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CHARACTER SUMS, RECIPROCITY AND FUNCTIONAL EQUATIONS

CHUNG–HANG KWAN AND WING HONG LEUNG

ABSTRACT. In this article, we examine the role of the recent banner of Spectral Reciprocity within the Langlands Be-

yond Endoscopy and Braverman–Kazhdan programmes. We present a novel four-variable character sum identity,

which serves as a pivotal arithmetic input for the functional equations of automorphic L-functions. This identity can

also be interpreted as a twisted, non-archimedean counterpart to Weber-type integrals from the theory of special

functions.

1. INTRODUCTION

In his seminal work Beyond Endoscopy [26], Langlands proposed a new approach to the general Functori-

ality Conjecture via trace formulae and poles of automorphic L-functions at s = 1. This method was first imple-

mented in the thesis of Venkatesh [33, 34], specifically for the symmetric square L-function of the group GL(2).

He showed, by very impressive techniques from analytic number theory, that the pole of this L-function detects

the functorial transfer from a one-dimensional torus to GL(2), or in more classical terms, the automorphic in-

duction of Hecke Grössencharakters to dihedral forms of GL(2).

More recently, Ngô [28] and Sakellaridis [31, 30] have advocated for a synthesis of Beyond Endoscopy with

Braverman–Kazhdan’s programme [11], proposing an alternative to the functoriality conjecture through func-

tional equations and converse theorems. A central theme of [11] is to systematically deduce functional equations

of automorphic L-functions from generalized non-abelian Fourier transforms and Poisson summation, guided

by the foundational work of Godement–Jacquet [14]. The application of trace formulae in the spirit of Beyond

Endoscopy illuminates the constructions of the conjectural ingredients in [11], see [28, Section 7.2].

Venkatesh’s thesis [33] is remarkable in its depth, offering a number of elegant yet simple ideas that broaden

the scope of Beyond Endoscopy. For instance, [33, Chapter 3] provides a new analytic proof of the classical con-

verse theorem for modular forms of level 1 using a limiting trace formula. His approach has gained considerable

recent interest and been further generalized, e.g., Booker–Farmer–Lee [10] and Blomer–Leung [9].

In this article, we build on the ideas from [33] to prove the functional equation of an L-function by embed-

ding it into a spectral identity for moments of L-functions. This approach aligns with current developments in

Spectral Reciprocity after Blomer–Khan [6, 7], but with several important variations. A key novelty of our work is

a surprising reciprocity identity for a four-variable character sum, whose proof is somewhat non-trivial.

Theorem 1.1. Let q ≥ 1, a,b,u, v be integers such that ab|q∞ and (uv, q) = 1. Let χ( mod q) be a Dirichlet char-

acter. Define

C
ℓ
χ (a,u,b, v) := χ(u)

∑∗

α ( mod a)
bv≡−αq ( mod a)

e

(
ℓαu

a

)
χ

(
αq +bv

a

)
. (1.1)

Then we have

C
ℓ
χ (a,u,b, v) = e

(
−
ℓquv

ab

)
C

ℓ
χ (b, v, a,u). (1.2)
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The identity (1.2) features the switching of parameters a ↔ b and u ↔ v , despite their distinct roles in the

definition (1.1) for the character sum. From an arithmetic perspective, it is important for determining the root
numbers of functional equations, as we will explain in Section 1.2.

1.1. Global applications. Let q ≥ 1 be an integer, e(z) := e2πi z , eq (z) := e2πi z/q , and χ be a primitive Dirichlet

character ( mod q). The Gauss sum associated with χ is defined by

ǫχ :=
1
p

q

∑

α (mod q)

χ(α)eq (α). (1.3)

We focus on a simple setting to illustrate the role of Theorem 1.1 in Beyond Endoscopy. Pick any orthogonal

basis Bk (1) of holomorphic cusp forms of level 1 and weight k , for which the Fourier expansion of f ∈ Bk (1) is

given by

f (z) =
∑

n≥1

λ f (n)n
k−1

2 e(nz), (1.4)

where λ f (1) = 1, and z = x+i y with x, y ∈R and y > 0. The twisted automorphic L-function L(s, f ×χ) associated

with f and χ is defined by the Dirichlet series

L(s, f ×χ) :=
∑

n≥1

λ f (n)χ(n)

ns
, (1.5)

which converges absolutely for Re s ≫ 1. In this article, k is an even integer with k ≥ 6. 1

We obtain a novel proof of the functional equation for L(s, f ×χ) from the following spectral identity of

L-functions, rather than using an Eulerian integral representation.

Theorem 1.2. Let g ∈C∞
c (0,∞) and G (s) :=

∫∞
0 g (x)xs−1 d x be its Mellin transform. Then we have

∫

(σ)
G (s)

{
∑h

f ∈Bk (1)

λ f (ℓ)

(
L(s, f ×χ) − i kǫ2

χq1−2s γk (1− s)

γk (s)
L(1− s, f ×χ)

)}
d s

2πi
= 0 (1.6)

for any σ ∈ (0,1) and ℓ≥ 1, where

∑h

f ∈Bk (1)

α f :=
Γ(k −1)

(4π)k−1

∑

f ∈Bk (1)

α f

|| f ||2
, (1.7)

γk (s) := ck (2π)−s
Γ

(
s +

k −1

2

)
= π−s

Γ

(
s + k−1

2

2

)
Γ

(
s + k+1

2

2

)
, ck := 2(3−k)/2pπ. (1.8)

Implicit in (1.6) are the analytic continuation and polynomial growth of L(s, f ×χ). A number of subtle

points require careful discussion, which have not yet been fully addressed in the literature for our applications,

see Section 1.3. To isolate a single form from the spectral average (1.6), we follow an elegant argument from [33,

Section 2.6 and Section 3.2 (Proposition 8)], which can be viewed more broadly in [29, Section 1.6 and p. 353]

related to ‘fundamental lemma’. In Section 9, we deduce that:

Corollary 1.3. Let f ∈Bk (1) and χ( mod q) be a primitive Dirichlet character. Then for any s ∈C, we have

L(s, f ×χ) = i kǫ2
χq1−2s γk (1− s)

γk (s)
L(1− s, f ×χ). (1.9)

The argument used in Theorem 1.2 applies equally well to additive twists, thus providing a new proof of the

Voronoi formula, which is stated as follows.

1It is well-known, by the Riemann–Roch theorem, that there are no non-zero holomorphic cusp form of level 1 and weight k < 12.
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Corollary 1.4. For any q ≥ 1, (a, q)= 1 and g ∈C∞
c (0,∞), we have

∞∑

n=1

λ f (n)eq (an) g (n) =
2πi k

q

∞∑

n=1

λ f (n)eq
(
−an

)∫∞

0
g (x)Jk−1

(
4π

p
nx

q

)
d x, (1.10)

where aa ≡ 1( mod q) and Jk−1(·) denotes the J-Bessel function of order k −1.

Alternatively, Corollary 1.4 follows from Corollary 1.3 using [24, Theorem 1.3]. Recently, there has been

interest in interpreting the Voronoi formulae within various frameworks, see [22], [23], [32], [4], [27].

1.2. A road map for Theorem 1.2. Although our argument begins globally, using Dirichlet series and the Peters-

son Trace Formula, 2 the proof of our main arithmetic input (Theorem 1.1) is local.

The first summand of (1.6) is given by

Ik(ℓ;χ) :=
∫

(σ)
G (s)

∑h

f ∈Bk (1)

λ f (ℓ)L(s, f ×χ)
d s

2πi
=

∞∑

n=1

g (n)χ(n)
∑h

f ∈Bk (1)

λ f (ℓ)λ f (n), (1.11)

where its geometric expansion consists of D
ℓ
χ(m,c) := χ(m)S(m,ℓ;c), where S(m,ℓ;c) denotes the Kloosterman

sum, and the J-Bessel function (Jk−1). With an application of Poisson summation, we obtain

Ik (ℓ;χ) = g (ℓ)χ(ℓ) +
2πi−k

q

∑

c≥1

1

c2

∑

m∈Z
D̂

ℓ
χ(m,c)

∫∞

0
g (y)Jk−1

(
4π

√
yℓ

c

)
ecq (−m y)d y, (1.12)

where

D̂
ℓ
χ(m,c) :=

∑

γ (cq)

D
ℓ
χ(γ,c)ecq (mγ) =

∑

γ (cq)

χ(α)S(γ,ℓ;c)ecq (mγ). (1.13)

This is the content of Section 3.1–3.2.

1.2.1. Two dualities. The adelic viewpoint suggests that Jk−1 serves as the archimedean counterpart of S(m,ℓ;n).

Correspondingly, our argument hinges on two intriguing geometric dualities, one for the Fourier–Hankel trans-

form of Jk−1 and the other for the finite Fourier transform D̂
ℓ
χ( · ,c).

