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A PROJECTIVE TWIST ON THE HASSE NORM THEOREM

ALAN BU AND THOMAS RÜD

Abstract. A finite extension of global fields L/K satisfies the Hasse norm principle
if any nonzero element of K has the property that it is a norm locally if and only if it
is a norm globally. In 1931, Hasse proved that any cyclic extension satisfies the Hasse
norm principle, providing a novel approach to extending the local-global principle to
equations with degree greater than 2. In this paper, we introduce the projective Hasse
norm principle, generalizing the Hasse norm principle to multiple fields and asking
whether a projective line that contains a norm locally in every field must also contain
a norm globally in every field. We show that the projective Hasse norm principle is
independent from the conjunction of Hasse norm principles in all of the constituent
fields in the general case, but that the latter implies the former when the fields are all
Galois and independent. We also prove an analogue of the Hasse norm theorem for
the projective Hasse norm theorem, namely that the projective Hasse norm principle
holds in all cyclic extensions.
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2 ALAN BU AND THOMAS RÜD

1. Introduction

Nearly a century ago, mathematician Helmut Hasse first introduced his concept of the
local-global principle: the idea that, if a diophantine equation has a solution modulo
every positive integer n, i.e. it always has a solution locally, then it must have an
actual solution globally over the integers as well. Since then, the principle has been
carefully studied in a variety of spaces, and to great depths. It turns out that in most
cases, the principle actually fails: in [Sel51], Selmer’s famous counterexample is the
equation 3x3 + 4y3 + 5z3 = 0. It is not hard to show this equation has a solution
modulo every integer, and yet it has no solution over the rationals. However, in other
instances, the principle holds: for instance, the Hasse-Minkowski theorem proves that
the principle is true for all quadratic forms over the rationals: multivariable polynomial
expressions whose monomials all have degree two. Selmer’s example shows that we
cannot extend Hasse-Minkowski’s theorem into higher degrees, but there are many
approaches to extend the local-global principle into cases involving higher degrees.

One of the most prominent of these approaches is through the use of multiplicative
norms. In any field extension, we can assign each element a norm acting as a kind of
magnitude. For instance, in the Gaussian rationals over Q, the norm of an element
is the same as the square of its complex magnitude. In 1931, Hasse published his
acclaimed Hasse norm theorem [Has31]: given a cyclic extension of the rationals K/Q,
he proved that the norm of the number field K satisfies the local-global principle: given
any rational number q, if the equation NK/Q(x) = q has a solution locally then it has a
solution globally.

In our research, we put a projective twist on the problem. Instead of looking at
the local-global principle at specific points, we look at lines through the origin instead.
Given a space of several field extensions, if a projective line always contains a local
solution, when must it also contain a global solution?

To address this question, in §2 we introduce the Hasse Norm Principle (HNP), the
Multinorm Problem, as well as the Projective Hasse Norm Principle (PHNP). We fix
standardized notations in §3 and introduce the methods used in §4.

In §5 we show a few preliminary results around simple cases of the projective Hasse
norm principle and its connection to the Hasse norm principle that do not require
cohomology. In §6 we derive a closed form for the character lattices of tori closely
related to the projective Hasse norm principle, which we use extensively to analyze our
research problem in later section.

In §7, we show that PHNP does not imply HNP by giving an explicit counterexample
with a composite quadratic extension. On the other hand, it is often true that when
HNP is true in all of the constituent fields, then PHNP holds as well. To concretely
show this, we derive a simple sufficient condition for HNP =⇒ PHNP in §8 dependent
solely on the Galois group of the composite field extension. We also derive an explicit
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construction isomorphic to the Tate-Shafarevich group that encodes the PHNP condi-
tion in terms of the decomposition groups of the composite field extension, which allows
us to completely reframe the problem of PHNP in terms of discrete group theory. Using
these tools, we show that when all of the consituent fields are Galois and independent,
then HNP =⇒ PHNP.

Using these techniques, in §9 we construct an explicit counterexample to HNP =⇒
PHNP using a non-Galois constituent field. In §10 we further study the implication
HNP −→ PHNP in the Galois case, and show that regardless of the choice of the
constituent fields, when the Galois group of the composite group is abelian, dihedral,
or of order p3 for some prime p, then it follows that HNP −→ PHNP. We hope that
the sufficient conditions for this implication and the methods used in this section will
shed light on whether HNP implies PHNP in the general Galois case.

2. Statement of the Problem and Related Questions

Let K be a global field, i.e. a finite extension of Q or the function field of a smooth
curve over a finite field. Denote K its separable closure. For each place v of K let Kv

denote the corresponding completion of K and let AK the ring of adèles of K.

Let L/K be a separable extension. For each place v of K and place w of L such that
w|v, the norm map NL/K : L× → K× matches the norm map NLw/Kv : L×

w → Kv and
therefore a map A×

L → A×
K which we will also denote by NL/K .

2.1. The Hasse Norm Principle. The inclusion L ⊂ AL yields

NL/K(L
×) ⊆ K× ∩NL/K(A

×
L). (2.1)

If L is a field, we say the Hasse Norm Principle if the inclusion is an equality. We will
let HNPK(L) be the Boolean equal to True if and only if the Hasse Norm Principle
holds.

Theorem 2.1 (Hasse Norm Theorem, 1931). HNPK(L) holds whenever L/K is cyclic.

The modern study of the Hasse Norm principle uses techniques in class field theory
to determine when

X(L/K) := (K× ∩NL/K(A
×
L))/NL/K(L

×) ∼= X
1(K,T1

L/K) (2.2)

is trivial, where T1
L/K = R

(1)
L/KGm = Ker(NL/K : RL/KGm → Gm) is norm-one torus

corresponding to L/K. For any Gal(K/K)-module M , we use the notation

X
i(K,M) = Ker

(

H i(K,M) →
∏

v

H i(Kv,M)

)

,

where v runs over places of K. This group is called the ith Tate-Shafarevich group. For
ease of notations we write Xi(K,Q) for Xi(K,Q(K)) for any torus Q defined over K.
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If Gal(K/L) acts trivially on M we will define X
i(L/K,M) similarly.

The rational points of T1 are

T1
L/K(K) = {x ∈ L× : NL/K(x) = 1}.

The relation (2.2) is made apparent when looking at the Galois cohomology associated
to the sequence

1 → T1
L/KGm(K) → RL/KGm(K)

NL/K→ Gm(K) → 1. (2.3)

Moreover, one can computeX1(K,T1
L/K) explicitly via Tate-Nakayama duality, stat-

ing that

X
1(K,T1

L/K)
∼= X

2(L/K,X⋆(T1
L/K)),

where X⋆ is the functor mapping a torus to its character lattice.

2.2. The Multinorm Principle. More recently, many have studied the multinorm
principle which treats eq. (2.1) in the case when L is not a field but an étale algebra

L ∼= L1 ⊕ · · · ⊕ Lk where each Li/K is a field extension. We have NL/K =
∏k

i=1NLi/K

and the multinorm principle holds whenever

k
∏

i=1

NLi/K(L
×
i ) = K× ∩

k
∏

i=1

NLi/K(A
×
Li
).

