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Abstract. Adinkras are highly structured graphs developed to study 1-dimensional supersymmetry alge-

bras. A cyclic ordering of the edge colors of an Adinkra, or rainbow, determines a Riemann surface and a
height function on the vertices of the Adinkra determines a divisor on this surface. We study the induced

map from height functions to divisors on the Jacobian of the Riemann surface. In the first nontrivial case,

a 5-dimensional hypercube corresponding to a Jacobian given by a product of 5 elliptic curves each with
j-invariant 2048, we develop and characterize a purely combinatorial algorithm to compute height function

images. We show that when restricted to a single elliptic curve, every height function is a multiple of a

specified generating divisor, and raising and lowering vertices corresponds to adding or subtracting this
generator. We also give strict bounds on the coefficients of this generator that appear in the collection of

all divisors of height functions.

Contents

1. Introduction 1
2. Combinatorics 2
2.1. Adinkras and chromotopologies 2
2.2. Counting and classifying Adinkra heights 4
2.3. Discrete Morse functions and Morse divisors 5
2.4. The combinatorics of color splitting 7
3. Geometrization and the Jacobian map 8
3.1. Geometrization for N = 5 8
3.2. Vertex and face center images 12
3.3. First Jacobian divisor examples 16
3.4. Fields of definition 19
4. Height functions and divisors 21

4.1. Equivalence classes of heights in Γ̃N 21
4.2. Heights and Morse Divisors on Jac(X5

alg) 24
Acknowledgements 28
References 28

1. Introduction

Adinkras are highly structured graphs whose combinatorial structure encapsulates the data of 1-dimensional
supersymmetry algebras. Initially described by the physicists M. Faux and S.J. Gates, Jr. (see [FG05]),
Adinkras have also drawn attention for their intriguing combinatorial properties and their relationship to
arithmetic geometry. In the present work, we examine the connection between the height function of an
Adinkra and a divisor on the Jacobian of an associated Riemann surface. We may view the construction as
an algebraic thread that aids us in navigating a combinatorial labyrinth of potential height functions. Al-
ternatively, we may see ourselves as number-theoretic adventurers, using the combinatorial data to examine
the arithmetic properties of an intriguing high-genus curve.

Let us describe our motivation and results in more detail. Recall that an Adinkra consists of an N -
regular bipartite graph equipped with an N -coloring of its edges and satisfying certain properties, called
a chromotopology, together with two additional structures, the aforementioned height function and an odd
dashing. (For a more detailed discussion, see §2.1.) The authors of [DFGHILM11] obtained a fundamental
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classification result, showing that every N -colored Adinkra chromotopology can be obtained as a quotient
of the hypercube HN by a doubly even code, where HN denotes the hypercube with 2N vertices in {0, 1}N
and vertices v and v′ are adjacent if v and v′ differ in exactly one coordinate. Thus, understanding the
possible height functions and odd dashings for hypercube Adinkras is of key importance for mapping Adinkra
geography.

The number of possible height functions for hypercube Adinkras grows rapidly. Though for N = 1 there
are only two possible heights for H1, depending on whether a black or white vertex is placed on top, for
N = 2, 3, 4, 5 there are 6, 38, 990, and 395094 possible height functions, respectively, as computed in [Zha14].
Finding methods to characterize or classify height functions is thus of great interest. We count the N = 6
hypercube Adinkra height functions in Section 2.2, using an observation of Steven Charlton, before turning
our attention back to the structure of N = 5 hypercube height functions. The enumeration and structure of
heights for quotient Adinkras is still to a great extent an open problem.

The authors of [DIKLM15] constructed a Riemann surface associated to a rainbow, or cyclic order on edge
colors. In the subsequent work [DIKM18], they described a map from height functions to divisors on the
Jacobian of the Riemann surface. In the case of hypercube Adinkras HN , for N = 1, 2 and 3, the group of
divisors on the appropriate Jacobian is trivial; for N = 4, though the group is nontrivial, the image of the
map is the identity element. For N = 5, the authors of [DIKM18] showed that the image of the map from
height functions to Jacobian divisors contains at least one non-identity divisor. As there are 395094 distinct
height functions, understanding the map in more detail is of pressing concern.

We characterize the map from height functions on the N = 5 hypercube Adinkra H5 to Jacobian divisors
in three ways. Geometrically, we give an explicit map from the Riemann surface X5

alg to a product of

elliptic curves E1 × · · · × E5, which form an isogeneous decomposition of Jac(X5
alg). The elliptic curves

have j-invariant 2048, and thus are isogenous over C. Working arithmetically, for each curve Ek we identify
a number field Kk where the height function image is defined (see Proposition 3.8) and characterize the
subgroup of Mordell-Weil generated by the image.

We show that the height function map can be computed via a purely combinatorial algorithm. This
algorithm uses the notion of j-color splittings and total-color-splittings, which use the rainbow to divide each
of the sets of black and white vertices into subsets labeled + and − (see Definitions 2.7 and 2.9). We first
demonstrate that the images of vertices and face centers of H5 in the Mordell-Weil group MW (Ek) over
Kk lie in a group isomorphic to Z× Z/(4)× Z/(2); we give a complete description of the generators of this
group and the images of the points.

Using the relationship between height functions and divisors, we obtain our Main Theorem:

Main Theorem. Let ν : X5
alg → E1×· · ·×E5 be the map that takes a height function on H5 to the product of

the elliptic curves Ek (the isogeneous decomposition of the Jacobian of X5
alg), and let νk(h) be the projection

of ν to Ek. Let h1 be the height function on H5 obtained by lowering the top vertex of the fully extended
height function. Then

{νk(h) | h a height function on H5} = {aνk(h1) | a ∈ Z,−8 ≤ a ≤ 8}.
Furthermore, if h and h′ differ by lowering (or raising) a single vertex, we may write νk(h) = aνk(h1) and
νk(h

′) = a′νk(h1) with |a− a′| = 1.

Note that lowering a vertex in a particular height may correspond to adding the generator in one elliptic
curve but subtracting the generator in a different elliptic curve. The details of this sign choice are determined
by the total-color-splitting associated to the rainbow.

The plan of the paper is as follows. We review the combinatorics of Adinkras and define color splitting
in § 2. In § 3, we examine the Riemann surface associated to the N = 5 hypercube Adinkra H5 together
with its Jacobian and characterize the images of the Adinkra’s vertices and face centers in the elliptic curve
components of the Jacobian. We summarize this description in Theorem 3.7. We conclude this section by
discussing appropriate fields of definition. In § 4, we use Theorem 3.7 to explore the structure of height
functions and the associated divisors and prove our Main Theorem.

2. Combinatorics

2.1. Adinkras and chromotopologies. An Adinkra topology is an N -regular bipartite graph A. We call
the two vertex sets in the bipartition the black and white vertices, respectively. A chromotopology is an
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Adinkra topology A equipped with an n-coloring of the edges of A, such that for any two distinct colors j
and k, {e ∈ E(A) | color(e) ∈ {j, k}} is comprised of disjoint 4-cycles. As we note in § 1, the authors of
[DFGHILM11] showed that any chromotopology can be obtained as a quotient of a hypercube by a doubly
even code.

A height function on a chromotopology A is a map h : V (A) → Z≥0, such that |h(v1) − h(v2)| = 1 if
(v1, v2) ∈ E(A). A ranked chromotopology is a chromotopology A equipped with such a height function.

A dashing function is a map d : E(A) → Z/(2), such that
∑

e∈C d(e) = 1 ∈ Z/(2) for any 4-cycle in
A. That is, under d, some edges of A are dashed and some are not, and there must be an odd number of
dashings in any 4-cycle in the graph. A dashed chromotopology is a chromotopology A equipped with such
a dashing function.

An Adinkra is a dashed, ranked chromotopology. In Figure 1 an N = 3 Adinkra is shown. This is an exam-
ple of a fully extended Adinkra; that is, max{|h(v)−h(v′)| : v, v′ ∈ V (G)} is maximal among all height func-
tions for the given chromotopology. A fully extended N = 5 Adinkra is shown on the right in Figure 2. The
image on the left is called a valise Adinkra for the chromotopology; that is, max{|h(v)− h(v′)| : v, v′ ∈ V (G)}
is minimal among all height functions for the given chromotopology.

h = 3

h = 2

h = 1

h = 0

Figure 1. An N = 3 Adinkra A. The dashing function d on A satisfies d(e) = 1 if and
only if the edge is dashed in the visualization above. The height function values correspond
to the y-coordinates of the vertices.

Remark 2.1. An equivalent way to define an Adinkral height, which requires less data in some sense, is
the following. It is natural to think of the Adinkras as ‘hanging gardens’ in which certain vertices (which
we will call ‘pinned’) are secured at certain heights, and all other vertices ‘fall’ naturally according to their
adjacencies with the pinned vertices. For example, in the case of the fully extended Adinkras in Figures
1 and 2, only one vertex is a pinned vertex, secured at the topmost height, and all other vertices’ heights
are determined by their distance from that vertex. In the valise Adinkra, all 16 white vertices are pinned,
secured at the same height, and thus all black vertices fall one step lower.
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N = 5 Valise height N = 5 Fully extended height

Figure 2. Two extremal examples of heights on H5, the valise height and the fully extended height.

2.2. Counting and classifying Adinkra heights. As mentioned in the introduction, we are interested
in characterizing the set of images of heights in the Jacobian of the algebraization of the Adinkra. First,
we consider characterizing the heights themselves. In his thesis, Zhang [Zha13] presented an algorithm for
counting heights on H5 inductively. The basic idea of this algorithm is as follows.

• Beginning with the N = 1 hypercube H1, list all possible heights.
• Construct heights on HN+1 by taking all possible pairs of heights on HN , shifting one of them up

or down one unit, and glueing them together.
• Check to see if the new height has already been counted.

This is a computationally costly algorithm. For N = 1 there are two heights (either the black or the white
vertex on top). For N = 2, 3, 4, 5 there are 6, 38, 990, 395094 heights, respectively.

An alternative way to obtain these numbers comes from the relationship between heights on the N -
hypercube HN and 3-colorings of HN (Thanks to S. Charlton for pointing this out to us).

Proposition 2.2. The number of 3-colorings of HN is three times the number of height functions on HN .

To make this relationship explicit, note that any height function on HN corresponds to a 3-coloring by
choosing a cyclic ordering, say a, b, c, a on 3 colors. Once a color is assigned to any vertex, the colors of
adjacent vertices are determined by following the ordering (i.e., if v is adjacent to v′, h(v′) = h(v) + 1, and
c(v) = a, then c(v′) = b). A single height corresponds to 6 = |S3| different colorings (since the colors can
be permuted to obtain new colorings). However, any of these colorings can also be obtained by the dual
height function h∗ (obtained, for example, by setting h∗(v) = m−h(v) for m = maxv h(v)) using the reverse
ordering. Thus, there are three 3-colorings for every one height function. In OEIS [Sat23], the sequence of
the number of 3-colorings of HN has been computed up to N = 6.

N 3-colorings of HN heights of H5

1 6 2
2 18 6
3 114 38
4 2970 990
5 1,185,282 395,094
6 100,301,050,602 33,433,683,534

Table 2.1. The number of 3-colorings and heights of HN for N ≤ 6
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Some further work along these lines appeared in [Gal], where it was shown that for large N , the number

of heights on H5 is O(22
N−1

) and the proportion of these heights with total spread equal to 3, 4, 5 is roughly
1
e , 2

√
e−1
e , 1− 2

√
e−1
e , respectively. These results are relevant even for small N as seen in Table 2.1 and Figure

9.
Heights onH5 can be grouped into equivalence classes using restricted graph isomorphisms in the following

way.

Definition 2.3. We say that two heights h and h′ on an Adinkra A are combinatorially equivalent, denoted
h∼c h

′ or h ∈ [h′]c, if there exists a graph isomorphism g : HN → HN such that h(v) = h′(g(v)) for all
v ∈ V (A).

