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MORDELL-TORNHEIM TYPE SERIES OVER LATTICE

PARALLELOGRAMS BY TELESCOPIC SUMMATION

NIKITA KALININ

Abstract. We prove a Mordell–Tornheim type formula for a sum over lattice
vectors. We obtain yet another simple proof of Zagier’s formula for a sum

D1,1,1 using the same method.
Keywords: ζ function, Mordell-Tornheim series. AMS classification: 11E16,

11F67, 11M35

1. Let A = {x, y ∈ Z
2
≥0, det(x y) = 1}, i.e., the set of all lattice parallelograms

in the first quadrant of the oriented area one.

Theorem 1.

4
∑

A

1

|x|2 · |y|2 · |x+ y|2
= π.

Proof. Let us consider F (x, y) = x·y
|x2|·|y|2 . Then,

(1) F (x, y)− F (x+ y, y)− F (x, x+ y) =
−2 det(x y)2

|x|2 · |y|2 · |x+ y|2
.

Let An = {x ∈ Z
2
≥0 ∩ [0, n]2}. We telescope

F (x, y)− F (x+ y, y)− F (x, x+ y)

over {x, y ∈ An, det(x y) = 1} obtaining the sum of −F (x + y, y)− F (x, x + y)
over Bn = {x, y ∈ An, det(x y) = 1, x+ y /∈ An}.

The latter sum tends to −π/2 since the area of the parallelogram spanned
by x, y is 1, so x·y

|x2|·|y|2 is the angle between x and y up to second order terms, and

the set of angles at the origin of the parallelograms in Bn partition the angle π/2
of the first quadrant.

�

The above formula is inspired by the formulae like [5] for m,n ∈ Z>0

1

mn
=

1

(m+ n)n
+

1

m(m+ n)

G(m,n)−G(m+ n, n)−G(m,m+ n) =
2

m2n2
, where
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G(m,n) =
2

m3n
+

1

m2n2
+

2

mn3
.

2. The motivation to study such formulae for vectors (and not for numbers)
is to get relations for the lattice sums that are similar to the relations for the
Mordell-Tornheim series [9], [5]. For k, n,m ∈ Z≥0 define

(k, n,m) =
∑

(b,d)=1,b,d>0

1

bkdn(b+ d)m
.

For example,

(2, 2, 2) =
∑

(b,d)=1,b,d>0

1

b2d2(b + d)2
= 1/3.

Then (k, n,m) = (k− 1, n,m+1)+ (k, n− 1,m+1) for k, n ≥ 1 follows from
1
bd

= 1
b(b+d) +

1
(b+d)d .

Unfortunately, this is no longer true for vectors, as we have

1

|x||y|
−

1

|x+ y||y|
−

1

|x||x + y|
=

|x+ y| − |x| − |y|

|x||y||x+ y|
.

However, telescoping as in Theorem 1 one gets

Theorem 2.
∑

A

|x|+ |y| − |x+ y|

|x||y||x + y|
= π/2− 1.

Also it is known [7] that
∑

A

(|x|+ |y| − |x+ y|) = 2 and
∑

A

(|x| + |y| − |x+ y|)2 = 2− π/2.

3. One can evaluate the following sum by the same method. Let Bn = {x ∈
Z, y ∈ Z≥0, det(x y) = n},

Theorem 3.
∑

(x,y)∈Bn

n2

|x|2 · |y|2 · |x+ y|2
=

1

2

π

n
· σ1(n).