Similarly to the Hasse Norm theorem, one studies this problem by trying to compute
the finite group

X(L/K) :=

(

K× ∩
k
∏

i=1

NLi/K(A
×
Li
)

)

/

(

k
∏

i=1

NLi/K(L
×
i )

)

∼= X
1(K,S).

where S = Ker(
∏

iNLi/K :
∏

iRLi/KGm → Gm). We have

S(K) =
{

(ℓ1, · · · , ℓk) ∈ L×
1 × · · · , L×

k : NL1/K(ℓ1) · · ·NLk/K(ℓk) = 1
}

⊃ T1
∩iLi/K

.

Let us write a few important results about the multinorm principle.

Theorem 2.2 ([PR13]). Let L1, L2 be separable extensions of K with Galois closure
E1, E2 respectively. If E1 ∩E2 = K then L = L1⊕L2 satisfies the multinorm principle.

This is proven by studying the surjectivity of the map X(L/K) →
∏k

i=1X(Li/K).

Theorem 2.3 ([Pol14]). If L1, L2 are finite abelian field extensions of K then

X(L1 ⊕ L2/K) ∼= X(L1 ∩ L2/K).

In particular, the Multinorm Principle corresponding to L1 ⊕ L2 holds if and only if it
holds L1 ∩ L2 satisfies the Hasse Norm Principle.
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Pollio-Rapinchuk ([PR13]) conjectured that the multinorm principle for L = L1⊕L2

holds whenever every subfield of L1∩L2 satisfies the Hasse Norm Principle but a coun-
terexample appeared in [DW14], where the authors show an isomorphism between dis-
tinguished subgroup (weak approximation) of X2(K,X⋆(S)) andX

2(K,X⋆(T1
∩iLi/K

)).

2.3. The Projective Hasse Norm Principle. In this paper we offer a modification
by introducing an intermediate field. Let K ⊂ E ⊂ L be an intermediate separable
extension and let n = [E : K] ≥ 2. As a K-vector space, we have E ∼= Kn and therefore
we have a projection map

π : E× → PK(E
×) = E×/K× ∼= Pn−1(K).

We define a similar map π : AE → PA×

K
(AE).

We say the Projective Hasse Norm Principle holds if

π(NL/E(L
×)) = π

(

E×
)

∩ π
(

NL/E(A
×
L)
)

.

Concretely, the Projective Hasse Norm principle corresponding to (L,E,K) holds if
for all e ∈ E×, if for all triples (u, v, w) of places of K,E, L respectively such that u|v
and v|w, there is λu,v,w ∈ Ku such that λu,v,we ∈ Im(NLw/Ev), then there is λ ∈ K such
that λe ∈ ImL/E .

Let us rephrase this principle in terms of a projective norm.

Definition 2.4 (Projective Norm). Let L ⊃ E be separable extensions of K, we define
the projective norm PNL/E/K : K× × L× → E× by

(k, ℓ) 7→ k−1NL/E(ℓ).

We say the Projective Hasse Norm Principle relative to L/E/K holds if

PNL/E/K(K
× × L×) = E× ∩ PNL/E/K(A

×
K × A×

L).

We are interested in the case E = K⊕n and L =
⊕n

i=1 Li where each Li/K is a field
extension. We write PHNPK(L1, · · · , Ln) the boolean corresponding to the truth of the
corresponding Projective Hasse Norm Principle.

Concretely speaking, PHNPK(L1, · · · , Ln) is true if and only if any line L ⊂ Kn such
that L⊗AK contains a local point in the image of product of the norms NL1/K × · · ·×
NLn/K , then there is a global point of L such that each coordinate is in the image of
NL1/K × · · · ×NLn/K .

In a similar fashion to the previous problems, we want to determine when

X(L/E/K) := (E× ∩ PNL/E/K(A
×
K)× A×

L)/PNL/E/K(K
× × L×) = X

1(K,T)
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is trivial, where T : Ker

(

Gm × RL/KGm

PNL/E−→ RE/KGm

)

. The rational points of T

are

T(K) ∼= {(x, y) ∈ K× × L× : NL/K(y) = x}
∼=
{

y ∈ L× : NL/E(y) ∈ K×
}

.

In our specific setting, we can write

T(K) ∼= {(y1, · · · , yn) ∈ (L1 × · · · × Ln)
× : NLi/K(xi) = NLj/K(xj) ∀1 ≤ i, j ≤ n}

We will study this the cohomology of T with the cohomology of the subtorus RE/KT
1
F/E

which in our case is isomorphic to
∏n

i=1T
1
Li/K

.

Firstly, let us note that we can always assume n > 1.

Proposition 2.5. If E = F (i.e. n = 1), then the Projective Hasse Norm Principle
holds trivially.

Proof. If E = K then we have T ∼= RL/KGm and hence

X
1(K,T) ⊂ H1(K,T(K)) = 1.

�

Remark 2.6. If n = 2, PHNPK(L1, L2) can be reformulated as the following statement:

for any fixed y ∈ K, the equation y =
NL1/K

(x1)

NL2/K
(x2)

has a global solution if and only if it

has a local solution. In particular we get the following result.

Proposition 2.7. If n = 2 and L1 = L2, we have

PHNPK(L1, L2) = HNPK(L1).

Proof. Following Remark 2.6, the equation reduces to y = NL1/K(
x1
x2
). A local solution

implying a global solution is equivalent to HNPK(L1). �

Thusly, we can see that the Projective Hasse Norm Principle is a strict generalization
of the Hasse Norm Principle.

In this paper, we compare PHNPK and HNPK across many settings, mainly studying
whether it is true that PHNPK(L1, L2, . . . , Ln) implies or is implied by

∧

iHNPK(Li) in
each setting of the problem. We will show counter examples for each direction proving
that the principles cannot be compared without assumptions on L1, · · · , Ln. In particu-
lar, we show in Theorem 10.3 that

∧

iHNPK(Li) implies PHNPK(L1, L2, . . . , Ln) when
each of the field extensions Li/K is Galois and abelian, which in turn implies a pro-
jective analogue of the Hasse norm theorem. We also show that this result holds when
Gal((L1L2 · · ·Ln)♯) is dihedral or has order p3 for some prime p. We also demonstrate in
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Proposition 8.9 that when L1, L2, . . . , Ln are each Galois extensions of K and have inde-
pendent Galois groups, it is also true that

∧

iHNPK(Li) =⇒ PHNPK(L1, L2, . . . , Ln).

Remark 2.8. Note that when L/E is quadratic, then the study of the projective Hasse
norm principle can be related to computing the Tamgawa number of centralizers of
similitude groups, and has connections with counting point on Shimura varieties, as
done in [AAgGG23]. We will also mention this application in Remark 5.5.