Two interesting and, in some sense, extremal heights on a hypercube Adinkra are the fully extended
height and the valise height, as seen in Figure 2. It is straightforward to see that there are 2N heights in
the fully extended height equivalence class on HN , and 2 heights in that of the valise. Describing all of the
equivalence classes of heights on HN under ∼c is difficult and, to our knowledge, open for n ≥ 5. Such a
description would be very helpful for studying Adinkras.

The height functions on the N -hypercube HN can be placed in a directed graph ΓN in the following way.
Given height functions h and h′, we say that h → h′ if for some vertex v ∈ V (HN ), h′|V (HN )\{v} = h and
h′(v) = h(v)− 2 (in this case v is a local max in h and a local min in h′). In other words, adjacency in ΓN is

given by vertex lowering. Note also that the “reduced” digraph Γ̃N of height equivalence classes [h]c (where,
once again, adjacency is given by vertex-lowering) is well-defined. The details of the number and digraph

structure of these equivalence classes is a nontrivial problem. In Section 4, we describe Γ̃N , for N = 1, 2, 3, 4,

and discuss Γ̃5.

2.3. Discrete Morse functions and Morse divisors. In Section 3 we will see how to embed an Adinkra
A into an certain algebraic curve XN

alg in PN . We are interested in how information about Morse divisors

on XN
alg and the Jacobian of XN

alg, associated with height functions on A, can help us understand Adinkras,
and by extension, 1-dimensional supersymmetry algebras. In fact, finding the image of a height as a divisor
of Jac(Xalg)

N , is a purely combinatorial process, which we will explain now. To do so, we will need to use
the notion of discrete Morse functions, following [Ban70, DIKM18].

A discrete Morse function f on a triangular mesh M is a real-valued function defined on the vertices
of M , such that adjacent vertices are mapped to distinct values. We convert our hypercube Adinkra HN

into a triangular mesh H̃5 in the following way. The 2-cells in the mesh are constructed from 4-cycles
formed by consecutive colors in the rainbow. Each of these 4-cycles C in the Adinkra is either a diamond (if
|{h(v) | v ∈ C}| = 3) or a bow tie (if |{h(v) | v ∈ C}| = 2)).

Figure 3. A triangulated diamond 4-cycle and bow-tie 4-cycle

In the case of a diamond, we triangulate by adding an edge that connects the maximum vertex and
minimum vertex in the cycle. For each bow-tie cycle, we add a new vertex adjacent to all 4 vertices in the
cycle, with height equal to the average of the heights of these vertices. (See Figure 3). In such a case, let
fj,j+1(v) denote the face center in the (j, j + 1)-colored 4-cycle adjacent to v.

Definition 2.4. Given a discrete Morse function f , a discrete Morse divisor D is a formal sum D =
∑

v κvv
of the vertices v in the triangular mesh, with coefficients κv determined in the following way. For each v, we
consider the set of all vertices uj adjacent to v via an edge of color j, and all edges between these vertices.
We start at any such uj and travel along the edges to uj+1 (in ‘rainbow order’), counting the number λv

of times that the value f(uj) − f(u) changes sign (note that ℓv is always even). For v a local minimum or
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maximum of f , λv = 0 and κv = −1. If ℓv = 2, v is called a regular point and κv = 0. If λv = 2 + 2µv for
µv > 0, then v is called a saddle point and κv = µv.

Below, we will use this notion to compute discrete Morse divisors for four distinct heights on H5. Three
of these heights (hv, hfe, and h1) were partially treated in [DIKM18]. We give complete computations in
these cases, and present a new example as well.

Example 2.5. (a) Let hv be the valise height on H5, as shown on the left in Figure 2. For this height
every vertex is a local max or min, and every face center fj,j+1(v) is a bow-tie, and thus, a saddle point with
multiplicity µv = 1. The associated discrete Morse divisor is

Dv =
∑

f face center

f −
∑

v vertex

v,

(b) Let hfe be the fully extended height on H5, as shown on the right in Figure 2. Note that in this case
all face centers of the adinkra are diamonds, thus no face centers appear in Dfe. Without loss of generality,
we may assume that (1, 1, 1, 1, 1) is the single pinned vertex of H5. Then, the height of any black or white
vertex can be taken to be the sum of the entries of its representation in H5. It is clear that we have only
one maximum, (1, 1, 1, 1, 1), and one minimum, (0, 0, 0, 0, 0). To find saddle points, consider the diagrams in
Figure 4; these demonstrate the two ways (modulo rotating by 2π/5) in which a saddle point can occur; in
both cases the saddle point is the central vertex, which has height h0.

h0

h0 − 1

h0 + 1h0 + 1

h0 − 1 h0 + 1

i

i + 1

i + 2i + 3

i + 4
h0

h0 + 1

h0 − 1h0 − 1

h0 + 1 h0 − 1

i

i + 1

i + 2i + 3

i + 4

Figure 4. Possible saddle point configurations inX5
alg. Vertices are labeled by their heights,

relative to the height h0 of the central vertex. Edges are labeled by their colors.

Recall that adjacency (in H5) along an edge of color i corresponds to adding 1 (mod 2) to coordinate k.
Thus, saddle points must look like (1, 0, 1, 0, 1) or (0, 1, 0, 1, 0) (modulo cyclic permutations of the coordi-
nates). Then, denoting by Dfe the discrete Morse divisor associated with the height hfe,

Dfe =
∑
v∈V

v − (1, 1, 1, 1, 1)− (0, 0, 0, 0, 0),

where

V =

{
(1, 0, 1, 0, 1), (0, 1, 0, 1, 1), (1, 0, 1, 1, 0), (0, 1, 1, 0, 1), (1, 1, 0, 1, 0),
(0, 1, 0, 1, 0), (1, 0, 1, 0, 0), (0, 1, 0, 0, 1), (1, 0, 0, 1, 0), (0, 0, 1, 0, 1)

}
.

(c) Consider instead the height h1 obtained from hfe by lowering the vertex (1, 1, 1, 1, 1) ∈ H5. We now have
5 new local maxima, which form the set V ′:

V ′ = {(0, 1, 1, 1, 1), (1, 0, 1, 1, 1), (1, 1, 0, 1, 1), (1, 1, 1, 0, 1), (1, 1, 1, 1, 0)},

and 5 new bow-tie type saddle points, which form the set V ′′:

V ′′ =

{(
1

2
,
1

2
, 1, 1, 1

)
,

(
1,

1

2
,
1

2
, 1, 1

)
,

(
1, 1,

1

2
,
1

2
, 1

)
,

(
1, 1, 1,

1

2
,
1

2

)
,

(
1

2
, 1, 1, 1,

1

2

)}
.

Then

Dh1
=

∑
v∈V

v +
∑
v∈V′′

v −
∑
v∈V′

v − (0, 0, 0, 0, 0)− (1, 1, 1, 1, 1).

When no confusion will arise, we will also refer to this divisor as D1.
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(d) Finally, consider the height h2 obtained from h1 by lowering the vertex (0, 1, 1, 1, 1) ∈ H5. For this
height, (1, 1, 1, 1, 1) is no longer a min or max; (0, 1, 0, 1, 1) and (0, 1, 1, 0, 1) must be removed from V, and(
1
2 ,

1
2 , 1, 1, 1

)
and

(
1
2 , 1, 1, 1,

1
2

)
must be removed from V ′′. Three additional saddle points

(
0, 1

2 ,
1
2 , 1, 1

)
,(

0, 1, 1
2 ,

1
2 , 1

)
,
(
0, 1, 1, 1

2 ,
1
2

)
, will be added. Thus,

Dh2 =
∑
v∈Ṽ

v +

(
0,

1

2
,
1

2
, 1, 1

)
+

(
0, 1,

1

2
,
1

2
, 1

)
+

(
0, 1, 1,

1

2
,
1

2

)

+

(
1,

1

2
,
1

2
, 1, 1

)
+

(
1, 1,

1

2
,
1

2
, 1

)
+

(
1, 1, 1,

1

2
,
1

2

)
−

∑
v∈V′

v − (0, 0, 0, 0, 0),

where

Ṽ =

{
(1, 0, 1, 0, 1), (1, 0, 1, 1, 0), (1, 1, 0, 1, 0), (0, 1, 0, 1, 0),
(1, 0, 1, 0, 0), (0, 1, 0, 0, 1), (1, 0, 0, 1, 0), (0, 0, 1, 0, 1)

}
.

When no confusion will arise, we will also refer to this divisor as D2.

It is natural to ask questions about which height functions give divisors that are equivalent in some sense.
We discuss progress and open problems along these lines in Section 4.

2.4. The combinatorics of color splitting. One may use an edge color in a rainbow to label the vertices
of an Adinkra in a new way.

Algorithm 2.6. Given an Adinkra A equipped with a rainbow, fix a color j in the Adinkra rainbow and a
starting vertex v. Consider the pair of colors (j, j + 2), which are adjacent to j + 1 in the Adinkra rainbow.
(Here, we use the cyclic ordering on the rainbow.) For each vertex w ∈ A, label w with a + sign if every
path from v to w uses an even number of edges of colors j and j + 2, label w with a − sign if every path
from v to w uses an odd number of edges of color j and j + 2, and label w with × if there are distinct paths
from v to w using both odd and even numbers of edges of color j and j + 2.

Definition 2.7. Let A be an Adinkra equipped with a rainbow and fix a vertex v of A. We say A admits a
j-color-splitting if Algorithm 2.6 using the color j labels every vertex of A with a + or −. In this case, we refer
to the map Sj,v : A → {+,−} that partitions the vertices using their + or − labels as the j-color-splitting
with starting vertex v.

If A admits a j-color-splitting with starting vertex v, then A also admits a j-color-splitting with any other
starting vertex v′. If v and v′ had the same labels under the j-color-splitting with starting vertex v, then the
two j-color-splittings are identical; if they had opposite labels, then the + and − labels in the two splittings
are reversed. We illustrate an N = 3 hypercube Adinkra H3 with the rainbow (green, orange,blue) and a
1-color-splitting (that is, a green-color-splitting) using the bottom vertex as starting vertex in Figure 5.

Figure 5. An N = 3 hypercube Adinkra with an orange color-splitting

Proposition 2.8. Let HN be an N -dimensional hypercube Adinkra with a rainbow (1, . . . , N). Then for
any starting vertex v of HN , HN admits a j-color-splitting by every color j in the rainbow, each with 2N−1

vertices labeled + and 2N−1 vertices labeled −.
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Proof. We place specific coordinates (x1, . . . , xN ) ∈ (Z/2Z)N on A as follows. Place some vertex v at the
origin (0, . . . , 0). Assign coordinates to the other vertices so that traveling on an edge of color j corresponds
to changing the jth coordinate. Let sj : (Z/2Z)N → Z/2Z be given by sj(x1, . . . , xN ) = xj +xj+2. (Here we
use the cyclic ordering on the rainbow, so sN = xN + x2 and sN−1 = xN−1 + x1.) Running Algorithm 2.6,
we see that a vertex with coordinates (x1, . . . , xN ) will be labeled with + if its image under sj is 0, because
an even number of the edges of color j and j+2 have been used. Similarly, the vertex will be labeled with −
if the image under sj is 1. Since sj maps every vertex to either 0 or 1, the Adinkra admits a color-splitting.
Because sj is a group homomorphism, there are equal numbers of vertices with + and − labels. □

In some cases, one of the j-color-splittings on the hypercube HN described in Proposition 2.8 will induce
a j-color-splitting on an Adinkra whose chromotopology is the quotient of HN by a doubly even code. One
need simply check whether the homomorphism sj defined in the proof of the proposition is constant on the
cosets of the doubly even code. For example, each of the j-color-splittings of H4 induces a j-color-splitting
on the quotient of H4 by the doubly even code generated by {(1, 1, 1, 1)}.

