
A VARIANT OF THE LINNIK-SPRINDŽUK THEOREM
FOR SIMPLE ZEROS OF DIRICHLET L-FUNCTIONS

WILLIAM D. BANKS

Abstract. For a primitive Dirichlet character X, a new hypothesis RH†sim[X]
is introduced, which asserts that (1) all simple zeros of L(s,X) in the critical
strip are located on the critical line, and (2) these zeros satisfy some specific

conditions on their vertical distribution. Hypothesis RH
†
sim[X] is likely to be

true since it is a consequence of the generalized Riemann hypothesis.

Assuming only the generalized Lindelöf hypothesis, we show that if RH†sim[X]
holds for one primitive character X, then it holds for every such X. If this
occurs, then for every character χ (primitive or not), all simple zeros of L(s, χ)
in the critical strip are located on the critical line. In particular, Siegel zeros
cannot exist in this situation.

Contents

1. Introduction 1
2. Notation and statement of results 3
3. Bounding D(s, χ) 5
4. Criteria for RHsim[χ] 9
5. Twisted sums with ℓ(n) 12
6. Computation under RHsim[⋆] and LH[⋆] 15
7. Proof of Theorem 2.3 16
References 18

1. Introduction

An old result of Sprindžuk [13, 14], which he obtained by developing ideas
of Linnik [11], asserts that the generalized Riemann hypothesis (GRH) holds for
all Dirichlet L-functions provided that the Riemann hypothesis (RH) is true and
that certain conditions on the vertical distribution of the zeros of ζ(s) are met.
Specifically, Sprindžuk showed under RH that every L-function L(s, χ) satisfies
GRH provided that the asymptotic formula∑

γ

|γ|iγe−iγ−π|γ|/2
(
x+ 2πi

h

k

)−1/2−iγ

= − µ(k)

x
√
2π ϕ(k)

+O(x−1/2−ε)

holds as x → 0+ for any coprime integers h, k with 0 < |h| ⩽ k/2, where the sum
runs over the imaginary parts γ of the nontrivial zeros of ζ(s). This is known
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2 W. BANKS

as the Linnik–Sprindžuk theorem. Some similar results have been obtained by
Fujii [6–8], Suzuki [15], Kaczorowski and Perelli [10], and the author [1–3].

In the present paper, we establish a variant of the Linnik–Sprindžuk theorem
focused on the simple zeros of Dirichlet L-functions. Assuming the generalized
Lindelöf hypothesis, we show that the horizontal and vertical distribution of the
simple zeros of any single L-function L(s, χ) can strongly influence the horizontal
and vertical distribution of the simple zeros of any other Dirichlet L-function.
In particular, we state a new criterion for the nonexistence of Siegel zeros.

Our main results are formulated in §2 after the necessary notation has been
introduced. To prove the main theorem, we study the interplay and consequences
of the following hypotheses on L-functions attached to Dirichlet characters χ.

Hypothesis RH[χ]: If ρ = β + iγ is a zero of L(s, χ) with β > 0, then β = 1
2
.

In particular, RH[1] is the Riemann hypothesis, where 1 is the trivial character
defined by 1(n) ..= 1 for all n. Also, GRH is equivalent to the truth of RH[χ] for
all characters χ.

Hypothesis RHsim[χ]: If ρ = β+ iγ is a simple zero of L(s, χ) such that β > 0,
then β = 1

2
.

Hypothesis RHsim[⋆]: The hypothesis RHsim[χ] holds for every character χ.

These two hypotheses lie at the heart of our work. RHsim[χ] is a weak form
of RH[χ] which asserts that the simple zeros of L(s, χ) in the critical strip all
lie on the critical line; nothing is assumed about trivial zeros of L(s, χ) (which
are all simple) or zeros of multiplicity two or more in the critical strip (that is,
non-simple zeros).

Hypothesis LH[χ]: The function L(s, χ) satisfies the Lindelöf bound

L(1
2
+ it, χ) ≪

q
τ ε (t ∈ R), (1.1)

where q ⩾ 1 is the modulus of χ, and τ = τ(t) ..= |t|+ 10.

Hypothesis LH[⋆]: The hypothesis LH[χ] holds for every character χ.

In particular, note that LH[1] is the classical Lindelöf hypothesis for ζ(s). More
generally, LH[χ] is (a weak form of) the generalized Lindelöf hypothesis for L(s, χ).

Remark. The most important hypothesis from the perspective of the present
paper, namely RH

†
sim[X], can only be formulated after the necessary notation has

been introduced; see §2.
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2. Notation and statement of results

Following Riemann, the letter s always denotes a complex variable, and we
write σ ..= ℜ(s), and t ..= ℑ(s). As in (1.1), we put τ ..= |t|+ 10 for all t ∈ R.

Any implied constants in the symbols≪, O, etc., may depend (where obvious)
on the small parameter ε > 0; any dependence on other parameters is indicated
explicitly by the notation. For example, (1.1) asserts that, for any ε > 0, the
bound |L(1

2
+ it, χ)| ⩽ Cτ ε holds for all t ∈ R with some constant C > 0 that

depends only on q and ε.
For an arbitrary character χ, we make extensive use of the function D(s, χ),

which is defined in the half-plane {σ > 1} by

D(s, χ) ..=
L′(s, χ)2

L(s, χ)
=

∑
n∈N

ℓ(n)χ(n)

ns

and extended analytically to the complex plane. Here, ℓ is the arithmetical
function given by

ℓ(n) ..= (Λ ∗ log)(n) =
∑
a,b∈N
ab=n

Λ(a) log b.