3. Notations

Let L1, L2, . . . , Ln be finite extensions of a global field K. Let L = (L1L2 · · ·Ln)♯ be
the Galois closure of the composite field L1L2 · · ·Ln. Let L̃ denote the étale algebra
L1⊕L2⊕· · ·⊕Ln. Note that this is different from our previous section where L was the
étale algebra. Let G denote Gal(L/K). For simplicity, we let H i(M) denote H i(G,M)
for any Z[G]-module M . For any finite group A, we let A∨ = Hom(A,Q/Z) denote
the Pontryagin dual of A and let Aab = (A∨)∨ denote the abelianization of A. We
furthermore let Ader denote the derived or commutator subgroup of A.

For each i, we define G(i) = Gal(L/Li). If Li/K is a Galois extension, we define
Gi = Gal(Li/K) so that Gi

∼= G/G(i). If L1, L2, . . . , Ln are all independent and Galois,
then we have G ∼=

∏

iGi and G
(i) ∼=

∏

j 6=iGj for all i.

Let us state a simple but useful fact about G(i)’s.

Lemma 3.1. We have that
⋂

iG
(i) = 0.

Proof. Suppose a nontrivial element g exists such that g ∈ G(i) for all i, then let
G′ = 〈g〉. Since |G/G′| < |G| is an automorphism group of L fixing each of the
subfields L1, L2, . . . , Ln and strictly smaller than Gal(L/K), it follows that L is not the
minimal Galois closure of L1, L2, . . . , Ln, giving a contradiction. �

4. Methodology

Classically, the Hasse norm theorem associated with a Galois field extension L/K is
related to the cohomology of norm-one tori as follows. Let R and R(1) denote the Weil

restriction of scalar and the norm one tori respectively. Let T1
L/K = R

(1)
L/KGm. Taking

the cohomology of the sequence of Gal(L/K) modules

1 → T1
L/K(L) → RL/KGm(L) ∼= (L× L)× → Gm(L) ∼= L× → 1,

we get
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1 T1
L/K(K) L× K× H1(L/K,T1

L/K(L))

1
∏

v

T1
L/K(Kv)

∏

w|v

L×
w

∏

v

K×
v

∏

v|p

H1(Lw/Kv,T
1
L/K(Lw)),

NL/K

r

where v is taken over all places in K and w runs over places of L dividing v. In the
diagram, the Hasse Norm Principle is equivalent to injectivity of the map r. We can
do something analogous for the projective norm.

Recall that now L̃ =
⊕n

i=1 Li, where Li/K is a field extensions and L is the Galois
closure of the composite field L1 · · ·Ln. The projective norm can be extended to a map
between algebraic tori Gm ×

∏

RLi/KGm → (Gm)
n. Let T be the kernel of this map.

We now have an exact sequence

1 → T(L) → Gm ×
∏

i

RLi/KGm(L)
PN→ Ln → 1.

The Galois cohomology of that sequence yields

1 T(K) K× ×⊕n
i=1 L

×
i (K×)n H1(L/K,T(L)).PN

Now, taking the injections K → Kv yields the commutative diagram

1 T(K) K××
⊕n

i=1 L
×
i (K×)n H1(L/K,T(L))

1
∏

v

T(Kv)
∏

w|v

K×
v ×

n
⊕

i=1

L×
i,w

∏

v

(K×
v )

n
∏

w|v

H1(Lw/Kv,T(Lw))

PN δ

π

γ η

where the maps H1(L/K,T(L)) → H1(Lw/Kv,T(Lw)) are restriction maps.

Proposition 4.1. PHNPK(L1, L2, . . . , Ln) is true if and only if H1(L/K,T(L)) →
∏

w|vH
1(Lw/Kv,T(Lw)) is injective.

Proof. One can note that PHNPK is equivalent to the statement: for all α ∈ (K×)n,
α ∈ Im(PN) ⇐⇒ π(α) ∈ Im(γ). Using the exact sequences, this is equivalent to the
statement δ(α) = 1 ⇐⇒ α ∈ Ker(δ) ⇐⇒ π(α) ∈ Ker(η) ⇐⇒ η(π(α)) = 1 for all
α ∈ (K×)n. Since the diagram is commutative, this is equivalent to the kernel of the
map H1(L/K,T(L)) →

∏

w|vH
1(Lw/Kv,T(Lw)) being trivial, as desired. �

We have shown that PHNPK(L1, · · · , Ln) is true if and only if the first Tate-Shafarevich
group X

1(L/K,T) is trivial. It is known that this group is finite, but it is hard to
compute the cohomology of T(K) directly, so we make use of Tate-Nakayama duality.
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Using the functor X⋆ mapping a torus to its character lattice, we get an easier way to
compute, both mathematically and programmatically, the first Tate-Shafarevich group
of an algebraic tori. The structure of these lattices are closely linked to the Galois group
of the field extension, and oftentimes can easily be expressed in a closed form in terms
of this Galois group.

Theorem 4.2 (Tate-Nakayama theorem, [PR94, Theorem 6.2]). Let K be a global
field, let T be an algebraic torus defined over K and split over L, and let X⋆(T) be its
character lattice. Then X

1(L/K,T) ∼= X
2(L/K,X⋆(T)).

Our approach will therefore be to give an explicit description of the character lattice
of T and compute X

2(L/K,X⋆(T)).

5. Preliminary Results

Thought closely related, neither HNP nor PHNP directly imply one another, so
current results do not extend to the PHNP condition easily. Thus, we aim to draw
connections between the conditions. It turns out that in some cases, we can directly
construct a global solution from the local solutions of PHNP when HNP holds.

Definition 5.1 (v-local solution, scale factor). Fix a place v of K. For a given n-tuple
k1, k2, . . . , kn ∈ Kn, if there exists ℓi ∈ Li ⊗ Kv and a constant sv ∈ Kv such that
NLi/K(ℓi) = sv · ki we call (ℓ1, ℓ1, . . . , ℓn; sv) a v-local solution (relative to k1, . . . , kn)
with scale factor sv.

Note that the PHNP is equivalent to the assertion that if there exists a v-local solution
for every v, then there exists a global solution.

Proposition 5.2. Suppose that HNPK(Li) holds for i = 1, . . . , n and let k1, . . . , kn ∈
Kn. If there there some s ∈ K that is a scale factor for all local solutions, then there
exists a global solution.

Proof. By definition of scale factors, we get that ski is a local norm of Li/K and the
Hasse Norm Principle for Li/K holds hence there is xi ∈ Li so that NLi/K(ℓi) = ski.
The tuple (ℓ1, . . . , ℓn) is therefore a global solution. �

The proposition below further shows that we can always reduce the projective Hasse
norm principle to the case where all extensions L1/K, L2/K, . . . , Ln/K have degree
greater than 1.

Proposition 5.3. Let n ≥ 2. We have:

PHNPK(L1, L2, . . . , Ln, K) = PHNPK(L1, L2, . . . , Ln).
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Proof. (⇐) Assume PHNPK(L1, L2, . . . , Ln) holds. Let k1, . . . , kn+1 ∈ K× such that
v-local solutions exist for all v, relative to the extensions L1, . . . , Ln, K. This implies
that v-local solutions of (k1, . . . , kn) exist for all v, relative to L1, . . . , Ln. We can
use PHNPK(L1, L2, . . . , Ln) to obtain (ℓ1, . . . , ℓn) ∈ L1 × . . . × Ln and s ∈ K so that
ski = NLi/K(ℓi) ki for all 1 ≤ i ≤ n. Since NK/K = id we get that (ℓ1, . . . , ℓn, skn+1) is
a global solution for (k1, . . . , kn+1), relative to the extensions (L1, L2, . . . , Ln, K).