We will use a special term for the case when there are j-color-splittings for every color:

Definition 2.9. Let A be an Adinkra that admits a j-color-splitting for every color j in the rainbow of A. Let
Sj,v(u) be the label of vertex u under the j-color-splitting with starting vertex v. Define Sv : A → {+,−}N
by Sv(u) = (S1,v(u), S2,v(u), . . . , SN,v(u)). We call Sv the total-color-splitting of A with starting vertex v.

3. Geometrization and the Jacobian map

3.1. Geometrization for N = 5. The authors of [DIKLM15, DIKM18] showed that an Adinkra equipped
with a rainbow determines an algebraic curve X and a Bely̆ı map X → P1. Topologically, the curve is given
by gluing a 2-cell to each 4-cycle in the Adinkra where the edge colors are adjacent in the rainbow; in this
way, the Adinkra is embedded in the curve. In the case of the N -hypercube Adinkra HN , the authors of
[DIKLM15, DIKM18] used results of [CHQ16] to obtain a specific algebraic model XN

alg for X as a complete

intersection in PN−1.
Just as general Adinkras can be realized as quotients of hypercube Adinkras, the corresponding curves

can be realized as quotients of the hypercube curves. For N ≥ 2, the genus of the curve corresponding to
the quotient of the N -hypercube by a k-dimensional doubly even code is g = 1 + 2N−k−3(N − 4). In the
case of N -hypercube curves, we see that N = 2 and N = 3 correspond to genus 0 curves, for N = 4 we have
a genus 1 curve, and for N = 5 we have a curve of genus 5. As the N = 5 case presents a significant increase
in geometric complexity, we wish to examine it more closely. In the following, we restrict our discussion to
this case.

Equipping H5 with a rainbow determines an algebraic curve X with an embedded copy of H5 and a Bely̆ı
map β : X → P1, ramified over {0, 1,∞}, such that β(H5) = [0, 1], the black vertices are mapped to 0, the
white vertices are mapped to 1, and the face centers are mapped to ∞. In fact, this map factors through
the map β : B5 → P1, given by

β(z) =
z5

z5 + 1
,

where B5
∼= CP1 is called a beach ball (visualized in the left pane of Figure 6). Thus, the 5th roots of −1 are

the preimages under β of ∞, and lines through the origin and 5th roots of unity are mapped to [0, 1]. Let

ζ = exp
2πi
10 , and let η be the Möbius transformation given by

η(x) =
x− ζ

x− ζ−1
· ζ

3 − ζ−1

ζ − ζ3
.

Following [DIKLM15], we obtain a list of points α1, . . . , α5 in P1 = C ∪∞ by setting αi = −η(ζ2i−1). Note
that we have α1 = 0, α2 = 1, and α5 = ∞. Additionally, we define α0 = η(0), and α∞ = η(∞). See the
right pane of Figure 6 for locations of α0 and α∞ relative to −αj (j = 1, 2, 3, 4, 5) in the complex plane.

In the language of [CHQ16], the N = 5 curve X5
alg is a generalized Fermat curve of type (2, 4). Such a

curve is given by a complete intersection of the form

(3.1)


x2
1 + x2

2 + x2
3 = 0

α3x
2
1 + x2

2 + x2
4 = 0

α4x
2
1 + x2

2 + x2
5 = 0

.
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To specify X5
alg, we take α3 and α4 as defined above. In fact, it is straightforward to verify that α3 = ϕ and

α4 = 1 + ϕ, for ϕ = (1 +
√
5)/2 ≈ 1.618, the golden ratio.

Now consider the projection π : X5
alg → P1 given by [x1 : . . . : x5] 7→ [x2

1 : x2
2]. Note that

(3.2)
π−1([1 : x]) = [1 : ±

√
x : ±

√
−1− x : ±

√
−α3 − x : ±

√
−α4 − x],

π−1([0 : 1]) = [0 : ±i : ±1 : ±1 : ±1].

The relationship between the various spaces described is visualized in the diagram below.

H5 X5
alg B5 CP1

η(B5)

π

π◦η−1

β

η

β

β◦η−1

We can use the map π to describe the embedding of the N = 5 hypercube Adinkra H5 in X5
alg. Note

that π(X5
alg) is the image of BN under η (see Figure 6). Thus, π−1(α0) and π−1(α∞) will coincide with

the black and white vertices, respectively. The 24 vertices of each color correspond to the 24 sign choices in
Equation 3.2. Similarly, π−1(αi) will coincide with the 8 possible face centers in X5

alg.

η−→

B5

−α1−α2−α3−α4 −α5

α0

α∞

−c1−c2−c3−c4 −c5

η(B5)

Figure 6. The points −αi and edge images under π in P1

We will embed the edges of the Adinkra in X5
alg using the inverse images under π of paths between α0

and α∞ in C, as follows. To the color j in our rainbow (1, . . . , 5), we associate the path γj parametrized by
η(tζ2j), t ∈ (0,∞). This path travels from α0 to α∞ and crosses the x-axis at a unique point −cj . Note
that cj > αj for j = 1, 2, 3, 4, cj < αj+1 for j = 1, 2, 3, while c5 < α1. We thus obtain a rainbow of paths in
the complex plane, as shown in the right pane of Figure 6. Each edge of color j in X5

alg is then a connected

component of π−1(γj).
The points in π−1(−αj+1) are called face centers and denoted by fj,j+1(f). There are 8 face centers

corresponding to each pair of edge colors, as shown in Equation (3.3).

f5,1 ∈ π−1(−α1) = π−1(0) = [1 : 0 : ±i : ±i
√

ϕ : ±i
√
ϕ+ 1]

f1,2 ∈ π−1(−α2) = π−1(−1) = [1 : ±i : 0 : ±i
√

ϕ− 1 : ±i
√
ϕ]

f2,3 ∈ π−1(−α3) = π−1(−ϕ) = [1 : ±i
√
ϕ : ±

√
ϕ− 1 : 0 : ±i]

f3,4 ∈ π−1(−α4) = π−1(−ϕ− 1) = [1 : ±i
√
ϕ+ 1 : ±

√
ϕ : ±1 : 0]

f4,5 ∈ π−1(−α5) = π−1(∞) = [0 : 1 : ±i : ±i : ±i]

(3.3)
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We can use the points cj to determine vertex adjacency in X5
alg along an edge of a specified color in the

following way. Consider the edge of color j adjacent to a given (WLOG) white vertex

w = [1 : w1 : w2 : w3 : w4 : w5] = [1 : ±
√
α∞ : ±

√
−1− α∞ : ±

√
−α3 − α∞ : ±

√
−α4 − α∞].

For k = 2, . . . , N , let rk(j) be the radicand of the kth coordinate wk of w, evaluated at −cj in place of α∞.
For example, r2(j) = −cj , r3(j) = −1 + cj , etc. Then, the unique edge of color j with one endpoint equal
to white vertex w, has as its other endpoint the black vertex

b = [1 : sign(r2(j)) · w2 : sign(r3(j)) · w3 : sign(r4(j)) · w4 : sign(r5(j)) · w5].

We summarize our description of the Adinkra embedding in the following lemmas.

Lemma 3.1. The black and white vertices of H5 are embedded in X5
alg as

b = [1 : ±
√
α0 : ±

√
−1− α0 : ±

√
−α3 − α0 : ±

√
−α4 − α0] =[1 : ±ζ8

√
ϕ : ±ζ : ±iζ9 : ±ζ2

√
ϕ], and

w = [1 : ±
√
α∞ : ±

√
−1− α∞ : ±

√
−α3 − α∞ : ±

√
−α4 − α∞] =[1 : ±ζ2

√
ϕ : ±ζ9 : ±iζ : ±ζ8

√
ϕ],

respectively. A black vertex b connected to a white vertex w = [1 : w1 : w2 : w3 : w4 : w5] by an edge of color
j has coordinates b = [1 : sgn2(j) ·w2 : sgn3(j) ·w3 : sgn4(j) ·w4 : sgn5(j) ·w5], where the sign sgnk(j) is as
given in Table 3.1.

sgnk(j) edge color j
k 1 2 3 4 5

1 + + + + +
2 − − − − +
3 − + + + −
4 − − + + −
5 − − − + −

Table 3.1. Adjacency information for X5
alg. The kth coordinate of the unique neighbor w

of b (or b of w) via an edge of color j can be found by conjugating the kth coordinate of b
(w) and multiplying by ±1, as indicated in column j, row k.

Recall from Equation (3.3), that each coordinate of a face center point in X5
alg is either real or imaginary.

This feature can be used to determine adjacency information for face center points as described in the
following lemma.

Lemma 3.2. Suppose that f is a saddle point in H̃5 adjacent to a black or white vertex v. Let f denote the
image of this point in X5

alg, and similarly let v denote the image of v in X5
alg. Then the kth coordinates fk

of f are determined by the following equations; for each k = 1, . . . , 5

sign(Im(vk)) = sign(Im(fk)) if fk ∈ iR, and

sign(Re(vk)) = sign(Re(fk)) if fk ∈ R.

Proof. The face centers of H5 appear in X5
alg as described in Equation (3.3); in particular, we can assume

each coordinate of a face center in X5
alg is either strictly real or strictly imaginary.

Let Lj,j+1 = {x ∈ B5 | arg(x) ∈ (ζ2j , ζ2j+2)} be the slice of B5 captured by 2π·2j
10 < θ < 2π·2(j+2)

10 , for
i = 1, 2, 3, 5, let Lj = η(Lj,j+1) denote its image in η(B5). Let L4 denote the image of L4,5 under η and the
additional Möbius transformation z 7→ 1/z. These sets can be seen in the pane on the right of Figure 6 as
cut out by the curves η(tζ2j). Each component of π−1(Lj) corresponds to one of the eight (j, j + 1)-colored
faces in X5

alg. Recall that

π−1([1 : x]) = [1 : ±
√
x : ±

√
−1− x : ±

√
−ϕ− x : ±

√
−(ϕ+ 1)− x],

(for the j = 4 case) π−1([x : 1]) = [±
√
x : 1 : ±

√
−x− 1 : ±

√
−ϕx− 1 : ±

√
−(ϕ+ 1)x− 1].
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Note that for x and x′ in a path connected subset K of C, sign(Re(
√
x)) = sign(Re(

√
x′)) unless a path

between x and x′ in K intersects the ray θ = π. Similary, sign(Im(
√
x)) = sign(Im(

√
x′)) unless a path

between x and x′ in K intersects the ray θ = 0.
For j = 1, 2, 3, 5 , we consider the path-connected sets

Lj ,

−Lj − 1 = {−c− 1 | c ∈ Lj},
−Lj − ϕ = {−c− ϕ | c ∈ Lj},

−Lj − ϕ− 1 = {−c− ϕ− 1 | c ∈ Lj}

(3.4)

in η(B5). For the j = 4 case, we use instead the similarly defined sets

(3.5) L4, −L4 − 1, −ϕL4 − 1, −(ϕ+ 1)L4 − 1

Table 3.2 displays which of these sets intersect the rays θ = 0 or θ = π for j = 1, . . . , 5. From this table
we see, for example if j = 2, then sign of the imaginary parts of fk and vk must be the same for k = 2, 5,
while the sign of the real parts of f3 and v3 must agree. Note that the real and imaginary parts of the 4th
coordinates are not forced to agree, per Table 3.2. For j = 4, the sign of the imaginary components of fk
and vk must be the same for k = 3, 4, 5.

j
coordinate set 1 2 3 4 5

2 Lj π π π 0, π
1 L4 0, π

3
−Lj − 1 0, π 0 0 π
−L4 − 1 π

4
−Lj − ϕ π 0, π 0 π
−ϕL4 − 1 π

5
−Lj − ϕ− 1 π π 0, π π

(−(ϕ+ 1)L4 − 1) π

Table 3.2. A summary of which of the rays θ = π and θ = 0 intersect the path connected
sets defined in Equations 3.4 and 3.5.