Note that 0 ⩽ ℓ(n) ⩽ (log n)2. The function D(s, χ) is meromorphic with a
simple pole of residue L′(ρ, χ) at every simple zero ρ of L(s, χ), and a pole of
order three at s = 1 when χ is principal. On the other hand, D(s, χ) is analytic
in a neighborhood of any non-simple zero ρ of L(s, χ).

For a primitive character X mod q, we denote

κ ..=

{
0 if X(−1) = +1,

1 if X(−1) = −1,
τ(X) ..=

∑
a mod q

X(a)e(a/q), ϵ ..=
τ(X)

iκ
√
q
, (2.1)

where e(u) ..= e2πiu for all u ∈ R. The function defined by

MX(s) ..= ϵ 2sπs−1q1/2−sΓ(1− s) sin π
2
(s+ κ)

is familiar and plays an important rôle in analytic number theory, appearing as
it does in the asymmetric form of the functional equation:

L(s,X) = MX(s)L(1− s,X).

Lemma 2.1. Let I be a compact interval in R. Uniformly for c ∈ I and t ⩾ 1,
we have

MX(1− c− it) = τ(X)qc−1e−πi/4 exp
(
it log

( qt

2πe

))( t

2π

)c−1/2{
1 +OI(t

−1)
}
.

Proof. See Banks [3, Lemma 2.1]. □

The next result is a variant of Conrey, Ghosh, and Gonek [4, Lemma 1]. The
proof relies on Gonek [9, Lemma 2]; it is based on the stationary phase method.
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Lemma 2.2. Uniformly for v > 0 and c ∈ [ 1
10
, 2], we have

1

2πi

∫ c+iT

c+i

v−sMX(1−s) ds =


τ(X)q−1e(−v/q) + E(q, T, v) if q

2π
< v ⩽ qT

2π
,

E(q, T, v) otherwise,

where

E(q, T, v) ≪ qc−1/2

vc

(
T c−1/2 +

T c+1/2

|T − 2πv/q|+ T 1/2
+ 1

)
.

Proof. See Banks [3, Lemma 2.3]. □

Recall the Laurent series expansion of ζ(s) at s = 1 (see, e.g., [5, Prop. 10.3.19]):

ζ(s) =
1

s− 1
+

∞∑
n=0

(−1)n

n!
γn(s− 1)n,

where {γn} are the Stieltjes constants given by

γn ..= lim
x→∞

(∑
k⩽x

(log k)n

k
− (log x)n+1

n+ 1

)
(n ⩾ 0).

In particular, γ0 is the Euler-Mascheroni constant. For any q, let

g(s) ..=
∏
p | q

(1− p−s),

and denote

Pq(X) ..= 1
2
gq(1)X(logX)2 − (1 + γ0)gq(1)X logX

+
(
(1 + γ0 + γ2

0 + 3γ1)gq(1)− γ0g
′
q(1)− 1

2
g′′q (1)

)
X.

This function is defined so that

Res
s=1

D(s, χ0,q)
Xs

s
= Pq(X) (X > 0), (2.2)

where χ0,q is the principal character mod q.
The following hypothesis on a primitive character X, despite its quite technical

formulation, is crucial for understanding the relationship between simple zeros
of different Dirichlet L-functions.

Hypothesis RH
†
sim[X]: The primitive character X mod q satisfies RHsim[X], and

for any rational number ξ = h/k with h, k > 0 and (h, k) = 1, any B ∈ C∞
c (R+),

and X ⩾ 10, we have∑
ρ= 1

2
+iγ

γ>0

ξ−ρL′(ρ,X·χ0,qk)MX(1−ρ)B

(
γ

2πξX

)
−CX,ξ ·Fq,k(X) ≪

q,ξ,B
X1/2+ε, (2.3)

where the sum runs over simple zeros of L(s,X) in the critical strip (counted with
multiplicity),

CX,ξ
..=


X(h)X(k)µ(k)

ϕ(qk)
if (h, qk) = 1,

0 otherwise,

(2.4)
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and

Fq,k(X) ..=

∫∞

0

B(u/(qX))P ′
qk(u) du. (2.5)

Remarks. Hypothesis RH
†
sim[X] is true for all primitive characters X under the

generalized Riemann hypothesis. It is important to observe that RH†[χ] has been
formulated entirely in terms of the simple zeros of a single L-function L(s,X);
its validity depends only on the horizontal and vertical distribution of the simple
zeros. If X and X◦ are different primitive characters, then there is no reason, a
priori, that the hypotheses RH†sim[X] and RH

†
sim[X◦] should be related to one another.

Nevertheless, we show that these hypotheses are equivalent if one assumes LH[⋆].

Our main results are the following.

Theorem 2.3. Assume LH[⋆]. For each primitive character X, the hypotheses

RH
†
sim[X] and RHsim[⋆] are equivalent. Thus, If RH†sim[X] holds for some primitive

character X, then it holds for every primitive character X.

Corollary 2.4. Assume LH[⋆]. If there is a primitive character X such that

RH
†
sim[X] is true, then Siegel zeros do not exist.

Indeed, under the conditions of the corollary, Theorem 2.3 shows that RHsim[⋆]
is true. Thus, for every character χ, all simple zeros of L(s, χ) in the critical strip
must lie on the critical line.

3. Bounding D(s, χ)

For any real σ0 > 0, let R•(σ0) and R(σ0) be the closed regions defined by

R•(σ0) ..= {s : σ ⩾ σ0, |s− 1| ⩾ 1
25
} and R(σ0) ..= {s : σ ⩾ σ0};

see Figure 1 below. Let V•(σ0) [resp. V(σ0)] be the vector space of consisting of
all meromorphic functions F that satisfy, for every ε > 0, the bound

F (s) ≪
F,σ0

τλ(σ)+ε, λ(σ) ..= max{0, 1
2
− σ}, (3.1)

uniformly at all points s in R•(σ0) [resp. R(σ0)].

