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MOMENTS OF RANDOM MULTIPLICATIVE FUNCTIONS, III: A

SHORT REVIEW

ADAM J HARPER

Abstract. We give a short review of recent progress on determining the order of

magnitude of moments E|∑n≤x f(n)|2q of random multiplicative functions, and of

closely related issues.

We hope this can serve as a concise introduction to some of the ideas involved, for

those who may not have too much background in the area.

1. Introduction

Preliminary remark on notation. We write f(x) = O(g(x)) and f(x) ≪ g(x), both

meaning (as usual in analytic number theory, but perhaps not elsewhere) that there

exists C such that |f(x)| ≤ Cg(x), for all x. Sometimes this notation will be adorned

with a subscript parameter (e.g. Oǫ(·) and ≪δ), meaning that the implied constant C

may depend on that parameter. We write f(x) ≍ g(x) to mean that g(x) ≪ f(x) ≪
g(x), in other words that cg(x) ≤ |f(x)| ≤ Cg(x) for some c, C, for all x.

Let (f(p))p prime be a sequence of independent Steinhaus random variables, i.e. inde-

pendent random variables distributed uniformly on the complex unit circle {|z| = 1}.

We define a Steinhaus random multiplicative function f : N → C, by setting f(n) :=
∏

pa||n f(p)a for all natural numbers n (where pa||n means that pa is the highest power of

the prime p that divides n, so n =
∏

pa||n p
a). Thus f is a random function taking values

in the complex unit circle, that is totally multiplicative, i.e. satisfies f(nm) = f(n)f(m)

for all n,m.

For simplicity, in this survey we shall confine our attention to these Steinhaus random

multiplicative functions, and not discuss other models (e.g. the Rademacher or extended

Rademacher models).

Random multiplicative functions sit at the intersection of number theory, probability,

and analysis. Thus Steinhaus random multiplicative functions provide a heuristic model

for randomly chosen Dirichlet characters χ(n) or “continuous characters” n 7→ nit:
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see e.g. the papers of Granville and Soundararajan [10] and Lamzouri [18]. In some

circumstances, they also serve as tools for proving rigorous results about such number

theoretic objects (see e.g. the author’s paper [14]). From a probabilistic point of view,

the values of a Steinhaus random multiplicative function are a naturally arising sequence

of dependent random variables: notice e.g. that f(6) = f(2)f(3), so the triple of values

f(2), f(3), f(6) are clearly not all independent of one another. Then one wishes to

understand how this dependence influences the behaviour, compared with the classical

probabilistic setting of sequences of independent random variables.

In this survey we shall describe these efforts from the specific perspective of the

(absolute) power moments E|
∑

n≤x f(n)|2q, where q ≥ 0 is real. The only cases that

are really easy to handle are the trivial case q = 0, and the second moment case q = 1.

For we can observe that

Ef(n)f(m) = E





∏

pa||n
f(p)a









∏

pa||m
f(p)−a



 = E

∏

p|mn

f(p)a(n,p)−a(m,p) =
∏

p|mn

Ef(p)a(n,p)−a(m,p),

where a(n, p), a(m, p) are the exponents of p in the unique prime factorisations of n,m,

respectively. Since f(p)a(n,p)−a(m,p) is uniformly distributed on the unit circle (and in

particular has mean zero) except when a(n, p) = a(m, p), it follows that Ef(n)f(m) =

1a(n,p)=a(m,p) ∀ p = 1n=m, where 1 is the indicator function1. Thus

E|
∑

n≤x

f(n)|2 = E

∑

n,m≤x

f(n)f(m) =
∑

n,m≤x

1n=m = ⌊x⌋.

Since the second moment has size ≈ x, the most immediate simple conjecture (e.g.

thinking of the moments of Gaussian random variables, or of sums of independent

random variables) might be that the 2q-th moment should have size ≍q xq. But the

true behaviour is far more subtle and interesting.

Theorem 1.1 (Harper [13], 2020). If f(n) is a Steinhaus random multiplicative func-

tion, then uniformly for all large x and all real 0 ≤ q ≤ 1 (possibly depending on x) we

have

E|
∑

n≤x

f(n)|2q ≍
(

x

1 + (1 − q)
√

log log x

)q

.

Theorem 1.2 (Harper [12], 2019). There exist a small absolute constant c > 0, and a

large absolute constant C > 0, such that the following is true. If f(n) is a Steinhaus

random multiplicative function, then uniformly for all large x and real 1 ≤ q ≤ c log x
log log x

1In other words, the sequence of random variables (f(n))n∈N are orthogonal.
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we have

e−q2 log q−q2 log log(2q)−Cq2 ≤
E|
∑

n≤x f(n)|2q

xq log(q−1)2 x
≤ e−q2 log q−q2 log log(2q)+Cq2 .

Theorem 1.1 implies that E|
∑

n≤x f(n)| ≍
√
x

(log log x)1/4
, which resolved a conjecture

of Helson [17] that the first absolute moment should be o(
√
x). For any positive λ,

Markov’s inequality and Theorem 1.1 also immediately yield that

P(|
∑

n≤x

f(n)| > λ

√
x

(log log x)1/4
) ≤

E|
∑

n≤x f(n)|
λ

√
x

(log log x)1/4

≪ 1

λ
.

So we may say that typically (e.g. with probability ≥ 0.99) the sums
∑

n≤x f(n) are

≪
√
x

(log log x)1/4
= o(

√
x), enjoying better than squareroot cancellation (or subdiffusivity, in

more probabilistic language), as opposed to the squareroot size suggested by the second

moment. This is quite rare and unexpected in number theoretic settings. See [13, 12] for

more precise bounds on the large deviations of
∑

n≤x f(n). Theorem 1.1 and Hölder’s

inequality also directly imply that |
∑

n≤x f(n)| ≫
√
x

(log logx)1/4
with positive probability,

since for any small parameter η > 0 we have
√
x

(log log x)1/4
≪ E|

∑

n≤x

f(n)| ≤ η
√
x

(log log x)1/4
+ E1|

∑
n≤x f(n)|>η

√
x

(log log x)1/4

|
∑

n≤x

f(n)|

≤ η
√
x

(log log x)1/4
+ P(|

∑

n≤x

f(n)| > η

√
x

(log log x)1/4
)1/3(E|

∑

n≤x

f(n)|3/2)2/3

≪ η
√
x

(log log x)1/4
+ P(|

∑

n≤x

f(n)| > η

√
x

(log log x)1/4
)1/3

√
x

(log log x)1/4
.

Provided η is fixed sufficiently small, this forces P(|
∑

n≤x f(n)| > η
√
x

(log log x)1/4
) ≫ 1.

Looking at Theorems 1.1 and 1.2 qualitatively, we see that for fixed q < 1 the

moments reflect the typical size
√
x

(log log x)1/4
of
∑

n≤x f(n), whereas when q = 1 the

second moment (being of order x) does not reflect the typical size, instead (and perhaps

unexpectedly) being dominated by somewhat unusual larger values of
∑

n≤x f(n). Note

that in both theorems it is permissible to choose q in a way that depends on x, so one

can explore the nature of the transition when q = 1 + o(1). As q becomes even larger,

the moments are dominated by increasingly large and rare values of
∑

n≤x f(n), giving

rise to the rapidly growing term log(q−1)2 x in Theorem 1.2. In particular, it is only the

low moments (q < 1) that give access to the typical behaviour of
∑

n≤x f(n).

The cases of Theorem 1.2 where q ∈ N can be successfully attacked by expand-

ing the 2q-th power, using the orthogonality property Ef(n1)...f(nq)f(m1)...f(mq) =

Ef(n1...nq)f(m1...mq) = 1n1...nq=m1...mq , and trying to bound or evaluate the divisor

type sum that remains. See Harper, Nikeghbali and Radziwi l l [15], and Heap and
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Lindqvist [16], as well as unpublished work of Granville and Soundararajan. Aside from

this, no sharp bounds were known in any case of Theorems 1.1 and 1.2 prior to the work

[13, 12] of the author, and it is the approach and ideas from those papers (with a few

later refinements and elaborations) that we shall try to explain in the following sections.

See the introductions to [13, 12] for further references to previously known, non-sharp

moment bounds (lower bounds for the low moments, upper and lower bounds for high

moments).

In the final section, we also provide a small selection of further reading on related

topics.

2. Reducing to random Euler products

The classical number theoretic approach to studying sums of multiplicative func-

tions entails introducing suitable multiplicative generating functions, like the Riemann

zeta function or Dirichlet L-functions. For Theorems 1.1 and 1.2, a natural choice of

generating function is

F (s) :=

∞
∑

n=1,
p|n⇒p≤x

f(n)

ns
=

∏

prime p≤x

(1 − f(p)

ps
)−1,

the random Euler product corresponding to f(n). Since this is a finite product, it

certainly converges whenever ℜ(s) > 0 (so that | f(p)
ps

| < 1). An immediate appeal of

F (s) is that it takes the form of a product of independent factors (1 − f(p)
ps

)−1.