The first duality is known in the classical literature of special functions, commonly known as the Weber
second exponential integral (see Lemma 2.4):

∫∞

0
e(αy)Jk−1(4πβ

p
y)Jk−1(4πγ

p
y) d y =

i

2πα
e

(
sgn(α)

k −1

4

)
Jk−1

(
4πβγ

|α|

)
e

(
−
β2 +γ2

α

)
. (1.14)

In particular, the Hankel inversion formula (Lemma 2.3) can be interpreted as a limiting form of (1.14) and it

plays a crucial role in our argument. The second duality is a twisted, non-archimedean analogue of (1.14):

Proposition 1.5. Let ℓ,m,c ∈Z with m,c ≥ 1 and χ( mod q) be a primitive character. Then

D̂
ℓ
χ(m,c) =

c

m
e

(
−

1

mc

)
· (ǫχ)2 · D̂

ℓ
χ(c ,m), (1.15)

where ǫχ is the Gauss sum defined in (1.3).

The proof of Proposition 1.5 is non-trivial and a sketch will be provided in Section 1.2.3.

1.2.2. An analytic-arithmetic cancellation. We aim to follow the general plan of Spectral Reciprocity. The natural

next step is to apply Poisson summation to the c-sum in (1.12), though an observant reader might question its

applicability due to the apparent singularity at c = 0. However, the factor 1/c2 of (1.12) is canceled out upon

inserting (1.15) and (1.14) (with appropriately chosen α,β,γ)! Additionally, the factor e(−1/mc) from (1.15) per-

fectly cancels the final exponential factor in (1.14), paving the way for the two upcoming steps.

2In terms of adelic settings, this corresponds to the use of ‘nonstandard test functions’ of Sakellaridis [29, p. 357, footnote 3].
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This technical feature is also crucial in previous works on Beyond Endoscopy, where the Arthur–Selberg

trace formula was analyzed and the singularities from the archimedean orbital integrals are more subtle (see [3,

Section 4], [15], [13, Section 6]). Once again, smoothing of these singularities is necessary for Poisson summation,

but this requires delicate use of an approximate functional equation and the class number formula.

1.2.3. A three-fold reciprocity and local analysis. In Section 3.3, we apply a first additive reciprocity

m

c
+

c

m
≡

1

mc
( mod 1) (1.16)

to (1.13), where mm ≡ 1(mod c) and cc ≡ 1(mod m). In Section 4.2, we split the c-sum and m-sum in (1.12)

appropriately. One roughly arrives at

ǫχ

q3/2

∑

c0|q∞

∑

m0|q∞

∑

m′≥1
(m′,q)=1

1

m0m′
∑

c ′ 6=0
(c ′,m′q)=1

ec0m0m′

(
ℓqc ′

)
C

ℓ
χ (c0,c ′,m0,m′) × (archimedean part), (1.17)

where C
ℓ
χ (· · · ) is the character sum defined in Theorem 1.1. See (4.11) for the precise expressions.

The character sum (1.1) exhibits a twisted multiplicativity property (Lemma 4.10), enabling a local analysis.

Theorem 1.1 follows from a p-adic stationary phase argument ([18, Chapter 12.3]) at both ramified and unram-

ified places (Section 5), along with a second use of (1.16) (see (5.2)). Our proof of (1.2), and hence Theorem 1.2,

is non-trivial even when the conductor of χ is a prime. This crucial ingredient behind Theorem 1.2 is previously

unknown, despite the extensive literature on moments of L-functions similar to (1.11) over the past few decades.

Now, a third use of the additive reciprocity (1.16) allows us to combine the exponential phase of (1.2) with

that of (1.17), then a second copy of ǫχ arises upon opening up C
ℓ
χ (· · · ) by its definition (1.1) and gluing variables

back together, see (6.5). Theorem 1.1 will be proved in Section 5, and Proposition 1.5 follows from it. Note that

(1.16) also resolves the analytic issues in Section 1.2.2.

1.2.4. Back to the global aspect. We are now in a position to swap the roles of the c-sum and m-sum in (1.12).

This is less straightforward compared to other implementations of Spectral Reciprocity, particularly given the

discussions in Section 1.2.3. Setting aside a couple of analytic subtleties to be addressed in Sections 1.3 and 7–8,

Theorem 1.2 follows from backward applications of the Poisson and Petersson formulae (Section 6), with the

factor (ǫχ)2 from (1.15) becoming the root number for the functional equation (1.9).

1.3. Analytic continuation. In the context of Beyond Endoscopy, the challenge of obtaining analytic continu-

ation should not be underestimated. Indeed, limiting forms of trace formulae were sufficient for showing the

automorphic induction of characters ([34]) and converse theorems ([33, 10, 9]). In other words, it suffices to

study the poles of L-functions at s = 1, or to obtain a continuation slightly past the line Re s = 1.

Furthermore, using his refined analysis of the trace formula for GL(2) in [3, 1], Altuğ proved that the L-

function of the Ramanujan ∆-function admits an analytic continuation to the region Re s > 31/32 in [2]. See also

Duke–Iwaniec [12] and White [38] for other approaches. They were unable to obtain analytic continuation past

Re s = 1/2. However, an analytic continuation to Re s > 1/2−δ (for some small absolute δ> 0) is essential to even

begin discussing the functional equation.

In his thesis [33, Chapter 2.6], Venkatesh came up with the idea of embedding the holomorphic cusp forms

of weight k and level 1 into the full spectrum of L2-automorphic forms of level 1, consisting of Maass cusp forms

of weight 0, holomorphic cusp forms of all weights and the Eisenstein series. This allows an arbitrary smooth

compactly test function on (0,∞) can be put on the geometric side of the trace formula, i.e., using the arithmetic

Kuznetsov (or Petersson–Kuznetsov) trace formula (see [18, Theorem 16.5]) instead. This simplifies the analysis,
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reducing it to handling a basic Fourier integral, and one obtains
∑h

f : full spectrum
of level 1

H (t f )λ f (ℓ)
∑

n
g (n/X )λ f (n)χ(n) = O A(X −A) (X →∞). (1.18)

However, the space of admissible spectral test functions H is somewhat limited and the real technical chal-

lenge lies in constructing a test function in this space that ‘effectively’ isolates a specific part of the spectrum.

This problem is addressed in [33, Chapter 6.3], which involves an elaborate analysis of the Sears–Titchmarsh

transform. In the case of [33, p. 50], an extra technical assumption concerning the growth in spectral parameters

(Laplace eigenvalues/weights) is needed (cf. [33, eq. (2.35)]).

This is why we chose to work with the Petersson formula and its integral transform. By the stationary cal-

culus of [8], we find that L(s, f ×χ) admits an analytic continuation and has polynomial growth in the region

Re s >−(k −6)/2, see Section 7. To our knowledge, this argument has not yet appeared in the literature.

1.4. Acknowledgement. The research is supported by the EPSRC grant: EP/W009838/1 and Swedish Research

Council under grant no. 2021-06594. Part of the work was completed during the authors’ stay at the Max Planck

Institute, the American Institute of Mathematics, Texas A&M University, and Institut Mittag-Leffler in Djursholm,

Sweden. The authors would like to express their gratitude for the generous hospitality.

2. PRELIMINARIES

Let φ ∈C∞
c (R) and ψ ∈C∞

c (0,∞). The Fourier transform of φ and the Mellin transform of ψ are given by

φ̂(y) :=
∫

R

φ(x)e(−x y) d x (y ∈ R) (2.1)

and

ψ̃(s) :=
∫∞

0
ψ(x)xs−1 d x (s ∈ C) (2.2)

respectively, where e(z) := e2πi z . Their respective inversion formula, i.e.,

φ(x) =
∫

R

φ̂(y)e(x y) d y (2.3)

and

ψ(x) =
∫

(σ)
ψ̃(s)x−s d s

2πi
, (2.4)

holds provided that the integral converges absolutely.

In this article, the Hankel transform also plays an important role. To define such a transform, we first intro-

duce the J-Bessel functions via the following generating series:

e
1
2

z(ξ−1/ξ) =
∑

n∈Z
Jn(z)ξn (2.5)

for z,ξ ∈C. By standard complex analysis, the following power series expansion holds

Jn (z) =
∞∑

r=0

(−1)r

r !(r +n)!

( z

2

)n+2r
. (2.6)

It converges pointwise absolutely and uniformly on every compact subset of C. See Watson [37, Section 2.1] for

the details. The J-Bessel function also admits the following Mellin-Barnes representation:

Lemma 2.1. Let k ≥ 2, ck := 2(3−k)/2pπ, and

γk (s) := ck (2π)−s
Γ

(
s +

k −1

2

)
= π−s

Γ

(
s + k−1

2

2

)
Γ

(
s + k+1

2

2

)
. (2.7)
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Then we have

Jk−1(4πx) =
1

2π

∫

(σ)

γk (1− s)

γk (s)
x2(s−1) d s

2πi
(2.8)

for x > 0, where the integral converges absolutely whenever 1<σ< (k +1)/2.