Figure 1.

In this section, we consider the problem of bounding the function D(s, χ)
introduced in §2, where χ is an arbitrary character mod q. We denote by χ0,q
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the principal character mod q, which is also the indicator function of integers
coprime to q. We also denote

L̃(s, χ) ..= L(s, χ)− δχcq
s− 1

(3.2)

with

δχ ..=

{
1 if χ is principal,

0 if χ is nonprincipal,
and cq ..=

ϕ(q)

q
,

where ϕ is the Euler totient function. For any choice of χ, the function L̃(s, χ)
extends to an entire function. Since (3.2) implies the estimate

L̃(s, χ) = L(s, χ) +O(1) (s ∈ R•(
1
25
)), (3.3)

the hypothesis LH[χ] admits the following equivalent formulation.

Hypothesis LH[χ]: The function L̃(s, χ) satisfies the Lindelöf bound

L̃(1
2
+ it, χ) ≪

q
τ ε (t ∈ R). (3.4)

Lemma 3.1. The following statements are equivalent:

(i) L̃(s, χ) belongs to V( 1
25
);

(ii) LH[χ] is true.

Remark. The number 1
25

can be replaced by any positive absolute constant.

Proof. If L̃(s, χ) belongs to V( 1
25
), then applying (3.1) with σ ..= 1

2
and σ0

..= 1
25
,

we obtain (3.4) at once. This shows that (i) =⇒ (ii).

Conversely, when LH[χ] is true, (3.4) holds. Also, L̃(2 + it, χ) ≪ 1 holds

unconditionally. Since L̃(s, χ) is entire, the Phragmen-Lindelöf theorem gives

L̃(s, χ) ≪
q

τ ε (σ ⩾ 1
2
). (3.5)

Next, suppose that σ ∈ [ 1
25
, 1
2
]. Replacing s by 1− s in (3.5), we have

L(1− s, χ) ≪
q

τ ε and L(1− s, χ) ≪
q

τ ε. (3.6)

Moreover, we have

L(s, χ) ≪
q

τ 1/2−σL(1− s, χ). (3.7)

Indeed, for a primitive character X mod q, the bound

L(s,X) ≪
q
τ 1/2−σ|L(1− s,X)|

follows from [12, Cors. 10.5 and 10.10]. More generally, if χ is induced from X,
then (with s as above) we have

L(s, χ) ≍
q
L(s,X) and L(1− s, χ) ≍

q
L(1− s,X),

and (3.7) follows. Using (3.3), (3.6), and (3.7), we get that

L̃(s, χ) = L(s, χ)+O(1) ≪
q

τ 1/2−σ
∣∣L(1−s, χ)

∣∣+O(1) ≪
q

τ 1/2−σ+ε (σ ∈ [ 1
25
, 1
2
]).
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Combining this with (3.5), we see that L̃(s, χ) ∈ V( 1
25
), and so (ii) =⇒ (i). □

Lemma 3.2. If σ0 > 0 and F ∈ V(σ0), then F ′ ∈ V(σ0 +
1
25
).

Proof. Let s ∈ R(σ0 +
1
25
). For any ε ∈ (0, 2

25
), let C be the circle in the complex

plane with center s and radius ε
2
. Since F ∈ V(σ0) and each z ∈ C satisfies

ℜ(z) ⩾ σ − ε
2
⩾ σ0 (and thus z ∈ R(σ0)), we have

F (z) ≪
F,σ0

τmax{0,1/2−ℜ(z)}+ε/2 ⩽ τλ(σ)+ε.

By the Cauchy integral formula,∣∣F ′(s)
∣∣ = ∣∣∣∣ 1

2πi

∮
C

F (z) dz

(z − s)2

∣∣∣∣ ⩽ 2

ε
max
z∈C

∣∣F (z)
∣∣ ≪

F,σ0

τλ(σ)+ε,

and the lemma follows. □

Combining Lemmas 3.1 and 3.2, the next result is immediate.

Corollary 3.3. Under LH[χ], we have

L(s, χ) = δχcq(s− 1)−1 +Oq(τ
λ(σ)+ε) (s ∈ R( 1

25
)),

L′(s, χ) = −δχcq(s− 1)−2 +Oq(τ
λ(σ)+ε) (s ∈ R( 2

25
)), (3.8)

L′′(s, χ) = 2δχcq(s− 1)−3 +Oq(τ
λ(σ)+ε) (s ∈ R( 3

25
)).

In particular, if ρ = β + iγ is a nontrivial zero of L(s, χ), then

L′(ρ, χ) ≪
q

τλ(β)+ε (ρ ∈ R( 2
25
)), (3.9)

L′′(ρ, χ) ≪
q

τλ(β)+ε (ρ ∈ R( 3
25
)). (3.10)

Lemma 3.4. Assume RHsim[χ] and LH[χ]. For any nontrivial zero ρ of L(s, χ),
the function fρ defined by

fρ(s) ..=


L′(s, χ)− L′(ρ, χ)

s− ρ
if s ̸= ρ,

L′′(ρ, χ) if s = ρ,

satisfies the bound
fρ(s) ≪

q
τλ(σ)+ε + δχcq|s− 1|−2τ ε (3.11)

uniformly for s ∈ R( 4
25
).