Proof. We use (1) and follow the proof of Theorem 1. Note that there are σ1(n)
(the sum of divisors of n) non-equivalent sublattices of Z2 of determinant n, each
on them is generated by two vectors

(
n

d
, 0), (k, d), 0 ≤ k < d

where d is a divisor of n. For a fixed lattice of this type the vectors (k+j n
d
, d), j ∈ Z

partition the angle π of the upper halfplane (c.f. with π/2 in Theorem 1). Then,
x·y

|x2|·|y|2 ≈ 1
n
· (the angle between x and y), finally, 1

2 comes from −2 in Eq (1). �
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Using our methods, one can give an alternative proof of the following Zagier’s
formula. Let

D1,1,1(z) =
∑′

ω1+ω2+ω3=0

y3

|ω1ω2ω3|2
, ωk ∈ Zz + Z, z = x+ i · y,

and
∑′

is the sum over all non-infinite summands (in this particular case it means

that we remove from the summation all terms where one of ωi is 0).
Then, as it is proven in [2, 1]

(2) D1,1,1(z) = 2E(z, 3) + π3ζ(3),

where E(z, s) = 1
2

∑′

m,n∈Z

ys

|mz+n|2s , a non-holomorphic Eisenstein series.

Look at D1,1,1(i, 3) =
∑′

ω1+ω2+ω3=0

13

|ω1ω2ω3|2
, ωk ∈ Zi + Z.

Among such triples of vectors, there are collinear triples. If ω1, ω2, ω3 are
collinear, let ω be the primitive vector in the direction of two of them who point
in the same direction. Then the opposite vector can be ω1, ω2, ω3 (three choices)
and

∑

b,d∈Z>0

1
b2d2(b+d)2 = ζ(6)/3. So the sum over all such triples is equal to

(

1
ζ(6)

∑′

ω∈Z2

1
|ω|6

)

· 3 · ζ(6)
3 = 2E(i, 3) as the first term in Eq (2).

For non-collinear triples, up to central symmetry, we may assume that two
(say, ω1, ω2) of the vectors ωi belong to Z × Z≥0 \ {Z<0 × {0}}. Then, we may
assume that the parallelogram generated by ω1, ω2 has a positive signed area. All
these choices give a factor of 12.

Thus

π3ζ(3) = D1,1,1(i, 3)− 2E(i, 3) = 12
∑

n∈Z>0

∑

(x,y)∈Bn

1

|x|2 · |y|2 · |x+ y|2
=

= 12
∑

n∈Z>0

1

2

π

n3
· σ1(n) = π · 6ζ(3)ζ(2) = π3ζ(3)

since
∑ σ1(n)

ns = ζ(s)ζ(s − 1) and ζ(2) = π2/6. Thus we reproved Zagier’s
formula (2) for z = i, s = 3.

4. Similarly we get

∑′

ω1+ω2+ω3=0, ωk∈Zi+Z

| det(ω1 ω2)|
−s

|ω1ω2ω3|2
= 6π · ζ(s+ 3)ζ(s+ 2),

By changing the lattice to Z · z + Z for z = x+ i · y we obtain
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Theorem 4.

∑′

ω1+ω2+ω3=0, ωk∈Zz+Z

det(ω1 ω2)|
−s

|ω1ω2ω3|2
=

6π

y3
· ζ(s+ 3)ζ(s+ 2),

As a corollary of this theorem, by substituting s = 0, we obtain (2) for
arbitrary values of z.

5. Thanks to users of mathoverflow, I learned that Theorem 1 was used as
an intermediate step by Adolf Hurwitz to present class number h(d) as the sum
of an infinite series; see his essentially ignored article [6] (§4 equation 8), back
in 1905, see also a historical account in [3] (vol. III, p. 167). Hurwits’s proof
works for any positively defined binary quadratic form (our case corresponds to
q(x) = |x|2, x ∈ Z

2) and consists of using a rational parametrization of a quadric
curve to cut its interior into triangles corresponding to consecutive Farey fractions
(r/s, r + r′/s+ s′, r′/s′), and then the area of this triangle is proportional to

(q(r, s) · q(r′, s′) · q(r + r′, s+ s′))−2.

A recent development of Hurwitz’s type of formulae [4, 8] is due to the study of
Conway’s topographs.

I learned this method of telescoping from Fedor Nazarov. I am grateful to
the University of Geneva, where this note was written.
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