Proof. See [16, eq. 8.412.4] with the substitutions s → −s − k−1
2

and x → 4πx. In fact, (2.8) can be verified by

comparing the residual series obtained from contour-shifting to−∞ in (2.8) with (2.6). The absolute convergence

can be verified easily by Stirling’s formula. �

Let F ∈C∞
c (0,∞) and k ≥ 2. Then the Hankel transform of F of order k −1 is defined by

(Hk F )(a) := 2π

∫∞

0
F (x)Jk−1(4π

p
ax)d x (a > 0). (2.9)

The rapid decay of Hk F can be deduced by integrating-by-parts many times in (2.9) using

Jk−1 (2πx) = Wk (x)e(x) + Wk (x)e(−x) (2.10)

for x > 0, where Wk is a smooth function satisfying x j (∂ j Wk )(x) ≪ j ,k 1/
p

x for any j ≥ 0, see [37, p. 206].

Lemma 2.2. For k > 2 and j ∈ {0,1,2,3} we have

(Hk F )( j )(a) ≪k a(k−2 j−1)/2 for 0 < a < 1. (2.11)

Proof. Follows directly from the recurrence 2J ′k (z) = Jk−1(z)− Jk+1(z), and the estimate

Jk−1(y) ≪k yk−1 for y > 0. (2.12)

�

We also have the following well-known inversion formula.

Lemma 2.3. For any F ∈C∞
c (0,∞), we have

(Hk ◦Hk F )(b) = F (b) (b > 0). (2.13)

Proof. See [37, Section 14.3–4] with minor adjustments. �

The Hankel inversion formula can be obtained as a limiting case of the following result, which is also es-

sential to our argument. While Bessel functions with positive arguments are more commonly encountered in the

analytic theory of automorphic forms (e.g., (1.10) or (2.16) below), it turns out to be technically convenient to

invoke those with complex arguments as intermediates in our case:

Lemma 2.4. Let k ≥ 2, Reα> 0, and β,γ> 0. Then
∫∞

0
e−2παy Jk−1(4πβ

p
y)Jk−1(4πγ

p
y) d y =

i 1−k

2πα
Jk−1

(
4πiβγ

α

)
exp

(
−2π

β2 +γ2

α

)
. (2.14)

The integral converges absolutely.

Proof. Follows directly from [37, Chapter 13.31] or [16, eq. 6.676.1-2] with minor adjustments. �

Remark 1. The integral identity (2.14) is a variant of (1.14), where the latter does not converge absolutely. The

integral of (1.14) can be understood as follows. It is a sum of two integrals, one over (0,1) and the other over (1,∞).
Using (2.12), the integral over (0,1) converges absolutely. The integral over (1,∞) can be shown to converge by an

integration-by-parts argument with (2.10).
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Lemma 2.5. Let h ∈ C∞[α,β] be a real-valued function and w ∈ C∞
c [α,β]. Suppose there exist W,V , H ,G ,R > 0

such that the following bounds hold for any t ∈ [α,β]:

• w ( j )(t ) ≪ j W /V j for any j ≥ 0,

• h( j )(t )≪ j H/G j for any j ≥ 2, and

• |h′(t )| ≥ R.

Then for any A ≥ 0, we have
∫

R

w (t )e (h(t )) d t ≪A
(
β−α

)
W

(
1

RV
+

1

RG
+

H

(RG)2

)A

. (2.15)

Proof. [8, Lemma 8.1]. �

Lemma 2.6 (Petersson trace formula). Let Bk (1) be an orthogonal basis of holomorphic cuspidal Hecke eigen-

forms of level 1 and weight k. For any ℓ,n ≥ 1, we have 3

∑h

f ∈Bk (1)

λ f (ℓ)λ f (n) = δ(n = ℓ) + 2πi−k
∞∑

c=1

S(n,ℓ;c)

c
Jk−1

(
4π

p
nℓ

c

)
, (2.16)

where λ f (1) = 1, the notation
∑h

f ∈Bk (1)

was defined in (1.7), and the Kloosterman sum is given by

S(n,ℓ;c) :=
∑∗

x(c)

ec
(
nx +ℓx

)
with ec(x) := e2πi x/c .

Proof. See [18, Proposition 14.5 and Lemma 14.10]. �

Lemma 2.7 (Poisson summation ( mod c)). Let c , X > 0 and c ∈ Z. Let V ∈ C∞
c (R) and K : Z→ C be a c-periodic

function. Then

∑

n∈Z
V (n/X )K (n) =

X

c

∑

m∈Z

( ∑

γ(c)

K (γ)ec
(
mγ

))∫∞

0
V (y)e

(
−

mX y

c

)
d y. (2.17)

Proof. Follows from the standard Poisson summation formula. �

3. SETTING THE STAGE FOR THEOREM 1.2: PETERSSON–POISSON–RECIPROCITY

Let g ∈C∞
c (0,∞) be a given test function. Define

Ik(ℓ;χ) :=
∞∑

n=1

g (n)χ(n)
∑h

f ∈Bk (1)

λ f (ℓ)λ f (n). (3.1)

Section 3 through 6 are devoted to proving the following identity:

Ik(ℓ;χ) = 2πi k
ǫ2
χ

q

∞∑

c=1

∑h

f ∈Bk (1)

λ f (ℓ)λ f (c)χ(c)

∫∞

0
g (y)Jk−1

(
4π

p
c y

q

)
d y. (3.2)

3.1. Step 1: Petersson trace formula. Applying (2.16) to (3.1), we have

Ik (ℓ;χ) = g (ℓ)χ(ℓ) + 2πi−k
∞∑

c=1

c−1
∑

n
g (n)χ(n)S(n,ℓ;c) Jk−1

(
4π

p
nℓ

c

)
.

3In this article, we use δ(· · · ) to denote the indicator function with respect to the condition (· · · ).
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This is followed by opening up the Kloosterman sum by its definition, i.e.,

Ik(ℓ;χ) = g (ℓ)χ(ℓ) + 2πi−k
∞∑

c=1

c−1
∑∗

x (c)

ec
(
ℓx

)∑

n
g (n)χ(n) Jk−1

(
4π

p
nℓ

c

)
ec(nx). (3.3)

3.2. Step 2: Poisson summation. We apply Lemma 2.7 to the n-sum of (3.3), which gives

Ik (ℓ;χ) = g (ℓ)χ(ℓ) + 2πi−k
∞∑

c=1

c−1
∑∗

x (c)

ec
(
ℓx

)
·

1

cq

∑

m

(
∑

γ (cq)

χ(γ)ec
(
γx

)
ecq

(
mγ

)
)

×
∫∞

0
g (y) Jk−1

(
4π

√
yℓ

c

)
e

(
−

m y

cq

)
d y.

The γ-sum can be decomposed via γ=α+βq with α( mod q) and β ( mod c), i.e.,
∑

γ (cq)

χ(γ)ec
(
γx

)
ecq

(
mγ

)
=

∑

α (q)

∑

β (c)

χ(α)ecq
(
(α+βq)(qx +m)

)

= c δ(xq ≡−m (c))
∑

α (q)

χ(α)eq
(
α(qx +m)/c

)

= c
p

qǫχδ(xq ≡−m (c))χ
( qx +m

c

)
, (3.4)

where the last line follows from the primitivity of χ( mod q), see [18, eq. (3.12)]. Hence, we get

Ik (ℓ;χ) = g (ℓ)χ(ℓ)

+ 2πi−k ǫχ
p

q

∞∑

c=1

c−1
∑∗

x (c)

ec
(
ℓx

) ∑

m≡−xq (c)

χ
(qx +m

c

) ∫∞

0
g (y) Jk−1

(
4π

√
yℓ

c

)
e

(
−

m y

cq

)
d y. (3.5)

To address coprimality issues, we split the c-sum of (3.5) by c = c0c ′, where c0 := (c , q∞) and (c ′, q) = 1. In

particular, we have

∑∗

x (c)
m≡−xq (c)

ec
(
ℓx

)
χ

( qx +m

c

)
= χ(c ′)ec ′

(
−ℓqc0m

) ∑∗

α (c0)
m≡−αq (c0)

ec0

(
ℓαc ′

)
χ

(
αq +m

c0

)
. (3.6)

Notice that the dual zeroth frequency (i.e., the term m = 0) of (3.5) is non-vanishing only when c0|q and

c ′ = 1. In this case, the α-sum is given by

∑∗

α (c0)

ec0

(
ℓα

)
χ

(
α

q

c0

)
= δ(c0 = q)

∑

α (q)

χ(α)eq
(
ℓα

)
= p

qǫχχ(ℓ).

