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SIGN CHANGES OF FOURIER COEFFICIENTS FOR HOLOMORPHIC

ETA-QUOTIENTS

KATHRIN BRINGMANN, GUONIU HAN, BERNHARD HEIM, AND BEN KANE

Abstract. In this paper we study sign changes of an infinite class of η-quotients which are
holomorphic modular forms. There is also a relation to Hurwitz class numbers.

1. Introduction and statement of results

There is wide interest in sign changes in q-series f(q) =
∑

n∈Z c(n)q
n with c(n) ∈ R. For

example, if f(q) is the Fourier expansion of positive real weight cusp form on some congruence
subgroup, then Knopp, Kohnen, and Pribitkin [15, Theorem 1] showed that the c(n) change
signs infinitely often. Sign changes in special subsets of n ∈ N in case of half-integral weight
cusp forms were considered in [7, 19]. Moreover, Kowalski, Lau, Soundararajan, and Wu
[17, Corollary 2] proved that if f is an integral weight normalized newform, then the set of
signs sgn(c(p)) with p prime uniquely determines f . These results do not extend to general
holomorphic modular forms; for example, the Eisenstein series for SL2(Z) have at most one
sign change, and half of them have no sign change, so the signs of their Fourier coefficients
do not uniquely determine them. Define the Dedekind η-function

η(z) := q
1
24

∏

n≥1

(1− qn)
(
q := e2πiz

)
.

In this paper, we investigate sign changes of Fourier coefficients of η-quotients
∏m
j=1 η(jz)

δj

with m ∈ N and δj ∈ Z for 1 ≤ j ≤ m. Many such quotients are connected to combinatorial
counting problems via the corresponding products

m∏

j=1

(
qj; qj

)δj
∞

=:
∑

n≥0

C1δ12δ2 ···mδm (n)qn,

where (a; q)n :=
∏n−1
j=0 (1− aqj) for n ∈ N0 ∪ {∞} is the q-Pochhammer symbol. For example,

Euler showed that 1
η(z) is basically equals the partition generating function.

Many interesting examples of sign changes of the C1δ12δ2 ···mδm (n) appear in the literature.
For example, Andrews and Lewis [2, Conjecture 2] made a conjecture pertaining to the
so-called crank of partitions which is related to sgn(C133−1(n)); this conjecture was proven
by Kane [14, Corollary 2]. Motivated by work of Borwein [4], Andrews [1, Theorem 2.1]
showed that sgn(C11p−1(n)) is periodic in n with period p. Schlosser and Zhou [24] further
investigated sgn(C1δp−δ(n)) for δ real. In all of these examples, the signs sgn(C1δp−δ(n))
exhibit a regular pattern, contrary to the behaviour of the signs of the Fourier coefficients of
newforms that uniquely determine the form. In this paper, we are interested in other cases
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for which sgn (C1δ12δ2 ···mδm (n)) satisfies some kind of regularity. We focus on η-quotients
which are holomorphic modular forms, investigating similar questions for weakly holomorphic
modular forms in a forthcoming paper. We study a few different types of regular sign patterns
in this paper. We first record examples where sgn (C1δ12δ2 ···mδm (n)) has some period M ∈ N.

We start with M = 1. A number of such examples with fixed sign appear via connections
with combinatorial counting problems. For instance, Chen and Garvan [8, (1.9) and Theorem

2.1] investigated η(2z)2η(3z)3

η(z)2
, showing that for n ∈ N0 we have

C1−22233(n) =
1

24
r3(24n + 11) > 0,

where r3(n) is the number of representations of n as a sum of 3 squares. We obtain a similar

result for η(2z)3η(4z)2

η(z)2
.

Theorem 1.1. For n ∈ N0, we have

C1−22342(n) > 0.

For M = 2, we have the example η(z)3η(3z)3

η(2z)2
.

Theorem 1.2. The sequence {sgn(C132−233(n))}n≥1 has period 2. In particular, we have

(−1)nC132−233(n) > 0.

For M = 3, we find the example η(z)4η(2z)4

η(3z)2
.

Theorem 1.3. The sequence {sgn(C14243−2(n))}n≥1 has period 3. In particular, we have

sgn (C14243−2(n)) =

{
1 if 3 | n,
−1 otherwise.

For M = 8, we find two examples, η(z)
4η(2z)2

η(4z)2
and η(z)4η(2z)4

η(4z)3
.

Theorem 1.4.

(1) The sequence {sgn(C14224−2(n))}n≥1 has period 8. In particular, we have

sgn (C14224−2(n)) =





1 if n ≡ 0, 3, 7 (mod 8) ,

−1 if n ≡ 1, 4, 5 (mod 8) ,

0 if n ≡ 2 (mod 4) .

(2) The sequence {sgn(C14244−3(n))}n≥1 has period 8. In particular, we have

sgn (C14244−3(n)) =

{
1 if n ≡ 0, 3, 6, 7 (mod 8) ,

−1 if n ≡ 1, 2, 4, 5 (mod 8) .

For a prime p, we next consider sign changes for the pair of infinite families of η-quotients

Qp(z) :=
η(z)p

2

η(pz)p
, Pp(z) :=

η(z)p

η(pz)
.

These families appeared throughout the literature, and their Fourier expansions were com-
puted for certain small p. The function Q2 is an Eisenstein series (see [16, Example 10.6
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(10.14)]) and P2 is a theta function (see [22, Theorem 1.60])

Q2(z) = 1− 4
∑

n≥1

(−1)n+1
∑

d|n

(−1

d

)
qn, P2(z) =

∑

n∈Z

(−1)nqn
2
.

with
(
·
·

)
the extended Legendre symbol. The Fourier expansion (see [16, Example 11.4])

P3(z) = 1− 3
∑

n≥1

∑

d|n

(
d

3

)
qn + 9

∑

n≥1

∑

d|n

(
d

3

)
q3n

closely resembles the Fourier expansion of Q2. These functions are lacunary (see [10, Theorem
1.2] for the statement for Q2), meaning that the set of n for which the n-th Fourier coefficient
is non-zero has density zero, and hence their Fourier coefficients cannot exhibit regular sign
changes. Although the Fourier expansion (see [16, Example 12.16 (12.34)])

P5(z) = 1− 5
∑

n≥1

∑

d|n

(
d

5

)
dqn

also seems to resemble the Fourier expansions of Q2 and P3, we next see that the signs of the
coefficients of P5 satisfy a somewhat regular pattern related to the prime factorization of n
which is part of a more general phenomenon for larger p.

Theorem 1.5.

(1) Let p ≥ 3 be prime and a ∈ N0. Then for m is sufficiently large coprime to p we have

sgn
(
C
1p2p−p (p

am)
)
=

(
2

p

)(
m

p

)
.

(2) Let p ≥ 5 be prime and a ∈ N0. Then for m is sufficiently large coprime to p we have

sgn
(
C1pp−1 (pam)

)
=

(−2

p

)(
m

p

)
.