(⇒) Now assume that PHNPK(L1, L2, . . . , Ln, K) holds. If k1, . . . , kn ∈ K× have v-
local solutions for all v, with respect to L1, . . . , Ln, then k1, . . . , kn, 1 has v-local solutions
for all v with respect to L1, . . . , Ln, K, then we can use PHNPK(L1, L2, . . . , Ln, K) to
get a global solution and restrict it to its first factors to get a global solution relative
to k1, . . . , kn, 1 and the extensions L1, . . . , Ln. This finishes the proof. �

Next, we introduce another reduction of PHNP to HNP when L1, L2, . . . , Ln are
identical.

Proposition 5.4. If L1 = L2 = · · · = Ln for n ≥ 2, then we must have

PHNPK(L1, L2, . . . , Ln) = HNPK(L1).

Proof. (⇒) Suppose PHNPK(L1, L2, . . . , Ln) holds. Let k ∈ K× such that k belongs in
the image of the norm of L1/K locally. Since 1 is always in the image of the norm, there
exists a global solution to (k, 1, 1, . . . , 1) with respect to L1, . . . , Ln. Therfore, there are
s ∈ K× and (ℓ1, . . . ℓn) ∈ L1 × · · · × Ln so that NL1/K(ℓ1) = sk and NLi/K(ℓi) =
NL1/K(ℓi) = s · 1. Therefore, k = NL1/K(ℓ1/ℓ2). This implies that HNPK(L1) holds.

(⇐) Assume that HNPK(L1) holds. Assume that k1, . . . , kn ∈ K× locally scale
to a norm of L1 × · · · × Ln. This means that for all place v there are sv ∈ K×

v

and ℓ1, . . . , ℓn ∈ L1 ⊗ Kv so that NL1/K(ℓi) = svki for all i ≤ n. This implies that
ki/kn = NL1/K(ℓi/ℓn). Using the Hasse norm principle, there are x1, . . . , xn−1 ∈ L1 so
that NL1/K(xi) = ki/kn. Let xn = 1. Then for all 1 ≤ i ≤ n we have NL1/K(xi) =

1
kn
ki,

we can take 1
kn

as global scale factor. �

Remark 5.5. Although the previous proposition examines a very restricted setting, it
provides us with a very interesting application. In [AAgGG23], the authors establish a
mass formula to count the size of isogeny classes of principally polarized abelian varieties
over finite fields, weighted by the size of their respective automorphism groups. This
extends to yield a similar formula for elliptic curves. The formula is very concrete,
except one constant: the Tamagawa number of a specific global torus, which can be
seen locally as the centralizer of the Frobenius element acting on the dual of Tate
groups.

This Tamagawa number can be written τ(T) = |H1(Q,X∗(T))|
|X1(T)|

, and the real difficulty

in its calculation is to determine the denominator.
One can apply the work done in [AAgGG23] and apply it to a product of elliptic

curves, and count either isogenous abelian surfaces, or modify the formula to restrict
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the count to other products of elliptic curves. In both cases, the same Tamagawa
number computation arises. For one elliptic curve, the torus is a maximal torus of
GL2(Q) which is either split or a restriction of scalars and has a trivial Tamagawa
number. For two elliptic curves, however, we get a maximal torus of (GL2×GL2)

0(Q) ⊂
GSp4(Q) where (GL2 × GL2)

0 is the group of pairs of matrices (g1, g2) ∈ GL2 with
matching determinants. The most interesting case is when the torus is compact modulo
center (the elliptic case), and the corresponding Tate-Shafarevich group is exactly the
obstruction to PHNPK(L1, L2) where Li is generated by eigenvalues of gi.

6. Description of Character Lattices

Recall that we have the following exact sequence between algebraic tori by mapping
each element of T to its shared norm under

∏

iNLi/K :

1
∏

iR
(1)
Li/K

Gm T Gm 1.

Let Λ := X∗(T) and Λ1 := X∗(
∏

iR
(1)
Li/K

Gm). From this, we can obtain a short exact

sequence on the character lattice of each tori as in Example 5.1 by taking the dual of
the previous exact sequence:

0 Z Λ Λ1 0. (6.1)

We may now describe the character lattice of T.

Proposition 6.1. Let Si denote the left coset space G/G
(i) equipped with a left G-action.

Let di =
∑

g∈Si
g ∈ Z[Si] for each i. Then it follows that

X∗(T) ∼=
(

∏

i

Z[Si]

)

/

{

(λ1d1, λ2d2, . . . , λndn) : λi ∈ Z,
∑

i

λi = 0

}

.

Proof. The embeddings T1(L) ⊂ T(L) ⊂ RL/KGm(L) yield the surjections
⊕

i

Z[Si] = X⋆(RL/KGm)
ϕ→ X⋆(T) → X⋆(T1) =

⊕

i

Z[Si]/〈di〉.

Note that di corresponds at the norm map, viewed as a character, and since elements
of T(L) are tuples ℓ = (ℓ1, . . . , ℓn) with matching norm η, we get that an element
λ1d1 ⊕ · · · ⊕ λndn maps ℓ to

n
∏

i=1

NLi/K(ℓi)
λi = η

∑n
i=1 λi.

We just showed that {(λ1d1, λ2d2, . . . , λndn) : λi ∈ Z,
∑

i λi = 0} is in the kernel of the
surjection ϕ. By rank-checking, we may conclude that this is exactly the kernel of ϕ
and we are done. �
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In the particular case where each extension is Galois, we get the following.

Corollary 6.2. Suppose L1, L2, . . . , Ln are all Galois over K. Let di =
∑

g∈Gi
g ∈ Z[Gi]

for all i. Then X∗(T) ∼= (
∏

i Z[Gi])/{(λ1d1, λ2d2, . . . , λndn) : λi ∈ Z,
∑

i λi = 0}.

Proof. When Li is Galois, then Si = Gi is a group. �

This description lets us use SageMath to build the character lattice in an elementary
way, using the SageMath package for algebraic tori implemented by the second author.
Below is an example where L1, L2 are independent quadratic extensions of K.

def MakeLattice (G, H1 , H2):
L1 = GLattice (H1 , 1)
G = KleinFourGroup ()
H1 , H2 = [G.subgroups ()[1] , G.subgroups ()[2]]
IL1 = GLattice (H1 , 1). induced_lattice (G)
IL2 = GLattice (H2 , 1). induced_lattice (G)
IL = IL1. direct_sum (IL2)
a, b = IL.fixed_sublattice (). basis()
HNPLattice = IL. quotient_lattice (IL. fixed_sublattice ())
PHNPLattice = IL. quotient_lattice (IL.sublattice ([a-b]))
return [PHNPLattice , HNPLattice ]

This code returns the pair
(

X⋆(T),
⊕n

i=1X
⋆(T1

Li/K
)
)

.

