)(n) = H®1%)(3n)
Giaogssoz  4:2-3:5  16:22:32.5 2Ry 7312,4.4)(n) = HZ (5n)
G120,960.2 4.2-3-5 16-22-3-5 2R(5,5,12,—4,—4,—2)(n) = H®1%)(15n)
G120.450.2 4-2-3-5 2-(3-5)? 2R (377,433 (n) = HZ1) (8n)
G502  4:2:3-5 235 2R(1,5,9,-5,1,0)(n) = H*')(24n)



G120,90,2
G120,30,2
G60,900,2
G60,300,2
Ge0,180,2
G60,60,2
G'184,33856,2
G18a,1472,2
G'184,1058,2
G184,46,2
Go2,2116,2
Go2,92,2
G12,144,3
G12,48,3
G12,9,3
G12,3,3
G24,576,3
G24,192,3
G24,18,3
G463
G12,36,3
G12,12,3
G18,2304,3
Gas,768,3
G60,3600,3
G60,1200,3
Gé60,720,3
Ge0,240,3
Ge0,225,3
Geo,75,3
G60,45,3
Ge0,15,3
Go6,9216,3
Go6,3072,3
G132,17424,3
G'132,5808,3
G132,1584,3
G132,528,3
G'132,1089,3
G132,363,3
G132,99,3
G132,33,3
G20,400,5
G20,80,5
G20,25,5
G20,5,5

[\]

[\]
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<11
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2.32.5
2.3-5
(2-3-5)2
22.3.52
22.32.5
22.3.5

16 - (2-23)2

16-22.23
2.232
2-23
(2-23)2
22.23
16 - 32
16-3

32

3
16- (2 3)2
16-22-3
2. 32
2-3
(2-3)2
22.3

16- (22 - 3)2

16-22.3
16- (3-5)2
16-3- 52
16-32.5
16-3-5
(3-5)°
3.52
32.5

3.5

16- (2 - 3)2

6-(2%)?2-3
16(-3-11)3
16-3-112
16-32-11
16-3-11
(3-11)2
3.112
32.11
3.11

16 - 52
16-5

52

5

2R(23,5—3,2,0)(n) = H*19)(40n)
2R(13,3,1,1,1)(n) = H®¥)(120n)
2R(5,6,9,-6,0,0)(n) = H®1) (4n)
2R(2,3.15,0,0,—2)(n) = H*19) (12n)
2R(1,6,9,-6,0,0) (1) = H@12)(20n)
2R(2,3,3,0,0,—2)(n) = H®¥)(60n)
2R(11,19,51,~14,—6,—10)(n) = H
2R(5,8,12,—s,—4,0)(n) = H*?3)(23n)
2R (j5,7,10,2,4,5)(n) = H*?)(8n)
2R(1,3,53,1,1)(n) = H?23)(184n)
2R(5,10,14,10,2,4)(n) = H*23) (4n)
2R(235—2,0,—2)(n) = H*?)(92n)
R(3,4.4,—4,0,0)(n) = 6H3D(n)
R(1,4,4,-4,0,0)(n) = 6HGD (3n)

(n) = 1)

(n) = )

~

R1,1,3,00,-1)(n
n) = 6HG (12n)
Ri7,72,4,0)(n) = 2H® (n)
R1,4,5,—4,—1,0)(n) = 2H32) (3n)
R(2,2,2,1,2,2)( n) = 2H(3’2)(8n)

R1,1,1,00,-1)

)\
Rij2,-1,-1,0)(n) =2H® (24n)
R(1,3,300,0) (n) = 2H®? (4n)
R(1,1,3,0,0,0)(n) = 2H2)(
R(7.7,15,—6,—6,—2)(n) = H®Y (n)
Rias13,2.4,4)(n) = H39(3n)

R(1.15,16,0,—4,0)(n) = HB)(n)
R(5,88,—4,00)(n) = H(g’ (3”)
R(3,88—4,0,0)(n) = %) (5n)
R(1,4,16,-4,0,0)(n) = H(3’5)(15n)
R1,4,15,00,-1)(n) = H(3 5)(411)
R2,2.5,0,0,-1)(n) = ) (12n)
R(2,2,300,-1)(n) = 3:5)(20n)
R(1,1,4,0,-1,0(n) = H 5)(60n)
2R(7,15,28,—12,—4,—¢)(n) = HG®)(n)

2R(5,13,13,—6,—2,—2)(n) = H®®(3n)
2R(7,19,39,—18,—6,—2)(1) = HG (p)
2R(g,13,17,2,4,8)(n) = H®1(3n)
2R(5.5,17,—2,—2,—2)(n) = HG 1 (11n)
2R(4,7.7,—6,0,—4y(n) = H31(33n)
2R(6,7,10,7,3,6)(n) = H31 (4n)