Although the sign changes in Theorem 1.5 only hold for m sufficiently large, in special
cases this holds for all n if the underlying space of cusp forms is trivial.

Corollary 1.6.

(1) For a ∈ N0 and m ∈ N with gcd(3,m) = 1, we have

sgn (C193−3 (3am)) = −
(m
3

)
.

(2) For a ∈ N0 and m ∈ N with gcd(5,m) = 1, we have

sgn (C155−1 (5am)) = −
(m
5

)
.

Finally, we consider a half-integral weight case for which the sign of the n-th Fourier
coefficient resembles Corollary 1.6.

Theorem 1.7. For n ∈ N0, write 8n+ 1 = 3am with 3 ∤ m. Then we have

sgn (C12223−1(n)) =





(
m
3

)
if a = 0,

−(m
3 )+1

2 if a = 1,

−1 if a = 2,

sgn
(
C12223−1

(
n−1
3

))
if a ≥ 3.
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The paper is organized as follows. In Section 2, we recall some basic facts on modular forms
and Hurwitz class numbers. In Section 3, we prove Theorem 1.1. Section 4 is devoted to the
proof of Theorem 1.2. In Section 5 we show Theorem 1.3, in Section 6 we prove Theorem 1.4,
and in Section 7 we prove Theorem 1.5, Corollary 1.6, and Theorem 1.7.
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2. Preliminaries

2.1. Modular forms. We briefly introduce modular forms, but refer the reader to [22] for
more details. As usual, for d odd, we let

εd :=

{
1 if d ≡ 1 (mod 4) ,

i if d ≡ 3 (mod 4) .

For k ∈ 1
2Z, N ∈ N (4 | N if k ∈ Z + 1

2), and a character χ (modN), a function f : H → C

satisfies modularity of weight k on Γ0(N) with character χ if for all γ =
(
a b
c d

)
∈ Γ0(N)

f |kγ = χ(d)f.

Here the weight k slash operator is defined by

f
∣∣
k
γ(z) :=

{(
c
d

)
ε2kd (cz + d)−kf(γz) if k ∈ Z+ 1

2 ,

(cz + d)−kf(γz) if k ∈ Z.

We call f : H → C a (holomorphic) modular form of weight k on Γ0(N) with character χ
if f is holomorphic on H, satifies modularity of weight k on Γ0(N) with character χ, and
for every γ =

(
a b
c d

)
∈ SL2(Z), (cz + d)−kf(γz) is bounded as z → i∞. We denote the

space of such forms by Mk (Γ0(N), χ). Modular forms for which (cz + d)−kf(γz) vanishes as
z → i∞ for all γ ∈ SL2(Z) are called cusp forms. The corresponding subspace is denoted
by Sk(Γ0(N), χ). We drop χ from the notation if it is trivial. The Petersson inner product
between f, g ∈ Sk(Γ0(N), χ) is defined by (z = x+ iy)

〈f, g〉 := 1

[SL2(Z) : Γ0(N)]

∫

Γ0(N)\H
f(z)g(z)yk

dxdy

y2
.

2.2. Operators on (non-holomorphic) modular forms. We recall the action of certain
operators on non-holomorphic functions which satisfy weight κ ∈ 1

2Z modularity on some
group Γ0(N) with some character. For f(z) =

∑
n∈Z cf,y(n)q

n (we omit the dependence on y
if f is holomorphic), we define

f | Uℓ(z) :=
∑

n∈Z

cf, y
ℓ
(ℓn)qn, f | Vℓ(z) := f(ℓz).
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Moreover let for M ∈ N, m ∈ N0 the sieving operator

f | SM,m(z) :=
∑

n∈Z
n≡m (modM)

cf,y(n)q
n

and for a character ψ we define the twist of f by ψ as

f ⊗ ψ(z) :=
∑

n∈Z

ψ(n)cf,y(n)q
n.

The conductor of a character χ (mod N) is the smallest M ∈ N such that for all n ∈ Z with
gcd(n,N) = 1 we have χ(n+M) = χ(n). To state the modular properties of these functions,
we also require the radical rad(n) :=

∏
p|n p and the character χD(n) := (D

n
). The following

properties of these operators are well-known; for a proof see for example [6, Lemma 2.3].

Lemma 2.1. Suppose that f : H → C satisfies modularity of weight k ∈ Z + 1
2 on Γ0(N)

(4 | N) with character χ of conductor Nχ | N .

(1) For δ ∈ N, the function f |Uδ satisfies modularity of weight k on Γ0(4 lcm(N4 , rad(δ))) with
character χχ4δ.

(2) Suppose that M | 24 and M 6≡ 2 (mod 4). Then f |SM,m satisfies modularity of weight k
on Γ0(lcm(N,M2,MNχ)) with character χ.

(3) For δ ∈ N, f |Vδ satisfies modularity of weight k on Γ0(Nd) with character χχ4δ.

The following lemma may be shown similarly to Lemma 2.1.

Lemma 2.2. Let N ∈ N, χ a character (mod N) with conductor Nχ | N , and k ∈ N, and
suppose that f satisfies weight k modularity on Γ0(N) with character χ.

(1) For δ ∈ N the function f |Vδ satisfies weight k modularity on Γ0(Nδ) with character χ.
(2) If M ∈ N with M | 24 and m ∈ Z, then the function f |SM,m satisfies weight k modularity

on Γ0(lcm(N,M2,MNχ)) with character χ.
(3) For M ∈ N and ψ a character (modM), the function f ⊗ψ satisfies weight k modularity

for Γ0(lcm(N,M2,MNχ)) with character χψ2.
(4) If δ | N , then f |Uδ satisfies weight k modularity on Γ0(N) with character χ.

2.3. Eisenstein series. For k ∈ N with k ≥ 2 and primitive characters χ,ψ, we define the
Eisenstein series

Ek,χ,ψ(z) := δχ=χ1L (1− k, ψ) + 2
∑

n≥1

∑

d|n

χ
(n
d

)
ψ(d)dk−1qn, (2.1)

where the L-function for the character ψ is defined for Re(s) > 1 by L(s, ψ) :=
∑

n≥1
ψ(n)
ns

and it is meromorphically continued to s ∈ C. The modular properties of these Eisenstein
series were given in [12, Theorem 4.5.2] and [12, Theorem 4.6.2].

Lemma 2.3. Suppose that χ and ψ are primitive characters of conductors Nχ and Nψ, respec-
tively. If k > 2 or (k = 2 and either χ or ψ is non-trivial), then Ek,χ,ψ ∈Mk (Γ0 (NχNψ) , χψ).

For k,N ∈ N and a character ̺ (mod N), we call the space spanned by Ek,χ,ψ|Vd with
characters χ, ψ and d ∈ N such that NχNψd | N and χψ = ̺ the Eisenstein series subspace
of Mk(Γ0(N), ̺). Here χψ = ̺ means that they agree as characters (mod N). One can split
f ∈ Mk(Γ0(N), ̺) uniquely as f = E + g with E contained in the Eisenstein series subspace
and g a cusp form. We call E the Eisenstein series part of f and g the cuspidal part of f .