□

The adjacency relationship among the face center points in X5
alg, can now be stated precisely:

Corollary 3.3. Suppose that v, vj ∈ H5 are adjacent along color j, that fk,k+1(v) and fk,k+1(vj) are saddle

points in H̃5 adjacent to v and vj, and that fk,k+1 and f ′k,k+1 are the images of fk,k+1(v) and fk,k+1(vj),

respectively in X5
alg. Then the ℓth coordinates x′

ℓ and xℓ of f ′k,k+1 and fk,k+1, respectively, satisfy x′
ℓ =

sgnℓ(j)xℓ (see Table 3.1).

Remark 3.4. Note that there is a non-canonical choice to be made regarding the relationship between the
vertices in H5 and the points in π−1(α0) and π−1(α∞). That is, any vertex v ∈ H5 can be associated to
any point in π−1(α0) ∪ π−1(α∞). However, once any single assignment is made, the rest of the assignments
are determined by rainbow and adjacency structures of both H5 and X5

alg. The choice (w(1, 1, 1, 1, 1) = [1 :
√
α∞ :

√
−1− α∞ :

√
−α3 − α∞ :

√
−α4 − α∞]) is made for the remaining examples in this paper. The

results stemming from a different choice of “base point” in the Adinkra surface can be obtained from the
computations done here using Table 3.1.

We demonstrate this choice of base point in the following example.

Example 3.5. First, we choose to associate the white vertex (1, 1, 1, 1, 1) in H5 to the white vertex
w(1, 1, 1, 1, 1) ∈ X5

alg in the following way:

w(1, 1, 1, 1, 1) = [1 :
√
α∞ :

√
−1− α∞ :

√
−α3 − α∞ :

√
−α4 − α∞] = [1 : ζ2

√
ϕ : ζ9 : iζ6 : ζ8

√
ϕ].
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We can determine the locations of all vertices in X5
alg using Lemma 3.1. For example,

b(1, 1, 1, 0, 1) = [1 : −ζ8
√
ϕ : ζ : iζ9 : −ζ2

√
ϕ],

w(1, 0, 1, 0, 1) = [1 : ζ2
√
ϕ : −ζ9 : iζ : ζ8

√
ϕ],

b(0, 0, 0, 0, 0) = [1 : ζ8
√
ϕ : ζ : −iζ9 : ζ2

√
ϕ].

Next, consider the (1, 2)-colored 4-cycle containing the vertex (1, 1, 1, 1, 1). Let v = v(1, 1, 1, 1, 1). Ta-
ble 3.2 tells us that for f = f1,2(1, 1, 1, 1, 1), the sign of the imaginary parts of fk and vk must be the same
for k = 2, 4, 5. Thus,

f = [1 : i : 0 : −i
√

ϕ− 1 : −i
√
ϕ] ∈ π−1(−1)

Remark 3.6. Note that the discrete Morse divisors defined in Definition 2.4 can be viewed naturally on XN
alg,

as formal sums of the corresponding points in XN
alg. Such divisors on XN

alg will be called geometric divisors
below.

We now turn our attention to the Jacobian of X5
alg. Define involutions a1, . . . , a5 : P4 → P4 by

(3.6) (aj(x))k =

{
xk if k ̸= j

−xk if k = j
.

We have induced group actions on X5
alg via Equation 3.1. It was shown in [CHQ16, §5.1] that the Jacobian

Jac(X5
alg) is isogenous to the product of the Jacobians of orbifolds X5

alg/H, where H runs through the
following groups:

H1 = ⟨a1, a2a3, a2a4⟩, H2 = ⟨a2, a1a3, a1a4⟩, H3 = ⟨a3, a1a2, a2a4⟩,(3.7)

H4 = ⟨a4, a2a3, a1a2⟩, H5 = ⟨a5, a2a3, a2a4⟩.

Each of the resulting factors is an elliptic curve, yielding an isogenous decomposition Jac(X5
alg) ≡ E1 ×

· · · × E5, where the Ek are given by the following equations. (We have followed the numbering of [CHQ16,
§5.1].)

E1, E4 : y2 = x(x− 1)(x− (ϕ+ 1))

E2, E5 : y2 = x(x− 1)(x− ϕ)

E3 : y2 = x(x− 1)(x+ ϕ).

(3.8)

As noted in [CHQ16, §5.2], the elliptic curves E1, . . . , E5 have the same j-invariant (namely, 2048),
and are thus isomorphic over C. One may check that E1, E2, and E3 are mutually non-isomorphic over
Q(ϕ) = Q(

√
5); in the [LMFDB23] database’s list of curves over Q[

√
5], their isomorphism classes are labeled

256.1-c3, 256.1-b3, and 64.1-a3, respectively.

3.2. Vertex and face center images. We are now ready to characterize the image of H5 in the elliptic
curves E1, . . . , E5. We will prove the following theorem:

Theorem 3.7. Fix a rainbow for the N = 5 hypercube Adinkra H5. The images of the face centers and
vertices in H5 in the Mordell-Weil group MW (Ek) over Kk lie in a group isomorphic to Z×Z/(4)×Z/(2).

A. The projection of the image of a black or white vertex u on Z is a generator of Z. The signs of this
projection are determined by a total-color-splitting Sv(u) of H5 with v = (1, 1, 1, 1, 1), with the sign
of the projection associated to MW (Ek) given by a k-color-splitting for each k.

B. The torsion subgroup is generated by the images of face centers; face centers corresponding to one pair
of adjacent edge colors in the rainbow are mapped to the identity of Ek, face centers corresponding to
another pair of adjacent edge colors in the rainbow are mapped to points of order 4 in MW (Ek), and
face centers corresponding to the remaining pairs of adjacent edge colors in the rainbow are mapped
to points of order 2 in MW (Ek).

We begin by giving a map between X5
alg and Jac(X5

alg), and then we use this map to describe the images

of points in H5 as points on elliptic curves over the complex numbers. Image points in MW (Ek) of order
greater than 2 are equipped with a choice of sign; we describe the relationship between these signs and
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adjacency in H5 in Lemma 3.12. Appropriate fields of definition Kk for the relevant elliptic curves are
presented in Lemma 3.8.

Once these preliminaries are established, we prove Parts A and B of the above theorem by examining the
group structure on the five elliptic curves E1, . . . , E5. Our analysis yields a complete description of the map
to Z×Z/(4)×Z/(2). In particular, we summarize the relationship between vertex or face center images and
the abelian group Z× Z/(4)× Z/(2) in Table 3.5.

Let us now consider the map ν = (ν1, . . . , νk) : X
5
alg → Ek defined by

νk([x1 : . . . : x5]) =



E1

(
− (2ϕ+ 1)

x2
1

x2
5

− ϕ, (2ϕ+ 1)
x2x3x4

x3
5

)
k = 1

E2

(x2
2

x2
1

+ ϕ+ 1, i
x3x4x5

x3
1

)
k = 2

E3

(
(2ϕ+ 1)

x2
3

x2
2

+ ϕ+ 1, i(2ϕ+ 1)
x1x4x5

x3
2

)
k = 3

E4

(
(ϕ+ 1)

x2
4

x2
3

− ϕ, iϕ
x1x2x5

x3
3

)
k = 4

E5

(
− x2

5

x2
4

+ ϕ+ 1, i
x1x2x3

x3
4

)
k = 5

(3.9)

Here, we use the notation Ek(x, y) to designate the point [x : y : 1] on the curve Ek. It is straightforward
to verify that ν satisfies the conditions discussed following Remark 3.6, and thus gives the isogenous decom-
position of Jac(X5

alg). All such maps give isogenous images, so we are free to use ν to proceed. Geometric
divisors are formal sums of the images of vertices and face centers, so it will be useful to have an explicit
description of the images of the vertices and face centers in each of the elliptic curve components of the
Jacobian. This is given in Tables 3.3 and 3.4.

The images of the (black and white) vertices can be computed directly from the maps in Equation 3.9.
For a given map νk, Table 3.3 describes the elliptic curve points B±

k and W±
k , where W+

k is taken to be the

image of w(1, 1, 1, 1, 1) under νk and B+
k the image of b(0, 0, 0, 0, 0).

W+
k B+

k

E1(ζ
8ϕ, −iζ8(ϕ+ 1)) E1(ζ

2ϕ, −iζ2(ϕ+ 1)) (= −W
+

1 )

E2(ζ
9ϕ, ζ2

√
ϕ) E2(ζϕ, ζ8

√
ϕ) (= W

+

2 )

E3(ζ
2ϕ,−ζ8(ϕ+ 1) E3(ζ

8ϕ, −ζ2(ϕ+ 1)) (= W
+

3 )

E4(ζ
8ϕ,−iζ8(ϕ+ 1)) E4(ζ

2ϕ, −iζ2(ϕ+ 1)) (= −W
+

4 )

E5(ζϕ, ζ
8
√
ϕ) E5(ζ

9ϕ, ζ2
√
ϕ) (= W

+

5 )

Table 3.3. Vertex images on the elliptic curves using the maps in Equation 3.9. For each
k, W+

k is νk([1 : ζ2
√
ϕ : ζ9 : iζ : ζ8

√
ϕ]) and B+

k is νk([1 : ζ2
√
ϕ : ζ9 : iζ6 : ζ8

√
ϕ])

We next turn our attention to face centers. For each pair of adjacent edge colors in the rainbow, there are 8
distinct face centers in X5

alg. However, under the maps described in Equation 3.9, face centers corresponding
to a single pair of edge colors are sent to either one or two points in each elliptic curve. We label these image
points as F(j,j+1), using arithmetic (mod 5) on the indices to reflect the cyclic ordering on the rainbow.
When we wish to distinguish points that arise as images of face centers corresponding to a single pair of
edge colors, we use the notation F+

(j,j+1) and F−
(j,j+1), and we use F±

(j,j+1) to refer to either element of such

a pair. Face centers corresponding to the pairs of colors (k − 1, k), (k, k + 1), and (k + 1, k + 2) are sent to
Ek(0, 0), Ek(1, 0), and Ek(r, 0), where r depends on k (c.f. Equation 3.8). Face centers corresponding to
colors (k+2, k−2) are sent to the identity element Ok in Ek, which we may think of as the point at infinity.
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The face centers corresponding to the edge colors (k − 2, k − 1) are sent to two points whose y-coordinates
are additive inverses of each other. We give the coordinates of the face center images in Table 3.4.

E1 E2 E3 E4 E5

F(5,1) E1(0, 0) E2(ϕ+ 1,±
√
ϕ3) O3 E4(ϕ+ 1, 0) E5(1, 0)

F(1,2) E1(1, 0) E2(ϕ, 0) E3(ϕ+ 1,±ϕ3) O4 E5(0, 0)

F(2,3) E1(ϕ+ 1, 0) E2(1, 0) E3(1, 0) E4(−ϕ,±iϕ3) O5

F(3,4) O1 E2(0, 0) E3(0, 0) E4(0, 0) E5(ϕ+ 1,±
√
ϕ3)

F(4,5) E1(−ϕ,±iϕ3) O2 E3(−ϕ, 0) E4(1, 0) E5(ϕ, 0)

Table 3.4. Coordinates of face center images

Note that the images of points described above are not canonical. That is, a different choice of maps
than that given in Equation 3.9 would permute the images of Fk−1,k, Fk,k+1, Fk+1,k+2, and Fk+2,k−2, and
exchange the points F±

k−2,k−1 and the points W±
k , B±

k for different but similarly related collection of points
on Ek. However, the resulting Mordell-Weil group would be isomorphic to the one we describe in this section.

In our discussion of the images of points, we have been working over the complex numbers. To study
the elliptic curves via a computer algebra system, it is convenient to work over a number field. Consulting
Tables 3.3 and 3.4, we obtain the following description of the appropriate field.