Proof. We start with the fact that

L′(ρ, χ) ≪
q

τ ε/2 (3.12)

for any nontrivial zero ρ. Indeed, if ρ is non-simple, then we have L′(ρ, χ) = 0.
On the other hand, if ρ = β + iγ is a simple (and nontrivial) zero, then β = 1

2
under RHsim[χ], whence (3.9) immediately implies (3.12).

Now, let s ∈ R( 4
25
), s ̸= 1. We consider three different cases.

First, suppose s = ρ. Then fρ(s) = L′′(ρ, χ), and ρ = s ∈ R( 4
25
), hence (3.11)

follows directly from (3.10).
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Next, suppose 0 < |s− ρ| ⩽ 1
50 log τ

, and write

fρ(s) =
1

2πi

∮
C

fρ(z)

(z − s)
dz =

1

2πi

∮
C

L′(z, χ)− L′(ρ, χ)

(z − ρ)(z − s)
dz

where C is the circle in the complex plane with center s and radius 1
25 log τ

, oriented

counterclockwise. It is straightforward to check that

min{|z − s|, |z − ρ|} ⩾ 1
50 log τ

(z ∈ C),

and therefore

fρ(s) ≪ (log τ)
{
max
z∈C

∣∣L′(z, χ)
∣∣+ ∣∣L′(ρ, χ)

∣∣} ≪
q
(log τ)max

z∈C

∣∣L′(z, χ)
∣∣+ τ ε,

where we used (3.12) in the second step. To prove (3.11) in this case, it is enough
to show that

L′(z, χ) ≪
q

τλ(σ)+ε/2 (z ∈ C). (3.13)

Let z = x + iy be a number in C. Since |x − σ| ⩽ |z − s| = 1
25 log τ

, we have

τλ(x) ≍ τλ(σ) and also z ∈ R(1
5
); hence (3.13) follows from (3.8).

Finally, suppose |s− ρ| ⩾ 1
50 log τ

. In this case,

fρ(s) ≪ (log τ)
{∣∣L′(s, χ)

∣∣+ ∣∣L′(ρ, χ)
∣∣} ≪

q
(log τ)

∣∣L′(s, χ)
∣∣+ τ ε.

Since s ∈ R( 4
25
), the required bound (3.11) follows from (3.8). □

Lemma 3.5. Under RHsim[χ] and LH[χ], we have

D(s, χ) + δχ
L′(s, χ)

s− 1
≪
q

τλ(σ)+ε + δχ|s− 1|−2τ ε + |σ − 1
2
|−1τ ε (3.14)

uniformly for s ∈ R(1
5
).

Proof. Suppose χ is induced from the primitive character X. Unconditionally,
we have (see, e.g., [12, Lems. 12.1 and 12.6]):

L′

L
(s,X) = − δX

s− 1
+

∑
ρ

|γ−t|⩽1

1

s− ρ
+Oq(log τ) (σ ∈ [−1, 2]),

where the sum runs over nontrivial zeros ρ of L(s,X). Taking into account that

L′

L
(s, χ) =

L′

L
(s,X) +

∑
p | q

X(p) log p

ps − X(p)
,

it follows that

L′

L
(s, χ) = − δχ

s− 1
+

∑
ρ

|γ−t|⩽1

1

s− ρ
+Oq(log τ) (σ ∈ [1

5
, 2]).

Multiplying by L′(s, χ), we get that

D̃(s, χ) =
∑
ρ

|γ−t|⩽1

L′(s, χ)

s− ρ
+Oq(|L′(s, χ)| log τ) (σ ∈ [1

5
, 2]), (3.15)
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where D̃(s, χ) is the function defined on the left side of (3.14). The error term
in (3.15) is acceptable in view of (3.8). To bound the sum in (3.15), observe that∑

ρ
|γ−t|⩽1

L′(s, χ)

s− ρ
=

∑
ρ non-simple

|γ−t|⩽1

fρ(s) +
∑

ρ simple
|γ−t|⩽1

L′(ρ, χ)

s− ρ
.

As these sums all involve≪ log qτ zeros, we obtain (3.14) by applying Lemma 3.4
together with (3.12), taking into account that |s − ρ| ⩾ |σ − 1

2
| for any simple

zero ρ (under RHsim[χ]). This completes the proof. □

The next result, used in the proof of Theorem 5.1 below, is conditional on
LH[χ] but not on RHsim[χ].

Lemma 3.6. Assume LH[χ]. For any t ⩾ 2, there is a real number t∗ ∈ [t, t + 1]
such that

D(σ ± it∗, χ) ≪
q

τλ(σ)+ε (σ ∈ [ 2
25
, 2]).

Proof. By [12, Lemmas 12.2 and 12.7], there is a number t∗ ∈ [t, t+1] such that

L′

L
(σ ± it∗, χ) ≪ (log qt)2 (σ ∈ [−1, 2]).

Multiplying by L′(σ ± it∗, χ) and using (3.8), the result follows. □

4. Criteria for RHsim[χ]

Theorem 4.1. Let χ be a character mod q that satisfies LH[χ]. Then the following
are equivalent:

(i) RHsim[χ] is true;
(ii) For any X ⩾ 10, we have∑

n⩽X

ℓ(n)χ(n) = δχPq(X) +Oq(X
1/2+ε); (4.1)

(iii) For any B ∈ C∞
c (R+) and X ⩾ 10, we have∑

n

ℓ(n)χ(n)B(n/X) = δχ

∫∞

0

B(u/X)P ′
q(u) du+Oq,B(X

1/2+ε). (4.2)

Proof. (i) =⇒ (ii). Let T ..=
√
X, σ0

..= 1 + 1
logX

, and σ1
..= 1

2
+ 1

logX
. Let C be

the rectangular contour in C consisting of the four directed line segments:

C1 : σ0 − iT −→ σ0 + iT,

C2 : σ0 + iT −→ σ1 + iT,

C3 : σ1 + iT −→ σ1 − iT,

C4 : σ1 − iT −→ σ0 − iT.