To connect
∑

n≤x f(n) with F (s), the obvious route is to apply Perron’s formula

(multiplicative Fourier inversion), which would yield something like

∑

n≤x

f(n) ≈ 1

2πi

∫ σ+iT

σ−iT

F (s)
xs

s
ds, σ > 0,

for a suitably large parameter T . In principle it should then be possible to perfectly

understand the distribution of
∑

n≤x f(n), and in particular to understand its moments,

by perfectly understanding the (joint) distribution of F (s) for various s, but in practice

difficulties immediately arise. For example, if we want to estimate E|
∑

n≤x f(n)|, the

only really obvious approach is to use the triangle inequality, obtaining that

E|
∑

n≤x

f(n)| . 1

2π

∫ T

−T

E|F (σ + it)| xσ

|σ + it|dt.

Since we expect the left hand side to be around
√
x, the natural choice of abscissa

is σ = 1/2, and we can imagine that T ≍ 1, say (it certainly cannot be smaller).

But it is not hard to calculate that E|F (1/2 + it)| ≍ log1/4 x, so we only obtain an
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upper bound E|
∑

n≤x f(n)| . √
x log1/4 x, which is significantly worse than the trivial

Cauchy–Schwarz bound E|
∑

n≤x f(n)| ≤
√

E|
∑

n≤x f(n)|2 ≤ √
x.

The problem is that to understand the moments directly from Perron’s formula, and

in particular to have any hope of capturing the delicate double logarithmic saving in the

low moments2 in Theorem 1.1, one would need to understand the full value distribution

(both modulus and argument) of all the F (1/2 + it), and the interaction of this with

the phase xit that is destroyed by the triangle inequality. It seems very challenging

to operate at such a level of precision, and so the papers [13, 12] adopt a less direct

approach.

Before connecting with a random Euler product, we first work with
∑

n≤x f(n) “by

hand”. We shall outline the argument in a form roughly suitable for ultimately proving

the upper bound part of Theorem 1.1, and then indicate the changes needed when

working towards lower bounds in Theorem 1.1, and towards Theorem 1.2.

Given any large parameter P , we say a number is P -rough if all of its prime factors are

> P , and P -smooth if all of its prime factors are ≤ P . Then using the multiplicativity

of f , we may write
∑

n≤x

f(n) =
∑

n≤x,
n has a prime factor >P

f(n) +
∑

n≤x,
n is P smooth

f(n)

=
∑

P<m≤x,
m is P rough

f(m)
∑

n≤x/m,
n is P smooth

f(n) +
∑

n≤x,
n is P smooth

f(n). (2.1)

When 0 ≤ q ≤ 1, Hölder’s inequality and the orthogonality property of f imply that

E|∑ n≤x,
n is P smooth

f(n)|2q ≤ (E|∑ n≤x,
n is P smooth

f(n)|2)q = (#{n ≤ x : n is P smooth})q,

and it is not too hard to show that #{n ≤ x : n is P smooth} ≪ xe−(log x)/ logP (and

indeed much more precise estimates are known). So provided we choose P with logP

somewhat smaller than log x (e.g. P = x1/ log log x), the contribution to the moment from
∑

n≤x,
n is P smooth

f(n) will be negligible.

To work with the first sums in (2.1), we use one of the key general techniques in

the study of random multiplicative functions, namely conditioning. If we let EP denote

expectation conditional on the values (f(p))p≤P (i.e. expectation with those values

treated as fixed and the (f(p))p>P remaining random, so the conditional expectation

of any quantity is a function of the values (f(p))p≤P ), then the Tower Property of

2When studying E|
∑

n≤x f(n)|2q with q large enough, one can obtain sharp upper bounds by starting
with Perron’s formula and the triangle inequality, because for sufficiently high moments the main
contribution to the Perron integral comes from just a few large values of F (1/2 + it) (at some random
t), so the triangle inequality doesn’t lose much. See the end of the introduction of Harper [12], and see
Szabó’s paper [22] for an implementation of similar ideas in the context of character sums.
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conditional expectation implies that

E|
∑

P<m≤x,
m is P rough

f(m)
∑

n≤x/m,
n is P smooth

f(n)|2q = EE
P |

∑

P<m≤x,
m is P rough

f(m)
∑

n≤x/m,
n is P smooth

f(n)|2q.

Note that in this case, the Tower Property is simply Fubini’s theorem, breaking up

the multiple “integration” E into separate integrations corresponding to the (f(p))p≤P

(on the outside) and the (f(p))p>P . Then applying Hölder’s inequality to the condi-

tional expectation EP only, and subsequently applying orthogonality of f to evaluate

the conditional second moment that emerges, we see the above is

≤ E

(

E
P |

∑

P<m≤x,
m is P rough

f(m)
∑

n≤x/m,
n is P smooth

f(n)|2
)q

= E

(

∑

P<m≤x,
m is P rough

|
∑

n≤x/m,
n is P smooth

f(n)|2
)q

.

(2.2)

These manipulations have allowed us to efficiently pass from working with
∑

n≤x f(n)

at a single point x, to working with a mean square average of
∑

n≤x/m,
n is P smooth

f(n) over

many points x/m. Some fairly simple sieve theory, coupled with a smoothing argument

where the sum over m is broken into smaller pieces that can be well approximated (on

average) by integrals, shows the above is

≈ E

(

1

logP

∫ x

P

|
∑

n≤x/t,
n is P smooth

f(n)|2dt
)q

.

Here 1
logP

is the approximate density of the P -rough numbers, as revealed by sieve

theory bounds3. It is important in this argument that
∑

n≤x,
n is P smooth

f(n), corresponding

to m = 1, was separated and removed in (2.1), since for this piece one could not smooth

the one-term m “sum” and would not pick up a 1
logP

density saving.

Substituting z = x/t in the integral, we find the above expression is

= xq
E

(

1

logP

∫ x/P

1

|
∑

n≤z,
n is P smooth

f(n)|2dz
z2

)q

.

Now the quantity inside the expectation is simply an integral mean square average of
∑

n≤z,
n is P smooth

f(n), so rather than inefficiently applying Perron’s formula (multiplicative

Fourier inversion) and the triangle inequality to connect with a random Euler product,

we can efficiently apply the multiplicative version of Parseval’s identity (with no phases

3For background on this, an unfamiliar reader may consult Chapter 3 of Montgomery and Vaughan [19],
for example.
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xit to be destroyed). One obtains4 a bound

≤ xq
E

(

1

logP

∫ ∞

1

|
∑

n≤z,
n is P smooth

f(n)|2dz
z2

)q

= xq
E

(

1

2π logP

∫ ∞

−∞

|FP (1/2 + it)|2
|1/2 + it|2 dt

)q

,

where FP (s) :=
∑∞

n=1,
p|n⇒p≤P

f(n)
ns =

∏

p≤P (1 − f(p)
ps

)−1.

As a final simplification, note that because the joint distribution of (f(p)p−it)p prime

is the same for any fixed t ∈ R (namely a sequence of independent Steinhaus random

variables), it follows that for any given set H ⊆ R, the joint distribution of (FP (1/2 +

ih + it))h∈H is the same for all t ∈ R. We call this property translation invariance in

law, and it implies that E

(

∫ n+1/2

n−1/2
|FP (1/2+it)|2

|1/2+it|2 dt
)q

is

≪ 1

1 + |n|2qE
(

∫ n+1/2

n−1/2

|FP (1/2 + it)|2dt
)q

=
1

1 + |n|2qE
(

∫ 1/2

−1/2

|FP (1/2 + it)|2dt
)q

for all n ∈ Z. Thus provided 2/3 ≤ q ≤ 1, say, (so that
∑

n∈Z
1

1+|n|2q converges), we

have the simpler bound

xq
E

(

1

2π logP

∫ ∞

−∞

|FP (1/2 + it)|2
|1/2 + it|2 dt

)q

≪ xq
E

(

1

logP

∫ 1/2

−1/2

|FP (1/2 + it)|2dt
)q

.

Thanks to Hölder’s inequality, note that if we can prove Theorem 1.1 on this range

2/3 ≤ q ≤ 1 then we can immediately deduce it on the full range 0 ≤ q ≤ 1 as well.

We end this section with a summary of the modifications required in these arguments

when working towards lower bounds in Theorem 1.1, and towards Theorem 1.2.

• For lower bounds on the low moments range 0 ≤ q ≤ 1, the only substantial

change comes at the beginning, where (2.2) currently goes in the wrong direction

(giving an upper rather than lower bound). Instead, if we write P (n) for the

largest prime factor of n, then a fairly simple argument (essentially just the

triangle inequality) shows that

E|
∑

n≤x

f(n)|2q ≫ E|
∑

n≤x,
P (n)>x3/4

f(n)|2q = E|
∑

x3/4<p≤x

f(p)
∑

n≤x/p

f(n)|2q.

4In the original papers [13, 12], this argument was run in a bit more complicated way, with (2.1)
replaced by a subdivision of

∑

n≤x f(n) into multiple subsums according to various possible ranges
for the largest prime factor of n. Whilst a careful subdivision does seem to be necessary in the high
moments case [12], it is not in the low moments case, and the cleaner argument we outlined here (with
just a single parameter P ) can be implemented rigorously. In a character sum context, this is essentially
what is done by Harper [14]. For random multiplicative functions, it is done in the recent preprint of
Gorodetsky and Wong [9].
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Using the Tower Property of conditional expectation, the right hand side here

is = EEx3/4 |∑x3/4<p≤x f(p)
∑

n≤x/p f(n)|2q. And when we condition on the

values of f on all primes ≤ x3/4, the innermost sums
∑

n≤x/p f(n) become

fixed, so
∑

x3/4<p≤x f(p)
∑

n≤x/p f(n) is (under this conditioning) simply a sum

of independent random variables (f(p))x3/4<p≤x multiplied by some coefficients.