Proposition 3.8. For k = 1, 3, 4, the images in Ek of the vertices and face centers of the N = 5 Adinkra
embedded in X5

alg are defined over Q(ζ, i), a degree 8 extension of Q; for k = 2, 5 they are defined over

Q(ζ, i,
√
ϕ), a degree 16 extension of Q. (Here ζ = e

2πi
10 .)

(We will consider the question of fields of definition further in § 3.4.)
We are now ready to study the images of the N = 5 Adinkra vertices and face centers that appear in

Jacobian divisors on each elliptic curve. We begin with the images of the black and white vertices in each
elliptic curve.

Using [Sag23] and the coordinates given in Table 3.3, one may check that the points B+
k , B−

k , W+
k ,

and W−
k have infinite order for every elliptic curve Ek. Because reflection across the x-axis corresponds to

negation in the elliptic curve group law, we have the relations B+
k +B−

k = Ok and W+
k +W−

k = Ok. In each

case, B+
k +W+

k is the image of a face center and has order 2. Specifically, we have the relation

(3.10) B+
k +W+

k = F(k−1,k).

We summarize this description of the relationship between images of black and white vertices in the following
lemma.

Lemma 3.9. The images of the black and white vertices of H5 in Ek all have infinite order. Together, they
generate an abelian group isomorphic to Z × Z/(2). As generators of this group, we may take either the
images of a single black and a single white vertex, or the image of a vertex of either color together with the
face center image F(k−1,k).

Next, we consider the images of face centers in the elliptic curve group; as we will see, these correspond to
torsion points. In each elliptic curve, the face centers corresponding to one pair of adjacent edge colors are
sent to the identity element for the group law (in other words, the point at infinity). We have seen that face
centers corresponding to colors (k−2, k−1) have two possible images in Ek. Using SageMath ([Sag23]), one
may check that each of these images has order 4, and that the remaining pairs of adjacent colors correspond
to points of order 2. A more detailed study of the group law yields the following lemma.

Lemma 3.10. The images of face centers in the elliptic curve Ek generate a group isomorphic to Z/(4)×
Z/(2). A specific isomorphism may be chosen as follows. Let ek4 be a generator of Z/(4), let ek2 be a generator
of Z/(2), and denote the identity by 0. In each curve, one pair of adjacent edge colors corresponds to 0, one
pair of adjacent edge colors corresponds to ±ek4 , one pair of adjacent edge colors corresponds to 2ek4 , and the
remaining two pairs of adjacent edge colors may be assigned to ek2 and 2ek4 + ek2 in either order. Specifically,
the pair of edge colors corresponding to 0 in Ek is (k− 3, k− 2), the pair of edge colors corresponding to ±ek4
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in Ek is (k − 2, k − 1), and the pair of edge colors corresponding to 2ek4 in Ek is (k − 1, k), where we use
arithmetic (mod 5).

Combining Lemmas 3.9 and 3.10, we note:

Proposition 3.11. The images of the vertices and face centers of H5 in Ek generate an abelian group
isomorphic to Z× Z/(4)× Z/(2).

The correspondence between vertex or face center images and possible choices of generators for each
elliptic curve is summarized in Table 3.5.

EC \ group elements 0 ±ek4 2ek4 ek2 , 2e
k
4 + ek2 ±ek∞

E1 F(3,4) F±
(4,5) F(5,1) F(1,2), F(2,3) W±

k , B±
k

E2 F(4,5) F±
(5,1) F(1,2) F(2,3), F(3,4) W±

k , B±
k

E3 F(5,1) F±
(1,2) F(2,3) F(3,4), F(4,5) W±

k , B±
k

E4 F(1,2) F±
(2,3) F(3,4) F(4,5), F(5,1) W±

k , B±
k

E5 F(2,3) F±
(3,4) F(4,5) F(5,1), F(1,2) W±

k , B±
k

Table 3.5. Possible generators of Z× Z/(4)× Z/(2)

It is natural to ask which vertices in the H5 Adinkra are mapped to the points we have designated as B+
k ,

B−
k , W+

k , W−
k , F+

k−2,k−1, and F−
k−2,k−1. The answer is given in the following lemma, and displayed visually

in Figure 7.

v

v1 : (−,+,+,−,+)

v2 : (+,−,+,+,−)v5 : (+,+,−,+,−)

v4 : (+,−,+,−,+) v3 : (−,+,−,+,+)

v24 : (+,+,+,−,−) v34 : (−,−,−,−,+)

v13 : (+,+,−,−,+)

v23 : (−,−,−,+,−)

v25 : (+,−,−,+,+)

v12 : (−,−,+,−,−)v14 : (−,−,+,+,+)

v15 : (−,+,−,−,−)

v35 : (−,+,+,+,−)

v45 : (+,−,−,−,−)

v

v1

v2v5

v4 v3

Figure 7. The 5-tuples in left pane display sign change between the images of v and vi in
E1, . . . , E5, where vi is obtained from v by traveling along color i. The 5-tuples in right pane
display sign change between the images of v and vij in E1, . . . , E5, where vij is obtained
from v by traveling along colors i and j.

Lemma 3.12. Given a vertex v ∈ H5 with image Wσ
k (or Bσ

k ) in Ek, the image in Ek of vj (the vertex

adjacent to v along color j) is B±
k (or W±

k ), where the value of ± is determined by Sk,v(vj) = (−1){k,k+2}∪{j}.
Similarly, let f be a face center point adjacent to a certain black or white vertex v and suppose f ′ is the face
center point adjacent to vj (the point adjacent to v along j). If the image of f in Ek is (x, y), then the image

of f ′ in Ek is (x,±y). The value of ± is determined by Sk,v(vj) = (−1){k,k+2}∪{j}.
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This lemma implies that under the labeling set out in Table 3.3, for each k, in a k-color-splitting of H5

with starting vertex (1, 1, 1, 1, 1), the black vertices in H5 labeled + and − are mapped to B+
k and B−

k ,

respectively; the white vertices labeled + and − are mapped to W+
k and W−

k , respectively; and the face

centers fk−2,k−1 labeled + and − are mapped to F+
k−2,k−1 and F−

k−2,k−1, respectively. For any vertex u, a

k-color-splitting of H5 with starting vertex u gives the corresponding sign changes between νk(u) and νk(u
′)

for vertices u′ ∈ H5 (see Figure 7).

Proof. Assume that νk(v) = Wσk

k . Recall from Lemma 3.1 that the sign change of the ith coordinates of v
and v′ which are adjacent along color j is given by Mi,j , where M is the matrix displayed below.

M =


+1 +1 +1 +1 +1
−1 −1 −1 −1 +1
−1 +1 +1 +1 −1
−1 −1 +1 +1 −1
−1 −1 −1 +1 −1


Let My be the matrix defined by My

k,j =
νk(vj)y

νk(v)y
, where νk(v)y is the y-coordinate of the image of v under νk.

From Equation 3.9, we see that this can be obtained by first considering how coordinate sign changes affect
the sign of νk(vj)y, and then how coordinate-wise conjugations in vj relate to νk(v)y . The coordinate-wise

sign changes in vj amount to an overall sign change of M1,j ·M2,j · · · M̂k,j · · · ·M5,j in νk(vj)y (that is, we
omit the kth entry from the product). This gives the intermediate matrix

+1 −1 +1 −1 −1
−1 +1 −1 +1 −1
−1 −1 +1 −1 +1
−1 +1 +1 −1 +1
−1 +1 −1 −1 +1


Examining the y-coordinates in Equation 3.9, we find that conjugating all coordinates of vj and conjugating
the y-coordinate of the image point are equivalent for k = 1, and have opposite signs for k = 2, . . . , 5. Thus,

My =


+1 −1 +1 −1 −1
+1 −1 +1 −1 +1
+1 +1 −1 +1 −1
+1 −1 −1 +1 −1
+1 −1 +1 +1 −1


Finally, consider the matrix M ′

k,j =
νk(vj)y
(B

σk
k )y

, obtained from My by multiplying rows 1 and 4 by −1 (per

Table 3.3).

M ′ =


−1 +1 −1 +1 +1
+1 −1 +1 −1 +1
+1 +1 −1 +1 −1
−1 +1 +1 −1 +1
+1 −1 +1 +1 −1


Now we observe that

νk(vj)y
(Bσ

k )y
= M ′

k,j = Sk,v(vj).

The same proof holds for the case using instead νk = Bσk

k , with M ′
k,j =

νk(vj)y
(W

σk
k )y

. Corollary 3.3 gives the

result for face center points. □

We have now completely described the images of points and face centers, establishing Theorem 3.7.

3.3. First Jacobian divisor examples. In this section, we illustrate Theorem 3.7 by computing the abelian
group elements associated to certain interesting Jacobian divisors. Further discussion of Jacobian divisors
will be given in Section 4.2.

Set w0 = w(1, 1, 1, 1, 1), and b0 = b(0, 0, 0, 0, 0). Let us use these points to make an explicit choice
of generators for the group map referred to in Proposition 3.11. For each k define ek∞ = νk(w0), e

k
4 =

νk(fk−2,k−1(1, 1, 1, 1, 1)), and ek2 = νk(fk,k+1(1, 1, 1, 1, 1)). (Recall that under the group law on Ek, e
k
4 is
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a point of order 4, ek2 is a point of order 2, and ek∞ is a point of infinite order.) Let w = w(x1, . . . , x5),
b = b(x1, . . . , x5), and fk′,k′+1 = fk′,k′+1(x1, . . . , x5) for k = 1, . . . , 5 be any white vertex, black vertex, and
face centers. Their images are described below.

w 7→ Sk,w0
(w)ek∞ b 7→ Sk,b0

(b)(ek∞ + 2ek4)

fk−2,k−1 7→ Sk,w0(fk−2,k−1)e
k
4 fk−1,k 7→ 2ek4(3.11)

fk,k+1 7→ ek2 fk+1,k+2 7→ 2ek4 + ek2

fk+2,k−2 7→ 0,

The choice of sign Sk,v is described in Lemma 3.12.
We emphasize that none of the choices ek∞ = νk(w0), e

k
4 = νk(fk−2,k−1(1, 1, 1, 1, 1)), e

k
2 = νk(fk,k+1(1, 1, 1, 1, 1))

are canonical; the description of the image points resulting from a different choice for ek∞, ek4 , e
k
2 , can be de-

termined by applying a group isomorphism that exchanges the relevant generators (i.e., ek∞ 7→ −ek∞ or
−ek∞ + 2ek4 , e

k
4 7→ −ek4 , e

k
2 7→ 2ek4 + ek2).

Example 3.13. In Example 2.5, we described Morse divisors obtained by considering the valise and fully
extended height functions for H5, as well as the height functions obtained by starting with the fully extended
height and lowering either one or two divisors. We wish to compute the kth coordinates of the corresponding
Jacobian divisors, νk(Dv), νk(Dfe), νk(D1), and νk(D2), on Jac(X5

alg).
We will need the images of certain specific vertices and face centers:

νk(w(1, 1, 1, 1, 1)) = W+
k = ek∞ for k = 1, 2, 3, 4, 5, νk(b(0, 0, 0, 0, 0)) = B+

k = −ek∞+2ek4 for k = 1, 2, 3, 4, 5,

νk(w(1, 0, 1, 0, 1)) =

{
W+

k = ek∞ k = 1, 2, 3

W−
k = −ek∞ k = 4, 5

, νk(b(1, 1, 1, 0, 1)) =

{
B+

k = −ek∞ + 2ek4 k = 1, 3, 5

B−
k = ek∞ + 2ek4 k = 2, 4

νk(f1,2(1, 1, 1, 1, 1)) =



E1(1, 0) = e12 k = 1

E2(ϕ, 0) = 2 · e24 k = 2

E3(ϕ+ 1, ϕ3) = e34 k = 3

E4(∞,∞) = O4 k = 4

E5(0, 0) = 2 · e54 + e52 k = 5

We begin computing Jacobian divisor coordinates by considering the valise divisor Dv. We have

Dv =
∑

f face center

f −
∑

v vertex

v,

Let w0 = (1, 1, 1, 1, 1). Then the set of all white vertices is equal to the disjoint union of (a) {w0}, (b)
those vertices that are distance 2 from w0, and (c) those vertices that are distance 1 from (0, 0, 0, 0, 0). By
combining all labels from Figure 7, we see that∑

w white vertex

νk(w) = W+
k + 2W−

k +B+
k .