Using Perron’s formula (see, e.g., [12, Thm. 5.2 and Cor. 5.3]), it follows that∑
n⩽X

ℓ(n)χ(n) =
1

2πi

∫
C1
D(s, χ)

Xs

s
ds+O(X1/2(logX)3),
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where the implied constant is absolute. Under RHsim[χ], the function D(s, χ) is
analytic in the half-plane {σ > 1

2
} unless χ = 1, in which case there is a triple

pole at s = 1. Using Cauchy’s theorem and (2.2), we see that

1

2πi

( ∫
C1
+

∫
C2
+

∫
C3
+

∫
C4

)
D(s, χ)

Xs

s
ds =

1

2πi

∮
C
D(s, χ)

Xs

s
ds = δχPq(X);

consequently,∑
n⩽X

ℓ(n)χ(n) = δχPq(X)− 1

2πi

( ∫
C2
+

∫
C3
+

∫
C4

)
D(s, χ)

Xs

s
ds+Oε(X

1/2+ε).

By Corollary 3.3 (bound (3.8)) and Lemma 3.5 (bound (3.14)), the bound

D(s, χ) ≪
q

τ ε/2 logX

holds uniformly for any s on the segments C2, C3, and C4; consequently,∫
Cj
D(s, χ)

Xs

s
ds ≪

q

logX

T 1−ε/2

∫σ0

σ1

Xσ dσ ≪ X1/2+ε (j = 2 or 4),

and ∫
C3
D(s, χ)

Xs

s
ds ≪

q
X1/2 logX

∫T

−T

τ ε/2

1 + |t|
dt ≪ X1/2+ε.

Putting everything together, we obtain (4.1).

(ii) ⇒ (i). Let

S(u) ..=
∑
n⩽u

ℓ(n)χ(n) = δχPq(u) + E(u), where E(u) ≪
q

u1/2+ε. (4.3)

In the region {σ > 1} we have

D(s, χ) =
∞∑
n=1

ℓ(n)χ(n)

ns
= δχ

∫∞

1

u−s P ′
q(u) du+

∫∞

1−
u−s dE(u). (4.4)

The first integral in (4.4) evaluates to

D∞(s, χ) ..=
gq(1)

(s− 1)3
− γ0gq(1)

(s− 1)2
+

(γ2
0 + 3γ1)gq(1)− γ0g

′
q(1)− 1

2
g′′q (1)

s− 1
, (4.5)

which is the singular part ofD(s, χ) at s = 1 in the case that χ = χ0,q. Integrating
by parts, we see that the second integral in (4.4) is equal to∫∞

1−
u−s dE(u) = −Pq(1) + s

∫∞

1

u−s−1E(u) du.

Since E(u) ≪q u1/2+ε, the right side continues analytically to the half-plane
{σ > 1

2
+ ε}; consequently, the function

D(s, χ)− δχD∞(s, χ)

continues analytically to the same half-plane. In particular, L(s, χ) has no simple
zeros in that region. Taking ε → 0+, this verifies RHsim[χ].



A VARIANT OF THE LINNIK-SPRINDŽUK THEOREM 11

(ii) ⇒ (iii). Using (4.1) and (4.3), we have by partial summation:∑
n

ℓ(n)χ(n)B(n/X) = δχ

∫∞

0

B(u/X)P ′
q(u) du+

∫∞

0

B(u/X) dE(u).

Using integration by parts and the bound E(u) ≪q u
1/2+ε, it is easily shown that

the second integral is ≪q,B X1/2+ε, hence we have (4.2).

(iii) ⇒ (i). For each B ∈ C∞
c (R+), we define

B̂(s) =

∫∞

0

B(u)us−1 du (s ∈ C),

and we fix a number dB < 1 such that B(u) = 0 if u ⩽ dB or u ⩾ d−1
B . Let

fB(x) ..=
∑
n

ℓ(n)χ(n)B(n/x), gB(x) ..= δχ

∫x/dB

xdB

B(u/x)P ′
q(u) du,

and observe that fB(x) = 0 for all x ⩽ dB. By (4.2), we have

fB(x)− gB(x) ≪
q,B

x1/2+ε (x ⩾ 10). (4.6)

In the half-plane {σ > 1}, it is straightforward to show that∫∞

dB

fB(x)x
−s−1 dx = B̂(s) ·D(s, χ),∫∞

dB

gB(x)x
−s−1 dx = B̂(s) · δχ

∫∞

dB

u−sP ′
q(u) du.

The latter integral can be split as D0(s, χ) +D∞(s, χ), where

D0(s, χ) ..=

∫ 1

dB

u−sP ′
q(u) du and D∞(s, χ) ..=

∫∞

1

u−sP ′
q(u) du.

The first integral defines D0(s, χ) as an entire function in the complex plane. For
σ > 1, D∞(s, χ) is explicitly given by (4.5). We see that D∞(s, χ) analytically
continues to the complex plane except for a possible pole at s = 1. As mentioned

above, D∞(s, χ) is the singular part of D(s, χ) in s = 1 when χ = χ0,q. As B̂(s)
is entire, it follows that any pole of the function

I(s, χ) ..=

∫∞

dB

{
fB(x)− gB(x)

}
x−s−1 dx = B̂(s) ·

{
D(s, χ)−D0(s, χ)−D∞(s, χ)

}
with real part σ > 0 must occur at a simple zero ρ of L(s, χ). Moreover, if ρ is

such a zero, then choosing B so that B̂(ρ) ̸= 0, we see that I(s, χ) does indeed
have a pole at s = ρ.