We extract the zeroth frequency from the rest of the frequencies, resulting in the expression:

Ik(ℓ;χ) = g (ℓ)χ(ℓ) + 2πi−k
ǫ2
χ

q
χ(ℓ)

∫∞

0
g (y)Jk−1

(
4π

√
yℓ

q

)
d y + Sk (ℓ;χ), (3.7)

where

Sk(ℓ;χ) = 2πi−k ǫχ
p

q

∑

c0|q∞

∑

c ′≥1
(c ′,q)=1

∑

m 6=0
(m,c ′)=1

χ(c ′)

c0c ′
ec ′

(
−ℓqc0m

) ∑∗

α (c0)
m≡−αq (c0)

ec0

(
ℓαc ′

)
χ

(
αq +m

c0

)

×
∫∞

0
g (y) Jk−1

(
4π

√
yℓ

c0c ′

)
e

(
−

m y

c0c ′q

)
d y. (3.8)
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3.3. Step 3: Reciprocity. Applying the additive reciprocity (1.16) to the factor ec ′
(
−ℓqc0m

)
in (3.8), it follows that

Sk(ℓ;χ) = 2πi−k ǫχ
p

q

∑

c0|q∞

∑

c ′≥1
(c ′,q)=1

∑

m 6=0
(m,c ′)=1

χ(c ′)

c0c ′
e

(
ℓqc ′

c0m
−

ℓq

c0c ′m

)
∑∗

α (c0)
m≡−αq (c0)

ec0

(
ℓαc ′

)
χ

(
αq +m

c0

)

×
∫∞

0
g (y) Jk−1

(
4π

√
yℓ

c0c ′

)
e

(
−

m y

c0c ′q

)
d y. (3.9)

4. STEP 4: PREPARATION ON THE c0,c ′-SUMS

To prepare for Poisson summation in the c0,c ′-sums and for swapping the roles of m and c0c ′ at a later

stage, two crucial components are needed:

• (Analytic) Transform the c ′-sum with c ′ ≥ 1 in (3.9) to a sum over all integers, and remove the singularity

at c ′ = 0 by suitable analytic manipulations;

• (Arithmetic) Transform the character sum in (3.9) into a suitable form that facilitates the eventual com-

bination of c0- and c ′-sum.

The second point requires a fairly intricate analysis of character sums, see Section 4.2 – 6.1.

4.1. Step 4.1: Analytic preparation via Hankel inversion. The c ′-sum of (3.9) can be rewritten to sum over all

non-zero integers. Indeed, observe that the contribution from m < 0 in (3.9) is given by

2πi−k ǫχ
p

q

∑

c0|q∞

∑

c ′≥1
(c ′,q)=1

∑

m≥1
(m,c ′)=1

χ(c ′)

c0c ′
e

(
−
ℓqc ′

c0m
+

ℓq

c0c ′m

)
∑∗

α (c0)
m≡−αq (c0)

ec0

(
−ℓαc ′

)
χ

(
−
αq +m

c0

)

×
∫∞

0
g (y) Jk−1

(
4π

√
yℓ

c0c ′

)
e

(
m y

c0c ′q

)
d y, (4.1)

upon making the changes of variables m 7→ −m and α 7→ −α. The change of variables c ′ 7→ −c ′ and the fact that

Jk−1(−x) =−Jk−1(x) (follows from (2.6) and k ∈ 2N) allow us to rewrite (4.1) as:

2πi−k ǫχ
p

q

∑

c0|q∞

∑

c ′≤−1
(c ′,q)=1

∑

m≥1
(m,c ′)=1

χ(c ′)

c0c ′
e

(
ℓqc ′

c0m
−

ℓq

c0c ′m

)
∑∗

α (c0)
m≡−αq (c0)

ec0

(
ℓαc ′

)
χ

(
αq +m

c0

)

×
∫∞

0
g (y) Jk−1

(
4π

√
yℓ

c0c ′

)
e

(
−

m y

c0c ′q

)
d y.

Hence, the expression (3.9) becomes:

Sk (ℓ;χ) = 2πi−k ǫχ
p

q

∑

c0|q∞

∑

c ′ 6=0
(c ′,q)=1

∑

m≥1
(m,c ′)=1

χ(c ′)

c0c ′
e

(
ℓqc ′

c0m
−

ℓq

c0c ′m

)
∑∗

α (c0)
m≡−αq (c0)

ec0

(
ℓαc ′

)
χ

(
αq +m

c0

)

×
∫∞

0
g (y) Jk−1

(
4π

√
yℓ

c0c ′

)
e

(
−

m y

c0c ′q

)
d y. (4.2)

The last integral converges absolutely since g ∈C∞
c (0,∞). By the dominated convergence theorem, we have

∫∞

0
g (y) Jk−1

(
4π

√
yℓ

c0c ′

)
e

(
−

m y

c0c ′q

)
d y

= lim
ǫ→0+

∫∞

0
g (y) Jk−1

(
4π

√
yℓ

c0c ′

)
exp

(
−2π

(
ǫ+

i m

c0c ′q

)
y

)
d y. (4.3)
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The Hankel inversion formula (Lemma 2.3) with the change of variables x → x/q2 give

∫∞

0
g (y) Jk−1

(
4π

√
yℓ

c0c ′

)
e

(
−

m y

c0c ′q

)
d y

=
2π

q2
lim
ǫ→0+

∫∞

0
(Hk g )

(
x/q2

) ∫∞

0
Jk−1

(
4π

p
x y

q

)
Jk−1

(
4π

√
yℓ

c0c ′

)
exp

(
−2π

(
ǫ+

i m

c0c ′q

)
y

)
d y d x, (4.4)

where the interchange of the order of integration is permitted by absolute convergence and the decay of the

Hankel transform Hk g of g . Now, we are in a position to apply Lemma 2.4. In other words,

∫∞

0
g (y) Jk−1

(
4π

√
yℓ

c0c ′

)
e

(
−

m y

c0c ′q

)
d y

=
2π

q2
lim
ǫ→0+

∫∞

0
(Hk g )

(
x/q2

) i 1−k

2π
(
ǫ+ i m

c0c ′q

) Jk−1

(
4πi

p
ℓx

c0c ′qǫ+ i m

)
exp

(
−2π

x/q2 +ℓ/c2

ǫ+ i m
c0c ′q

)
d x. (4.5)

By the decay of Hk g and dominated convergence again, it follows from continuity that

∫∞

0
g (y) Jk−1

(
4π

√
yℓ

c0c ′

)
e

(
−

m y

c0c ′q

)
d y

=
i−k

q

c0c ′

m
e

(
ℓq

c0c ′m

) ∫∞

0
(Hk g )

(
x/q2

)
Jk−1

(
4π

p
ℓx

m

)
e

(
c0c ′x

qm

)
d x. (4.6)

Substitute the last expression back into (4.2) and observe the cancellations in (1) a pair of exponential

phases, and (2) a pair of factors c0c ′. We thus obtain

Sk (ℓ;χ) =
2π

q

ǫχ
p

q

∑

c0|q∞

∑

c ′ 6=0
(c ′,q)=1

∑

m≥1
(m,c ′)=1

1

m
χ(c ′)ec0m

(
ℓqc ′

) ∑∗

α (c0)
m≡−αq (c0)

ec0

(
ℓαc ′

)
χ

(
αq +m

c0

)

×
∫∞

0
(Hk g )

(
x/q2

)
Jk−1

(
4π

p
ℓx

m

)
e

(
c0c ′x

qm

)
d x. (4.7)

We must show that the order of summation can be interchanged to set the stage for the Poisson summation

in c0,c ′-sums in Section 6.2. This requires k ≥ 6 and follows from trivially bounding the sums (the α-sum by c0)

and integration by parts thrice in (4.7). Indeed, by Lemma 2.2 and (2.10), observe that

(
c0c ′

m

)3 ∫∞

0
(Hk g )

(
x/q2

)
Jk−1

(
4π

p
ℓx

m

)
e

(
c0c ′x

qm

)
d x ≪ℓ,q,k

1

mk−1
. (4.8)

4.2. Step 4.2: Arithmetic preparation on the c0,c ′-sums. Now, we move on to analyze the arithmetic compo-

nent of (4.7), i.e.,

χ(c ′)ec0m

(
ℓqc ′

) ∑∗

α (c0)
m≡−αq (c0)

ec0

(
ℓαc ′

)
χ

(
αq +m

c0

)
. (4.9)

For technical convenience, we consider a slightly more general character sum which we define as follows.

Let a,b,h,r,u, v be integers such that ab|r∞ and (uv,r )= 1. Let ψ be a primitive character mod r . Define

C
h
ψ(a,u,b, v) :=ψ(u)

∑∗

α (a)
bv≡−αr (a)

ea
(
hαu

)
ψ

(
αr +bv

a

)
. (4.10)
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We decouple the m-sum of (4.7) by m = m0m′ (as before), where m0 := (m, q∞) and (m′, q) = 1. Then (4.9) is

equal to

ec0m0m′

(
ℓqc ′

)
C

ℓ
χ (c0,c ′,m0,m′),

and

Sk (ℓ;χ) =
2π

q

ǫχ
p

q

∑

c0|q∞

∑

m0|q∞

∑

m′≥1
(m′,q)=1

1

m0m′
∑

c ′ 6=0
(c ′,m′q)=1

ec0m0m′

(
ℓqc ′

)
C

ℓ
χ (c0,c ′,m0,m′)

×
∫∞

0
(Hk g )

(
x/q2

)
Jk−1

(
4π

p
ℓx

m0m′

)
e

(
c0c ′x

qm0m′

)
d x. (4.11)

We have the following twisted multiplicativity for the character sum (4.10).