Similarly, ∑
b black vertex

νk(b) = B+
k + 2B−

k +W+
k ,

and thus ∑
v vertex

νk(w) = Ok.

Next, we consider face centers. For each j ∈ [5], there are 8 j, j + 1 colored face centers in H5. On Ek,
νk(

∑
fj,j+1

fj,j+1) = Ok trivially for all j ̸= k − 2 mod 5 (cf. Table 3.5). In the case that j ≡ k − 2 mod 5,

set w = (1, 1, 1, 1, 1). Then Figure 7 shows that νk(fk−2,k−1(w)) = −e4 for wk, vk+2, wk,k+1, wk+1,k+2 and
νk(fk−2,k−1(w)) = e4 for the remaining four cases. Thus∑

f face center

νk(f) = Ok, and νk(Dv) = Ok.
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Next, consider the fully extended divisor Dfe. We have

νk(Dfe) =
∑
v∈V

v − (1, 1, 1, 1, 1)− (0, 0, 0, 0, 0),

where

V =

{
(1, 0, 1, 0, 1), (0, 1, 0, 1, 1), (1, 0, 1, 1, 0), (0, 1, 1, 0, 1), (1, 1, 0, 1, 0),
(0, 1, 0, 1, 0), (1, 0, 1, 0, 0), (0, 1, 0, 0, 1), (1, 0, 0, 1, 0), (0, 0, 1, 0, 1)

}
.

From Lemma 3.12, we find the values in the following table

E1 E2 E3 E4 E5 E1 E2 E3 E4 E5

νk(w(1, 0, 1, 0, 1)) W+
1 W+

2 W+
3 W−

4 W−
5 νk(b(0, 1, 0, 1, 0)) B+

1 B+
2 B+

3 B−
4 B−

5

νk(w(1, 1, 0, 1, 0)) W−
1 W+

2 W+
3 W+

4 W−
5 νk(b(0, 0, 1, 0, 1)) B−

1 B+
2 B+

3 B+
4 B−

5

νk(w(0, 1, 1, 0, 1)) W−
1 W−

2 W+
3 W+

4 W+
5 νk(b(1, 0, 0, 1, 0)) B−

1 B−
2 B+

3 B+
4 B+

5

νk(w(1, 0, 1, 1, 0)) W+
1 W−

2 W−
3 W+

4 W+
5 νk(b(0, 1, 0, 0, 1)) B+

1 B−
2 B−

3 B+
4 B+

5

νk(w(0, 1, 0, 1, 1)) W+
1 W+

2 W−
3 W−

4 W+
5 νk(b(1, 0, 1, 0, 0)) B+

1 B+
2 B−

3 B−
4 B+

5

Note that for each k = 1, . . . , 5, we now have∑
v∈V

νk(v) = W+
k +B+

k .

Thus, νk(Dfe) = Ok ∈ Ek.

The geometric divisor D1 associated to the height function h1 in Example 2.5(c) differs from Dfe by

D1 −Dfe =
∑
v∈V′′

v −
∑
v∈V′

v

for

V ′′ = {f12(1, 1, 1, 1, 1), f23(1, 1, 1, 1, 1), f34(1, 1, 1, 1, 1), f45(1, 1, 1, 1, 1), f51(1, 1, 1, 1, 1), },

V ′ = {b(0, 1, 1, 1, 1),b(1, 0, 1, 1, 1),b(1, 1, 0, 1, 1),b(1, 1, 1, 0, 1),b(1, 1, 1, 1, 0), },

Using the description in Equation 3.11, we find that

E1 E2 E3 E4 E5

νk(f12(1, 1, 1, 1, 1)) e12 2 · e24 e34 O4 2 · e54 + e52
νk(f23(1, 1, 1, 1, 1)) 2 · e14 + e12 e22 2 · e34 e44 O5

νk(f34(1, 1, 1, 1, 1)) O1 2 · e24 + e22 e32 2 · e44 e54
νk(f45(1, 1, 1, 1, 1)) e14 O2 2 · e34 + e32 e42 2 · e54
νk(f51(1, 1, 1, 1, 1)) 2 · e14 e24 O3 2 · e44 + e42 e52
νk(b(0, 1, 1, 1, 1)) B−

1 B+
2 B+

3 B−
4 B+

5

νk(b(1, 0, 1, 1, 1)) B+
1 B−

2 B+
3 B+

4 B−
5

νk(b(1, 1, 0, 1, 1)) B−
1 B+

2 B−
3 B+

4 B+
5

νk(b(1, 1, 1, 0, 1)) B+
1 B−

2 B+
3 B−

4 B+
5

νk(b(1, 1, 1, 1, 0)) B+
1 B+

2 B−
3 B+

4 B−
5

Note that for each k = 1, . . . , 5, we now have∑
v∈V′′

νk(v)−
∑
v∈V′

νk(v) = ek4 −B+
k = ek4 + ek∞ + 2ek4 .

Thus,

νk(D1) = ek∞ − ek4

As discussed in Example 2.5(d), the geometric divisor D2 associated to the height h2 differs from D1 by
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D2 −D1 = (1, 1, 1, 1, 1) +

(
0,

1

2
,
1

2
, 1, 1

)
+

(
0, 1,

1

2
,
1

2
, 1

)
+

(
0, 1, 1,

1

2
,
1

2

)
− (0, 1, 0, 1, 1)− (0, 1, 1, 0, 1)−

(
1

2
,
1

2
, 1, 1, 1

)
−
(
1

2
, 1, 1, 1,

1

2

)
E1 E2 E3 E4 E5

−νk(f12(1, 1, 1, 1, 1)) −e12 −2 · e24 −e34 O4 −2 · e54 − e52
νk(f23(0, 1, 1, 1, 1)) 2 · e14 + e12 e22 2 · e34 −e44 O5

νk(f34(0, 1, 1, 1, 1)) O1 2 · e24 + e22 e32 2 · e44 e54
νk(f45(0, 1, 1, 1, 1)) −e14 O2 2 · e34 + e32 e42 2 · e54
−νk(f51(1, 1, 1, 1, 1)) −2 · e14 −e24 O3 −2 · e44 − e42 −e52
νk(w(1, 1, 1, 1, 1)) W+

1 W+
2 W+

3 W+
4 W+

5

−νk(w(0, 1, 0, 1, 1)) −W+
1 −W+

2 −W−
3 −W−

4 −W+
5

−νk(w(0, 1, 1, 0, 1)) −W−
1 −W−

2 −W+
3 −W+

4 −W+
5

νk(D2 −D1) e1∞ − e14 e2∞ − e24 e3∞ − e34 e4∞ − e44 −e5∞ + e54

Thus, the kth coordinate of the Jacobian divisor is

νk(D2) =

{
2ek∞ + 2ek4 k ̸= 5

O4 k = 5.

3.4. Fields of definition. If we view each elliptic curve Ek as defined over a number field Kk, the question
naturally arises of how the abelian group described in Proposition 3.11 compares to the Mordell-Weil group
MW (Ek/Kk). Of course, Ek itself can be defined over more than one number field; one might also ask
whether the fields specified in Proposition 3.8 are in some sense minimal. One may use SageMath ([Sag23])
to check that the rank of each of the elliptic curves Ek over Q(ϕ) is 0. Thus, we must extend Q(ϕ) if we
wish points of infinite order to exist. We characterize the minimal appropriate extension in the following
proposition.

Proposition 3.14. Let K̂k be a number field such that MW (Ek/K̂k) contains a point of infinite order and

either Q(ϕ) ⊆ K̂k ⊆ Q(ζ, i) or Q(ζ, i) ⊆ K̂k ⊆ Q(ζ, i,
√
ϕ). Then [K̂k : Q] ≥ 8 for k = 1, 4, [K̂k : Q] = 16

for k = 2, 5, and [K̂k : Q] ≥ 4 for k = 3.

Proof. The Galois group Gal(Q(ζ, i) : Q) is isomorphic to Z/(4)×Z/(2); the Galois group Gal(Q(ζ, i) : Q(ϕ))
is isomorphic to Z/(2)×Z/(2). Over Q, the minimal polynomial of ζ = e2πi/10 is x4 − x3 + x2 − x+1. This
polynomial factors as (x2 − ϕx + 1)(x2 + (ϕ − 1)x + 1) over Q(ϕ). By the fundamental theorem of Galois
theory, there are five fields containing Q(ϕ) and contained in Q(ζ, i), including these fields themselves; we
write the intermediate fields as Q(ϕ, i), Q(ϕ, i

√
3− ϕ), and Q(ϕ, i

√
ϕ+ 2). We use SageMath ([Sag23]) to

compute the rank of Ek over these fields for each k. The result of this computation is given in Table 3.6.
We see that E1 = E4 has a point of infinite order for Q(ζ, i) but not the intermediate fields, while E3 has
points of infinite order in two different quadratic extensions of Q(ϕ). We have already demonstrated that
E2 = E5 has points of infinite order over Q(ζ, i,

√
ϕ). □

rank of E1 = E4 rank of E2 = E5 rank of E3

Q(ϕ) 0 0 0
Q(ϕ, i) 0 0 0

Q(ϕ, i
√
3− ϕ) 0 0 1

Q(ϕ, i
√
ϕ+ 2) 0 0 1

Q(ζ, i) 1 0 1

Table 3.6. Ranks of Ek over extensions of Q(ϕ)

Similarly, we may use SageMath to compute the torsion part of the Mordell-Weil group of the elliptic
curves Ek over different field extensions. The results of this computation are shown in Table 3.7.
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MWtor(E1 = E4) MWtor(E2 = E5) MWtor(E3)
Q(ϕ) Z/(2)× Z/(2) Z/(2)× Z/(2) Z/(4)× Z/(2)
Q(ϕ, i) Z/(4)× Z/(2) Z/(2)× Z/(2) Z/(4)× Z/(2)

Q(ϕ, i
√
3− ϕ) Z/(2)× Z/(2) Z/(2)× Z/(2) Z/(4)× Z/(2)

Q(ϕ, i
√
ϕ+ 2) Z/(2)× Z/(2) Z/(2)× Z/(2) Z/(4)× Z/(2)

Q(ζ, i) Z/(4)× Z/(2) Z/(2)× Z/(2) Z/(4)× Z/(2)
Q(ζ, i,

√
ϕ) Z/(8)× Z/(4) Z/(8)× Z/(4) Z/(8)× Z/(4)
Table 3.7. Torsion groups over extensions of Q(ϕ)

Proposition 3.14 and Tables 3.6 and 3.7 show that the difference between the field of definition for E2 = E5

and the other elliptic curves specified in Proposition 3.8 is in some sense inevitable: we genuinely need the
square root of ϕ to describe points of order more than 2 on E2 = E5.
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4. Height functions and divisors

Now that we have completely characterized the images of vertices and face centers of H5 in the Jacobian,
we turn our attention to the correspondence between height functions and divisors. We discuss various
combinatorial and geometrically induced notions of equivalence for heights in § 4.1; this discussion presents
several interesting problems for further study. In § 4.2, we examine the effect of raising or lowering a vertex
on the N = 5 Adinkra, and use this analysis to prove our Main Theorem.

4.1. Equivalence classes of heights in Γ̃N . We now describe, for N ≤ 4, the directed graph Γ̃N that has
as its vertices equivalence classes of heights under ∼c (see Definition 2.3), and directed edges given by vertex

lowering. For N = 1, 2, 3, there are relatively few heights, which can be worked out in a minute or two; Γ̃1,

Γ̃2, and Γ̃3 are displayed in Figure 8. Notice that for N = 1, V (H1) = {0, 1}. There are two heights: one
where 0 is pinned, one where 1 is pinned. These are both in the same equivalence class. For N = 2, there
are 6 heights and two equivalence classes. For N = 3, there are 38 heights, and 5 equivalence classes. Note,
however that two of these equivalence classes exhibit an additional equivalence under vertical reflections. If
such reflections are added to our sense of equivalence, then for N = 3, there are 4 equivalence classes.