2R 7751,1)(n) = HED(12n)
2R(2,3,5,3,—1,0)(n) = H® (44n)
2R 25,1,1,1)(n) = H®1D(132n)
R(s 7,7,—6,—2, 2)( n) = 3H(5’1)(")
R(3,3,3,2,2,2)() 3HG (5n)
R, -1,-1,-1)(n) = 3H®V (4n)
R11,2,1,1,1)(n) = 3H®1 (20n)

(2,23) n)

47
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G40,1600,5
G40,320,5
G10,50,5
G10,25,5
G20,100,5
G20,20,5
G'80,6400,5
G80,1280,5
Gag,784,7
Gag 12,7
Gag 19,7
Gasg 7,7
G84,7056,7
Gga,2352,7
G'84,1008,7
G'84,336,7
Gsa,441,7
Ggaar,7
Gsa,63,7
Gga21,7
G32,1024,2
G'160,25600,2
G160,5120,2
G52,2704,13
G52,208,13
G52,169,13
G52,13,13
G'120,3600,30
G'120,1200,30
G'120,720,30
G'120,240,30
G'120,450,30
G'120,150,30
G'120,90,30
G'120,30,30
G'60,900,30
G'60,300,30
G60,180,30
G60,60,30
G168,28224,42
G'168,9408,42
G168,4032,42
G168,1344,42
G168,882,42
G168,294,42
G168,126,42
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2
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16 -
16 -
16 -
16 -

72
7

16 -
16 -
16 -
16 -
(3-

3-
32
3-

16 -
16 -
16 -
16 -
16 -

(2-5)?
22.5

5

(3-7)?
372
32.7
37
7)2

72

-7

7

(29)?
(23 . 5)2
(2%)%-5
132

13

132

13

16 -
16 -
16 -
16 -
+(3-5)
3.5
.32.5
.35

+(3-5)
3.5
.32.5

NGNS I O

4.

16 -
16 -

16

16 -

(2-3-5)2
22.3. 52
22.32.5
22.3.5

3.5
(2-3-7)2
22.3.72
.92.32.7
22.3.7

2.(3-7)2

2.
2.

372
32.7

R(7712,—4,—4,—6)(n) = 2H 2 (n)
R(3.3,11,-2,—2,—2)(n) = 2H®(20n)
R(1,4,4,3,,1)(n) = 2H®2)(8n)
R(1,2,2,21,1)(n) = 2H®2) (40n)
R(2.3.5.00,—2)(n) = 2H®? (4n)
R(1,2,3,-2,0,0)(n) = 2H 2 (20n)

2R (7,12,23,12,2,4)(n) = H®4 (n)

2R (3,11,11,6,2,2)(n) = H®Y (5n)
Ria.8,0,—a,0)(n) = 2HTD (n)

R(1,2,7,00,-1)(n
R(1,1,2,0,—1,0)(n
2R(5,11,23,2,8,4)(n) =
2R(5,12 12,74,74,—4)@) = H(7’3)(3")

n
) (
R1,4,8,—4,0,0)(n) = 2H ™D (7n)
) = (
) = (

2R28,8,—5,-1,-1)(n) =
2R (335, —2,—2,-1)(n) = H7®(12n)
2R(2,2,5,2,2,1)(n) = H(3)(28n)
2R(123,-1,-1,0)(n) = HT?(84n)
R(311,11,-10,—2,—2)(n) = 3H(8 D (n)
2R(11,16,44,16,4,8)(n) = %) (n)