5



If χ = χ1 and ψ = χ(−1
p
)p for an odd prime p, then we normalize the Eisenstein series by

multiplying by

Lk,p :=
1

L

(
1− k, χ(

−1
p

)

p

) .

One can use the Euler–Maclaurin summation formula (see [27, (44)]) to determine the behav-
ior of the Eisenstein series at 0.

Lemma 2.4. Suppose that k ≥ 2 and p is an odd prime. Then Lk,pEk,χ1,χ(−1
p )p

has constant

term 1 at the cusp i∞ and vanishes at the cusp 0.

In addition to the holomorphic Eisenstein series, we also require the quasimodular Eisen-
stein series of weight 2, with σ(n) :=

∑
d|n d,

E2(z) := 1− 24
∑

n≥1

σ(n)qn.

The Eisenstein series E2 is not modular, but it has a natural “modular completion”

Ê2(z) := E2(z)−
3

πy
.

Although Ê2 is not holomorphic, it satisfies for all γ ∈ SL2(Z)

Ê2

∣∣
2
γ = Ê2.

2.4. Hecke operators. In this subsection, we restrict ourselves to integral weight modular
forms. For N, k ∈ N, χ a character (mod N), and p a prime, we define the Hecke operator Tp
acting on f ∈Mk(Γ0(N), χ) by (see [22, Definition 2.1])

f
∣∣Tp(z) :=

∑

n≥0

(
cf (pn) + χ(p)pk−1cf

(
n

p

))
qn,

where cf (α) := 0 for α ∈ Q+ \ N0. There is a natural basis of cusp forms which are si-
multaneous eigenfunctions under all Hecke operators Tp with p ∤ N . We call these simul-
taneous eigenfunctions Hecke eigenforms. If f ∈ Mk(Γ0(N), χ) is a Hecke eigenform, then
f |Vd ∈Mk(Γ0(Nd), χ) is also a Hecke eigenform. For M ∈ N, the subspace of Mk(Γ0(M), χ)
spanned by the eigenforms f |Vd with f ∈ Mk(Γ0(N), χ) for 1 ≤ N < M is called the old
space, and the orthogonal complement of these is the new space. The Hecke eigenforms in the
new spaces are called newforms, and we normalize the Fourier expansions so that cf (1) = 1.
Letting d(n) denote the number of divisors of n, a celebrated result of Deligne [11] gives an
explicit bound on cf (n).

Theorem 2.5. (Deligne) Suppose that k, N ∈ N, χ is a character (modN), and f ∈
Sk(Γ0(N), χ) is a normalized newform. Then

|cf (n)| ≤ d(n)n
k−1
2 .

Letting ‖f‖ :=
√

〈f, f〉 denote the Petersson norm, Schulze-Pillot–Yenirce [25, Theorem 12]
constructed an explicit orthonormal basis for Sk(Γ0(N), χ) and used Theorem 2.5 to obtain
a bound for the Fourier coefficients of any f ∈ Sk(Γ0(N), χ).
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Lemma 2.6. Suppose that k,N ∈ N, χ is a character (modN), and f ∈ Sk(Γ0(N), χ).
Then

|cf (n)| ≤ 2
√
πe2π

√
dimC(Sk (Γ0(N), χ))

√
N

∏

p|N

(
1 + 1

p

)3

√
1− 1

p4

‖f‖d(n)n k−1
2 .

2.5. Valence formula. In order to show identities between modular forms, we use the fol-
lowing consequence of the valence formula.

Lemma 2.7. Let k ∈ 1
2N, N ∈ N, and χ be a character (mod N). If f ∈ Mk(Γ0(N), χ)

satisfies cf (n) = 0 for every 0 ≤ n ≤ N k
12

∏
p|N (1 +

1
p
), then f ≡ 0.

2.6. L-functions of Dirichlet characters. We require the following lemma for evaluating
L-functions of Dirichlet characters at non-positive integers. The following identity is well-
known and can be easily concluded from [3, p. 249] and [3, Theorem 12.13].

Lemma 2.8. For a discriminant D and k ∈ N, we have

L (1− k, χD) = −|D|k−1

k

|D|∑

r=1

χD(r)Bk

(
r

|D|

)
,

where Bk(x) denotes the k-th Bernoulli polynomial.

For the specific case D = (−1
p
)p and k ≡ kp (mod 2) with kp := p−1

2 , one may use the

functional equation for the Dirichlet L-function and Gauss’s evaluation of the quadratic Gauss
sum to obtain the sign of the L-value in Lemma 2.8.

Lemma 2.9. Let p be an odd prime and k ≥ 2 with k ≡ kp (mod 2) be an integer. Then

sgn (Lk,p) = (−1)
k
2
+ p−1

4

(−2

p

)
.

In particular, we have

sgn
(
Lkp,p

)
=

(−2

p

)
and sgn

(
Lpkp,p

)
=

(
2

p

)
.

2.7. Hurwitz class numbers. For D ∈ N, denote by H(D) the Hurwitz class number, which
counts the class number of positive-definite integral binary quadratic forms of discriminant
−D, where each class is weighted by the inverse of the size of its automorphism group in
PSL2(Z). We note that if −D < 0 is a discriminant, then H(D) > 0, while H(D) = 0 if −D
is not a discriminant. We extend the definition by setting H(0) := − 1

12 and H(r) := 0 for
r ∈ Q \N0. For −D a fundamental discriminant we have [9, p. 273]

H
(
Df2

)
= H(D)SD(f), (2.2)

where, letting µ denote the Möbius µ-function,

SD(f) :=
∑

d|f

µ(d)χ−D(d)σ

(
f

d

)
. (2.3)

For ℓ1, ℓ2 ∈ N, let

H(z) :=
∑

D≥0

H(D)qD, Hℓ1,ℓ2 := H | (Uℓ1ℓ2 − ℓ2Uℓ1 ◦ Vℓ2) . (2.4)

7



With Γ(s, y) :=
∫∞
y
e−tts−1dt for y > 0 the incomplete gamma function, the modularity of

Ĥ(z) := H(z) +
1

8π
√
y
+

1

4
√
π

∑

n≥1

nΓ

(
−1

2
, 4πn2y

)
q−n

2

was proven by Zagier [26] (see also [13, Chapter 2, Theorem 2]). Using Zagier’s result, the
modularity of Hℓ1,ℓ2 was given in [6, Lemma 2.6].

Lemma 2.10. For ℓ1, ℓ2 ∈ N, with gcd(ℓ1, ℓ2) = 1 and ℓ2 squarefree, we have that

Hℓ1,ℓ2 ∈M 3
2
(Γ0(4 rad(ℓ1)ℓ2), χ4ℓ1ℓ2) .