Lemma 4.1. Let a1, a2,b1,b2,h,r1,r2,u, v be integers such that a1b1|r∞
1 , a2b2|r∞

2 , and (r1,r2) = (uv,r1r2) = 1. Let

ψ1 and ψ2 be primitive characters mod r1 and r2 respectively. Then

C
h
ψ1ψ2

(a1a2,u,b1b2, v)=ψ1(b2
2)ψ2(b2

1)C
hr2
ψ1

(a1, a2b2u,b1, v)C
hr1
ψ2

(a2, a1b1u,b2, v)

=ψ1(a2
2)ψ2(a2

1)C
hr2
ψ1

(a1,u,b1, a2b2v)C
hr1
ψ2

(a2,u,b2, a1b1v).

Proof. By the Chinese remainder theorem, we have

C
h
ψ1ψ2

(a1a2,u,b1b2, v)=ψ1(a2u)
∑∗

α1 (mod a1)
b1b2v≡−α1r1r2 (a1)

ea1
(hα1a2u)ψ1

(
α1r1r2 +b1b2v

a1

)

×ψ2(a1u)
∑∗

α2 (mod a2)
b1b2v≡−α2r1r2 (a2)

ea2
(hα2a1u)ψ2

(
α2r1r2 +b1b2v

a2

)
.

Applying the change of variables α1 7→α1b2r2 and α2 7→α2b1r1 yields the first equality. To get the second equal-

ity, apply the change of variables α1 7→α1a2r2 and α2 7→α2a1r1 instead. �

Remark 2. This lemma constitutes the main reason why the factor eabv
(
ℓqu

)
is purposefully left out in the defini-

tion of C
ℓ
ψ(· · · ). Otherwise, no multiplicative relation would hold as such an exponential factor is not multiplica-

tive in a and b.

5. LOCAL ANALYSIS OF CHARACTER SUMS: PROOF OF THEOREM 1.1

With Lemma 4.1, we prove Theorem 1.1, which is restated as follows.

Restatement of Theorem 1.1. Let a,b,h,r,u, v be integers such that ab|r∞ and (uv,r ) = 1. Let ψ be a character

mod r , then we have

C
h
ψ(a,u,b, v) = eab

(
−hr uv

)
C

h
ψ(b, v, a,u).

Proof. We first consider the case when r = pk , where p is a prime and k ≥ 1. Since ab|r∞ = p∞, we may write

a = p s and b = p t for some s, t ≥ 0. In this, we have

C
h
ψ(p s ,u, p t , v) = ψ(u)

∑∗

α (ps )

pt v≡−αpk (ps )

eps
(
hαu

)
ψ

(
αpk +p t v

p s

)
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and

eps+t

(
−hpk uv

)
C

h
ψ(p t , v, p s,u) =ψ(v)eps+t

(
−hpkuv

) ∑∗

α (pt )

ps u≡−αpk (pt )

ept

(
−hαv

)
ψ

(
αpk +p s u

p t

)
.

Claim: We have

C
h
ψ(p s ,u, p t , v) = 0 = C

h
ψ(p t , v, p s,u)

unless one of the following holds:

(1) s = t ≤ k ,

(2) t = k < s, or

(3) s = k < t .

Indeed, the congruence condition for C
h
ψ(p s ,u, p t , v) implies that it is equal to 0 unless one of the following

holds: s ≤ t ≤ k , (2) or (3). If s < t ≤ k , then

ψ

(
αpk +p t v

p s

)
= ψ

(
αpk−s +p t−s v

)
= 0,

and hence C
h
ψ(p s ,u, p t , v) = 0 unless (1) or (2) or (3) holds. Similarly, the congruence condition implies that

C
h
ψ(p t , v, p s,u)= 0 unless t ≤ s ≤ k or (2) or (3), and the presence of ψ

(
αpk+ps u

pt

)
implies that it is also 0 if t < s ≤ k .

This proves our claim.

Before we proceed to analyse the character sum in the remaining three cases above, we apply a change of

variable α 7→αv to obtain

C
h
ψ(p s ,u, p t , v) = ψ(uv)

∑∗

α (ps )

pt≡−αpk (ps )

eps
(
hαuv

)
ψ

(
αpk +p t

p s

)
.

Case 1: s = t ≤ k . In this case, we have

C
h
ψ(p s ,u, p s , v)=ψ(uv)

∑∗

α (ps )

eps
(
hαuv

)
ψ

(
αpk−s +1

)

=ψ(uv)ep2s

(
−hpkuv

) ∑∗

α (ps )

eps

(
huv(α+pk−s)

)
ψ

(
αpk−s +1

)
.

Notice that since p ∤α, we have pk−s||(αpk−s +1−1). Hence, the change of variables

β= (αpk−s +1−1)/pk−s

is admissible. When k = s, the quantity α+1 is well-defined due to the presence of ψ. With the above change of

variables ( mod p s ), it follows that

αpk−s +1 ≡ βpk−s +1 (mod p s)

and

α ≡ (βpk−s +1−1)/pk−s

≡ (1−βpk−s −1)βpk−s +1/pk−s

≡ −β(βpk−s +1) ≡ −pk−s −β (mod p s).
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Hence,

C
h
ψ(p s ,u, p s , v)=ψ(uv)ep2s

(
−hpkuv

) ∑∗

β (ps )

eps

(
−hβuv

)
ψ

(
βpk−s +1

)
.

With another change of variables β= γu, we get

C
h
ψ(p s ,u, p s , v) = ep2s

(
−hpkuv

)
C

h
ψ(p s , v, p s ,u).

Case 2: t = k < s. In this case, we have

C
h
ψ(p s ,u, p t , v) = ψ(uv)

∑∗

α (ps )

α≡−1 (ps−t )

eps
(
hαuv

)
ψ

(
α+1

p s−t

)
.

Apply the change of variables p s−tβ=α+1 and observe the fact that s > t , we have

C
h
ψ(p s ,u, p t , v) = ψ(uv)

∑∗

β (pt )

eps

(
huv(p s−tβ−1)

)
ψ

(
β
)

.

Another change of variables β= γ+p s−t , which is admissible as s > t , yields

C
h
ψ(p s ,u, p t , v) = ψ(v)

∑∗

γ (pt )

eps

(
huv(p s−tγ+p s−t −1)

)
ψ

(
γu +p s−t u

)
.

Using

p s−t γ+p s−t −1 ≡ p s−tγ1+p s−tγ − 1

≡ (1+p s−tγ−1)1+p s−tγ − 1

≡ −1+p s−tγ (mod p s ),

we arrive at

C
h
ψ(p s ,u, p t , v) = ψ(v)

∑∗

γ (pt )

eps
(
−huv(1+p s−tγ)

)
ψ

(
γu +p s−t u

)
.

A final change of variables γ 7→ γu implies

C
h
ψ(p s ,u, p t , v) = eps

(
−huv

)
C

h
ψ(p t , v, p s,u).

Case 3: s = k < t . In this final case, we make use of Case 2 to deduce the answer. For s = k < t , we have

C
h
ψ(p t , v, p s,u) = ept

(
−huv

)
C

h
ψ(p s ,u, p t , v).

This yields

C
h
ψ(p s ,u, p t , v)= ept

(
−huv

)
C

h
ψ(p t , v, p s,u)

as desired.

Combining all three cases together, we have proved that for r = pk for some prime p and k ≥ 1,

C
h
ψ(a,u,b, v) = eab

(
−hr uv

)
C

h
ψ(b, v, a,u) (5.1)

for any a,b,u, v with ab|r∞, (uv,r ) = 1 and any character mod r . Finally, applying the first and second equality

of Lemma 4.1 to the left-hand and right-hand side of (5.1) respectively, with the observation that

e

(
−

hr uv

a1a2b1b2

)
= e

(
−

hr a2b2uv

a1b1
−

hr a1b1uv

a2b2

)
, (5.2)

we see that both sides satisfy the same multiplicative relations. This yields the result for general r and concludes

the proof. �
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6. BACKWARD MANEUVER

6.1. Step 5: Reciprocity and recombining sums. From Theorem 1.1 and the additive reciprocity, observe that

ec0m0m′

(
ℓqc ′

)
C

ℓ
χ (c0,c ′,m0,m′) = e

(
ℓqc ′

c0m0m′ −
ℓqc ′m′

c0m0

)
C

ℓ
χ (m0,m′,c0,c ′)

= em′

(
ℓqc0c ′m0

)
C

ℓ
χ (m0,m′,c0,c ′). (6.1)

Inserting this back into (4.11) and open up C
ℓ
χ (· · · ) by its definition, we obtain

Sk (ℓ;χ) =
2π

q

ǫχ
p

q

∑

c0,m0|q∞

∑

m′≥1
(m′,q)=1

∑

c ′ 6=0
(c ′,m′q)=1

χ(m′)

m0m′ em′

(
ℓqc0c ′m0

) ∑∗

α (m0)
c0c ′≡−αq (m0)

em0

(
−ℓαm′

)
χ

(
αq +c0c ′

m0

)

×
∫∞

0
(Hk g )

(
x/q2

)
Jk−1

(
4π

p
ℓx

m0m′

)
e

(
c0c ′x

qm0m′

)
d x.