The moments of such classical sums are very well understood, for example

Khintchine’s inequality implies that

E
x3/4 |

∑

x3/4<p≤x

f(p)
∑

n≤x/p

f(n)|2q ≫





∑

x3/4<p≤x

|
∑

n≤x/p

f(n)|2




q

.

Thus E|
∑

n≤x f(n)|2q ≫ E

(

∑

x3/4<p≤x |
∑

n≤x/p f(n)|2
)q

, which provides a suit-

able lower bound analogue5 of (2.2).

It is perhaps worth noting that Khintchine’s inequality is not in fact a very

deep statement here. If ap are any coefficients and 0 ≤ q ≤ 1, then by Hölder’s

inequality we always have

E|
∑

x3/4<p≤x

f(p)ap|2q ≥
(E|
∑

x3/4<p≤x f(p)ap|2)2−q

(E|
∑

x3/4<p≤x f(p)ap|4)1−q
=

(
∑

x3/4<p≤x |ap|2)2−q

(E|
∑

x3/4<p≤x f(p)ap|4)1−q
.

Simply expanding the fourth power, we see E|
∑

x3/4<p≤x f(p)ap|4 in the de-

nominator is =
∑

x3/4<p1,...,p4≤x ap1...ap41p1p2=p3p4 ≪ ∑

x3/4<p1,p2≤x |ap1|2|ap2|2 =

(
∑

x3/4<p≤x |ap|2)2, giving the lower bound E|∑x3/4<p≤x f(p)ap|2q ≫ (
∑

x3/4<p≤x |ap|2)q.
• When q ≥ 1, Hölder’s inequality no longer allows one to simply upper bound

general quantities of the shape EX2q by (EX2)q. As a substitute, if we wish to

upper bound E|∑n≤N anf(n)|2q for some coefficients an ∈ C (which in practice

will be sums involving values of f(m) on which we have conditioned), we can

use a simple hypercontractive inequality. Thus for any real q ≥ 1, we have

E|
∑

n≤N

anf(n)|2q ≤
(

∑

n≤N

|an|2d⌈q⌉(n)

)q

,

where dk(·) denotes the k-fold divisor function (i.e. the number of k-tuples of

natural numbers whose product is ·), and ⌈q⌉ denotes the ceiling of q. Again,

this inequality is not very deep, it is easily proved using Hölder’s inequality to

move to the case of integer q, and then expanding the 2q-th power.

Because of the divisor function terms d⌈q⌉(n) in the hypercontractive inequal-

ity, one needs to be careful in constructing the sums to which it is applied, to

5One could replace x3/4 by any value between
√
x and x. The original argument [13] used

√
x, but

this was changed to x3/4 in the later high moments paper [12] because that makes the next step of
smoothing the outer sum to an integral rather cleaner. Although this effect is invisible at the level of
detail in this survey, it may be of interest to a reader trying to master these arguments.
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avoid incurring losses. For example, applying this directly to E|
∑

n≤x f(n)|2q
would yield an upper bound

(
∑

n≤x d⌈q⌉(n)
)q ≍q xq logq(⌈q⌉−1) x, missing the

truth in Theorem 1.2 by a factor ≍q logO(q) x. Likewise, applying it (after

conditioning on (f(p))p≤P ) to the first sum in (2.1) would produce a contribu-

tion E

(

∑

P<m≤x,
m is P rough

d⌈q⌉(m)|
∑

n≤x/m,
n is P smooth

f(n)|2
)q

. Roughly speaking, with-

out the coefficients d⌈q⌉(m) one expects the sum over P -rough numbers to

give rise to a 1/ logP factor inside the bracket (as in our earlier description

of the low moments case), but with these coefficients one expects a factor like
((log x)/ logP )O(q)

logP
. Since we must certainly have (log x)/ logP → ∞ in order for

the term
∑

n≤x,
n is P smooth

f(n) in (2.1) to contribute negligibly, (and it turns out

that when q is large we actually need P rather smaller than x1/q), the extra

((log x)/ logP )O(q) would be fatal to obtaining sharp bounds.

To resolve this problem, one can replace (2.1) by a more elaborate decompo-

sition, e.g. writing

∑

n≤x

f(n) =

K
∑

k=1

∑

n≤x,
Pk<P (n)≤Pk−1

f(n) +
∑

n≤x,
n is PK smooth

f(n)

=

K
∑

k=1

∑

Pk<m≤x,
p|m ⇒ Pk<p≤Pk−1

f(m)
∑

n≤x/m,
n is Pk smooth

f(n) +
∑

n≤x,
n is PK smooth

f(n),

for a suitable sequence x = P0 > P1 > ... > PK . Recall the discussion in

the footnote 4. If one takes Pk = xe−k
, say, then when applying the hypercon-

tractive inequality to a term
∑

Pk<m≤x,
p|m ⇒ Pk<p≤Pk−1

f(m)
∑

n≤x/m,
n is Pk smooth

f(n) one only

incurs a loss of the shape ((logPk−1)/ logPk)O(q) = eO(q), which is acceptable

for Theorem 1.2.

With these modifications, when seeking moment upper bounds with q ≥ 1 one

can more or less follow the strategy from the low moments case, and end up

needing to bound expressions like xqE

(

1
logPk

∫ x/Pk

1
|∑ n≤z,

n is Pk smooth
f(n)|2 dz

z2

)q

.

One could immediately extend the integral to ∞ and apply Parseval’s identity,

as in the low moments case. But this would be inefficient for large q, because it

would turn out that most of the contribution to the expectation came from the

extraneous z > x/Pk. To mitigate this effect, one can use Rankin’s trick, noting

first that
∫ x/Pk

1
|
∑

n≤z,
Pk smooth

f(n)|2 dz
z2

≤ ( x
Pk

)2q/ log x
∫ x/Pk

1
|
∑

n≤z,
Pk smooth

f(n)|2 dz
z2+2q/ log x ≤

e2q
∫ x/Pk

1
|∑ n≤z,

Pk smooth
f(n)|2 dz

z2+2q/ log x . The e2q here contributes an acceptable
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factor eO(q2) in Theorem 1.2, and the shift by 2q/ logx helps to dampen the

contribution from large z if we now extend to an infinite integral.

In fact, Parseval’s identity implies that

E

(

1

logPk

∫ ∞

1

|
∑

n≤z,
n is Pk smooth

f(n)|2 dz

z2+2q/ log x

)q

= E

(

1

2π logPk

∫ ∞

−∞

|FPk
(1/2 + q

log x
+ it)|2

|1/2 + q
log x

+ it|2 dt

)q

,

so to prove (the upper bound part of) Theorem 1.2 it will suffice to bound

E

(

1
logP

∫ 1/2

−1/2
|FP (1/2 + q

logx
+ it)|2dt

)q

, on a suitable range of P (= Pk).

Note that the Rankin shift by 2q/ logx manifested itself in the Euler product

being evaluated at 1/2+ q
log x

+it rather than 1/2+it. As we will discuss further

in section 4, this shift roughly means that the contribution to the product from

any primes > e(log x)/q = x1/q becomes (stochastically) bounded. This is very

reasonable, since the q-th power of a prime larger than x1/q would exceed x, so

we shouldn’t expect it to contribute in a sharp bound for E|∑n≤x f(n)|2q.
• For lower bounds when q ≥ 1, the argument from the low moments case (0 ≤
q ≤ 1) extends directly, because we still have Ex3/4 |

∑

x3/4<p≤x f(p)
∑

n≤x/p f(n)|2q ≫
(

∑

x3/4<p≤x |
∑

n≤x/p f(n)|2
)q

. In fact this follows simply from Hölder’s inequal-

ity when q ≥ 1, with no need for Khintchine’s inequality. After the smoothing

steps, one needs to introduce a similar Rankin shift as in the upper bound ar-

gument to discard the surplus from extending the z integral to ∞, so again a

quantity like E

(

1
logP

∫ 1/2

−1/2
|FP (1/2 + q

log x
+ it)|2dt

)q

emerges (with P = x3/4,

say).

3. Low moments via barrier events

In this section, we shall discuss some of the further ideas involved in proving Theorem

1.1, beginning from the position we arrived at in section 2. It would essentially suffice

to show that uniformly for all large P and all 2/3 ≤ q ≤ 1, we have

E

(

∫ 1/2

−1/2

|FP (1/2 + it)|2dt
)q

≍
(

logP

1 + (1 − q)
√

log logP

)q

. (3.1)

Recall that the relevant values of P were x1/ log log x (say) for the upper bound, and x3/4

(say) for the lower bound, both of which satisfy log logP ≍ log log x.