3. Proof of Theorem 1.1

We abbreviate b1(n) := C1−22342(n).

Proof of Theorem 1.1. By [22, Theorem 1.60], we have

η(16z)2

η(8z)
=

∑

n≥0

q(2n+1)2 .

Thus1 ∑

n≥0

b1(n)q
8n+4 =

∑

n∈N3
0

q8(Tn1+Tn2+2Tn3)+4,

where Tn := n(n+1)
2 . Comparing the (8n+4)-th Fourier coefficient on both sides, we see that

b1(n) = #
{
n ∈ N3

0 : Tn1 + Tn2 + 2Tn3 = n
}
. (3.1)

It was proven by Liouville [21] (also see the statement in [5] and its generalization in [5,
Theorem 1.1]) that, for n ∈ N0,

#
{
n ∈ N3

0 : Tn1 + Tn2 + 2Tn3 = n
}
> 0,

which together with (3.1) immediately implies Theorem 1.1. �

4. Proof of Theorem 1.2

Abbreviating b2(n) := C132−233(n), s2(n) := sgn(b2(n)), we first show the following.

Lemma 4.1. We have

b2(n) =





∑
d|(3n+1)

(
3
d

)
d if n ≡ 0 (mod 4) ,

−1
3

∑
d|(3n+1)

(
3
d

)
d if n ≡ 2 (mod 4) ,

−1
3

∑
d|(3n+1)

(
12
d

)
d− 2

3

∑
d|(3n+1)

(
12

3n+1
d

)
d if n ≡ 1 (mod 2) .

Proof. By [22, Theorem 1.64], η(3z)
3η(9z)3

η(6z)2
∈M2(Γ0(72), χ12).

The generating function of the right-hand side of Lemma 4.1 is

1

2
E2,χ1,χ12

∣∣S12,1 −
1

6
E2,χ1,χ12

∣∣S12,7 −
1

6
E2,χ1,χ12

∣∣S6,4 −
1

3
E2,χ12,χ1

∣∣S6,4.

By Lemma 2.3, E2,χ1,χ12 , E2,χ12,χ1 ∈ M2 (Γ0(12), χ12). Hence, for m ∈ Z and M ∈ N with
M | 12, Lemma 2.2 (2) implies that E2,χ1,χ12

∣∣SM,m, E2,χ12,χ1

∣∣SM,m ∈M2 (Γ0(144), χ12). Thus

1Throughout we use boldface letters for vectors.
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the generating functions of both sides of the claimed identity lie in M2(Γ0(144), χ12). By
Lemma 2.7, the identity holds if it holds for the first 48 Fourier coefficients. The identity was
checked with a computer for 3n+ 1 ≤ 301, verifying the claim. �

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Writing 3n+ 1 = 2ℓm with gcd(6,m) = 1, we have

∑

d|(3n+1)

(
12

d

)
d =

∑

d|m

(
3

d

)
d

ℓ∑

r=0

(
12

2r

)
2r =

∏

p|m

ordp(m)∑

j=0

(
3

pj

)
pj =

∏

p|m

1−
((

3
p

)
p
)ordp(m)+1

1−
(
3
p

)
p

.

Now

1−
((

3
p

)
p
)ordp(m)+1

1−
(
3
p

)
p

=





1−pordp(m)

1−p if p ≡ ±1 (mod 12) ,

1−pordp(m)

1+p if p ≡ ±5 (mod 12) , ordp(m) odd,

1+pordp(m)

1+p if p ≡ ±5 (mod 12) , ordp(m) even.

This implies that

sgn


∑

d|m

(
3

d

)
d


 =

(
3

m

)
= (−1)

m−1
2

(m
3

)
. (4.1)

For n even, we have 3n + 1 = m, so (4.1) implies that

sgn


 ∑

d|(3n+1)

(
3

d

)
d


 = (−1)

m−1
2

(m
3

)
. (4.2)

If n ≡ 0 (mod 4), then m = 3n+ 1 ≡ 1 (mod 12), so plugging (4.2) into Lemma 4.1 yields
that s2(n) = 1. If n ≡ 2 (mod 4), then m = 3n + 1 ≡ 7 (mod 12), so inserting (4.2) into
Lemma 4.1 implies that s2(n) = 1.

For 2 ∤ n, we write 3n+1 = 2ℓm with m odd. Noting that ( 12
3n+1

d

) = 0 unless 2ℓ | d, Lemma

4.1 gives that

b2(n) = −1

3

(
1 + 2ℓ+1

(
3

m

))∑

d|m

(
3

d

)
d.

By (4.1), we have sgn(
∑

d|m

(
3
d

)
d) = ( 3

m
). Since 2ℓ+1 > 1, sgn(1 + 2ℓ+1( 3

m
)) = sgn(( 3

m
)). So

overall we obtain s2(n) = −1 for n odd. Combining gives the claim. �

5. Proof of Theorem 1.3

The goal of this section is to prove Theorem 1.3.
9



5.1. Decomposition of the eta-quotient. We now explicitly decompose η(4z)4η(8z)4

η(12z)2
into

an Eisenstein series and a cusp form. For this, we define the Eisenstein series

E(z) :=
∑

n≥1
n≡1 (mod 12)

∑

d|n

(−1

d

)
d2qn − 1

2

∑

n≥1
n≡5 (mod 12)

∑

d|n

(−1

d

)
d2qn

− 2
∑

n≥1
n≡9 (mod 12)


∑

d|n

(−1

d

)
d2 + 6

∑

d|n
3

(−1

d

)
d2


 qn

=
1

2
E3,χ1,χ−4

∣∣S12,1 −
1

4
E3,χ1,χ−4

∣∣S12,5 −E3,χ1,χ−4

∣∣S12,9 − 6E3,χ1,χ−4

∣∣V3
∣∣S4,1.

For the cuspidal part, we let g1 denote the normalized newform in S3(Γ0(12), χ−4) with

g1(z) = q −
(
1 +

√
3i
)
q2 +

√
3iq3 − 2

(
1−

√
3i
)
q4 − 2q5 +

(
3−

√
3i
)
q6 − 4

√
3iq7 + 8q8

− 3q9 +O
(
q10

)

and let g2 be the normalized newform in S3(Γ0(36), χ−4) with

g2(z) = q − 2q2 + 4q4 + 8q5 − 8q8 − 16q10 − 10q13 + 16q16 − 16q17 +O
(
q20

)
.

We then obtain the following decomposition of the eta-quotient.

Lemma 5.1. We have

η(4z)4η(8z)4

η(12z)2
=

1

7
E(z)− 27

14
g1
∣∣S12,9(z) +

3

14
g1
∣∣S4,1(z) +

9

14
g1 ⊗ χ−3

∣∣S4,1(z)

− 3

16
g2
∣∣S4,1(z) +

3

16
g2 ⊗ χ−3

∣∣S4,1(z).