Upon recombining the c0-sum and c ′-sum via c = c0c ′, it follows that

Sk (ℓ;χ) =
2π

q

ǫχ
p

q

∑

m0|q∞

∑

m′≥1
(m′,q)=1

∑

c 6=0
(c ,m′)=1

χ(m′)

m0m′ em′
(
ℓqcm0

) ∑∗

α (m0)
c≡−αq (m0)

em0

(
−ℓαm′

)
χ

(
αq +c

m0

)

×
∫∞

0
(Hk g )

(
x/q2

)
Jk−1

(
4π

p
ℓx

m0m′

)
e

(
cx

qm0m′

)
d x. (6.2)

This completes the arithmetic preparation as described in Section 4.

6.2. Step 6: A second Poisson summation. With the key preparations carried out above, we first rewrite the

c-sum of (6.2) as

∑

c 6=0
(c ,m′)=1

Dχ(c ;m0,m′)

∫∞

0
(Hk g )

(
x/q2

)
Jk−1

(
4π

p
ℓx

m0m′

)
e

(
cx

m0m′q

)
d x = T1 − T2, (6.3)

where

T1 :=
∑

c∈Z
Dχ(c ;m0,m′)

∫∞

0
(Hk g )

(
x/q2

)
Jk−1

(
4π

p
ℓx

m0m′

)
e

(
cx

m0m′q

)
d x,

T2 := δ(m′ = 1)Dχ(0;m0,1)

∫∞

0
(Hk g )

(
x/q2

)
Jk−1

(
4π

p
ℓx

m0

)
d x,

and

Dχ(c ;m0,m′) := δ((c ,m′)= 1)χ(m′)em′
(
ℓqcm0

) ∑∗

α (m0)
c≡−αq (m0)

em0

(
−ℓαm′

)
χ

(
αq +c

m0

)
.

The treatment of T2 is simpler. Observe that

Dχ(0;m0,1) =
∑∗

α (m0)
0≡αq (m0)

em0

(
−ℓα

)
χ

(
αq

m0

)

= δ(m0 = q)
∑∗

α (q)

χ(α)e

(
−
ℓα

q

)

= δ(m0 = q)
p

q ǫχχ(ℓ).
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A change of variables x → q2x and the Hankel inversion formula (Lemma 2.3) imply that

T2 = δ(m0 = q,m′ = 1)ǫχχ(ℓ)
q5/2g (ℓ)

2π
. (6.4)

For T1, the character sum Dχ can be expressed in terms of Kloosterman sums via (3.6) and (3.4):

Dχ(c ;m0,m′) =
∑∗

x (m)
c≡−xq (m)

em(−ℓx)χ
( qx +c

m

)

=
ǫχ

m
p

q

∑

γ (mq)

χ(γ)
∑∗

x (m)

em(−γx −ℓx)emq (−cγ)

=
ǫχ

m
p

q

∑

γ (mq)

χ(γ)S(γ,ℓ;m)emq (−cγ). (6.5)

Note: m =m0m′. Plugging (6.5) into T1 and making a change of variables x → mqx, we arrive at

T1 = ǫχ
p

q
∑

c∈Z

∑

γ (mq)

χ(γ)S(γ,ℓ;m)emq (−cγ)

∫∞

0
(Hk g )

(
mx/q

)
Jk−1


4π

√
ℓqx

m


e(cx) d x.

We may now readily observe the role reversal of the c-sum and m-sum as discussed in Section 1.2.1!

The bounds for the Hankel transform and Bessel functions recorded in Section 2 allow us to apply the

dominated convergence theorem and obtain

T1 = ǫχ
p

q
∑

γ (mq)

χ(γ)S(γ,ℓ;m) lim
ǫ→0+

∑

c∈Z
emq (−cγ)

∫

R

(Hk g )
(
mx/q

)
Jk−1


4π

√
ℓqx

m


hǫ(x)e(cx) d x,

where hǫ is a smooth function on R such that hǫ ≡ 1 on [ǫ,∞), hǫ ≡ 0 on (−∞,0], and 0 ≤ hǫ ≤ 1 on (0,ǫ). Inside

the limit, we apply Poisson summation ( mod mq) to the c-sum. Using dominated convergence again, we have

T1 = 2πǫχ
p

q
∞∑

c=1

χ(c)S(c ,ℓ;m)Jk−1

(
4π

p
ℓc

m

)∫∞

0
g (y)Jk−1

(
4π

p
c y

q

)
d y (6.6)

upon taking the limit ǫ→ 0+. Inserting (6.4)–(6.6) into (6.3) and (6.2), we readily observe that

Sk (ℓ;χ) = 4π2
ǫ2
χ

q

∞∑

m=1

1

m

∞∑

c=1

χ(c)S(c ,ℓ;m)Jk−1

(
4π

p
ℓc

m

)∫∞

0
g (y)Jk−1

(
4π

p
c y

q

)
d y − g (ℓ)χ(ℓ) (6.7)

by combining m0-sum and m′-sum.

6.3. Step 7: Petersson in reverse. Inserting (6.7) back into (3.7) yields

Ik (ℓ;χ) = 2πi−k
ǫ2
χ

q
χ(ℓ)

∫∞

0
g (y)Jk−1

(
4π

√
yℓ

q

)
d y

+ 4π2
ǫ2
χ

q

∞∑

m=1

1

m

∞∑

c=1

χ(c)S(c ,ℓ;m)Jk−1

(
4π

p
ℓc

m

)∫∞

0
g (y)Jk−1

(
4π

p
c y

q

)
d y. (6.8)

Applying the Petersson trace formula (2.16) in reverse to the m-sum, we conclude that

Ik (ℓ;χ) = 2πi k
ǫ2
χ

q

∞∑

c=1

∑h

f ∈Bk (1)

λ f (ℓ)λ f (c)χ(c)

∫∞

0
g (y)Jk−1

(
4π

p
c y

q

)
d y, (6.9)

where we used i k = i−k as k is even.

Remark 3. Readers should note that the diagonal term g (ℓ)χ(ℓ) of (3.3) from the initial application of the Peters-
son trace formula conveniently canceled with the dual zeroth frequency from the Poisson summation. Only after

this does the crucial ‘role-reversal’ of sums takes place.
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7. ANALYTIC CONTINUATION AND POLYNOMIAL GROWTH

In this section, we show that the L-series (1.5) for L(s, f ×χ) can be analytically continued beyond the line

Re s = 1/2, by proving cancellations in the smooth sums of λ f (n)χ(n) when averaged over the family Bk (1). To

deduce the functional equation from (6.9), it is essential to establish also the polynomial growth for

Aℓ(s,χ) :=
∑h

f ∈Bk (1)

λ f (ℓ)L(s, f ×χ) (7.1)

within the critical strip and as |Im s|→∞. This section is dedicated to proving the following:

Proposition 7.1. Let ℓ≥ 1 and k ≥ 6 be integers. Then the function Aℓ(s,χ) defined in (7.1) admits a holomorphic

continuation to the half-plane Re s >−(k −6)/2 and satisfies the estimate

Aℓ(s,χ) ≪ (1+|t |)k−3 (7.2)

for any s =σ+ i t with σ>−(k −6)/2 and t ∈R. The implicit constant depends only on k ,ℓ, q,σ.

We begin on the region of absolute convergence. More precisely, the Dirichlet series (1.5) converges ab-

solutely on Re s > 5/4. This follows from the bound |λ f (n)| = O(n
1
4 ), which can be deduced from the Petersson

trace formula (Lemma 2.6), and bounds on Kloosterman sums and Bessel functions, see [18, Chapter 14]. Take

g ∈C∞
c [1,2] such that 1 =

∑
u∈Z g (x/2u ) for any x > 0. On the region Re s > 5/4, we may rewrite (1.5) as

L(s, f ×χ) =
∞∑

u=−1

1

2us

∑

n
λ f (n)χ(n)Gs (n/2u), (7.3)

where Gs (y) := y−s g (y). Then

Aℓ(s,χ) =
∞∑

u=−1

Is (2u ;ℓ,χ)

2us
, (7.4)

where

Is (X ;ℓ,χ) :=
∑h

f ∈Bk (1)

λ f (ℓ)
∑

n
λ f (n)χ(n)Gs (n/X ). (7.5)

For X > 2q2ℓ, we have Gs (ℓ/X ) = 0, and from (3.7)–(3.8), it follows that

1

X
Is (X ;ℓ,χ) ≪

∣∣∣∣∣

∫∞

0
Gs (y)Jk−1

(
4π

√
y Xℓ

q

)
d y

∣∣∣∣∣+
∑

c≥1

∑

m 6=0

∣∣∣∣∣

∫∞

0
Gs (y)Jk−1

(
4π

√
y Xℓ

c

)
e

(
−

m y X

cq

)
d y

∣∣∣∣∣ . (7.6)

Bounding the second summand on the right-hand side is harder, and this will be our focus. We split the c-sum

on the right-hand side of (7.6) into two parts, according to the conditions c >
p
ℓX /20 and c ≤

p
ℓX /20. These

two parts are donated by I
(2)
s,>(X ;ℓ,χ) and I

(2)
s,≤(X ;ℓ,χ) respectively.