This description allows us to solve some cases algorithmically.

Proposition 6.3. If L1, L2 are quadratic extensions, then PHNPK(L1, L2) holds.

Proof. For the case where L1 6= L2, we run the following SageMath code:

sage : G = KleinFourGroup ()
sage : H1 , H2 = [G.subgroups ()[1] , G. subgroups ()[2]]
sage : PHNP = MakeLattice (G, H1 , H2 )[0]
sage : PHNP .Tate_Shafarevich_lattice(2)
[]

This demonstrates that PHNP holds for any pair of distinct quadratic extensions.
We will see in Proposition 5.4 that both PHNP also holds if both quadratic extensions
are the same. �

Notably in the above proposition, all quadratic extensions are Galois and have abelian
Galois groups. In later sections, we generalize this result.
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7. Counterexample to PHNP =⇒ HNP

Though the two conditions may appear equivalent for lower degree choices of Li,
once we choose extensions of degree 4 or higher, counterexamples appear quite often.
To find our counterexamples as well as calculate cohomology groups, we used SageMath
to compute the results using the code shown in Appendix A.

In this section, we assert that L1, L2 are Galois. Using our result and notations
from 6.2 and denoting the character lattice X∗(T) as Λ and the lattice {(λidi) | λi ∈
Z,
∑

i λi = 0} as Λ1, we have the following short exact sequence:

1 Λ1
∏

i Z[Gi] Λ 1.

Using Galois cohomology, we can obtain the long exact sequence

1 H0(G,Λ1) H0(G,
∏

i Z[Gi]) H0(G,Λ) H1(G,Λ1) · · · .
Example 7.1. In particular, we investigate the case where L1 ⊂ L2 and each extension
in the tower L2/L1/K is quadratic. This boils down to picking G = Z/2Z × Z/2Z,
choosing n = 2, G1 = Z/2Z, and G2 = Z/2Z×Z/2Z. Furthermore, define G = G2 and
N = Gal(L2/L1). We have that that Λ1 ∼= Z, and

∏

i Z[Gi] = Z[G] × Z[N ]. We can
then compute the cohomology groups in the sequence near H2(G,Λ) using Shapiro’s
lemma (see [Mil97], p.62):

H i(G,Z[G]× Z[N ]) = H i(G,Z[G])×H i(G,Z[N ]) = H i(G/N,Z) =

{

Z/2Z 2 | i
1 2 ∤ i

.

It is well known that H2(G,Z) ∼= Gab and H3(G,Z) ∼= Z/2Z by Lyndon’s formula
(see [Lyn48]), giving us the following exact sequence:

1 H1(G,Λ) (Z/2Z)2 Z/2Z H2(G,Λ) Z/2Z 1.

From this sequence, we know that we must have H1(G,Λ) ∈ {Z/2Z, (Z/2Z)2} and
H2(G,Λ) ∈ {Z/2Z, (Z/2Z)2,Z/4Z}. By computing these cohomology groups explicitly
in SageMath, we obtain that H1(G,Λ) ∼= H2(G,Λ) ∼= Z/2Z.

We can now repeat the same process to compute these cohomology groups for two
nontrivial subgroups N,H where H is a complement of N in G. For N , we obtain

1 H1(N,Λ) Z/2Z 1 H2(N,Λ) 1 1.

So we have that H1(N,Λ) ∼= Z/2Z and H2(N,Λ) ∼= 1. Similarly, for H , we obtain

1 H1(H,Λ) Z/2Z (Z/2Z)2 H2(H,Λ) 1 1.
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Computing these cohomology groups in SageMath gives H1(H,Λ) ∼= 1, H2(H,Λ) ∼=
Z/2Z. Furthermore, the program tell us that Ker(H2(G,Λ) → H2(H,Λ)) ∼= 1. Hence
X

2(G,Λ) ∼= 1, so X
1(T) is trivial in this example if none of the decomposition groups

are equal to G. (It is well known that this can only happen over ramified primes in K.)

Now, choosing L1 = Q(
√
−3), L2 = Q(

√
−3,

√
13) gives exactly the desired selection

of Galois groups, so it follows that PHNPQ(L1, L2) holds in this case. However, it is

shown in [Has31] that Q(
√
−3,

√
13) does not satisfy the Hasse norm principle, hence

this example demonstrates that PHNP does not imply HNP in each of the constituent
fields.

Similarly, we can take L1 = Q(
√
p) and L = L2 = Q(

√
p,
√
q), where p, q are prime

numbers such that
(

p
q

)

= 1 and p, q ≡ 1 (mod 4), which ensures that the decomposition

groups of Gal(L/K) are always cyclic. Such a pair verifies PHNPQ(L1, L2) however it

is well known that X1(L2/Q,R
(1)
L2/Q

Gm)) ∼= Z/2Z hence HNPQ(L2), and by extension

HNPQ(L1) ∧ HNPQ(L2), does not hold.

8. A Condition for HNP =⇒ PHNP

In contrast to PHNP =⇒ HNP, counterexamples to HNP =⇒ PHNP are far more
sparse. In this section, we find sufficient conditions for identifying cases where HNP in
all of the constituent fields implies PHNP based off work in [Rüd22] and [LOYY24].

Proposition 8.1. Suppose
∧

iHNPK(Li) holds. Let x be any element of X
2(Λ) ⊆

H2(Λ), and let ι be the canonical map from H2(Λ) to H2(Λ1) defined from equation
6.1. Then x ∈ Ker(φ).

Proof. We begin by taking the cohomology of the exact sequence in equation (6.1). We
get

· · · H2(Z) H2(Λ) H2(Λ1) · · · .
Consider the following induced diagram.

0 0 0

X
2(Z) X

2(Λ) X
2(Λ1)

· · · H2(Z) H2(Λ) H2(Λ1) · · ·

· · · ∏

H2(D,Z)
∏

H2(D,Λ)
∏

H2(D,Λ1) · · ·

ι

e φ

a d

b
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Now, since we suppose that
∧

iHNPK(Li) holds, it follows that X
2(Λ1) = 0. Hence

d is injective. Since Ker a = Im ι, we have b(a(ι(x))) = 0, so d(c(ι(x))) = 0. Since ι, d
are both injective, it follows that ι(x) ∈ Ker φ as desired. �

Notice furthermore that Im e = Ker φ. Therefore if HNP holds, equivalently if d is
injective, we have that Im ι ⊆ Im e. Note that if e is trivial, it follows that X2(Λ) is
trivial, so PHNP must hold with the assumption that

∧

iHNPK(Li) is true. Following
the notations of [LOYY24], let H2(Z)′ := {x ∈ H2(Z) : e(x) ∈ Im ι}. We can now
extract a set of sufficient conditions for when HNP implies PHNP using decomposition
groups.