It turns out that the left hand side of (3.1) is closely connected to a probabilistic

object called (critical) multiplicative chaos. This is a fascinating and very active subject

(along with the related topic of log-correlated random processes), motivating lots of our

work, and is discussed in some detail in the introduction of [13] along with further

references. However, ultimately one can prove (3.1) in a fairly “down to earth” way,
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and this is how we shall try to present things here. In particular, we wish to motivate and

explain the crucial role of so-called barrier events. For a short proof of the upper bound

in (3.1) (for fixed q), but depending on rather a lot from the theory of multiplicative

chaos, see Gorodetsky and Wong [9].

It seems most instructive to begin with the lower bound problem. A general strategy

for lower bounding a quantity EI(f)q, where I(f) is non-negative and q ≤ 1, is to obtain

a lower bound (or asymptotic) for EI(f) and an upper bound for some higher moment,

say for EI(f)2. Then Hölder’s inequality implies that

EI(f) = EI(f)
q

2−q I(f)
2(1−q)
2−q ≤ (EI(f)q)

1
2−q (EI(f)2)

1−q
2−q , and so EI(f)q ≥ (EI(f))2−q

(EI(f)2)1−q
.

(The reader may compare with our discussion of Khintchine’s inequality, towards the

end of section 2.) Qualitatively, this simply reflects the fact that if the moments don’t

grow too rapidly as the power increases, then a significant portion of their size must

come from fairly probable events (as opposed to rare, extreme events), and a good lower

bound for low moments follows. For example, if we had EI(f) ≫ C and EI(f)2 ≪ C2

(the strongest possible upper bound, in view of the Cauchy–Schwarz inequality), we

would deduce a best possible lower bound EI(f)q ≫ Cq.

If we try to apply this directly with I(f) =
∫ 1/2

−1/2
|FP (1/2+it)|2dt, then the quantities

we need to compute are

EI(f) =

∫ 1/2

−1/2

E|FP (1/2+it)|2dt, and EI(f)2 =

∫ 1/2

−1/2

∫ 1/2

−1/2

E|FP (1/2+it)|2|FP (1/2+iu)|2dtdu.

Thanks to translation invariance in law, we can simplify these expressions by observing

that E|FP (1/2+ it)|2 = E|FP (1/2)|2 for all t ∈ R, and E|FP (1/2+ it)|2|FP (1/2+ iu)|2 =

E|FP (1/2)|2|FP (1/2 + i(u − t))|2 for all t, u ∈ R. Since FP (s) is an Euler product of

independent factors, these expectations are not hard to calculate, and one finds that

E|FP (1/2)|2 ≍ exp{
∑

p≤P

1

p
} ≍ logP, (3.2)

E|FP (1/2)|2|FP (1/2+ih)|2 ≍ exp{
∑

p≤P

2 + 2 cos(h log p)

p
} ≍ log2 P (min{logP,

1

|h|})2, |h| ≤ 1.

Unfortunately, these estimates imply that EI(f) ≍ logP but EI(f)2 ≍ log3 P (rather

than log2 P ), giving a poor lower bound EI(f)q ≫ log2−q P

log3(1−q) P
= log2q−1 P . Given the

shape of Theorem 1.1, this failure should be unsurprising, since the bound we are

actually seeking is not logq P (as directly suggested by EI(f)) but
(

logP
1+(1−q)

√
log logP

)q

.

To improve the situation, we should think about possible inefficiencies in the above

argument. The basic problem is that EI(f)2 is much larger than we might hope, because
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E|FP (1/2)|2|FP (1/2 + ih)|2 is too large when |h| is small. This cannot be changed with

the given obvious choice of I(f), but since we ultimately just want a lower bound for

E

(

∫ 1/2

−1/2
|FP (1/2 + it)|2dt

)q

, we are free to replace I(f) from the beginning by any lower

bound for
∫ 1/2

−1/2
|FP (1/2 + it)|2dt.

A sensible choice of minorant for
∫ 1/2

−1/2
|FP (1/2 + it)|2dt is not obvious, but we can

get some idea about this by revisiting our estimate for E|FP (1/2)|2|FP (1/2 + ih)|2. The

problematic factor (min{logP, 1
|h|})2 in that estimate arises from exp{

∑

p≤P
2 cos(h log p)

p
}.

The size may be explained by noting that when p ≤ e1/|h|, we have cos(h log p) ≈ 1,

whereas on larger p we get oscillation and cancellation amongst the terms 2 cos(h log p)
p

.

Thus exp{∑p≤P
2 cos(h log p)

p
} ≈ exp{∑p≤min{P,e1/|h|}

2
p
} ≍ (min{logP, 1

|h|})2. This makes

visible that depending on the size of h, different subproducts of FP (1/2), FP (1/2 +

ih) are either highly correlated (producing blow-up) or relatively uncorrelated, namely

the subproducts Fmin{P,e1/|h|}(1/2), Fmin{P,e1/|h|}(1/2 + ih) up to min{P, e1/|h|} are highly

correlated. We then arrive at a key idea in the area, that rather than working with
∫ 1/2

−1/2
|FP (1/2 + it)|2dt one should try to work with

∫ 1/2

−1/2
1B(t)|FP (1/2 + it)|2dt, where

B(t) is some barrier event that places restrictions on the sizes of various subproducts of

FP (1/2 + it).

To advance this idea, we must determine a sensible choice of B(t). One can try to

get a feel for this by thinking about what distributional behaviour of the random Euler

products causes E|FP (1/2)|2 to have size ≍ logP , and causes E|FP (1/2)|2|FP (1/2+ih)|2
to have size ≍ log2 P (min{logP, 1

|h|})2. Beginning with the former, we have

|FP (1/2)|2 = exp{2 log |FP (1/2)|} = exp{2ℜ logFP (1/2)} = exp{−2
∑

p≤P

ℜ log(1−f(p)

p1/2
)}.

The random summands ℜ log(1 − f(p)

p1/2
) here are independent (because the f(p) are in-

dependent), and (keeping in mind the Taylor expansion log(1 − f(p)

p1/2
) = −

∑∞
k=1

f(p)k

kpk/2
)

it is easy to calculate that they have mean zero and variance E(ℜf(p)

p1/2
)2 + O( 1

p3/2
) =

1
2p

+ O( 1
p3/2

). So, in view of the central limit theorem for sums of independent ran-

dom variables, we may expect |FP (1/2)|2 to have similar distributional behaviour as

exp{2GP}, where GP is a Gaussian random variable with mean zero and variance
∑

p≤P ( 1
2p

+ O( 1
p3/2

)) ∼ (1/2) log logP . Assuming for simplicity that the variance is

exactly (1/2) log logP , an explicit calculation with the Gaussian probability density

function shows that

E exp{2GP} =
1√

π log logP

∫ ∞

−∞
e2ze−z2/ log logPdz =

elog logP√
π log logP

∫ ∞

−∞
e−(z−log logP )2/ log logPdz

=
elog logP√

2π

∫ ∞

−∞
e−w2/2dw = logP.



MOMENTS OF RANDOM MULTIPLICATIVE FUNCTIONS REVIEW 13

This matches with (3.2), but more importantly (looking at the values of z that make

the major contribution to the integrals) it suggests this size is produced by values of GP

or log |FP (1/2)| that are ≈ log logP (in fact in an interval of size ≍
√

log logP around

log logP ).

Proceeding similarly with E|FP (1/2)|2|FP (1/2+ih)|2, we already noted that the blow-

up there is created by the highly correlated subproducts Fmin{P,e1/|h|}(1/2), Fmin{P,e1/|h|}(1/2+

ih), so what we really need to analyse is E|Fmin{P,e1/|h|}(1/2)|2|Fmin{P,e1/|h|}(1/2+ ih)|2 ≈
E|Fmin{P,e1/|h|}(1/2)|4. If we first look specifically at E|FP (1/2)|4 (since this is easiest to

write!), we may expect this to behave like

E exp{4GP} =
1√

π log logP

∫ ∞

−∞
e4ze−z2/ log logPdz =

e4 log logP√
π log logP

∫ ∞

−∞
e−(z−2 log logP )2/ log logPdz

=
e4 log logP√

2π

∫ ∞

−∞
e−w2/2dw = log4 P.

Again this agrees with our earlier observation that E|FP (1/2)|4 ≍ log4 P , and we in-

fer this size is produced by values of log |FP (1/2)| that are ≈ 2 log logP . In partic-

ular, the size of log |FP (1/2)| that produces the blow-up is significantly larger than

the size that substantially contributes to E|FP (1/2)|2. More generally, the size of

log |Fmin{P,e1/|h|}(1/2)| that substantially contributes to the blow-up term (min{logP, 1
|h|})2

in E|FP (1/2)|2|FP (1/2 + ih)|2 will be ≈ 2 log(min{logP, 1
|h|}), much larger than the size

≈ log(min{logP, 1
|h|}) that substantially contributes to E|Fmin{P,e1/|h|}(1/2)|2.

Motivated by all this, it seems reasonable to try working with I(f) :=
∫ 1/2

−1/2
1B(t)|FP (1/2+

it)|2dt, where B(t) is the event that log |Fy(1/2+ it)| ≤ log log y (say) for all 2 ≤ y ≤ P .

We hope that this barrier will not reduce the size of EI(f) too much compared with

the logP we had before, because such a condition still permits the sizes of subproducts

that substantially contribute to E|Fy(1/2 + it)|2; but that it will greatly reduce the size

of EI(f)2, by forbidding the larger sizes of subproducts that would inflate this.