Proof. By [22, Theorem 1.64], η(4z)4η(8z)4

η(12z)2
∈M3(Γ0(72), χ−4). By Lemma 2.3, we have that

E3,χ1,χ−4 ∈M3(Γ0(4), χ−4). Using Lemma 2.2 (2), E3,χ1,χ−4 |S12,m ∈ M3(Γ0(144)), χ−4) for
m ∈ Z. Lemma 2.2 (1) implies that E3,χ1,χ−4 |V3 ∈ M3(Γ0(12), χ−4). Lemma 2.2 (2) then
gives that E3,χ1,χ−4 |V3|S4,1 ∈M3(Γ0(48), χ−4). Thus E ∈M3 (Γ0(144), χ−4).

By Lemma 2.2 (2), (3), we have

−27
14g1

∣∣S12,9 + 3
14g1

∣∣S4,1 + 9
14g1 ⊗ χ−3

∣∣S4,1 − 3
16g2

∣∣S4,1 + 3
16g2 ⊗ χ−3

∣∣S4,1 ∈M3 (Γ0(144), χ−4) .

Thus both sides of the claimed identity lie in M3(Γ0(144), χ−4). To prove the identity, it
suffices to verify the identity for the first 72 Fourier coefficients. This was done with a
computer. �

5.2. Fourier coefficients of the Eisenstein series part. We now determine the sign of
the n-th Fourier coefficients A(n) of the Eisenstein series part E .

Lemma 5.2. Suppose that n ≡ 1 (mod 4). Then we have

∑

d|n

(−1

d

)
d2 + 6

∑

d|n
3

(−1

d

)
d2 > 0.

10



In particular,

sgn(A(4n + 1)) =

{
1 if 3 | n,
−1 otherwise.

Proof. If 3 ∤ n, then the second sum on the left-hand side of the first claim vanishes. Since
n ≡ 1 (mod 4), we have that n (and thus d) is odd. Thus the above becomes

∏

p|n

ordp(n)∑

j=0

(−1

pj

)
p2j =

∏

p|n





1−p2 ordp(n)+2

1−p2
if p ≡ 1 (mod 4),

1−p2 ordp(n)+2

1+p2
if p ≡ 3 (mod 4), 2 ∤ ordp(n),

1+p2 ordp(n)+2

1+p2 if p ≡ 3 (mod 4), 2 | ordp(n).

Now only the second case yields a negative sign, so

sgn



∑

d|n

(−1

d

)
 = (−1)#{p|n : p≡3 (mod 4), 2∤ordp(n)} ≡ n (mod 4) (5.1)

since n is odd. Since n ≡ 1 (mod 4), we conclude that the sign in this case is 1.
Finally, suppose that 3 | n. Write n = 3ℓm (ℓ ∈ N), 3 ∤ m. Then we need to rewrite the

left-hand side of the first claim of the lemma as

∑

d|m

(−1

d

)
d2

ℓ∑

j=0

(−1

3j

)
32j + 6

∑

d|m

(−1

d

)
d2

ℓ−1∑

j=0

(−1

3j

)
32j

=
∑

d|m

(−1

d

)
d2


7

ℓ−1∑

j=0

(−1)j32j + (−1)ℓ32ℓ


 . (5.2)

The sign of the first sum is evaluated in (5.1). The parenthesis equals 7+(−1)ℓ32ℓ+1

10 . Note that

the sign of this factor is (−1)ℓ (because ℓ ∈ N). Combining with above, we have for 3 | n

sgn


∑

d|n

(−1

d

)
d2 + 6

∑

d|n
3

(−1

d

)
d2


 = (−1)#{p|n : p≡3 (mod 4), 2∤ordp(n)}.

Since n ≡ 1 (mod 4), (5.1) again implies that the sign is 1. Plugging the first claim into the
definition of E yields the second claim. �

5.3. Finishing the proof of Theorem 1.3. By Lemma 5.2, the signs of the Fourier coef-
ficients of E match those of the signs of the Fourier coefficients claimed in Theorem 1.3. We
are now ready to prove Theorem 1.3. Let b3(n) := C14223−2(n) and s3(n) := sgn(b3(n)).

Proof of Theorem 1.3. We claim that for n ∈ N, s3(n) = sgn(A(4n + 1)). Lemma 5.2 then
gives the claim. To show this, we explicitly compare the growth of the Fourier coefficients of
E with the growth of the Fourier coefficients of the cuspidal part from Lemma 5.1. We begin

by bounding the Fourier coefficients of the cuspidal part of η(4z)
4η(8z)4

η(12z)2
. Write

g1(z) =:
∑

n≥1

a1(n)q
n, g2(z) =:

∑

n≥1

a2(n)q
n.

11



Since g1 and g2 are weight 3 newforms, |a1(n)|, |a2(n)| ≤ d(n)n by Theorem 2.5. Moreover,
by Lemma 5.1, for n ≡ 1 (mod 4) the n-th Fourier coefficient of the cuspidal part of the
function on the right-hand side of Lemma 5.1 is

−12

7
δ3|na1(n) + δ3∤n

3

14

(
1 + 3

(−3

n

))
a1(n) +

3

16

(
−1 +

(−3

n

))
a2(n). (5.3)

Note that (−3
n
) = (n3 ). We now look at the various residue classes of n (mod 12).

Assume first that n ≡ 1 (mod 12). Then (5.3) equals 6
7a1(n) and its absolute value can be

bounded against 6
7d(n)n. From Lemma 5.1, the absolute value of the n-th Fourier coefficient

of the Eisenstein series part E is

1

7

∣∣∣∣∣∣

∑

d|n

(−1

d

)
d2

∣∣∣∣∣∣
≥ 1

7

∏

p|n

p2 ordp(n)+2 − 1

p2 + 1
.

We conclude that s3(n) agrees with the claimed value if

d(n) ≤ 1

6

∏

p|n

p2 ordp(n)+2 − 1

pordp(n) (p2 + 1)
.

Writing n =
∏r
j=1 p

ℓj
j , we have d(n) =

∏r
j=1(ℓj + 1). Hence the above is equivalent to

r∏

j=1

(ℓj + 1) ≤ 1

6

r∏

j=1

p
2ℓj+2
j − 1

p
ℓj
j

(
p2j + 1

) . (5.4)

We claim that, for a prime p and ℓ ∈ N,

p2ℓ+2 − 1

pℓ (p2 + 1)
≥





2.4(ℓ + 1) for p = 5 and ℓ = 1,

3.4(ℓ + 1) for p = 7 and ℓ = 1,

5(ℓ+ 1) for p = 11 and ℓ = 1,

6(ℓ+ 1) for p ≥ 13 or (p ∈ {5, 7, 11} and ℓ ≥ 2).

(5.5)

This clearly implies the claim unless n is one of the problem cases, which are n ∈ {5, 7, 11}.
But none of these satisfy n ≡ 1 (mod 12).