[ ]

Γ̃1

[ ]

[ ]

Γ̃2

[ ]

[ ]

[ ]

[ ] [ ]

Γ̃3

Figure 8. The digraph Γ̃N of equivalence classes of heights on HN (where adjacency is
determined by vertex lowering) for N = 1, 2, 3.

For N = 4, the situation is already much more complicated. There are 990 distinct height functions,
which can be grouped into 24 (or 15) equivalence classes. Representatives of these heights, and a picture of
the associated digraph structure appear below in Figure 9.

For N = 5, the situation becomes much more difficult to classify exhaustively. In Figure 10 we give a

portion of the digraph Γ̃5 of height equivalence classes (under ∼c). The descriptions are given in terms
of the pinned vertices and their heights (as discussed in Remark 2.1) for one height representative in each

class. Complete descriptions of Γ̃N for N ≥ 5 are not known, but would be useful for further classifying and
understanding Adinkras.

Problem 4.1. For N ≥ 5 describe the full digraph Γ̃N whose vertices are the equivalence classes under ∼c

of height functions on H5 and whose edges are determined by vertex lowering.

While we do not give an explicit description of Γ̃5, we can give the following structural result, which will
be useful in Section 4.2.

Proposition 4.2. A path from any height h to a valise height hv on ΓN can be attained in m vertex lowering
steps, where m ≤ (N − 1)2N−2.

Proof. We show that the proposition is true for the fully extended height hfe. Any other type of height
requires strictly less steps to reach the valise. Note that hfe can be defined by assigning to any vertex
v = (x1, . . . , xN ) ∈ HN the height hfe(v) =

∑
i xi. If each such vertex is lowered ⌊h(v)/2⌋ times, all vertex
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hfe

h1

h1′

h2

h2′

h14 h13 h12 h11 hv h5

h3

h3′

h4

h6

h6′

h7′

h8′

h7

h8

h9′

h10′

h9

h10

pinned vertex description #[h]

hfe hfe((1, 1, 1, 1)) = 4 16

hv hv(w) = 2 ∀ white w 2

h1 h1((0, 1, 1, 1)) = h1((1, 0, 1, 1)) = h1((1, 1, 0, 1)) = h1((1, 1, 1, 0)) = 3 16
h1′ h1′((1, 1, 1, 1)) = 3, h1′((0, 0, 0, 0)) = 2 16

h2 h2((0, 1, 1, 1)) = h2((1, 0, 1, 1)) = h2((1, 1, 0, 1)) = 3 64
h2′ h2′((1, 1, 1, 1)) = 3, h2′((0, 1, 1, 1)) = 2 64

h3 h3((0, 1, 1, 1)) = h3((1, 0, 1, 1)) = 3, h3((1, 1, 0, 0)) = 2 96
h3′ h3′((1, 1, 1, 1)) = 3, h3′((0, 1, 1, 1)) = h3′((1, 0, 1, 1)) = 2 96

h4 h4((0, 1, 1, 1)) = h4((1, 0, 1, 1)) = 2 48

h5 h5((0, 1, 1, 1)) = 3, h5((1, 1, 0, 0)) = h5((1, 0, 1, 0)) = 2, h5((1, 0, 0, 1)) = 2 64

h6 h6(w) = 2 ∀ white w ̸= (1, 0, 0, 0) 16
h6′ h6′((0, 1, 1, 1)) = 2, h6′((0, 0, 0, 0)) = h6′((1, 1, 0, 0)) = h6′((1, 0, 1, 0)) = h6′((1, 0, 0, 1)) = 1 16

h7 h7(w) = 2 ∀ white w ̸= (0, 0, 0, 1), (1, 1, 1, 0) 8
h7′ h7′((0, 0, 0, 1)) = h7′((1, 1, 1, 0)) = 2 8

h8 h8(w) = 2 ∀ white w ̸= (1, 0, 0, 0), (0, 1, 0, 0) 48
h8′ h8′((0, 1, 1, 1)) = h8′((1, 0, 1, 1)) = 2, h8′((0, 0, 0, 0)) = h8′((1, 1, 0, 0)) = 1 48

h9 h9(w) = 2 ∀ white w ̸= (0, 0, 0, 1), (1, 1, 0, 1), (1, 1, 1, 0) 48
h9′ h9′((0, 1, 0, 0)) = h9′((0, 0, 0, 1)) = h9′((1, 1, 1, 0)) = 2 48

h10 h10(w) = 2 ∀ white w ̸= (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) 64
h10′ h10′((0, 1, 1, 1)) = h10′((1, 0, 1, 1)) = 2, h10′((1, 1, 0, 1)) = 2, h10′((0, 0, 0, 0)) = 1 64

h11 h11((0, 1, 0, 0)) = h11((1, 0, 1, 1)) = h11((1, 1, 1, 0)) = h11((0, 0, 0, 1)) = 2 12

h12 h12((0, 1, 1, 1)) = h12((1, 0, 1, 1)) = h12((1, 1, 1, 0)) = h12((0, 0, 0, 1)) = 2 96

h13 h13((0, 1, 1, 1)) = h13((1, 0, 1, 1)) = h13((1, 1, 0, 1)) = h13((0, 0, 0, 1)) = 2 16

h14 h14((0, 1, 1, 1)) = h14((1, 0, 1, 1)) = h14((1, 1, 0, 1)) = h14((1, 1, 1, 0)) = 2, h14((0, 0, 0, 0)) = 1 16

Figure 9. The digraph Γ̃4 whose vertices are the equivalence classes of heights on H4 under
decorated graph isomorphism. A representative from each height class is described in the
table.
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h16

h15

h14a h14b

h13ch13bh13a

name pinned vertex description #[h]

h16 (the valise), h(w) = 5, for all white vertices v 2

h15 remove one pin v from h16 32

h14a remove two pins v, v′ such that d(v, v′) = 2 from h16 160
h14b remove two pins v, v′ such that d(v, v′) = 4 from h16 80

h13a remove three pins v, v′, v′′ such that
d(v, v′) = d(v, v′) = d(v′, v′′) = 2 from h16 320

h13b remove three pins v, v′, v′′ such that
d(v, v′) = d(v, v′) = 2, d(v′, v′′) = 4 from h16 480

h13c remove three pins v, v′, v′′ such that
d(v, v′) = 2, d(v, v′) = d(v′, v′′) = 4 from h16 320

Figure 10. A portion of the digraph Γ̃5 induced by the seven equivalence classes of height
functions (vertices) described explicitly in the table on the right.

heights will be 0 or 1, according to whether the vertex is black or white. The number of steps in this process
is

N∑
k=0

⌊k/2⌋
(
N

k

)
.

Using the identities

2

⌊
k

2

⌋
=

{
k k even

k − 1 k odd,

∑
i

i

(
n

i

)
= n2n−1,

∑
i odd

(
n

i

)
= 2n−1,

It is straightforward to verify that

N∑
k=0

⌊k/2⌋
(
N

k

)
= (N − 2)2N−1.

□

We are interested in the connection between heights in ΓN and types of geometric Morse divisors (see
Remark 3.6). To investigate this connection we highlight three height operations which preserve rainbow
relationships among the heights of vertices, and a new notion of equivalence of heights.

Definition 4.3. The inversion map on heights inv : ΓN → ΓN is defined by inv(h)(v) = mh − h(v), where
mh = maxv{h(v)}. Any u ∈ HN defines a shift map shu : Γ

N → ΓN via shu(h)(v) = u + v, where u + v is

taken in
(
Z/(2)

)5
. The rainbow rotation from u rotu : Γ

N → ΓN in the following way: for each v in HN ,
list the colors of the edges traversed in a path between u and v: j1, . . . , js (this is equivalent to the set of
coordinates in which u and v differ). Let σ = (1, 2, . . . , N) be the cyclic permutation of the edge colors in
their rainbow ordering. Then we will call the vertex rotu(v) obtained by traveling from u along the colors
σ(j1), . . . σ(js), the rainbow rotation of v from u, and set rotu(h)(v) = h(rotu(v)).

Given heights h, h′ on HN , we say that we say that h is rainbow-equivalent to h′ (h ∼r h
′) if h′ can be

obtained from h via inversions, shifts, and rainbow rotations.

Since local minima and maxima contribute equally in divisors, and bow-ties and diamond classification
among face centers remains fixed under vertical inversion, Dh = Dτ(h) for any h ∈ ΓN . This is not the case
for rotations or rainbow rotations; however, in the hypercube case, we expect that their effects on divisors
should be limited to sign changes and permutations. (We will consider the effects of rainbow rotation on
Jacobian divisors obtained from H5 in Section 4.2.)

Note that in certain classes [hi] ∈ Γ̃4, some heights within the ∼c equivalence classes as listed in Figure
9 are not equivalent under ∼r. For example, consider the heights ha, hb ∈ [h4], where ha has two pinned
vertices (0, 1, 1, 1) and (1, 0, 1, 1) at height 2, and hb has the two pinned vertices (0, 1, 1, 1) and (1, 1, 0, 1)
at height 2. It is straightforward to verify that these two heights are not related via inversion, rotations,
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and rainbow rotations. The height ha has 4 bow-tie faces and 12 diamond faces, while hb has only diamond
faces, thus the corresponding divisors differ significantly.

Problem 4.4. Classify heights in ΓN under rainbow equivalence ∼r, for N ≥ 4.

Finally, we define Jacobian equivalence of heights.

Definition 4.5. Given heights h, h′ on HN , we say that h is Jacobian-equivalent to h′ (h ∼J h′) if the
associated Jacobian divisors on Jac(XN

alg) are equal.

Naturally, a classification of heights under Jacobian equivalence would be useful and interesting. As
discussed in the Section 1, the Jac(XN

alg) is trivial for N = 1, 2, 3, and for N = 4, the map from height
functions to Jacobian divisors is trivial. The first open case, then, is N = 5.

Problem 4.6. Classify heights in ΓN under Jacobian equivalence ∼J, for N ≥ 5.

4.2. Heights and Morse Divisors on Jac(X5
alg). We can apply Theorem 3.7 to characterize the relation-

ship between height functions and Jacobian divisors in the N = 5 case. Our goal is to describe Jacobian
divisors obtained as images of height functions and thereby prove our Main Theorem.

A step towards the classification of Jacobian divisors determined by height functions is given in the
following proposition, which significantly restricts the structure of Jacobian divisors for N = 5.

Proposition 4.7. Let νk(Dh) and νk(Dh′) be the Ek coordinates of the Jacobian divisors associated to heights
h and h′ on H5, where h′ is obtained from h by raising or lowering a single vertex v. Then νk(Dh′)−νk(Dh) =
±(ek∞ − ek4).

Proof. Assume that v is a local min in h with h(v) = 0, and that h′ is the height obtained by raising v
(h′(v) = 2). Note that then h(vj) = h′(vj) = 1 for each vj adjacent to v via color j.

The only points whose contribution might differ in Dh and Dh′ are v, v1, . . . , v5, f1 = f12(v), . . . , f5 =
f51(v). Since v is a min under h and a max under h′, then κv = κ′

v = 1, where κv and κ′
v are the coefficients

of v in Dh and D′
h, respectively (See Definition 2.4).

Let ∆vj = κ′
vj − κvj . Then,

νk(D
′
h −Dh) =

5∑
j=1

(∆vjνk(vj) + ∆fjνk(fj)).