It turns out that, roughly speaking, such a strategy succeeds6, and we end this

discussion with a few details of how the argument may actually be implemented. But

first, we wish to flag up the ultimate source of the factor
√

log logP in (3.1) (and thus

6It seems worth emphasising that the heuristics and motivation given up to this point certainly do
not guarantee success, even assuming that any technical issues arising can be resolved. If we have the
statements of Theorem 1.1 and (3.1) in advance, we can be more confident, because we know that
(a) the exponent in the moments should grow linearly with q < 1, suggesting the general strategy of
comparing EI(f) and EI(f)2 might be appropriate and efficient; and (b) the size in (3.1) should not
differ too much from the first guess logq P , so a choice of barrier B(t) that doesn’t alter EI(f) much
should be our target. If we were considering the problem (or a related one) completely from scratch,
more careful thought about the distribution of FP (1/2 + it), and especially the interactions between
the products for different t, might be needed.
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the factor
√

log log x in Theorem 1.1), which seems to be far the most interesting and a

priori unexpected feature of the result.

The key point is that although imposing a restriction like log |Fy(1/2+it)| ≤ log log y

will not much alter the size of E|Fy(1/2 + it)|2 (or of the full product E|FP (1/2 +

it)|2) for any single y, when one imposes this restriction simultaneously for all (or

many) 2 ≤ y ≤ P then it does reduce the expected size a bit. Indeed, setting

t = 0 to simplify the writing, the values (log |Fy(1/2)|)2≤y≤P = (−
∑

p≤y ℜ log(1 −
f(p)

p1/2
))2≤y≤P behave approximately like a Gaussian random walk in y, where the effec-

tive number of steps is the variance of the sum up to P , namely ≍ log logP . Then

E|FP (1/2)|21log |Fy(1/2)|≤log log y ∀ 2≤y≤P is

≍ logP
E|FP (1/2)|21log |Fy(1/2)|≤log log y ∀ 2≤y≤P

E|FP (1/2)|2 = logP
Ee2 log |FP (1/2)|1log |Fy(1/2)|≤log log y ∀ 2≤y≤P

Ee2 log |FP (1/2)| .

The ratio is an exponentially tilted probability, i.e. the expectation of the event that

log |Fy(1/2)| ≤ log log y ∀ 2 ≤ y ≤ P under the modified probability measure where

everything is weighted by the random exponential factor e2 log |FP (1/2)|. If everything

were exactly Gaussian, the very useful Girsanov’s theorem (which really just involves

completing the square in a computation with the Gaussian density) would imply that the

tilted probability equals the probability that the same Gaussian random walk satisfies

a certain modified condition. That condition would be roughly that the random walk

remains below 0 (rather than log log y) for all 2 ≤ y ≤ P . It turns out that the

logarithms of our Euler products are sufficiently close to Gaussian that all this can be

carried through for them as well. Finally, the classical probabilistic Ballot Theorem

implies this probability is ≍ 1√
log logP

, with log logP corresponding to the number of

“steps” in the walk.

To actually prove the lower bound in (3.1), it more or less suffices to follow the

strategy just outlined, with B(t) being the event that log |Fy(1/2 + it)| ≤ log log y +

min{
√

log logP , 1
1−q

} ∀ 2 ≤ y ≤ P . A Girsanov type calculation and the Ballot Theo-

rem ultimately imply (note the extra term min{
√

log logP, 1
1−q

} in our barrier) that

EI(f) =

∫ 1/2

−1/2

E1B(t)|FP (1/2+it)|2dt ≍ logP
min{

√
log logP, 1

1−q
}

√
log logP

≍ logP

1 + (1 − q)
√

log logP
,

and we have (roughly speaking, see below)

EI(f)2 =

∫ 1/2

−1/2

∫ 1/2

−1/2

E1B(t)|FP (1/2 + it)|21B(u)|FP (1/2 + iu)|2dtdu

≤
∫ 1

−1

E1B(0)|FP (1/2)|21B(h)|FP (1/2 + ih)|2dh ≪ e2min{
√
log logP , 1

1−q
}
(

logP

1 + (1 − q)
√

log logP

)2

.
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Combining these bounds using Hölder’s inequality, in the manner described earlier, gives

E

(

∫ 1/2

−1/2

|FP (1/2 + it)|2dt
)q

≥ EI(f)q ≥ (EI(f))2−q

(EI(f)2)1−q
≫
(

logP

1 + (1 − q)
√

log logP

)q

.

Notice that the undesirable factor e2min{
√
log logP, 1

1−q
}, which is produced by the term

min{
√

log logP , 1
1−q

} in our barrier, is killed off by the exponent 1− q to which we raise

EI(f)2 (whereas a larger factor would not be). Most of the calculation required in the

proof comes in showing that E1B(t)|FP (1/2 + it)|2 and E1B(0)|FP (1/2)|21B(h)|FP (1/2 +

ih)|2 behave close to the way they would in the Gaussian case, which boils down to

characteristic function calculations and careful use of the (two-dimensional) Berry–

Esseen inequality.

There is one further technical but interesting point that deserves attention. When

bounding E1B(0)|FP (1/2)|21B(h)|FP (1/2 + ih)|2, one uses the barrier condition B(h) to

control the subproduct Fmin{P,e1/|h|}(1/2+ ih), which as currently formulated would give

an upper bound

≤ e2min{
√
log logP, 1

1−q
}(min{logP, 1/|h|})2E1B(0)|FP (1/2)|21B(h)|

∏

min{P,e1/|h|}<p≤P

(1− f(p)

p1/2+ih
)−1|2.

The products FP (1/2),
∏

min{P,e1/|h|}<p≤P (1− f(p)

p1/2+ih )−1 are then sufficiently uncorrelated

that, roughly speaking7, the expectation on the previous line factors as

≈ (E1B(0)|FP (1/2)|2) · (E1B(h)|
∏

min{P,e1/|h|}<p≤P

(1 − f(p)

p1/2+ih
)−1|2)

≈
(

logP

1 + (1 − q)
√

log logP

)

·
(

max{|h| logP, 1}
1 + (1 − q)

√
log logP

)

.

The term max{|h| logP, 1} here is E
∏

min{P,e1/|h|}<p≤P |1 − f(p)

p1/2+ih |−2. Multiplying by

e2min{
√
log logP, 1

1−q
}(min{logP, 1/|h|})2 and integrating over h would then deliver a bound

EI(f)2 . e2min{
√
log logP, 1

1−q
}
(

logP

1 + (1 − q)
√

log logP

)2 ∫ 1

−1

min{logP, 1/|h|}dh.

Unfortunately, the integral over h would still contribute an unwanted factor ≍ log logP

here, and so we would not quite obtain a satisfactory bound for EI(f)2.

To fix this, we actually make a slightly different choice of barrier, taking B(t) to be the

event that log |Fy(1/2 + it)| ≤ log log y − 2 log log log y + min{
√

log logP , 1
1−q

} ∀ 100 ≤
y ≤ P (say). Tracing everything through, the extra subtracted term −2 log log log y

means that we end up with
∫ 1

−1
min{ logP

(log logP )4
, 1
|h| log4(2/|h|)}dh (which is bounded) rather

7In fact, the parts of the barrier conditions B(0), B(h) dealing with the subproducts up to
Fmin{P,e1/|h|}(1/2), Fmin{P,e1/|h|}(1/2 + ih) remain highly correlated, but this can be understood and

handled without too much difficulty (especially since we only need upper bounds at this point).
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than
∫ 1

−1
min{logP, 1/|h|}dh. And happily this modified barrier does not change the

order of magnitude of EI(f), in fact there is lots of useful flexibility in this regard, we

could adjust the barrier up or down by roughly
√

log log y (the typical fluctuations of

the random walk up to y) without altering EI(f).

To prove the upper bound in (3.1), one can use barrier events of a similar shape as

in the lower bound discussion. We may assume that q ≤ 1 − 1√
log logP

, otherwise the

desired upper bound is trivial. For a large parameter C, let BC(t) be the event that

log |Fy(1/2 + it)| ≤ log log y + 2 log log log y + C
1−q

∀ 100 ≤ y ≤ P . Note the added

term 2 log log log y, as opposed to the subtracted −2 log log log y in the lower bound

argument. Also let GC denote the “good” event that BC(t) holds for all |t| ≤ 1/2. Then

clearly E

(

∫ 1/2

−1/2
|FP (1/2 + it)|2dt

)q

is

= E1GC holds

(

∫ 1/2

−1/2

|FP (1/2 + it)|2dt
)q

+ E1GC fails

(

∫ 1/2

−1/2

|FP (1/2 + it)|2dt
)q

≤ E

(

∫ 1/2

−1/2

1BC(t)|FP (1/2 + it)|2dt
)q

+ E1GC fails

(

∫ 1/2

−1/2

|FP (1/2 + it)|2dt
)q

.

By Hölder’s inequality, the first integral is ≤
(

∫ 1/2

−1/2
E1BC(t)|FP (1/2 + it)|2dt

)q

, and this

is ≪
(

C logP
(1−q)

√
log logP

)q

≤ C
(

logP
(1−q)

√
log logP

)q

by a Girsanov–Ballot Theorem calculation.