We now prove (5.5). We first check the cases ℓ = 1 and p ∈ {5, 7, 11} directly by computing
both sides of (5.3) and confirming the claim. The claim for the remaining cases in (5.5) follows
after showing that for x ≥ 13 or (x ∈ {5, 7, 11} and ℓ ≥ 2)

fℓ(x) := x2ℓ+2 − 1− 6(ℓ+ 1)xℓ
(
x2 + 1

)
> 0.

We do so by induction on ℓ for each x. First, for x ≥ 13, we have

f1(x) = x4 − 1− 12x
(
x2 + 1

)
> 0.

We also check directly that f2(5) = 3924 > 0, f2(7) = 73548 > 0, and f2(11) = 1505844 > 0,
so we see that the base case for the induction holds for each p. Next

fℓ+1(x) = x2fℓ(x) + 6(ℓ+ 1)xℓ+1
(
x2 + 1

)
(x− 1) + x2 − 1− 6xℓ+1

(
x2 + 1

)
.

The first term is positive by induction. Using x ≥ 2, we show that the remaining terms are
non-negative. This proves (5.5) for n ≡ 1 (mod 12).

12



Next assume that n ≡ 5 (mod 12). Simplifying (5.3) in this case, the n-th Fourier coefficient
of the cuspidal part is −3

7a1(n)− 3
8a2(n). Then Theorem 2.5 implies that the absolute value

is bounded by 45
56d(n)n. With the same argument as before, we may conclude the claim if

r∏

j=1

(ℓj + 1) ≤ 56

315

r∏

j=1

p
2ℓj+2
j − 1

p
ℓj
j

(
p2j + 1

) .

If the above inequality fails, then, since 56
315 > 1

6 , (5.4) would also fail. As computed for
n ≡ 1 (mod 12), if (5.4) fails, then n ∈ {5, 7, 11}. Thus for n > 5 with n ≡ 5 (mod 12), we have
s3(

n−1
4 ) = sgn(A(n)), as claimed. For n = 5, we directly evaluate s3(1) = −1 = sgn(A(5))

with a computer, as this is the only possible exceptional case satisfying n ≡ 5 (mod 12).
We finally consider the case n ≡ 9 (mod 12). Then, by (5.3), we have as Fourier coefficient of

the cusp form −12
7 a1(n)− 3

16a2(n). By Theorem 2.5, the absolute value of this can be bounded

against 213
112d(n)n. Writing n = 3ℓm and comparing (5.2) with the Fourier coefficients of the

Eisenstein series in the other congruence classes and simplifying, the Fourier coefficients of
the Eisenstein series have the extra factor

32ℓ+1 + 7(−1)ℓ+1

5
.

Bounding as before, we have s3(
n−1
4 ) = sgn(A(n)) if

32ℓ+1 + 7(−1)ℓ

35

∏

p|m

p2 ordp(n)+2 − 1

p2 + 1
≥ 213

112
d(n)n.

Writing d(n) = (ℓ+ 1)d(m) and plugging in n = 3ℓm, this is equivalent to

∏

p|m

p2 ordp(n)+2 − 1

p2 + 1
≥ 213

112

35(ℓ+ 1)3ℓ

32ℓ+1 + 7(−1)ℓ
d(m)m.

Note that

(ℓ+ 1)3ℓ

32ℓ+1 + 7(−1)ℓ
≤





3
10 if ℓ = 1,
27
250 if ℓ = 2,
27
545 if ℓ = 3,
81

3938 if ℓ = 4,
729

88750 if ℓ ≥ 5.
13



We then extend (5.5) with

p2ℓ+2 − 1

pℓ (p2 + 1)
≥





6.4(ℓ + 1) for p = 13 and ℓ = 1,

8(ℓ+ 1) for p = 5 and ℓ = 2,

8.4(ℓ + 1) for p = 17 and ℓ = 1,

9.4(ℓ + 1) for p = 19 and ℓ = 1,

11.4(ℓ + 1) for p = 23 and ℓ = 1,

14.4(ℓ + 1) for p = 29 and ℓ = 1,

15.4(ℓ + 1) for p = 31 and ℓ = 1,

16(ℓ + 1) for p = 7 and ℓ = 2,

18.4(ℓ + 1) for p = 37 and ℓ = 1,

20(ℓ + 1) for p ≥ 41 or (11 ≤ p ≤ 37 and ℓ ≥ 2)

or (p ∈ {5, 7} and ℓ ≥ 3).

(5.6)

Combining (5.6) with (5.5), we then conclude that for n ≡ 9 (mod 12) with

n /∈ {9, 21, 33, 45, 57, 69, 81, 93, 105, 117, 165},

we have s3(
n−1
4 ) = sgn(A(n)). Computing s3(

n−1
4 ) for n ≤ 165 by computer yields the

claim. �

6. Proof of Theorem 1.4

6.1. Proof of Theorem 1.4 (1). Let b4(n) := C142242(n) and s4 := sgn(b4(n)). We first
obtain a formula for the generating function of b4(n).

Lemma 6.1. We have

η(z)4η(2z)2

η(4z)2
= 1− 4

∑

n≥1

(−4

n

)
σ(n)qn + 8

∑

n≥1

(−1)nσ(n)q4n − 32
∑

n≥1

σ(n)q16n.

Proof. By [22, Theorem 1.64], η(z)
4η(2z)2

η(4z)2
∈M2(Γ0(16)).

Next note that the right-hand side of Lemma 6.1 is

−2E2,χ
−4,χ−4 +

1

3
E2

∣∣V4 −
2

3
E2

∣∣U2 ◦ V8 +
4

3
E2

∣∣V16. (6.1)

It is not hard to see that (6.1) equals the identity with E2 replaced by Ê2, so (6.1) is modular.
By Lemmas 2.3 and 2.2 (1), (4), (6.1) lies in M2(Γ0(16)). Thus both sides of the claimed
identity are elements of M2(Γ0(16)). By Lemma 2.7, the claim holds if it holds for the first 4
Fourier coefficients, which has been verified with a computer. �

We are now ready to prove Theorem 1.4 (1).

Proof of Theorem 1.4 (1). For n = 0, Lemma 6.1 gives b4(0) = 1 > 0. We next suppose that
n ∈ N and split into cases depending on ord2(n). By Lemma 6.1, if n is odd, then

b4(n) = −4

(−1

n

)
σ(n).
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Since 4σ(n) > 0, this gives

s4(n) = −
(−1

n

)
=

{
1 if n ≡ 3 (mod 4) ,

−1 if n ≡ 1 (mod 4) .

This gives the claim for n odd.
For n ≡ 2 (mod 4), we see directly that none of the sums in Lemma 6.1 contributes to the

n-th Fourier coefficients. This gives the claim in this case.
Next suppose that 4 | n but 16 ∤ n. In this case, only the second sum in Lemma 6.1

contributes to the n-th Fourier coefficient, so we obtain

b4(n) = −8σ
(n
4

)
,

which implies that s4(n) = −1. This gives the claim in this case.
Finally, if 16 | n, then the final two sums in Lemma 6.1 contribute to the n-th Fourier-

coefficient, and we have

b4(n) = 8
(
σ
(n
4

)
− 4σ

( n
16

))
.