For 1 = (1, 1, 1, 1, 1), Lemmas 3.12 and 3.9 imply that

νk(vj) = 2ek4 − Sk,v(vj)νk(v) =

{
2ek4 − Sk,v(vj)Sk,1(v)e

k
∞ v white

Sk,v(vj)Sk,1(v)e
k
∞ v black

Also, since ∆fj = ±1 for each j,∑5
j=1 ∆fjνk(fj) = ∆fk−2

νk(fk−2) + ∆fk−1
νk(fk−1) + ∆fkνk(fk) + ∆fk+1

νk(fk+1) + ∆fk+2
νk(fk+2)

= ∆fk−2
Sk,1(v)e

k
4 + 2∆fk−1

ek4 +∆fke
k
2 +∆fk+1

(2ek4 + ek2)

= ∆fk−2
Sk,1(v)e

k
4 .

Thus,

σνk(D
′
h −Dh) =

{
2ek4 − Sk,1(v)e

k
∞(∆vk−2

+∆vk−1
−∆vk +∆vk+1

−∆vk+2
) + Sk,1(v)∆fk−2

ek4 v white

Sk,1(v)e
k
∞(∆vk−2

+∆vk−1
−∆vk +∆vk+1

−∆vk+2
) + Sk,1(v)∆fk−2

ek4 v black

We must show that {∆vk−2
+∆vk−1

−∆vk +∆vk+1
−∆vk+2

,∆fk−2
} = {1,−1}.

It is straightforward to verify that

(4.1) ∆vj =


−1 h(vj−1,j) = h(vj,j+1) = 2

1 h(vj−1,j) = h(vj,j+1) = 0

0 otherwise ,

and ∆fj =

{
1 h(vj,j+1) = 2

−1 h(vj,j+1) = 0
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where vj,j+1 is the vertex obtained from v by traveling on an edge of color j and an edge of color j + 1.
Consider, for example, the situation where

(h(v1,2), h(v2,3), h(v3,4), h(v4,5), h(v5,1)) = (2, 2, 2, 2, 0)

Then for k = 3, ∆fk−2
= ∆f1 = 1, and (∆vk−2

,∆k−1,∆k,∆k+1,∆k+2) = (0,−1,−1,−1, 0), so

(∆k−2 +∆k−1 −∆k +∆k+1 −∆k+2,∆
f
k−2) = (−1, 1).

For k = 2, ∆fk−2
= ∆f5 = −1, and (∆vk−2

,∆k−1,∆k,∆k+1,∆k+2) = (0, 0,−1,−1,−1), so

(∆k−2 +∆k−1 −∆k +∆k+1 −∆k+2,∆
f
k−2) = (1,−1).

The following table gives all ∆vj and ∆fj possibilities.

(h(vj,j+1))j (∆vj )j (∆fj )j

(2, 2, 2, 2, 2) (−1,−1,−1,−1,−1) (1, 1, 1, 1, 1)
(0, 0, 0, 0, 0) (1, 1, 1, 1, 1) (−1,−1,−1,−1,−1)
(2, 2, 2, 0, 0) (0,−1,−1, 0, 1) (1, 1, 1,−1,−1)
(0, 0, 0, 2, 2) (0, 1, 1, 0,−1) (−1,−1,−1, 1, 1)
(2, 2, 2, 2, 0) (0,−1,−1,−1, 0) (1, 1, 1, 1,−1)
(0, 0, 0, 0, 2) (0, 1, 1, 1, 0) (−1,−1,−1,−1, 1)
(2, 0, 2, 0, 2) (−1, 0, 0, 0, 0) (1,−1, 1,−1, 1)
(0, 2, 0, 2, 0) (1, 0, 0, 0, 0) (−1, 1,−1, 1,−1)

It is straightforward to check that in all cases {∆vk−2
+∆vk−1

−∆vk +∆vk+1
−∆vk+2

,∆fk−2
} = {1,−1}.

□

Proposition 4.7 says that raising or lowering a vertex changes the kth coordinate of η(Dh) by ±(ek∞− ek4).
Recall from Example 3.13, that ek∞ − ek4 is exactly νk(D1). Thus, integer multiples of νk(D1) are the only
possibilities for coordinates of the image of any divisor on Jac(X).

Corollary 4.8.

⟨ {νk(Dh)} | h a height on H5 ⟩ ∼= ⟨νk(D1)⟩ ∼= Z for any k ∈ [5].

Though the group generated by height functions on H5 is infinite, there are only a finite number of height
functions up to overall shift. A natural question is which multiples m · νk(D1) of νk(D1) occur as some
νk(Dh). A preliminary estimate may be obtained using the following corollary of Proposition 4.2.

Corollary 4.9. For h a height function on H5, νk(Dh) = a(ek∞−ek4) for some integer a satisfying 0 ≤ |a| ≤
16.

Proof. Let h be a height function on H5. Then, on Γ5, h lies on a minimal path between the height
corresponding to the fully extended hypercube and the valise hypercube. Proposition 4.2 gives the result. □

In fact, we can say even more. Using SageMath, we implemented a version of Zhang’s algorithm for
enumerating the N = 5 hypercube Adinkra heights (see Section 2.2), and then performed the combinatorial
algorithm laid out in Definition 2.4, Equation 3.11, and Lemma 3.12 to find the images of each of the 395 094
heights as divisors in E1.

Proposition 4.10. The images ν1(Dh) of all N = 5 hypercube Adinkra heights h on E1 form the set
{a(e∞1 − e41) | a ∈ Z,−8 ≤ a ≤ 8}.

We list the frequency with which each possible divisor on E1 appears in Table 4.1 and illustrate the frequencies
with a chart in Figure 11.

One might naturally wonder whether the bound we have observed on the size of divisors obtained as
height images in E1 holds for every Ek. Indeed, it does, as advertised in our Main Theorem. To show the
pattern holds, we will need the following proposition describing the images of heights on H5 under shifts
and rainbow rotation.
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ν1(Dh) Frequency

−8(e∞1 − e41) 24
−7(e∞1 − e41) 128
−6(e∞1 − e41) 704
−5(e∞1 − e41) 2752
−4(e∞1 − e41) 9048
−3(e∞1 − e41) 23392
−2(e∞1 − e41) 47200
−1(e∞1 − e41) 72384

O1 83830
1(e∞1 − e41) 72384
2(e∞1 − e41) 47200
3(e∞1 − e41) 23392
4(e∞1 − e41) 9048
5(e∞1 − e41) 2752
6(e∞1 − e41) 704
7(e∞1 − e41) 128
8(e∞1 − e41) 24

Table 4.1. A frequency table describing images in E1 of the discrete Morse divisors asso-
ciated with each of the 395 094 heights on H5.

Figure 11. A frequency chart describing images in E1 of the discrete Morse divisors asso-
ciated with each of the 395 094 heights on H5.

Proposition 4.11. Fix u ∈ H5. Then,

νk(Dshu(h)) =

{
Sk,b(u)νk(Dh) if the parity of u is even

−Sk,b(u)νk(Dh) if the parity of u is odd;

νk(Drotb(h)) = νℓ(Dh), where k ≡ l + 1 mod 5.

where b is the unique (base) vertex such that νk(b) = W+
k for each k = 1, . . . , 5, and shu and rotb are the

“shift by u” and “rainbow rotation from b” maps described in Definition 4.3.
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Proof. The image νk(v) of any v ∈ H5 is given by the k-color-splitting Sk,b(v) from b to v. If v is a critical
point for h with multiplicity mv,

νk(mv · v) = mv · νk(v) =

{
Sk,b(u+ v)W+

k if u+ v is white

Sk,b(u+ v)B+
k if u+ v is black.

Since Sk,b(u+ v) = Sk,b(u) · Sk,b(v),

νk(Dshu(h)) =

{
Sk,b(u)νk(Dh) if the parity of u is even

−Sk,b(u)νk(Dh) if the parity of u is odd.

Next we consider νk(Drotb(h)). Note that if v is a critical point of h, then rot−1
b (v) is a critical point of

h′ = rotb(h). The color of vertex v is determined by the parity of the distance of a path from b to v. Note
that this parity is the same for the distance from b to rot−1

b (v), since the path between b and v can be rotated

backwards according to the rainbow to get to rot−1
b (v). Thus, we have that

νk(rot
−1
b (v)) = Sk,b(rot

−1
b (v))νk(v).

Recall that Sk,b(rot
−1
b (v)) is determined by the number of instances of k and k+2 in a minimal path between

b and rot−1
b (v). This is equivalent to the number of instances of (k + 1) mod 5 and (k + 3) mod 5 in a path

between b and v. Thus, if ℓ ≡ (k + 1) mod 5, we have νk(rot
−1
b (v)) = Sℓ,b((v))νk(v), and

νk(Drotb(h)) = νℓ(Dh).

□

Theorem 4.12. Let a · ek∞+ b · ek4 + c · ek2 = νk(Dh) for a height h on H5. Then 0 ≤ |a| ≤ 8, b ≡ −a mod 4,
and c = 0.

Proof. Suppose that h is a height for which νk(Dh) = a · ek∞ + b · ek4 + c · ek2 , and |a| > 8. Let h′ = σ6−k
b (h).

By Proposition 4.11, ν1(Dh′) = a · e1∞ + b · e14 + c · e12, a contradiction. □

Together, Proposition 4.7 and Theorem 4.12 yield our Main Theorem.
Note that there are 48 heights h for which ν1(Dh) = ±8(e∞1 − e41). These come from two geometric

equivalence classes of heights as shown in Figure 12. The ranked adinkras represented on the left pane
of Figure 12 are those with two pinned vertices v1 and v2, such that, beginning at one pinned vertex v1,
traveling along colors j and j+2 gives pinned vertex v2. For example, one such set of pinned vertices might
be {(1, 0, 1, 0, 0), (1, 1, 1, 1, 0)}. The ranked adinkras represented in the right pane of Figure 12 are those
with 4 pinned vertices v1, . . . , v4 with adjacency as follows: beginning at one pinned vertex v1, travel colors
j and j + 2 to arrive at pinned vertex v2, continue along colors j + 1 and j + 3 to pinned vertex v3, and
finally along colors j and j + 2 to arrive at pinned vertex v4. For example, one such set of pinned vertices
might be {(0, 0, 0, 0, 0), (1, 0, 1, 0, 0), (1, 1, 1, 1, 0), (0, 1, 0, 1, 0)}. If we set the rightmost vertex in the top row
of each figure to be the vertex (1, 1, 1, 1, 1), then the divisors on Jac(X) can be calculated as described in
Sections 2.3 and 3. For the height shown in the left pane, the divisor on E1 × · · · × E5 is

(4.2)
(
− 8(e∞1 − e41), O2,−8(e∞3 − e43), O4, O5

)
.

For the height shown in the right pane, the divisor on E1 × · · · × E5 is

(4.3)
(
− 8(e∞1 − e41),−8(e∞2 − e42), O3, O4, O5

)
.

Choosing different vertices for the “pinned” positions, related in the same way by rainbow ordering (i.e.,
different representatives from the geometric equivalence classes) will yield similar results, up to signs and
cyclic rotation of the zero and nonzero coordinates. These are the only divisor images for which one of their
coordinates has |a| = 8 in the notation of Theorem 4.12.

While the result in Theorem 4.12 significantly restricts possible divisor images η(Dh) on Jac(X), there
are still 17 possibilities in each coordinate, and thus 175 = 1419 857 possible divisor images. This is far
more than the total number of heights on H5. However, as demonstrated for the “extremal” cases shown
in Figure 12 and calculated in Equations (4.2) and (4.3), few among these possibilities actually occur. A
natural open question is the following:

Problem 4.13. Describe the images ν(Dh) of the divisors Dh for all heights h on H5, and how this de-
scription relates to adjacency in the digraph Γ5.
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Figure 12. Representatives from the two equivalence classes of heights for which ν1(Dh) =
±8(e∞1 −e41). Here, the rainbow ordering for the endges is red-orange-green-blue-purple. The
critical point vertices are diamond shaped and the regular vertices are circles.
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