Notice that, as discussed earlier, the added 2 log log log y in the definition of BC(t) makes

no visible difference to the Girsanov–Ballot Theorem bound.

Unlike with lower bounds, we of course cannot just discard the second integral

E1GC fails

(

∫ 1/2

−1/2
|FP (1/2 + it)|2dt

)q

. We explain how to handle this, in the style of a

nice recent paper8 of Soundararajan and Zaman [21]. If C ′ > C is a further parameter,

the integral is

= E1GC fails but GC′ holds

(

∫ 1/2

−1/2

|FP (1/2 + it)|2dt
)q

+ E1GC′ fails

(

∫ 1/2

−1/2

|FP (1/2 + it)|2dt
)q

≤ E1GC fails

(

∫ 1/2

−1/2

1BC′ (t)|FP (1/2 + it)|2dt
)q

+ E1GC′ fails

(

∫ 1/2

−1/2

|FP (1/2 + it)|2dt
)q

.

By Hölder’s inequality, but now treating the factor 1GC fails non-trivially, the first term

here is ≤ P(GC fails)1−q·
(

∫ 1/2

−1/2
E1BC′ (t)|FP (1/2 + it)|2dt

)q

≪ P(GC fails)1−q·C ′
(

logP
(1−q)

√
log logP

)q

.

8The original argument of Harper [13] uses a sequence of applications of Hölder’s inequality to replace
the exponent q by q′, q′′, ..., halving the distance to 1 at each step. This amounts to considering barriers
with a sequence of different C values (replacing C

1−q by C
1−q′ ,

C
1−q′′ , ... is equivalent to replacing it by

C′

1−q ,
C′′

1−q , ..., for suitable C′, C′′, ...), as Soundararajan and Zaman [21] do, but their direct presentation

seems the simpler and clearer approach.
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To estimate P(GC fails), note that for any given 100 ≤ y ≤ P and |t| ≤ 1/2, we have

P(log |Fy(1/2 + it)| > log log y + 2 log log log y +
C

1 − q
)

≤ E|Fy(1/2 + it)|2

e2(log log y+2 log log log y+ C
1−q

)
≪ e−

2C
1−q

1

log y(log log y)4
.

Since the most rapidly oscillating terms p−it = e−it log p involved in log |Fy(1/2 + it)|
rotate with speed log p ≤ log y, it turns out that one can control Fy(1/2 + it) for all

|t| ≤ 1/2 by controlling it at a net of points t with slightly tighter spacing than 1/ log y.

For example, a net of ≪ log y(log log y) points is sufficient. Furthermore, it suffices to

handle values of y of the shape ee
j
, say, so that log log y increments by 1. Thus, roughly

speaking, the union bound implies that

P(GC fails) .
∑

y=ee
j≤P

log y(log log y)e−
2C
1−q

1

log y(log log y)4
= e−

2C
1−q

∑

y=ee
j≤P

1

j3
≪ e−

2C
1−q .

Notice how the added term 2 log log log y in the barrier ultimately led to this sum over

y being uniformly bounded. We now see that E1GC fails

(

∫ 1/2

−1/2
|FP (1/2 + it)|2dt

)q

is

. e−2CC ′
(

logP

(1 − q)
√

log logP

)q

+ E1GC′ fails

(

∫ 1/2

−1/2

|FP (1/2 + it)|2dt
)q

.

Applying this argument repeatedly, with a sequence C < C ′ < C ′′ < ... such that

the sum of the terms C, e−2CC ′, e−2C′
C ′′, ... is uniformly bounded (e.g. the sequence

of natural numbers would suffice), finishes the proof. Actually one can stop the argu-

ment as soon as the C value exceeds (1 − q)
√

log logP , since then the trivial bound

E

(

∫ 1/2

−1/2
|FP (1/2 + it)|2dt

)q

≪ logq P is as good as the bound one hopes for with the

barrier BC(t) present.

As a final technical remark, we note that there are different possibilities for making

the above sketch argument (i.e. the estimation of P(GC fails)) fully rigorous. The

original paper of Harper [13] used a modified definition of GC , where from the start the

barrier conditions were only required to hold at a net of points t. Then the calculation

of P(GC fails) can be performed exactly as described, but one works a little more in the

Girsanov–Ballot Theorem calculations to see that only having the barrier at a point near

t still suffices to produce the Ballot Theorem saving. Soundararajan and Zaman [21]

do not modify GC , but then they must incorporate a further discretisation (Sobolev–

Gallagher type) argument into their estimation of P(GC fails).
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4. High moments via Euler product correlations

To deduce Theorem 1.2, beginning from the position reached in section 2, it would

essentially suffice to prove an estimate like

E

(

∫ 1/2

−1/2

|FP (1/2 +
q

log x
+ it)|2dt

)q

= eO(q2)

(

min{logP, (log x)/q}
log 2q

)q2−q+1

, (4.1)

uniformly on a suitable range of P ≤ x. The required range of P depends on x and on

q (which we recall may be a growing function of x in Theorem 1.2), so for simplicity we

give no details about it here, except in a couple of places where it becomes relevant to

qualitative features of the overall bounds. Notice the factor 1
q log 2q

visible in the bracket

on the right (when P ≥ x1/q), which is responsible for the term e−q2 log q−q2 log log(2q) in

the theorem.

The shift q/ log x in the Euler product in (4.1) means that the contribution from

any primes > x1/q becomes stochastically bounded, in other words |FP (1/2 + q
log x

+ it)|
usually behaves in roughly the same way as |Fmin{P,x1/q}(1/2 + it)|. For example, using

the independence of the f(p), it is again fairly easy to calculate that

E|
∏

min{P,x1/q}<p≤P

(1− f(p)

p1/2+q/ log x+it
)−1|2q = exp{

∑

min{P,x1/q}<p≤P

q2

p1+2q/ log x
+O(

q2

log(2q)
)}.

(Strictly speaking, this is true provided that min{P, x1/q} ≥ 100q2, say.) If P > x1/q

then we have
∑

x1/q<p≤P
q2

p1+2q/ log x ≤ q3

log x

∑

x1/q<p≤P
log p

p1+2q/ log x ≪ q3

logx

∫∞
x1/q

1
w1+2q/ log xdw,

using e.g. the classical Chebychev estimates from prime number theory. Performing the

integral, we see this is all ≪ q2, which would contribute an acceptable eO(q2) to (4.1).

So (replacing P by min{P, x1/q} in the Euler product, and then relabelling this as P for

simplicity) we may ignore the shift by q/ log x, and work as though min{logP, (log x)/q}
is replaced by logP in our target bound on the right hand side of (4.1), provided we can

do everything with sufficient uniformity in P . Notice that it is an effect of the “large

primes” that causes min{logP, (log x)/q} to arise here, and ultimately contributes 1
q

to

the crucial factor 1
q log 2q

that we observed above.

A key observation is that as q increases, the values of |FP (1/2+ it)| that significantly

contribute to E(
∫ 1/2

−1/2
|FP (1/2 + it)|2dt)q are more extreme, larger, less probable values.

This is of course a very general point, that we already made in the Introduction when dis-

cussing our overall bounds for E|∑n≤x f(n)|2q, and many times throughout the discus-

sion in section 3. More specifically, in our barrier constructions we noted that the values

of |FP (1/2 + it)| that make the major contribution to E
∫ 1/2

−1/2
|FP (1/2 + it)|2dt ≍ logP

are those where log |FP (1/2 + it)| ≈ log logP . Such values are just rare enough that
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they are unlikely to actually occur for |t| ≤ 1/2, hence the small reduction in the ex-

pected value when one inserts the barriers B(t) and BC(t) (which are obeyed with high

probability). This is all ultimately responsible for the subtle size mismatch between the

2q-th moments for q < 1 and q = 1. For q > 1, the important values of |FP (1/2 + it)|
will then be even larger and more improbable, and we should expect only a small num-

ber of random t-values (and, by continuity, short intervals around them) to significantly

contribute to E(
∫ 1/2

−1/2
|FP (1/2+ it)|2dt)q. This can guide the assembly of our arguments.

Armed with the above observations, proving a good lower bound for E(
∫ 1/2

−1/2
|FP (1/2+

it)|2dt)q becomes quite straightforward. Firstly it is very convenient, to streamline the

manipulation of fractional powers, to replace
∫ 1/2

−1/2
with a discrete sum. We can neatly

achieve this using Jensen’s inequality. Thus

E(

∫ 1/2

−1/2

|FP (1/2 + it)|2dt)q =
1

logq P
E(logP

∫ 1/2

−1/2

|FP (1/2 + it)|2dt)q

≈ 1

logq P
E

(

∑

|k|≤(logP )/2

logP

∫ 1/(2 logP )

−1/(2 logP )

|FP (1/2 +
ik

logP
+ it)|2dt

)q

, (4.2)

and since |FP (1/2 + ik
logP

+ it)|2 = e2 log |FP (1/2+ ik
logP

+it)| and the exponential function

is convex, Jensen’s inequality (applied to the normalised integral logP
∫ 1/(2 logP )

−1/(2 logP )
dt)

implies this is all

≥ 1

logq P
E

(

∑

|k|≤(logP )/2

e
2 logP

∫ 1/(2 logP )
−1/(2 logP )

log |FP (1/2+ ik
logP

+it)|dt
)q

.