Proposition 8.2. Suppose
∧

iHNPK(Li) holds. Let ψ be the map from
∏

H1(D,Λ1)
to
∏

H2(D,Z) in the commutative diagram from Proposition 8.1. Then |X2(Λ)| =
|H2(Z)′|
|Ker e|

. In particular, if |Im ψ| = |Ker e| then PHNP holds.

Proof. First, we show that X2(Z) = 0. Suppose otherwise, then there exists a nonzero
map f ∈ H2(G,Z) ∼= G∨ in X

2(Z). In particular, there exists some g ∈ G such that
f(g) 6= 0. Then 〈g〉 ⊂ G is a cyclic subgroup of G, so by the Chebotarev density
theorem (see [Mil97], p.164), it follows that 〈g〉 is a decomposition group. However
f |〈g〉 6= 0, giving contradiction.

Now, we can redraw the commutative diagram from Proposition 8.1, shifting the
sequence one term to the left and labeling functions e, f, g, a, ξ as shown.

0 0

X
1(Λ1) 0 X

2(Λ)

· · · H1(Λ1) H2(Z) H2(Λ) · · ·

· · · ∏

H1(D,Λ1)
∏

H2(D,Z)
∏

H2(D,Λ) · · ·

ι

ξ e

f a

ψ g

In particular, since ι is injective, the image of H2(Z)′ under e is exactly Im ι. Thus

|X2(Λ)| = |Im ι| = |H2(Z)′|
| ker e|

.

Furthermore, for any element x of H2(Z)′, e(x) ∈ Im ι so a(e(x)) = 0. Thus f(x) ∈
Ker g so f(x) ∈ Im ψ. Thus since f is injective, it follows that |H2(Z)′| ≤ |Im ψ— so

if |Im ψ| = |Ker e| then 1 =
|Im ψ|
|Ker e| ≥

|H2(Z)′|
|Ker e| = |X2(Λ)| as desired. �

Corollary 8.3. If Ker e = H2(Z) ∼= G∨, then
∧

iHNPK(Li) =⇒ PHNPK(L1, L2, . . . , Ln).
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Proof. It follows from Proposition 8.2 that 1 ≥ |H2(Z)′|
H2(Z)

= |X2(Λ)|, so X
2(Λ) = 0 as

desired. �

Now that we have a path to determining when PHNP holds in a given collection of
field extensions, we hope to understand the map e so that we can explicitly compute
its kernel and H2(Z)′. We proceed by analyzing the map ξ.

Proposition 8.4. Let Λ1
i = IndGG(i)Z/〈di〉 for any i. It follows that H1(G,Λ1

i )
∼= {f :

G→ Q/Z : f |G(i) ≡ 0}.

Proof. Recall from Proposition 6.1 that

Λ1 =
n
⊕

i=1

IndGG(i)Z/〈di〉

∼=
n
⊕

i=1

Z[G/G(i)]/

〈

∑

g∈G/G(i)

g

〉

.

Thus we have H i(G,Λ1) =
⊕

iH
i(G,Λ1

i ).

Letting diagi denote the map from k ∈ Z to kdi, we obtain the following short exact
sequence:

0 Z IndGG(i)Z Λ1
i 0.

diagi

Computing the cohomology, we obtain:

· · · H1(G, IndGG(i)Z) H1(G,Λ1
i ) H2(G,Z) H2(G, IndGG(i)Z) · · · .

Note that H1(G, IndGG(i)Z) ∼= H1(G(i),Z) = 0 by Shapiro’s Lemma and Hilbert 90 (see

[Mil97], p.67), H2(G,Z) = G∨, and H2(G, IndGG(i)Z) ∼= H2(G(i),Z) = (G(i))∨. Rewriting
the cohomology, we have

0 H1(G,Λ1
i ) G∨ (G(i))∨ · · · .ri

It follows that H1(G,Λ1
i )

∼= Ker ri = {f : G→ Q/Z : f |G(i) ≡ 0} as desired. �

In particular, analogously to [LOYY24], it follows the map ξ is the sum map, obtained
by taking the fi such that H1(Λ1) =

⊕

iH
1(Λ1

i ) = (f1, f2, . . . , fn) and summing them
to obtain f = f1 + f2 + · · · + fn ∈ G∨ = H2(G,Z). Hence we obtain the following
proposition.
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Proposition 8.5. We have

Ker e = Im ξ =

{

f ∈ G∨ : ∀i, ∃fi ∈ G∨, fi|G(i) ≡ 0, f =
∑

i

fi

}

where f1, f2, . . . , fn ∈ G∨.

Remark 8.6. Both of Propositions 8.4 and 8.5 can be adapted for a different choice
of Galois group D ⊆ G. It suffices to replace G(i) with D(i) = G(i) ∩ D and redefine
Λ1
i = IndDD(i) throughout the proof. These changes yield the following proposition.

Proposition 8.7. Let eD denote the map H2(D,Z) → H2(D,Λ) given in the commu-
tative diagram. We have

Ker eD =

{

f ∈ D∨ : ∀i, ∃fi ∈ D∨, fi|D(i) ≡ 0, f =
∑

i

fi

}

where f1, f2, . . . , fn ∈ D∨.

Using the above result, we can also deduce an explicit formulation for H2(Z)′ analo-
gous to that of Proposition 8.5 for Ker e.

Proposition 8.8. The set of H2(Z)′ ⊆ H2(Z) ∼= G∨ is exactly {f : G → Q/Z :
∀D, f |D ∈ Ker eD} where D is chosen over all decomposition groups of G.

Proof. Recall the following commutative diagram from the proof of Proposition 8.2.

0 0

X
1(Λ1) 0 X

2(Λ)

· · · H1(Λ1) H2(Z) H2(Λ) · · ·

· · ·
∏

H1(D,Λ1)
∏

H2(D,Z)
∏

H2(D,Λ) · · ·

ι

ξ e

f a

ψ g

By definition, H2(Z)′ is exactly the set of elements x of H2(Z) such that a(e(x)) = 0.
Since this diagram is commutative, it follows that g(f(x)) = 0. However f is injective
and given by the restriction map to each decomposition group D. Thus H2(Z)′ is
exactly the set of maps f ∈ G∨ such that f |D ∈ Ker eD for every decomposition group
D, since g can be decomposed as a direct product of eD for each decomposition group
D of G. �
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These tools gives us an explicit way to prove that PHNP holds in a given choice
of L1, L2, . . . , Ln by combining our formulation in Proposition 8.5 and the result in
Proposition 8.2. We apply these tools to the simple case when L1, L2, . . . , Ln are all
Galois and independent:

Proposition 8.9. If L1, L2, . . . , Ln are all Galois over Q and G ∼=
∏

iGi, then
∧

i

HNPK(Li) =⇒ PHNPK(L1, L2, . . . , Ln).

Equivalently, G∨ ∼=
∏

iG
∨
i .