On the other hand, in view of (4.6), the integral defining I(s, χ) converges
absolutely in the half-plane {σ > 1

2
+ ε}, so I(s, χ) cannot have a pole there for

any choice of B. Taking ε → 0+, we deduce that L(s, χ) has no simple zeros in
{σ > 1

2
}, and RHsim[χ] is verified. □
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5. Twisted sums with ℓ(n)

Theorem 5.1. Let χ be a character mod q induced from a primitive character
X mod q that satisfies LH[X]. For any ξ ∈ R+ and T > 0,∑

ρ=β+iγ
β⩾ 1

2
0<γ⩽T

ξ−ρL′(ρ, χ)MX(1− ρ)− τ(X)

q

∑
n⩽qT/(2πξ)

ℓ(n)χ(n)e(−nξ) ≪
q,ξ

T 1/2+ε + 1.

Proof. The result is trivial for T < 100, so we assume T ⩾ 100 in what follows.
For any u > 0, let

Σ1(u) ..=
∑

ρ=β+iγ
β⩾ 1

2
0<γ⩽u

ξ−ρL′(ρ, χ)MX(1−ρ), Σ2(u) ..=
τ(X)

q

∑
n⩽qu/(2πξ)

ℓ(n)χ(n)e(−nξ).

In this notation, the theorem (for T ⩾ 100) asserts that

Σ1(T )− Σ2(T ) ≪
q,ξ

T 1/2+ε. (5.1)

In fact, to prove (5.1) for any T ⩾ 100, it suffices to prove that

Σ1(T∗)− Σ2(T∗) ≪
q,ξ

T 1/2+ε (5.2)

holds for at least one number T∗ ∈ [T, T + 1]. Indeed, by Lemma 2.1, we have
MX(1−ρ) ≪ (qγ)1/2 uniformly for all nontrivial zeros ρ = β+ iγ of L(s, χ) such
that γ ⩾ 10 (say). Consequently,∣∣Σ1(T∗)− Σ1(T )

∣∣ ⩽ ∑
ρ=β+iγ
β⩾ 1

2
T<γ⩽T∗

∣∣ξ−ρMX(1− ρ)
∣∣ ≪

q,ξ
T 1/2 log T

since there at most O(log qT ) zeros with T < γ ⩽ T∗. Furthermore,∣∣Σ2(T∗)− Σ2(T )
∣∣ ⩽ |τ(X)|

q

∑
qT/(2πξ)<n⩽qT∗/(2πξ)

∣∣ℓ(n)χ(n)e(−nξ/q)
∣∣ ≪

q,ξ
(log T )2

since 0 ⩽ ℓ(n) ⩽ (log n)2. These bounds make it clear that (5.1) and (5.2) are
equivalent, and the claim is proved.

By the preceding argument, and recalling Lemma 3.6, for the proof of (5.1)
we can assume without loss of generality that

D(σ ± iT, χ) ≪
q

T λ(σ)+ε (σ ∈ [ 2
25
, 2]). (5.3)

Moreover, by Lemma 3.6, there is a number t◦ ∈ [2, 3] such that

D(σ ± it◦, χ) ≪
q

1 (σ ∈ [ 2
25
, 2]).

For such t◦, it can be shown that

Σ1(t◦) ≪
q,ξ

1 and Σ2(t◦) ≪
q,ξ

1; (5.4)
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see, e.g., the proof of [3, Thm. 3.1]. We fix t◦ and T with these properties. Put
c ..= 1 + 1

log qT
, and let b be any number in the open interval (1

2
− 1

log qT
, 1
2
) such

that L(s, χ) ̸= 0 for σ ∈ [b, 1
2
) and t ∈ [t◦, T ]. Finally, let C be the rectangular

contour consisting of the four directed line segments:

C1 : c+ it◦ −→ c+ iT,

C2 : c+ iT −→ b+ iT,

C3 : b+ iT −→ b+ it◦,

C4 : b+ it◦ −→ c+ it◦.

Our choices of T , t◦, b, and c guarantee that D(s, χ) has no singularity on the
contour C. By Cauchy’s theorem, we have

Σ1(T )− Σ1(t◦) =
1

2πi

∮
C
D(s, χ) ξ−sMX(1− s) ds

=
1

2πi

( ∫
C1
+

∫
C2
+

∫
C3
+

∫
C4

)
D(s, χ) ξ−sMX(1− s) ds

= I1 + I2 + I3 + I4 (say),

and thus by (5.4), we have

Σ1(T ) = I1 + I2 + I3 + I4 +Oq(1). (5.5)

We estimate the four integrals Ij separately.
First, recalling the Dirichlet expansion

D(s, χ) ..=
L′(s, χ)2

L(s, χ)
=

∑
n∈N

ℓ(n)χ(n)

ns
(σ > 1),

it is immediate that

I1 =
∑
n∈N

ℓ(n)χ(n) · 1

2πi

∫ c+iT

c+it◦

(nξ)−sMX(1− s) ds.

Applying Lemma 2.2 with both T and t◦, we derive the estimate

I1 =
τ(X)

q

∑
qt◦/(2πξ)<n⩽qT/(2πξ)

ℓ(n)χ(n)e(−nξ/q) +O

(∑
n

ℓ(n)
∣∣E(q, T, nξ)

∣∣)
= Σ2(T )− Σ2(t◦) +Oq,ξ

(
T c−1/2(E1 + E2)

)
,

where

E1
..=

∑
n

ℓ(n)

nc
and E2

..=
∑
n

ℓ(n)

nc

T

|T − 2πnξ/q|+ T 1/2
.