Here e
2 logP

∫ 1/(2 logP )
−1/(2 logP )

log |FP (1/2+ ik
logP

+it)|dt
behaves in essentially the same way as e2 log |FP (1/2+ ik

logP
)|.

For simplicity we shall write the rest of the argument for 1
logq P

E(
∑

|k|≤(logP )/2 e
2 log |FP (1/2+ ik

logP
)|)q =

1
logq P

E(
∑

|k|≤(logP )/2 |FP (1/2 + ik
logP

)|2)q, but one can perform all the same calculations

rigorously for e
2 logP

∫ 1/(2 logP )
−1/(2 logP )

log |FP (1/2+ ik
logP

+it)|dt
.

Since q ≥ 1, we have

1

logq P
E

(

∑

|k|≤(logP )/2

|FP (1/2 +
ik

logP
)|2
)q

≥ 1

logq P
E

∑

|k|≤(logP )/2

|FP (1/2 +
ik

logP
)|2q.

This step would be very wasteful if many of the products |FP (1/2+ ik
logP

)|2 made substan-

tial contributions to the sum, but we observed earlier that here we expect the dominant

contribution to come from just a few large products (at some random k).

Finally, it only remains to estimate E|FP (1/2 + ik
logP

)|2q. Since FP (s) is an Euler

product of independent factors, this expectation is not hard to calculate, and provided
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that P ≥ 100q2 (say) one finds

E|FP (1/2 +
ik

logP
)|2q = exp{

∑

100q2<p≤P

q2

p
+ O(

q2

log(2q)
)} =

(

logP

log(100q2)

)q2

eO( q2

log(2q)
).

Notice that the primes ≤ 100q2 are handled separately here: their contribution to the

expectation of the Euler product is bounded trivially and goes into the O( q2

log(2q)
) term,

they do not produce a larger contribution
∑

p≤100q2
q2

p
. This “small primes” effect (the

breakdown of Gaussian tail behaviour on the small primes when looking at very high

moments) is thus responsible for the denominator log(100q2) ≍ log 2q in (4.1).

Putting everything together, one has a lower bound 1
logq P

∑

|k|≤(logP )/2(
logP

log(100q2)
)q

2
eO( q2

log(2q)
) =

eO(q2)
(

logP
log 2q

)q2−q+1

, as desired. We also remark that one source of the upper bound re-

striction q ≤ c log x
log log x

in Theorem 1.2 is the need to have something like P ≥ 100q2, where

P may have size around x1/q.

Moving to upper bounds for E(
∫ 1/2

−1/2
|FP (1/2 + it)|2dt)q, again it is convenient to

replace
∫ 1/2

−1/2
with a discrete sum, but now Jensen’s inequality goes in the wrong di-

rection. Instead, a simple application of Hölder’s inequality to the normalised integral

logP
∫ 1/(2 logP )

−1/(2 logP )
dt implies, since q ≥ 1, that (4.2) is

≤ 1

logq P
logP

∫ 1/(2 logP )

−1/(2 logP )

E

(

∑

|k|≤(logP )/2

|FP (1/2 +
ik

logP
+ it)|2

)q

dt.

Since the joint distribution of (FP (1/2 + ik
logP

+ it))|k|≤(logP )/2 is the same for all t ∈ R,

the expectation here is the same for all t ∈ R, so the above expression is in fact

= 1
logq P

E(
∑

|k|≤(logP )/2 |FP (1/2 + ik
logP

)|2)q.
We can gain further insight by rewriting 1

logq P
E(
∑

|k|≤(logP )/2 |FP (1/2 + ik
logP

)|2)q as

1

logq P

∑

|k|≤(logP )/2

E|FP (1/2 +
ik

logP
)|2
(

∑

|m|≤(logP )/2

|FP (1/2 +
im

logP
)|2
)q−1

. (4.3)

Recall once more that since q ≥ 1, we expect the dominant contribution to come from

just a few large Euler products at some random k, reinforced by the same products inside

the (q − 1)-st power. We can make this quite vivid by computing the “correlation” of

|FP (1/2 + ik
logP

)|2 and |FP (1/2 + im
logP

)|2(q−1), which again (since these are products

of independent factors) is fundamentally a straightforward computation. One finds,



MOMENTS OF RANDOM MULTIPLICATIVE FUNCTIONS REVIEW 21

provided P ≥ 100q2, that

E|FP (1/2 +
ik

logP
)|2|FP (1/2 +

im

logP
)|2(q−1)

= exp

{

∑

100q2<p≤P

(1 + (q − 1)2 + 2(q − 1) cos( (m−k) log p
logP

))

p
+ O(

q2

log(2q)
)

}

=

(

logP

log(100q2)

)1+(q−1)2(

logP

1 + |m− k|

)2(q−1)

e
O( q2

log(2q)
)
. (4.4)

When m = k this has the size ( logP
log(100q2)

)q
2
eO( q2

log(2q)
) that we observed in our discussion

of lower bounds, but as |m− k| increases the size goes down (increasingly rapidly as q

becomes larger).

When q− 1 ≥ 1, we have the option of applying Hölder’s inequality to the (q− 1)-st

power in (4.3). An immediate application, bounding this by ≪ (logP )q−2
∑

|m|≤(logP )/2 |FP (1/2+
im

logP
)|2(q−1), is inefficient— recall that we expect only a bounded number of m values

near to k to typically contribute, and the factor (logP )q−2 multiplying everything (in-

cluding the m = k term) does not reflect this. But with only slightly more ingenuity,

we can succeed. For example, we may note that (
∑

|m|≤(logP )/2 |FP (1/2 + im
logP

)|2)q−1 is

=

(

∑

|m|≤(logP )/2

(1 + |m− k|)2|FP (1/2 + im
logP

)|2

(1 + |m− k|)2

)q−1

≤ eO(q)
∑

|m|≤(logP )/2

1

(1 + |m− k|)2 (1 + |m− k|)2(q−1)|FP (1/2 +
im

logP
)|2(q−1),

by applying Hölder’s inequality to the counting measure weighted by 1
(1+|m−k|)2 . If

we then multiply by |FP (1/2 + ik
logP

)|2 and take expectations, the decaying factor

( 1
1+|m−k|)

2(q−1) in (4.4) nullifies the factor (1 + |m− k|)2(q−1) from our weighted applica-

tion of Hölder’s inequality, and we deduce E|FP (1/2 + ik
logP

)|2(∑|m|≤(logP )/2 |FP (1/2 +

im
logP

)|2)q−1 ≤ eO( q2

log(2q)
)∑

|m|≤(logP )/2
1

(1+|m−k|)2 ( logP
log(100q2)

)1+(q−1)2(logP )2(q−1) = eO( q2

log(2q)
)( logP

log(100q2)
)q

2
.

This implies that (4.3) is ≤ 1
logq P

∑

|k|≤(logP )/2 e
O( q2

log(2q)
)( logP

log(100q2)
)q

2
= eO( q2

log(2q)
)( logP

log(100q2)
)q

2−q+1,

a sharp bound.

It only remains to prove a good upper bound when 1 < q < 2, which in fact is the

most challenging part of Theorem 1.2 (the hardest case of all being when q = q(x)

tends down to 1). The argument is quite technical to execute properly and we shall not

present many details, see section 5.4 of the original paper [12] for the full proof. Instead,

we briefly describe the ideas and tools required to adapt the above (fairly simple) q ≥ 2

argument to the range 1 < q < 2.
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Since q − 1 < 1, we can no longer apply Hölder’s inequality only to the sum over m

in (4.3) to deliver Euler products |FP (1/2 + im
logP

)|2(q−1) of the shape we expect. (Recall

that we expect that whole sum, raised to the power q−1, to typically behave in roughly

the same way as |FP (1/2 + ik
logP

)|2(q−1).) Instead, we look to craft a suitable application

of Hölder’s inequality to the full expectation E|FP (1/2+ ik
logP

)|2(
∑

|m|≤(logP )/2 |FP (1/2+
im

logP
)|2)q−1. The obvious approach is to raise (

∑

|m|≤(logP )/2 |FP (1/2 + im
logP

)|2)q−1 to the

power 1/(q − 1) > 1, so that the sum over m is no longer trapped inside a fractional

power. This would leave us raising |FP (1/2 + ik
logP

)|2 to the complementary exponent

1/(2 − q). But there are two clear reasons why such an argument cannot be efficient.

Firstly, this completely decouples the sum over m from the point k, whereas we ex-

pect the sum to be dominated by terms around k precisely because of the multiplying

product |FP (1/2 + ik
logP

)|2. Secondly, if we expect a final answer roughly the same size

as E|FP (1/2 + ik
logP

)|2|FP (1/2 + ik
logP

)|2(q−1) = E|FP (1/2 + ik
logP

)|2q ≍ logq2 P , then (be-

cause the dependence on q is not linear) we need to keep terms of roughly the shape

E|FP (1/2 + ik
logP

)|2q in both factors that emerge from Hölder’s inequality. We see that

E|FP (1/2 + ik
logP

)|2/(2−q) is not of this shape.