Proof. Since G =
∏

iGi, each element of G can be represented as (g1, g2, . . . , gn) such
that gi ∈ Gi for each i and Gi = {(g1, g2, . . . , gn) : ∀j 6= i, gj = 0}. For any choice of
f ∈ G∨, choosing fi such that fi(g1, g2, . . . , gn) = f(0, . . . , 0, gi, 0, . . . , 0) satisfies the
conditions on fi and f =

∑

i fi given in Proposition 8.5.
Thus f ∈ Ker e. Hence H2(G,Z) ⊆ Ker e ⊆ H2(G,Z), so Ker e = H2(G,Z).

Applying Proposition 8.2, it follows that PHNP holds. �

9. Counterexample to HNP =⇒ PHNP

In this section, we construct a counterexample to the claim that
∧

iHNPK(Li) =⇒
PHNPK(L1, L2, . . . , Ln), showing that neither PHNP or HNP directly implies the other.
We provide an explicit example.

Example 9.1. Let L be the extension ofK = Q generated by the roots of x4−x+1. It is
known that that Gal(L/Q) ∼= S4 (from [LMF24]). Let H1 = 〈(12)〉 and H2 = 〈(1234)〉
be subgroups of Gal(L/Q) and let L1, L2 be the subfields of L fixed by these two
subgroups respectively. From LMFDB, we know that the only ramified prime of L is
229, whose decomposition group is Z/2Z.

Thus all decomposition groups of Gal(L/Q) are cyclic. It can be furthermore verified
that HNP is satisfied in L1 and L2 respectively.

Now, consider Proposition 8.2, which states that |X2(Λ)| = |H2(Z)′|
|Ker e|

. The denomina-

tor Ker e can be computed through Proposition 8.5: for any g = aba−1b−1 ∈ Gder, we
have f(g) = f(a)f(b)f(a−1)f(b−1) = 0 for f : G→ Q/Z.

Since the commutator subgroup of S4 is A4, it follows that the only two maps f in
H2(Z) are f ≡ 0 and

f =

{

0 g ∈ A4

1
2

otherwise.

However, since G(1) = Gal(L/L1) = H1 and G(2) = Gal(L/L2) = H2, the latter map
is nonzero over both H1 and H2, so it follows that the only choice for f1 and f2 is the
trivial map. Thus, Ker e is trivial.

Next, we show that H2(Z)′ contains at least two elements, which would imply that
X

2(Λ) is nontrivial and thus that PHNPQ(L1, L2) is false.
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It suffices to show that f satisfies the conditions of Proposition 8.8. First, notice that
no cyclic subgroup of S4 intersects both 〈(1234)〉 and 〈(12)〉, so for each decomposition
group D, it follows that we can solve f |D = f1 + f2 by choosing {f1, f2} = {0, f |D}
depending on whether D(1) or D(2) is trivial. Hence f ∈ Ker eD for all decomposition
groups D so f ∈ H2(Z)′ as desired.

We now know that HNP =⇒ PHNP holds for independent Galois field extensions
but does not hold in the non-Galois case. It remains to be shown whether it is true that
HNP implies PHNP when L1, L2, . . . , Ln are non-independent Galois field extensions.
We give a few partial results in this direction.

10. Studying HNP =⇒ PHNP in the Galois Case

We proceed to derive a set of sufficient conditions that allow us to prove HNP =⇒
PHNP using only the Galois groups of the fields L1, L2, . . . , Ln. In this section, we
exclusively consider the case where each Li/K is a Galois extension.

Proposition 10.1. If for any f ∈ G∨, there exists functions fi ∈ G∨ for each i such that
fi|G(i) ≡ 0 and such that f =

∑

i fi, then
∧

iHNPK(Li) =⇒ PHNPK(L1, L2, . . . , Ln).

Proof. First, recall from Proposition 8.5 that

Ker e = {f ∈ G∨ : ∀i, ∃fi ∈ G∨, fi|G(i) ≡ 0, f =
∑

i

fi}.

If it is true that Ker e ∼= H2(Z), then Proposition 8.2 implies that |X2(Λ)| =
|H2(Z)′|
|Ker e| ≤ |H2(Z)|

|Ker e| = 1, so PHNP holds. �

This weaker condition for PHNP allows us to study HNP =⇒ PHNP using only the
structure of the Galois group G. The following proposition gives us an algorithmic
approach to verify the conditions of Proposition 10.1 in G.

Proposition 10.2. If for any g ∈ G and 1 ≤ i ≤ n, we have that gG(i) ⊆ GderG(i) =⇒
g ∈ Gder, then it follows that

∧

iHNPK(Li) =⇒ PHNPK(L1, L2, . . . , Ln). Equivalently,
if
⋂

iG
derG(i) = Gder, then it follows that

∧

iHNPK(Li) =⇒ PHNPK(L1, L2, . . . , Ln).

Proof. Note that G(i) EG for every i from the Galois condition. We have the equality
(G/G(i))der = GderG(i)/G(i) since for any g1, g2,∈ G,

g1G
(i)g2G

(i)(g1G
(i))−1(g2G

(i))−1 = (g1g2g
−1
1 g−1

2 )G(i).

Let α be the homomorphism from Gab to (G/G(1))ab × (G/G(2))ab × · · ·× (G/G(n))ab

obtained by mapping each g ∈ Gab to the coset of Gab/G(i) ∼= (G/G(i))ab containing it.
Here, GderG(i) is exactly the kernel of the abelianization map from G/G(i) to (G/G(i))ab.
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Now, α is injective if and only if there does not exist a nonzero element g ∈ Gab such
that

α(g) = 0 ⇐⇒ ∀i, gG(i) ⊆ GderG(i).

Note that the existence of such an element is equivalent to the conditions given in
the proposition, so α is injective.

Since (Gab)∨ ∼= ((G∨)∨)∨ ∼= G∨, consider the dual map χ : (G/G(1) × G/G(2) ×
· · · × G/G(n))∨ ∼= (G/G(1))∨ × (G/G(2))∨ × · · · × (G/G(n))∨ → G∨ of α, where the
isomorphism is defined by mapping f(x1, x2, . . . , xn) ∈ (G/G(1)×G/G(2)×· · ·×G/G(n))∨

to (f1, f2, . . . , fn) such that fi = f(1, 1, . . . , xi, . . . , 1, 1) ∈ (G/G(i))∨ for each i. Since
(Gab)der = 0, χ is surjective if and only if α is injective.

Now, it follows for our description of the isomorphism that χ is the sum map, defined
by mapping (f1, f2, . . . , fn) ∈ (G/G(1))∨ × (G/G(2))∨ × · · · × (G/G(n))∨ to f ∈ G∨ such
that for every g ∈ G, we define f(g) =

∑

fi(gi) where (g1, g2, . . . , gn) = α(g).
Thus, it follows that Imχ is exactly Ker e, so since χ is surjective into G∨ ∼= H2(Z),

it follows from Proposition 10.1 that
∧

iHNPK(Li) =⇒ PHNPK(L1, L2, . . . , Ln) as de-
sired. �

We use this result to prove that HNP =⇒ PHNP in several classes of G, including
when G is abelian or dihedral.

Theorem 10.3. If Li/K is Galois and abelian for each i, then
∧

iHNPK(Li) =⇒
PHNPK(L1, L2, . . . , Ln).