We next write n = 2ℓm with ℓ ∈ N≥3 and m odd and use multiplicativity of σ(n) to simplify

σ
(n
4

)
− 4σ

( n
16

)
= 3σ(m).

Thus, for 16 | n, we obtain
b4(n) = 24σ(m) > 0.

Hence s4(n) = 1 in this case, completing the proof. �

6.2. Proof of Theorem 1.4 (2). For a vector a ∈ Nℓ, set

ra(n) := #
{
n ∈ Zℓ :

ℓ∑

j=1

ajn
2
j = n

}
.

Using [22, Theorem 1.62, Propositions 1.41 and 3.7 (1)], Lemmas 2.1 and 2.7, we obtain the
following identity.

Lemma 6.2. We have

η(z)4η(2z)4

η(4z)3
= −

∑

n≡1 (mod 4)

r(1,1,2,2,2)(n)q
n +

∑

n≡3 (mod 4)

r(1,1,2,2,2)(n)q
n

− 1

5

∑

n≡2 (mod 16)

r(1,1,2,2,2)(n)q
n − 1

5

∑

n≡4 (mod 16)

r(1,1,2,2,2)(n)q
n +

1

5

∑

n≡6 (mod 16)

r(1,1,2,2,2)(n)q
n

− 3

7

∑

n≡10 (mod 16)

r(1,1,2,2,2)(n)q
n− 1

5

∑

n≡12 (mod 16)

r(1,1,2,2,2)(n)q
n+

1

5

∑

n≡14 (mod 16)

r(1,1,2,2,2)(n)q
n

+
1

5

∑

n≡0 (mod 8)

(
r(1,1,2,2,2)(n) + 4r(1,1,2,2,2)

(n
4

))
qn.

We are now ready to prove Theorem 1.4 (2).

Proof of Theorem 1.4 (2). Liouville [20] proved that r(1,1,2,2)(n) > 0 for every n ∈ N. Since
r(1,1,2,2,2)(n) ≥ r(1,1,2,2)(n) holds trivially by taking 0 for the fifth variable, we have
r(1,1,2,2,2)(n) > 0 for all n ∈ N. Theorem 1.4 (2) now follows immediately from Lemma 6.2. �
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7. Proof of Theorem 1.5, Corollary 1.6, and Theorem 1.7

7.1. Proof of Theorem 1.5. We next bound and determine the sign of
∑

d|n(
d
p
)dk.

Lemma 7.1. For n = pam with p ∤ m and k ∈ N, we have
∣∣∣∣∣∣

∑

d|n

(
d

p

)
dk

∣∣∣∣∣∣
≫ε m

k−ε, sgn


∑

d|n

(
d

p

)
dk


 =

(
m

p

)
.

Proof. By multiplicativity, we have

∑

d|n

(
d

p

)
dk =

∏

ℓ|n

ordℓ(n)∑

j=0

(
ℓ

p

)j
ℓkj.

Since k ≥ 1, for ℓ 6= p and r ∈ N we have∣∣∣∣∣∣

r∑

j=0

(
ℓ

p

)j
ℓkj

∣∣∣∣∣∣
≥ ℓkr − ℓk(r−1).

Thus, for any ε > 0, we have, using [23, (3.27)] in the final step,
∣∣∣∣∣∣

∑

d|n

(
d

p

)
dk

∣∣∣∣∣∣
≥ mk

∏

ℓ|m

(
1− ℓ−k

)
≫ε m

k−ε.

This proves the first claim. For the second claim, we compute

r∑

j=0

(
ℓ

p

)j
ℓkj =





ℓ(r+1)k−1
ℓk−1

if
(
ℓ
p

)
= 1,

ℓ(r+1)k+1
ℓk+1

if
(
ℓ
p

)
= −1, 2 | r,

− ℓ(r+1)k−1
ℓk+1

if
(
ℓ
p

)
= −1, 2 ∤ r,

1 if ℓ = p.

Since k ≥ 1, this is positive unless ( ℓ
p
) = −1 and r is odd in which case it is negative. Thus

sgn



∑

d|n

(
d

p

)
dk


 = (−1)

#
{

ℓ prime :
(

ℓ
p

)

=−1, 2 ∤ ordℓ(m)
}

.

Now write n = pam with a ∈ N0 and gcd(p,m) = 1. The claim follows since
(
m

p

)
=

∏

ℓr‖m

(
ℓr

p

)
= (−1)

#
{

ℓ prime :
(

ℓ
p

)

=−1, 2 ∤ ordℓ(m)
}

. �

We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. By [22, Theorem 1.64], Qp ∈ M p2−p
2

(Γ0(p), χ(−1
p
)p, and Pp ∈ M p−1

2

(Γ0(p), χ(−1
p
)p), Lemma 2.4 yields that there exist fp ∈ Spkp(Γ0(p), χ(−1

p
)p) and gp ∈ Skp

(Γ0(p), χ(−1
p
)p) such that

Qp = Lpkp,pEpkp,1,χ(−1
p )p

+ fp, Pp = Lkp,pEkp,1,χ(−1
p )p

+ gp. (7.1)
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We naturally split the Fourier expansions

Qp(z) =:
∑

n≥0

cQp(n)q
n =:

∑

n≥0

AE(n)q
n +

∑

n≥1

cfp(n)q
n, (7.2)

Pp(z) =:
∑

n≥0

cPp(n)q
n =:

∑

n≥0

BE(n)q
n +

∑

n≥1

cgp(n)(n)q
n (7.3)

into the two pieces corresponding to the right-hand sides of (7.1).
(1) Employing Lemma 2.6 and noting that fp is uniquely determined by p, we have, recalling
that n = pam with p ∤ m,

|cfp(n)| ≪p,ε ‖fp‖n
pkp−1

2
+ε ≪p n

pkp−1

2
+ε ≪a,p,ε m

pkp−1

2
+ε.

Using the bound in Lemma 7.1, we conclude from (7.2) that for m sufficiently large we have

sgn
(
cQp(n)

)
= sgn (AE(n)) . (7.4)

By the evaluation of the sign in Lemma 7.1, we then obtain

sgn (AE(n)) = sgn
(
Lpkp,p

)(m
p

)
.

Finally, using Lemma 2.9, we conclude that

sgn (AE(n)) =

(
2

p

)(
m

p

)
. (7.5)

This finishes the proof of part (1).