We can progress by exploiting the product structure of FP (s), in a way inspired by

the consideration of subproducts in the barrier arguments of section 3. Thus if we set

C = C(q) := e1/(q−1), in the part of the sum over m where Cd−1 ≤ |m − k| ≤ Cd

(for some d) we expect the subproducts F
P 1/Cd (1/2 + im

logP
) to be highly correlated with

F
P 1/Cd (1/2 + ik

logP
), whilst the subproducts over primes P 1/Cd

< p ≤ P should be fairly

uncorrelated. It then makes sense to separate |FP (1/2 + ik
logP

)|2 as |FP (1/2 + ik
logP

)|2 =

|F
P 1/Cd (1/2+ ik

logP
)|2HP,d(1/2+ ik

logP
), so that we can potentially apply Hölder’s inequality

with different exponents attached to |F
P 1/Cd (1/2 + ik

logP
)|2 and to HP,d(1/2 + ik

logP
) :=

∏

P 1/Cd
<p≤P

|1 − f(p)

p1/2+ik/ logP |−2.

As an initial attempt, and assuming that k = 0 to simplify the writing, we may

rewrite E|FP (1/2)|2(
∑

|m|≤(logP )/2 |FP (1/2 + im
logP

)|2)q−1 as

≈ E|FP (1/2)|2
(

∑

d≤(q−1) logP+1

∑

Cd−1≤|m|≤Cd,
|m|≤(logP )/2

|FP (1/2 +
im

logP
)|2
)q−1

≤
∑

d≤(q−1) logP+1

E|FP (1/2)|2
(

∑

Cd−1≤|m|≤Cd,
|m|≤(logP )/2

|FP (1/2 +
im

logP
)|2
)q−1

(4.5)

=
∑

d≤(q−1) logP+1

E|F
P 1/Cd (

1

2
)|2q(2−q)HP,d(

1

2
)

(

∑

Cd−1≤|m|≤Cd,
|m|≤(logP )/2

|F
P 1/Cd (

1

2
)|2(q−1)|FP (

1

2
+

im

logP
)|2
)q−1

.
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We split up |FP (1/2)|2 here so that the combined contribution from primes ≤ P 1/Cd

inside the large bracket comes with the desired exponent 2(q−1)+2 = 2q. As discussed

above, for given d we expect HP,d(
1
2
) to be roughly independent of the contribution from

primes > P 1/Cd
inside the large bracket, in other words we expect that EHP,d(

1
2
) ought

to essentially factor out. This suggests it might be reasonable to split up HP,d(
1
2
) as

HP,d(
1
2
)2−qHP,d(

1
2
)q−1, so when we apply Hölder’s inequality with exponents 1/(2 − q)

and 1/(q − 1), we again end up with HP,d(
1
2
) outside the bracket9.

Proceeding exactly as described, Hölder’s inequality implies that for each d we have

E|F
P 1/Cd (

1

2
)|2q(2−q)HP,d(

1

2
)2−q

(

∑

Cd−1≤|m|≤Cd,
|m|≤(logP )/2

|F
P 1/Cd (

1

2
)|2(q−1)HP,d(

1

2
)|FP (

1

2
+

im

logP
)|2
)q−1

≤
(

E|F
P 1/Cd (

1

2
)|2qHP,d(

1

2
)

)2−q
(

E

∑

Cd−1≤|m|≤Cd,
|m|≤(logP )/2

|F
P 1/Cd (

1

2
)|2(q−1)HP,d(

1

2
)|FP (

1

2
+

im

logP
)|2
)q−1

.

We can now calculate the expectations, and find this is all

≈
(

(
logP

Cd
)q

2

Cd

)2−q
(

∑

Cd−1≤|m|≤Cd,
|m|≤(logP )/2

(
logP

Cd
)q

2

C2d

)q−1

≪ logq2 P

Cd(q−1)2
=

logq2 P

ed(q−1)
.

Summing over d, we get a bound ≪ logq
2
P

q−1
.

We see that this argument delivers the desired bound ≪ logq2 P for q bounded strictly

away from 1, but not if q may be close to 1 in a way depending on P (which is possible in

Theorem 1.2). We cannot choose C larger to fix this problem, because when calculating

rigorously one loses factors CO(1) in the expectations inside the large bracket (reflecting

the fact that the contributions from primes > P 1/Cd
are not perfectly uncorrelated for

the full range of Cd−1 ≤ |m| ≤ Cd), so we must have CO(q−1) ≪ 1 when raising that

bracket to the power q − 1.

Instead, we can try to mitigate the inefficiency that enters the argument in (4.5),

by collecting some of the d values together and pulling out a maximum over d, rather

than a full sum. Working with such a maximum requires a use of martingale theory

and appropriate maximal inequalities, applied to the filtration structure where one adds

9This is another place where our heuristics certainly do not guarantee success in advance, and some
trial and error is required— the entire process of applying Hölder’s inequality might have turned out
to be too wasteful, regardless of the way we split things. Indeed, the larger the power of HP,d(12 ) that

we move into the bracket the more we gain from the decorrelation between this and |FP (1/2 + im
logP )|2,

but also the more we risk losing by inbalancing the powers away from 2q. As it turns out, we obtain
bounds where the power of Cd does not quite match the guess we might make about the real size of

E|FP (1/2)|2
(

∑

Cd−1≤|m|≤Cd,
|m|≤(logP )/2

|FP (1/2 + im
logP )|2

)q−1

, but is still satisfactory.
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batches of successive primes into the partial Euler products F . For more information

about this, we refer to the original paper [12].

5. Further reading

We end by providing a few further references. The study of random multiplicative

functions is currently very active: for example, there has been extensive work on dis-

tributional results, almost sure bounds, (non-)vanishing results, etc. for sums of f(n),

including weighted sums and sums over various interesting subsets of N. Various model

settings have been explored as well, including computational work. Beyond this, there

is a large body of work developing the connections between random multiplicative func-

tions and number theoretic issues like Dirichlet character sums, moments of L-functions,

and the Fyodorov–Hiary–Keating conjecture; and probabilistic issues like multiplicative

chaos, and secular coefficients of random matrices. A full survey would be far beyond

the scope of this paper, so we limit ourselves to pointing out some works rather closely

related to Theorems 1.1 and 1.2. The introductions of Harper [13], of Soundararajan and

Zaman [21], and of Garban and Vargas [6] provide more detailed overviews (although

in some cases now a bit out of date) of some other work in these areas.

A recent paper of Xu [25] adapts the methods underlying Theorem 1.1 to study the

sum of a random multiplicative function over R-rough numbers, finding the threshold

for R (in terms of x) at which better than squareroot cancellation in the first absolute

moment breaks down. Caich [4] performs a similar investigation for the sum of f(n)

over short intervals, finding the threshold of interval length where better than squareroot

cancellation appears (and proving a partial analogue for character sums as well).

The weighted sums
∑

n≤x
f(n)
nσ ,

∑

n≤x
f(n)dα(n)

nσ (where dα is a generalised divisor func-

tion), and especially
∑

n≤x
f(n)√

n
, have been investigated as possible models for (powers

of) the Riemann zeta function. Gerspach [7], and then Gerspach and Lamzouri [8], adapt

some of the methods underlying Theorems 1.1 and 1.2 to estimate E|
∑

n≤x
f(n)dα(n)√

n
|2q

up to lower order factors, on all ranges of q and α where such bounds were not pre-

viously known. Aymone, Heap and Zhao [1] refined some of their estimates, amongst

various other results exploring different aspects of the behaviour of
∑

n≤x
f(n)√

n
. See also

the work of Brevig and Heap [3], who (by different methods) investigate the dependence

on q of the implicit constants in estimates for E|
∑

n≤x
f(n)√

n
|2q with q large.

Gu and Zhang [11] have adapted the methods underlying Theorem 1.1 to bound

the low moments of so-called secular coefficients, in a model sometimes described as

holomorphic multiplicative chaos. The Gaussian version of holomorphic multiplicative

chaos corresponds to the model setting studied by Soundararajan and Zaman [21], and

also explored extensively (with a more probabilistic slant) by Najnudel, Paquette and

Simm [20]. Gu and Zhang study non-Gaussian variants of the model, obtaining the
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same moment bounds as in the Gaussian case (which are analogous to Theorem 1.1)

provided their underlying non-Gaussian random variables are sufficiently light tailed.

They also prove results, with different behaviour, in certain heavy tailed cases.

Finally, we mention recent work proving analogues of Theorems 1.1 and 1.2 for

number theoretic averages of Dirichlet character sums and of zeta sums (i.e. of sums
∑

n≤x χ(n) and
∑

n≤x n
it, averaging over χ and over t respectively). Harper [14] proves

upper bounds for low moments of character and zeta sums. Szabó [22, 23] proves upper

and lower bounds for the 2q-th moment of character sums, when q > 2 (and assuming

the truth of the Generalised Riemann Hypothesis for the upper bounds). Gao [5] re-

cently established a partial analogue for zeta sums of Szabó’s upper bound result, whilst

Baier and Gao [2] handle upper bounds for character sum moments over function fields.

Assuming certain (very strong) conjectures from number theory, Wang and Xu [24]

prove a conjecture of Harper [14] on upper bounds for low moments of character sums
∑

n≤x χ(n)λ(n), twisted by the classical Liouville function λ(n). This has an application

to the distribution of the Liouville function in arithmetic progressions.
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