Clearly,

E1 =
ζ ′(c)2

ζ(c)
≪ 1

(c− 1)3
= (log T )3. (5.6)

Also, setting T◦
..= T/(2πξ), we have

E2 ≪
ξ

T 3/2
∑
n

ℓ(n)

nc

1

|n− T◦|+ T 1/2
. (5.7)
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Modifying slightly the proof of [3, Thm. 3.1], we find that the sum in (5.7) is
≪ T−1(log T )3. Therefore, using (5.6) and (5.7) along with (5.4), we see that

I1 = Σ2(T ) +Oq,ξ(T
1/2+ε).

Next, by (5.3) and Lemma 2.1, we have

D(σ + it, χ) ≪
q

τ ε and MX(1− σ − it) ≪
q
τσ−1/2 (σ ∈ [b, c], t ⩾ 1),

from which we derive that

I2 =
1

2πi

∫ b+iT

c+iT

D(s, χ) ξ−sMX(1− s) ds ≪
q,ξ

T 1/2+ε.

Similarly, we have

I3 ≪
q,ξ

T ε and I4 ≪
q,ξ

1.

Combining (5.5) with the above estimates for the integrals Ij, we obtain (5.1),
finishing the proof. □

Corollary 5.2. Let χ be a character mod q induced from a primitive character
X mod q satisfying LH[X]. For any ξ ∈ R+, B ∈ C∞

c (R+), and X ⩾ 10,∑
ρ=β+iγ
β⩾ 1

2
, γ>0

ξ−ρL′(ρ, χ)MX(1− ρ)B
( γ

2πξX

)

− τ(X)

q

∑
n

ℓ(n)χ(n)e(−nξ/q)B(n/(qX)) ≪
q,ξ,B

X1/2+ε.

Proof. As in the proof of Theorem 5.1, we define for u > 0:

Σ1(u) ..=
∑

ρ=β+iγ
β⩾ 1

2
0<γ⩽u

ξ−ρL′(ρ, χ)MX(1−ρ), Σ2(u) ..=
τ(X)

q

∑
n⩽qu/(2πξ)

ℓ(n)χ(n)e(−nξ).

By Theorem 5.1 with T ..= 2πξXu, we have

Σ1(2πξXu)− Σ2(2πξXu) ≪
q,ξ

(Xu)1/2+ε + 1 (u > 0). (5.8)

Next, we denote

Σ3(u) ..= Σ2(2πξu/q) =
τ(X)

q

∑
n⩽u

ℓ(n)χ(n)e(−nξ),

Σ4(X) ..=
∑

ρ=β+iγ
β⩾ 1

2
, γ>0

ξ−ρL′(ρ, χ)MX(1− ρ)B
( γ

2πξX

)
,

Σ5(X) ..=
τ(X)

q

∑
n

ℓ(n)χ(n)e(−nξ/q)B(n/(qX)).
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Using Riemann-Stieltjes integration, we have

Σ4(X) =

∫∞

0

B
( u

2πξX

)
dΣ1(u) =

∫∞

0

B(u) dΣ1(2πξXu)

= −
∫∞

0

B′(u)Σ1(2πξXu) du,

and

Σ5(X) =

∫∞

0

B(u/(qX)) dΣ3(u) =

∫∞

0

B(u) dΣ3(qXu)

= −
∫∞

0

B′(u)Σ3(qXu) du = −
∫∞

0

B′(u)Σ2(2πξXu) du.

Hence, using (5.8), we get that

Σ4(X)− Σ5(X) ≪
q,ξ

∫∞

0

∣∣B′(u)
∣∣((Xu)1/2+ε + 1

)
du ≪

B
X1/2+ε,

which finishes the proof. □

6. Computation under RHsim[⋆] and LH[⋆]

Lemma 6.1. Assume RHsim[⋆] and LH[⋆]. Let X be a primitive character mod q.
Let ξ = h/k be a rational number with h, k > 0 and (h, k) = 1. Put q ..= qk, and
let χ ..= X · χ0,q be the character mod q induced from X. For all B ∈ C∞

c (R+)
and X ⩾ 10, we have

τ(X)

q

∑
n

ℓ(n)χ(n)e(−nξ/q)B(n/(qX)) = CX,ξ · FX,ξ(X) +Oq,ξ,B(X
1/2+ε), (6.1)

where q ..= qk, χ is the character mod q induced from X, CX,ξ is given by (2.4),
and FX,ξ(X) is given by (2.5).

Proof. The character χ is supported on integers coprime to q, hence the sum in
(6.1) is equal to∑

a mod q
(a,q)=1

e(−ah/q)X(a)
∑

n≡a mod q

ℓ(n)B(n/(qX))

=
1

ϕ(q)

∑
a mod q
(a,q)=1

e(−ah/q)X(a)
∑

χ′ mod q

χ′(a)
∑
n

ℓ(n)χ′(n)B(n/(qX)),

where the middle sum runs over all characters χ′ mod q. By Theorem 4.1 (iii)
the total contribution from all nonprincipal characters χ′ is Oχ,ξ,B(X

1/2+ε). For
the principal character χ′ = χ0,q, the contribution is

c

ϕ(q)

∫∞

0

B(u/(qX))P ′
q(u) du+Oχ,ξ,B(X

1/2+ε), (6.2)

where we have used Theorem 4.1 (iii) again, and

c ..=
∑

a mod q
(a,q)=1

e(−ah/q)X(a);
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note that the integral in (6.2) is FX,ξ(X) by definition. By [12, Theorem 9.12],
we have

c =

{
X(−h)X(k)µ(k)τ(X) if (h, q) = 1,

0 otherwise.