Let 1 < a < (k +1)/2. By Lemma 2.1, we have

∫

R

Gs (y)Jk−1

(
4π

√
y Xℓ

c

)
e

(
−

m y X

cq

)
d y

=
1

2π

∫

(a)

γk (1−v)

γk (v)

(p
Xℓ

c

)2(v−1) ∫

R

Gs (y)y v−1e

(
−

m y X

cq

)
d y

d v

2πi
.

Then integrating by parts r ≥ 2 times, it follows that the above expression is

≪
(p

ℓX

c

)2(a−1) ( |m|X
cq

)−r ∫

(a)

∣∣∣∣
γk (1−v)

γk (v)

∣∣∣∣
∫

R

∣∣∣∣
d r

d y r

[
Gs (y)y v−1

]∣∣∣∣ d y |d v |.
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Let v = a + iτ and s =σ+ i t with σ, t ,τ∈R. Then Stirling’s formula gives
∣∣∣∣
γk (1−v)

γk (v)

∣∣∣∣ ≍k ,a (1+|τ|)1−2a . (7.7)

For any r ≥ 2, we have

max
y∈R

∣∣G (r )
s (y)

∣∣ ≪r max
i+ j=r
i , j≥0

y∈[1,2]

∣∣∣g (i )(y)
∣∣∣ ·

∣∣s(s +1) · · ·(s + j −1)
∣∣ y−σ− j ≪r,σ (1+|t |)r , (7.8)

and ∣∣∣∣
d r

d y r

[
Gs (y)y v−1

]∣∣∣∣ ≪r max
i+ j=r
i , j≥0

y∈[1,2]

∣∣∣G (i )
s (y)

∣∣∣
∣∣∣(v −1) · · · (v − j )y v− j−1

∣∣∣ ≪a,r,σ ((1+|t |) (1+|τ|))r . (7.9)

Hence, if 1< a < (k +1)/2 and r ∈Z such that 2 ≤ r < 2a −3, then
∣∣∣∣∣

∫

R

Gs (y)Jk−1

(
4π

√
y Xℓ

c

)
e

(
−

m y X

cq

)
d y

∣∣∣∣∣ ≪ (1+|t |)r X a−r−1

|m|r c2a−2−r
(7.10)

and

I
(2)
s,>(X ;ℓ,χ) ≪ (1+|t |)r X a−r−1

(
p

X )2a−3−r
= (1+|t |)r X (1−r )/2 (7.11)

where the implicit constants may depend on ℓ, q,k ,σ,r, a.

Next, we estimate I
(2)
s,≤(X ;ℓ,χ) with X > 2q2ℓ. By (2.10), it suffices to estimate the oscillatory integral:

∫

R

Gs
(
y
)

Wk

(
2
√

yℓX

c

)
e

(
2q

√
yℓX −mX y

cq

)
d y.

To this end, we make use of Lemma 2.5 with the functions

ws(y) := Gs
(
y
)

Wk

(
2
√

yℓX

c

)
and h(y) :=

2q
√

yℓX −mX y

cq
.

Suppose y ∈ [1,2] and r ≥ 2. We observe the following bounds:

h′(y) =
q y−1/2

p
ℓX −mX

cq
, |h′(y)| ≫

|m|X
cq


1−

1

|m|

√
q2ℓ

X


 ≫

|m|X
cq

, |h(r )(y)| ≍r

p
ℓX

c
≥ 20, (7.12)

as well as

∣∣w (r )
s (y)

∣∣ ≪r max
i+ j=r

∣∣∣G (i )
s (y)

∣∣∣ ·
∣∣∣∣∣∂

j
y

[
Wk

(
2
√

yℓX

c

)]∣∣∣∣∣

≪r,σ (1+|t |)r max
0≤ j≤r

max
m1+2m2+···+ j ·m j= j

m1,...,m j≥0

∣∣∣W (m1+···+m j )

k

∣∣∣
(

2
√

yℓX

c

)
·

j∏

i=1

∣∣∣∣∣∂
i
y

(
2
√

yℓX

c

)∣∣∣∣∣

mi

≪r (1+|t |)r max
0≤ j≤r

max
m1+2m2+···+ j ·m j= j

m1,...,m j≥0

∣∣∣W (m1+···+m j )

k

∣∣∣
(

2
√

yℓX

c

)
·
(

2
p
ℓX

c

)m1+···+m j

≪r,k (1+|t |)r

(
2
p
ℓX

c

)−1/2

, (7.13)

where Leibniz’s rule and Faà di Bruno’s formula were used. Apply Lemma 2.5 with the choice of parameters:

W =
(

2
p
ℓX

c

)−1/2

, V = (1+|t |)−1 , H =
p
ℓX

c
, G = 1, R =

|m|X
cq

, (7.14)
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we conclude that:
∣∣∣∣
∫

R

ws(y)e
(
h(y)

)
d y

∣∣∣∣ ≪
(

2
p
ℓX

c

)−1/2

(1+|t |)A

(
cq

|m|X
+

p
ℓX

c

(
cq

|m|X

)2
)A

≪
(p

ℓX

c

)−1/2 (
cq (1+|t |)

|m|X

)A

1 +

1

|m|

√
q2ℓ

X




A

≪
p

c

X 1/4

(
c (1+|t |)
|m|X

)A

(7.15)

for c > 0, m 6= 0, X > 2q2ℓ, where the implicit constants depend on k ,ℓ, q, A,σ. When A > 1, we have

I
(2)
s,≤(X ;ℓ,χ) ≪ X −1/4

(
(1+|t |)

X

)A ∑

c≪
p

X

c A+1/2 ≪
p

X

(
(1+|t |)
p

X

)A

. (7.16)

As a result, we obtain the estimate:

1

X
Is (X ;ℓ,χ) ≪ (1+|t |)r X (1−r )/2 +

p
X

(
(1+|t |)
p

X

)A

,

provided that 1 < a < (k +1)/2, r ∈Z with 2≤ r < 2a−3, X > 2q2ℓ, and A > 1. By taking r = k −3, a = (k +1)/2−ǫ,

A = k −3 with k ≥ 6, we have

Is (X ;ℓ,χ) ≪ (1+|t |)k−3 X −(k−6)/2, (7.17)

where the implicit constants depend on k ,ℓ, q,σ.

Remark 4. If s lies in the vertical strip σ1 ≤ σ≤ σ2, then the same estimates hold and the implicit constants only

depend on k ,ℓ, q,σ1,σ2.

We now turn to Aℓ(s,χ). On the region Re s > 5/4, recall that

Aℓ(s,χ) =




∑

2u>2ℓ
u≥−1

+
∑

2u≤2ℓ
u≥−1




Is (2u ;ℓ,χ)

2us
(7.18)

Apply (7.17) to the first sum of (7.18), we have

∑

2u>2ℓ
u≥−1

∣∣∣∣
Is (2u ;ℓ,χ)

2us

∣∣∣∣ ≪ (1+|t |)k−3
∑

u≥0

(2u )−
k−6

2

2uσ
. (7.19)

The last infinite series converges absolutely provided that σ>−(k −6)/2. Whenever σ>−(k −6)/2 and t ∈R, the

following holds:

∑

2u>2ℓ
u≥−1

∣∣∣∣
Is (2u ;ℓ,χ)

2us

∣∣∣∣ ≪ (1+|t |)k−3 , (7.20)

where implicit constants depend only on k ,ℓ, q,σ. On the other hand, we have

∑

2u≤2ℓ
u≥−1

∣∣∣∣
Is (2u ;ℓ,χ)

2us

∣∣∣∣ ≪
∑

n≤4ℓ

∑h

f ∈Bk (1)

∣∣λ f (ℓ)λ f (n)
∣∣n−σ ≪

∑

n≤4ℓ

∑h

f ∈Bk (1)

(
|λ f (ℓ)|2 +|λ f (n)|2

)
≪ 1, (7.21)

where the implicit constant depends on k ,ℓ, q . The last estimate follows from bounding the geometric side of

the Petersson formula.