2R (7,15,15,—2,—6,—6) (1) = H(S 5) (5n)
R78.15,8,24)(n) = HI3D(n)
R(3.37,2,2,2)(n) = HI3D(13n)
R(355-3,-1,-1y(n) = H3:D (4n)
R(122,-1,0-1)(n) = H13:D(52n)
2R 3,40,40,—40,0,0) (1) = 3H BV (n)
2R(1,40,40,—40,0,0) (1) = 3H %) (3n)
2R(3,8,15,0,0,—8)(n) = 3HG0D (5n)
2R (58,8,—8,0,0)(n) = 3HE%V (15n)
2R (5,6,6,0,0,—5)(n) = 3H®"D (8n)
2R(25,5,—5,0,0)(n) = 3HG%D) (24n)
2R(1,1,30,0,0,—1)(n) = 3HG%D (40n)
2R1,1,10,0,0,—1)(n) = 3HG0D (120n)
2R (3,10,10,—10,0,0)(n) = 3HG0D (4n)
2R(1,10,10,—10,0,0)(n) = 3H G0 (12n)
2R (2,2.15,0,0,—2)(n) = 3HG%D(20n)
2R (2,2,5,0,0,—2)(n) = 3HB%D(60n)
R(4,43,43,2,4,4)(n) = H"2D (n)
R(12,17,17,6,12,12)() H®2D(3n)
R(12,12,13,—12,~12,0)(n) = H“2(7n)
Ra,4,03,—4,—4,0)(n) = H¥21 (21n)
R(2,11,11,1,2,2)(n) = H(42’1)(8”)
R(5,5,5,—3,—3,—4)(n) = H(42’1)(24n)
R(3.35-3,—3,0)(n) = H*2D(56n)
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G168,42,42 4-2-3-7 2-3-7 Rii1,-1,-1,0(n) = H“21)(168n)
Gsairea,02  2-2:3-7  (2-3-7)3 R(1,21,21,0,0,0)(n) = H®2:Y (4n)
Ga,588,42 2:2-3-7 2%2.3.7? R(3,7,7,0,0,0)(n) = H#2D(12n)
Gga,252,42 2:2-3-7 22.32.7 R(3,3,7,0,0,0)(n) = H“2:1)(28n)
Gga,84,42 2:2-3-7 2%2.3.7 R(1,1,21,0,0,0(n) = HU2D(84n)
Gaso,rsa00,70 4:2:5-7  16-(2:5-7)2  2R(s3572.0,—8,0)(n) = HT (n)
Gaso,15680,70 4:2:5-7  16:22-5-72  2R(70404 _8,0,0)(n) = HTV (5n)
Gasoa12000 4-2-5-7  16-22-52-7  2R50404 80,0 (n) = HTD(Tn)
Goso24070 4-2-5-7 16-22-5.7 2R(1,8,72,~8,0,0)(n) = H(70’1)(35”)
Gasoas0,0 4:2-5-7  2-(5-7)2 2R1,9,70,00-1)(n) = H (70.1) (8n)
Gasoa00,70  4-2-5-7 2572 2R(3.3,14,0,0,—1)(n) = HT) (40n)
Gasoss0,70  4-2-5-7  2.5%.7 2R(3.3,10,0,0,—1)(n) = HT%1) (56n)
G280,70,70 4-2.5-7 2.5-7 2R(1,2,0,0,-1,0)(n) = H(m 1) (280n)
Gia04000,70 2:2-5-7 (2-5-7)2 2R(2,18,35,0,0,—2)(n) = HV (4n)
G'140,980,70 2:2:5-7 2%2.5.7? 2R 6,6,7,0,0,—2)(n) = H01(20n)
Giao,70070 2-2-5-7  22.5%.7 2R (5,6,6,—2,0,0)(n) = HTY (28n)
Gia014070 2:2-5-7 22.5.7 2R(1,2,18,-2,0,0)(n) = H(D(140n)
Gsi2,97344,7s 4-2-3-13 16-(2-3-13)% 2Ryg1984,—12,—12,—14)(n) = HTV (n)
Gs12,30048,7s 4-2-3-13 16-22-3-132  2Rg 95 414,88)(n) = H™Y(3n)
Gsi2,7as878  4-2-3-13 16-22-32-13 2Ry 77904.4)(n) = H(™1) (13n)
Gsi2pa0678  4:2-3-13 16-22-3-13  2Rs5 558 _4,_4,—2)(n ) H{8D(39n)
Gs12,30a2,78  4-2-3-13 2-(3-13)? 2R317,17,8,3,3)(n) = H(78 D(8n)
Gsi2101478 4-2-3-13 2-3-132 2Ry 13,23, -13,-1,0)(n) = HT81) (24n)
Ga123478 4-2-3-13 2-32.13 2Ry 311, -3,—2,0)(n) = H(™V(104n)
G319.78.78 4.2.3-13 2-3%2.132 2Ry 55.4.1,1)(n) = HT1 (312n)
Giseosa,7s  2-2-3-13 (2-3-13)2 2R 6,13,21,0,—6,0)(n) = H™Y (4n)
Gis6,202878 2-2-3-13 2%2.3.13? 2R (2,7.39.0,0,—2)(n) = H™V(12n)
Gisea6s78  2-2-3-13 22.32.13 2R(1,6.21,—6,0,0)(n) = H7 (52n)
G156,156,78 2-2-3-13 22 -3-13 2R(213317701,270)(7’L) = H (78, 1)(1567’L)
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