Using the well known relation

τ(X)τ(X) = X(−1)q (6.3)

for the Gauss sums defined in (2.1), and the fact that (h, q) = (h, q), we obtain
the stated result. □

7. Proof of Theorem 2.3

Throughout the proof, LH[⋆] is assumed to hold. Once and for all, let X be a
fixed primitive character mod q.

In one direction, suppose that RHsim[⋆] is true. In particular, RHsim[X] holds,

and the first condition of RH†sim[X] is verified. Let ξ ..= h/k with h, k > 0 and
(h, k) = 1, B ∈ C∞

c (R+), and X ⩾ 10. As RHsim[X] holds, Corollary 5.2 gives∑
ρ= 1

2
+iγ

γ>0

ξ−ρL′(ρ, χ)MX(1− ρ)B
( γ

2πξX

)

− τ(X)

q

∑
n

ℓ(n)χ(n)e(−nξ/q)B(n/(qX)) ≪
q,ξ,B

X1/2+ε.

Using estimate (6.1) of Lemma 6.1, we obtain (2.3). Since ξ is arbitrary, the

second condition of RH†sim[X] is verified. Thus, RH†sim[X] is true, and the proof is
complete in this direction.

In the other direction, suppose that RH†sim[X] is true. To prove the theorem,
we show that RHsim[X◦] holds for an arbitrary primitive character X◦ mod k.

Observe that if χ◦ is any character induced from X◦, then RHsim[χ◦] and
RHsim[X◦] are equivalent since L(s, χ◦) and L(s,X◦) have the same zeros in the
critical strip. Therefore, it suffices to show that RHsim[χ◦] holds for some charac-
ter χ◦ induced from X◦. For this purpose, we define

χ◦
..= X◦ · χ0,qk, χ ..= X · χ0,qk, ϑ ..= χ · χ◦,

and turn our attention to the sum

W ..=
∑
n

ℓ(n)χ◦(n)B(n/(qX)) =
∑

(n,qk)=1

ℓ(n)ϑ(n)χ(n)B(n/(qX)). (7.1)

If (n, qk) = 1, then (cf. [12, Theorem 9.5])

ϑ(n)τ(ϑ) =
∑

h mod qk

ϑ(h)e(hn/(qk)) =
∑

1⩽h⩽qk
(h,qk)=1

ϑ(−h)e(−hn/(qk)),

and it follows that

W =
1

τ(ϑ)

∑
1⩽h⩽qk
(h,qk)=1

ϑ(−h)
∑

(n,qk)=1

ℓ(n)e(−hn/(qk))χ(n)B(n/(qX)).
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Applying Corollary 5.2 and then (2.3) to each inner sum, we have (with ξ ..= h/k)∑
(n,qk)=1

ℓ(n)e(−hn/(qk))χ(n)B(n/(qX))

=
q

τ(X)

∑
ρ=β+iγ
β⩾ 1

2
, γ>0

ξ−ρL′(ρ, χ)MX(1− ρ)B
( γ

2πξX

)
+Oq,k,B(X

1/2+ε)

=
q

τ(X)
CX,h/k · Fq,k(X) +Oq,k,B(X

1/2+ε);

thus,

W =
q

τ(ϑ)τ(X)
Fq,k(X)

∑
1⩽h⩽qk
(h,qk)=1

ϑ(−h)CX,h/k +Oq,k,B(X
1/2+ε).

Finally, if (h, qk) = 1, then (see (2.4))

ϑ(−h) · CX,h/k = X(−h)χ◦(−h) · X(h)X(k)µ(k)
ϕ(qk)

= χ◦(−h) · X(−k)µ(k)

ϕ(qk)
,

and so

W =
qX(−k)µ(k)

τ(ϑ)τ(X)ϕ(qk)
Fq,k(X)

∑
1⩽h⩽qk
(h,qk)=1

χ◦(−h) +Oq,k,B(X
1/2+ε). (7.2)

We are now in a position to complete the proof. Using orthogonality, we
evaluate the sum in (7.2) as follows:∑

1⩽h⩽qk
(h,qk)=1

χ◦(−h) =

{
ϕ(qk) if X◦ = 1,

0 if X◦ ̸= 1.
(7.3)

In the case that χ◦ is nonprincipal, we have X◦ ̸= 1. Hence, combining (7.1)−(7.3),
we derive the bound ∑

n

ℓ(n)χ◦(n)B(n/(qX)) ≪
q,k,B

X1/2+ε.

The dependence on q can be ignored since the character X mod q is fixed. Taking
into account that δχ◦ = 0, the estimate (4.2) of Theorem 4.1 is verified, and thus
RHsim[χ◦] is true. On the other hand, if χ◦ is principal, then

χ◦ = χ0,q, δχ◦ = 1, X◦ = 1, k = 1, χ ..= X, ϑ ..= X.

Combining (6.3) and (7.1)−(7.3), we get that∑
n

ℓ(n)χ◦(n)B(n/(qX)) = FX,1(X) +Oq,B(X
1/2+ε)

= δχ◦

∫∞

0

B(u/(qX))P ′
q(u) du+Oq,B(X

1/2+ε).

Replacing qX by X, we again verify estimate (4.2) of Theorem 4.1, hence
RHsim[χ◦] is true in this case as well.
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