From (7.20) and (7.21), both series on the right side of (7.18) converge absolutely pointwise and uniformly

on every compact subset of the region Re s >−(k −6)/2. As a result, Aℓ(s,χ) admits an analytic continuation to

Re s >−(k −6)/2, and the bound (7.2) holds in the same region. This completes the proof of Proposition 7.1.
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8. PROOF OF THEOREM 1.2

Let g ∈C∞
c (0,∞) and G (s)=

∫∞
0 g (x)xs−1d x be the Mellin transform of g . Then G (s) is entire and it follows

from repeated integration by parts that

|G (s)| ≪ (1+|Im s|)−A (8.1)

for any A > 0, where the implicit constant depends only on Re s and A.

Let ℓ≥ 1 and k ≥ 6 is an even integer. In (3.1), apply the Mellin inversion formula (2.4) and rearrange sums

and integrals, we have

Ik (ℓ;χ) =
∫

(3/2)
G (s)

∑h

f ∈Bk (1)

λ f (ℓ)L(s, f ×χ)
d s

2πi
.

By Proposition 7.1 and (8.1), we may shift the line of integration to Re s =σ ∈ (0,1), i.e.,

Ik (ℓ;χ) =
∫

(σ)
G (s)

∑h

f ∈Bk (1)

λ f (ℓ)L(s, f ×χ)
d s

2πi
. (8.2)

By (2.8) and (2.4), we have
∫∞

0
g (y)Jk−1

(
4π

p
c y

q

)
d y =

1

2π

∫

(3/2)
G (s)

γk (1− s)

γk (s)

(
c

q2

)s−1 d s

2πi
. (8.3)

Using (8.1), (7.7) and the holomorphy of G (s), we shift the line of integration to Re s =−1/2 in (8.3). Inserting the

resultant into (6.9), we deduce that

Ik (ℓ;χ) = i kǫ2
χ

∞∑

c=1

λ f (c)χ(c)
∑h

f ∈Bk (1)

λ f (ℓ)

∫

(−1/2)
G (s)

γk (1− s)

γk (s)

(
c

q2

)s−1 d s

2πi
.

Upon exchanging the order of sums and integrals, we find that the c-sum converges absolutely and is precisely

the Dirichlet series L(1− s, f ×χ). In other words, we have

Ik(ℓ;χ) = i kǫ2
χ

∫

(−1/2)
G (s)q1−2s γk (1− s)

γk (s)

∑h

f ∈Bk (1)

λ f (ℓ)L(1− s, f ×χ)
d s

2πi
. (8.4)

By Proposition 7.1, (8.1) and (7.7) again, we may shift the line of integration for (8.4) to Re s = σ ∈ (0,1). Upon

comparing with (8.2), Theorem 1.2 follows!

9. PROOF OF COROLLARY 1.3

Let Bk (1) :=
{

f1, . . . , fd
}

. 4 The vectors
(
λ fi (1), λ fi (2), . . .

)
for i = 1, . . . ,d are clearly linearly independent over

C. Thus, there exists ℓ1 < ·· · < ℓd such that the submatrix A :=
(
λ fi (ℓ j )

)
1≤i , j≤d is invertible.

By Proposition 7.1, the function s 7→
∑h

f ∈Bk (1)

λ f (ℓ j )L(s, f ×χ) admits a holomorphic continuation (say Gℓ j (s,χ))

to the region Re s >−(k −6)/2 for each j = 1, . . . ,d . By definition, we have
(

L(s, f1 ×χ)

|| f1||2
, . . . ,

L(s, fd ×χ)

|| fd ||2

)
=

(4π)k−1

Γ(k −1)

(
Gℓ1

(s,χ), . . . , Gℓd (s,χ)
)

A−1. (9.1)

Thus, each of L(s, fi ×χ) admits a holomorphic continuation to the same region.

Since the spectral identity (1.6) holds for any σ ∈ (0,1) and for any choice of g ∈C∞
c (0,∞), a standard result

in elementary analysis allows us to infer that, on the vertical strip 0 < Re s < 1,

Γ(k −1)

(4π)k−1
·
(

L(s, fi ×χ)

|| fi ||2
− i kǫ2

χq1−2s γk (1− s)

γk (s)

L
(
1− s, fi ×χ

)

|| fi ||2

)

1≤i≤d
· A = (0, . . . ,0).

4Here, we use the finite dimensionality of the linear space of holomorphic cusp forms of a given weight and level.
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Since A is invertible, the functional equation (1.9) for f = fi on 0 < Re s < 1 follows immediately, where i = 1, . . . ,d .

From the holomorphic continuation of L(s, fi × χ) to Re s > −(k − 6)/2 and the functional equation just

proved, L(s, fi ×χ) also extends holomorphically to Re s < k/2−2 . As a result, L(s, fi ×χ) admits an entire con-

tinuation and now the functional equation holds for all s ∈C. This completes the proof.

APPENDIX A. BROADER CONTEXTS

The theory of automorphic representations encompasses a wealth of surprising formulae involving auto-

morphic L-functions, periods, or other interesting arithmetic invariants. A notable example is Waldspurger’s

formula [35, 36], which relates the central L-values of integral weight automorphic forms twisted by quadratic

characters to the Fourier coefficients of half-integral weight forms via the Shimura correspondence.

In his pioneering works [19, 20, 21], Jacquet gave a new proof of Waldspurger’s formula using his Relative

Trace Formula (RTF). The development of the RTF programme has since been fruitful. This theme was recently

revisited by Sakellaridis [29], who offered another proof of Waldspurger’s formula using Langlands’ Beyond En-

doscopy. His method features a novel, non-standard comparison of the Jacquet RTF (J-RTF) and the Kuznetsov

Trace Formula (KTF), uncovering non-trivial spectral identities involving global automorphic invariants.

Sakellaridis’ work [29, Section 5] also sheds new light on the analytic theory of automorphic L-functions.

The philosophy of Beyond Endoscopy asserts that the functional equations of L-functions should be viewed as

parallel to Waldspurger’s formula at a high level. This was further elaborated by Sakellaridis ([31, Section 6], [30,

Section 1.1, 6–9]) and Ngô [28, Section 7.2].

According to [31], both Waldspurger’s formula and the functional equation for the standard L-function

L(s,π, std) of a cuspidal automorphic representation π of G := PGL(2) can be interpreted as forms of ‘Poisson

summation’ between two distinct spaces of Schwartz measures. Indeed, according to [31, Diagram (6.2)-(6.3)]

and [30, Section 8], Waldspurger’s formula arises from the comparison between the J-RTF and the KTF as func-

tionals on the spaces of Schwartz measures for the quotients T \ G/T and N \ G/N respectively, where E/F be

a quadratic extension, T := ResE/F Gm/Gm be a torus of G , and N :=
{(

1 ∗
1

)}
⊂G be the standard unipotent sub-

group equipped with a non-trivial character of N . On the other hand, the functional equation for L(s,π, std)

arises from the comparison between two functional of KTFs defined on the Schwartz spaces for N \ G/N , dis-

tinguished by the parameters s and 1− s. In both cases, there are significant subtleties in formalizing the afore-

mentioned schemes. For instance, the correct notions for the ‘Fourier/Hankel transforms’ behind the ‘Poisson

summations’ or the ‘functionals’ behind the RTFs are far from obvious (see [29, Section 1.5 and 4]).

In light of the above, it is worth comparing our work to that of Iwaniec [17], who also relied on a Spectral

Reciprocity strategy in his study of Waldspurger’s formula. However, there are subtle distinctions in the imple-

mentations. In [17], the use of (1.16) stems from the exact evaluation of a different type of character sum, known

as the Salié sum (see [17, Lemma 1]), which also plays a crucial role in ‘detecting’ the correspondence between

the levels and weights. However, this particular ingredient is absent in our context, resulting in different arith-

metic and comparisons of RTFs at a fine scale. The Hankel transform (2.9) and inversion (Lemma 2.3) do not

play a role in [17], and the essential Bessel integrals in Iwaniec [17] (and Baruch–Mao [5]) are not (1.14).

An early exploration of the relationships between character sum identities and Hecke algebras was under-

taken by Kuznetsov [25] in the 1980s, as a byproduct while developing his celebrated trace formula (KTF). He

provided the first proof of a famous identity originally stated by Selberg in the 1930s without proof:

S(m,ℓ;c) =
∑

d |(m,ℓ,c)

S
(
1,mℓ/d 2;c/d

)
d , (A.1)
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using his trace formula and the Hecke relation for aHecke-Maass cusp form F of level 1:

λF (m)λF (ℓ) =
∑

d |(m,ℓ)

λF (mℓ/d 2). (A.2)

However, a direct proof of (A.1), i.e., one that does not rely on automorphic inputs, has resisted straightforward

attempts (as commented by [7, p. 2318]). Our work introduces a new instance of such comparisons in the context

of automorphic L-functions. We wish to continue this line of study.
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