Proof. For any abelian group A, we have Ader = 0 and Aab ∼= A. Since G directly
embeds into

∏

iG/G
(i), which must be abelian, it follows that G is abelian and thus

Gder = 0. Therefore by Proposition 10.2, it suffices to show that there is no nontrivial
g ∈ G such that g ∈

⋂

iG
(i). This follows from Lemma 3.1. �

This result immediately gives us an analogue of the Hasse norm theorem for the
projective Hasse norm principle:

Corollary 10.4. If L1, L2, . . . , Ln are cyclic Galois field extensions, then it follows that
PHNPK(L1, L2, . . . , Ln) holds.

Proposition 10.2 can also be used to tackle many nonabelian cases. To demonstrate
this, we show below that this proposition is sufficient to address the case where G is
dihedral.

Theorem 10.5. If G is dihedral and Li/K is Galois for each i, then
∧

iHNPK(Li) =⇒
PHNPK(L1, L2, . . . , Ln).

Proof. Let G = Dn = 〈r, s : rn = s2 = (sr)2 = 1〉, then we have that Gder = 〈r2〉. By
Proposition 10.2, it suffices to show that there does not exist g ∈

⋂

iG
derG(i) such that

g /∈ Gder.
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Suppose such a g exists. If g = rm for some m then n is even and m is odd.
Furthermore, it follows that r = gr1−m ∈ G(i) for allm, however this gives contradiction
by Lemma 3.1.

Otherwise, if g = rms for some s. Then for each G(i), there exists k such that
rks ∈ G(i) Since each G(i) E G, it follows that rk+2s = rrksr−1 ∈ G(i), so r2 ∈ G(i) for
all i. This gives contradiction by Lemma 3.1 for all n ≥ 3. Otherwise, if n = 1, 2 then
G is abelian, so the result follows from Theorem 10.3 as desired. �

By running the Oscar code in Appendix B, we found that in the groups we investi-
gated, the conditions of Proposition 10.2 held in all groups G whose order is quarticfree.
We prove two theorems supporting this observation:

Theorem 10.6. If G has order p3 for some prime p, then we have
∧

iHNPK(Li) =⇒
PHNPK(L1, L2, . . . , Ln).

Proof. If G is abelian, then the result follows immediately from Theorem 10.3. Other-
wise, it follows that Gder is a nontrivial normal subgroup of G. If any of G(i) are trivial,
it follows that Li = K and can be removed using Proposition 5.3. Now for each i, we
have that G(i) is a normal subgroup of G, so since |G/G(i)| ∈ {1, p, p2} for all i, so it
follows that G/G(i) is an abelian group. However by definition, Gder is the minimal
subgroup G′ of G such that G/G′ is abelian. Thus, it follows that Gder ⊆ G(i) for all i.
However, since Gder is nontrivial, this contradicts Lemma 3.1, finishing. �

Proposition 10.7. Suppose G ∼= Z/pZ × H where H is a nonabelian group of order
p3. Then there exists a choice of G(1), G(2) such that GderG(1) ∩GderG(2) 6= Gder.

Proof. Any p-group has a nontrivial center (by the class equation), so H must have a
normal subgroup H ′ of order p. Since H/H ′ is abelian, it follows that, Hder = H ′ ∼=
Z/pZ. Suppose G is isomorphic to H×〈α〉 where α has order p, and let β be a generator
of Hder. Now, choose G(1) = 〈α〉, G(2) = 〈αβ〉. We have that G(1) ∩ G(2) is trivial and
GderG(1) = GderG(2) = 〈α, β〉. However, Gder = 〈β〉 6∼= 〈α, β〉, as desired. �

The author hopes that determining the exact groups for which the conditions of
Proposition 10.2 hold may give further insight on whether HNP implies PHNP in the
general Galois case. In addition, a more general set of conditions utilizing Proposition
8.8 and Proposition 8.5 may suffice to show the implication.
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Appendix A. SageMath Code to Test for HNP and PHNP

def TestAll (G, check):
subg = G. normal_subgroups ()
subg .pop()
for i in range(len(subg )):

H1 = subg [i]
if H1.order() == G.order():

continue
L1 = GLattice (H1 , 1)
IL1 = L1. induced_lattice (G)
for j in range(i, len(subg )):

H2 = subg [j]
if H2.order() == G.order ():

continue
L2 = GLattice (H2 , 1)
IL2 = L2.induced_lattice (G)

if check:
P1 = False
P2 = False
if len(prime_factors (IL1.rank ())) <= 1:

P1 = True
if len(prime_factors (IL2.rank ())) <= 1:

P2 = True
if P1 and P2:

continue

if H1. group_id () == H2.group_id ():
continue

IL = IL1.direct_sum (IL2)
SL = IL.fixed_sublattice ()
a, b = SL.basis()
SSL = SL.sublattice ([a-b])

QL1 = IL.quotient_lattice (SSL)
QL2 = IL.quotient_lattice (SL)

TS1 = QL1.Tate_Shafarevich_lattice(2)
TS2 = QL2.Tate_Shafarevich_lattice(2)

if TS1 != TS2:
print(’FOUND!!’)
print(G)
print(H1)
print(H2)
print(TS1)
print(TS2)
print(’-------------’)

def HuntHNP (depth):
for i in range(1, depth):

print(i)
for j in range(1, TransitiveGroups (i). cardinality ()+1):

print( TransitiveGroup (i, j))
TestAll (TransitiveGroup (i, j), True )
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Appendix B. Oscar Code to Test for the Galois Case

function test (g,h1 ,h2)
d = derived_subgroup (g)[1]
h1d = sub(g,[ gens (h1); gens (d)])[1]
h2d = sub(g,[ gens (h2); gens (d)])[1]
i = intersect ([h1d ,h2d ])[1]
if order(i)>order(d)

true
else

false
end

end

function testall(g)
n = normal_subgroups (g)
for h1 in n

for h2 in n
if order(intersect ([h1 ,h2 ])[1]) == 1

if test (g,h1 ,h2)
print("FOUND")

end
end

end
end

end

function looptestall (n)
numb = number_small_groups (n)
for i in 1: numb

println(i)
testall( small_group (n,i))
println(" ")

end
end

function testv2(g,h1 ,h2)
d = derived_subgroup (g)[1]
q1 , f1 = quo(g,h1)
q2 , f2 = quo(g,h2)
d1 = derived_subgroup (q1 )[1]
d2 = derived_subgroup (q2 )[1]
for i in g

if !(i in d)
if (f1(i) in d1)&( f2(i) in d2)

return true
end

end
end
return false

end

function testallv2 (g)
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n = normal_subgroups (g)
l = []
for h1 in n

for h2 in n
if order(intersect ([h1 ,h2 ])[1]) == 1

if testv2(g,h1 ,h2)
print("FOUND ")
append !(l, [[g,h1 ,h2]])

end
end

end
end

return l
end

function looptestallv2 (n)
numb = number_small_groups (n)
for i in 1: numb

println(i)
s = testallv2 (small_group (n,i))
for r in s

println (r)
end
println(" ")

end
end
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