(2) By Lemma 2.6, we have |cgp(n)| ≪a,p,ε m
kp−1

2
+ε. As in part (1), Lemma 7.1 and (7.3)

hence imply that, for m sufficiently large, we have

sgn
(
cPp(n)

)
= sgn (BE(n)) = sgn

(
Lkp,p

)(m
p

)
. (7.6)

Finally, Lemma 2.9 implies that

sgn (BE(n)) =

(−2

p

)(
m

p

)
, (7.7)

finishing the proof. �

7.2. Proof of Corollary 1.6. Since (see [18])

S3(Γ0(3), χ−3) = {0}, (7.8)

(7.1) and Lemma 2.8 yield the following identity for b5(n) := C193−3(n).

Lemma 7.2. We have
η(z)9

η(3z)3
= 1− 9

∑

n≥1

∑

d|n

(
d

3

)
d2qn.

In particular, for n ∈ N we have

b5(n) = −9
∑

d|n

(
d

3

)
d2.

We next prove Corollary 1.6 (1). Let s5(n) := sgn(b5(n)) and s6(n) := sgn(C155−1(n)).
17



Proof of Corollary 1.6. (1) Since f3 ≡ 0 in (7.1) by (7.8), (7.2) implies that (7.4) holds for
n ∈ N, and hence (7.5) gives

s5(n) = sgn (cQ3(n)) = sgn (AE(n)) =

(
2

3

)(m
3

)
= −

(m
3

)
.

(2) Since S2(Γ0(5), χ5) = {0} (see [18]), we similarly conclude from (7.3) that (7.6) holds for
n ∈ N and thus (7.7) yields that s6(n) = −(m5 ). �

7.3. Proof of Theorem 1.7. The first step to prove Theorem 1.7 is to write our functions
in terms of class number generating function. We have the following.

Lemma 7.3. We have

η(8z)2η(16z)2

η(24z)
= (H4,3−H1,3) | S24,1(z)−

1

2
(H4,3−H1,3) | S24,17(z)−(H4,3+2H1,3) | S24,9(z).

Proof. By Lemma 2.10, H1,3 ∈ M 3
2
(Γ0(12), χ12) and H4,3 ∈ M 3

2
(Γ0(24), χ12). We then use

Lemma 2.1 (2) to conclude that the right-hand side of the lemma lies in M 3
2
(Γ0(576), χ12).

Moreover, η(24z) ∈M 1
2
(Γ0(576), χ12) (see [22, Corollary 1.62]). Thus η(24z) times the right-

hand side is in M2(Γ0(576)).
Next, by [22, Theorem 1.64], η(8z)2η(16z)2 ∈M2(Γ0(64)). Thus η(24z) times the difference

of the left- and right-hand sides lies in M2(Γ0(576)). By Lemma 2.7, we have to check 192
Fourier coefficients. The claim was verified by checking the identity for the first 192 Fourier
coefficients with a computer. �

Let b7(n) := C12223−1(n) and s7(n) := sgn(b7(n)). We are now ready to prove Theorem 1.7.

Proof of Theorem 1.7. Let
η(8z)2η(16z)2

η(24z)
=:

∑

n≥0

C(n)qn.

Then b7(n) = C(8n+ 1). Thus

s7(n) = sgn(C(8n + 1)).

By (2.4), we have

Hℓ1,ℓ2(z) =
∑

n≥0

(
H(ℓ1ℓ2n)− ℓ2H

(
ℓ1n

ℓ2

))
qn.

Hence Lemma 7.3 implies that

b7(3n) = H(12(24n + 1))−H(3(24n − 1)).

We write 3(24n+ 1) = Df2 and 12(24n+ 1) = D(2f)2 with −D a fundamental discriminant
and f ∈ N. Then (2.2) implies that

H(3(24n + 1)) = H(D)SD(f), H(12(24n + 1)) = H(D)SD(2f).

Since SD(f) is multiplicative and f is odd, we have

SD(2f)− SD(f) = SD(f)SD(2) − SD(f) = SD(f)

(
σ(2) −

(−D
2

)
− 1

)
> 0.

So s7(3n) = 1 = (8(3n)+1
3 ), and we are done in this case. Similarly b7(3n+ 2) = C(24n+ 17).

The proof goes exactly in the same way and gives s7(3n+2) = −1 = (8(3n+2)+1
3 ). This finishes

18



the case a = 0, as 3 | (8n + 1) if and only if n ≡ 1 (mod 3), where we write 8n + 1 = 3am
with 3 ∤ m as in the theorem statement.

Next, Lemma 7.3 implies that

b7(3n+ 1) = C(24n+ 9) = −H(36(8n+3)) + 3H (4(8n + 3))− 2H(9(8n+ 3)) + 6H(8n+ 3).

Write 3a−1m = 8n+ 3 = Df2 with −D fundamental and f ∈ N. Using (2.2) gives

C(24n + 9) = −H(D)(SD(6f)− 3SD(2f) + 2SD(3f)− 6SD(f)). (7.9)

Note that 2 ∤ f . Since D is a fundamental discriminant, we have 9 ∤ D, so a ≥ 3 if and only
if 3 | f . Moreover, 9 | (8n + 3) if and only if 3 | f . Therefore

a ≥ 3 ⇔ 3 | f ⇔ 8n+ 3 ≡ 0 (mod 9) ⇔ n ≡ 3 (mod 9) .

We assume next that a ∈ {1, 2}, and hence n 6≡ 3 (mod 9). Since SD(f) is multiplicative,
using the definition (2.3) and (2.2), we have, by (7.9),

C(24n + 9) = −H(D)SD(f)(SD(6)− 3SD(2) + 2SD(3)− 6)

= −H(8n+ 3)

(
σ(6)−

(−D
3

)
σ(2)−

(−D
2

)
σ(3) +

(−D
6

)
− 3σ(2)

+ 3

(−D
2

)
+ 2σ(3) − 2

(−D
3

)
− 6

)
.

Note that (−D2 ) = (−3
2 ) = −1 since D ≡ 3 (mod 8) and (−D3 ) = (−8n

3 ) = (n3 ). Thus

C(24n+ 9) = −6H(8n + 3)
(
1−

(n
3

))
.

This finishes the claim for a ∈ {1, 2}.
Finally, suppose that a ≥ 3, which is equivalent to n ≡ 3 (mod 9), We write f = 3rg with

3 ∤ g. By (7.9) and the multiplicativity of SD(f) (splitting off the 3-powers), we have

C(24n+ 9) = −H(D)SD(g)
(
SD

(
2 · 3r+1

)
− 3SD (2 · 3r) + 2SD

(
3r+1

)
− 6SD (3r)

)
.

We compute

SD

(
3ℓ
)
= σ

(
3ℓ
)
−

(−D
3

)
σ
(
3ℓ−1

)
, SD(2) = σ(2) −

(−D
2

)
= 3− (−1) = 4.

Simplifying gives

−H(D)SD(g)
(
6SD

(
3r+1

)
− 18SD (3r)

)
= −6H(D)SD(g)

(
1−

(−D
3

))
.

Noting that the right-hand side is independent of r, the result follows. �
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