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ON TWO NOTIONS OF TOTAL POSITIVITY FOR GENERALIZED PARTIAL FLAG

VARIETIES OF CLASSICAL LIE TYPES

GRANT BARKLEY, JONATHAN BORETSKY, CHRISTOPHER EUR, JIYANG GAO

ABSTRACT. For Grassmannians, Lusztig’s notion of total positivity coincides with positivity of the

Plücker coordinates. This coincidence underpins the rich interaction between matroid theory, tropical

geometry, and the theory of total positivity. Bloch and Karp furthermore characterized the (type A)

partial flag varieties for which the two notions positivity similarly coincide. We characterize the sym-

plectic (type C) and odd-orthogonal (type B) partial flag varieties for which Lusztig’s total positivity

coincides with Plücker positivity.

1. INTRODUCTION

Let n be a positive integer, and denote [n] = {1, . . . , n}. The totally positive (resp. nonnegative) part

GL>0
n (resp. GL≥0

n ) of the general linear group GLn consists of the real invertible matrices whose

minors are all positive (resp. nonnegative). The study of these spaces traces back to [ASW52, Loe55,

Whi52]. Lusztig generalized this notion of total positivity to an arbitrary connected reductive (R-

split) algebraic group G and its partial flag varieties G/P [Lus94, Lus98]. The study of total pos-

itivity has since been a nexus for fruitful interactions between algebraic geometry, representation

theory, combinatorics, and physics [AHBC+16, FZ00, Pos06, Fom10, GW18].

Underpinning such fruitful interactions is the interplay between “parametric” and “implicit”

descriptions of total positivity. The original definitions are “parametric” in nature: Lusztig defined

the Lusztig positive (resp. Lusztig nonnegative) part G>0 (resp. G≥0) of G as a semigroup in G gen-

erated by certain elements (see Section 4.1). For a parabolic subgroup P ⊂ G, the Lusztig positive

(resp. Lusztig nonnegative) part (G/P )>0 (resp. (G/P )≥0) of the partial flag variety G/P is then

defined as the image of (resp. the closure of the image of)G>0 under the projection map G→ G/P .

Marsh and Rietsch gave a combinatorial parametrization of (G/P )≥0 in terms of its Deodhar cells

[MR04].

On the other hand, one may seek an “implicit” description of Lusztig positivity for G/P in

terms of positivity of suitably natural coordinates on G/P . As a motivating example, consider the

Grassmannian Grk;n of k-dimensional subspaces in Rn. Its Plücker coordinates allow one to consider

the Plücker positive (resp. nonnegative) part of Grk;n, defined as

Gr∆>0
k;n (resp. Gr∆≥0

k;n ) :=

{
L ⊆ R

n

∣∣∣∣∣
L is the row-span of a real k × n matrix all of whose

maximal minors are positive (resp. nonnegative)

}
.

Lam [Lam14] and, independently, Talaska and Williams [TW13] showed that Gr>0
k;n = Gr∆>0

k;n and

Gr≥0
k;n = Gr∆≥0

k;n . More generally, for a subset K = {k1 < · · · < kj} ⊆ [n − 1], one may consider the
1
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(type A) partial flag variety

FlK;n := {flags of subspaces L• = (L1 ⊆ · · · ⊆ Lj) with dimLi = ki for all i = 1, . . . , j}.

Under the natural embedding FlK;n →֒ ∏j
i=1 Grki;n, its Plücker positive (resp. nonnegative) part is

defined as the intersection

Fl∆>0
K;n (resp. Fl∆≥0

K;n ) := FlK;n ∩
j∏

i=1

Gr∆>0
ki;n

(resp.

j∏

i=1

Gr∆≥0
ki;n

).

Bloch and Karp [BK23] showed the following. The second author independently showed a similar

result in the case of K = [n− 1] [Bor23].

Theorem 1.1. [BK23, Theorem 1.1] The following are equivalent for a subset K ⊆ [n− 1]:

(1) Fl>0
K;n = Fl∆>0

K;n ,

(2) Fl≥0
K;n = Fl∆≥0

K;n , and

(3) K consists of consecutive integers.

In summary, these results establish the coincidence of Lusztig’s positivity and Plücker positivity

for Grassmannians, and more generally for partial flag varieties FlK;n with consecutive K . This

coincidence supports the rich interaction between matroid theory, tropical geometry, and total

positivity [ARW17, Pos06, SW05, SW21, BEW24, JLLO23, PSBW23]. Here, with a view towards the

theory of Coxeter matroids [BGW03] and their tropical geometry [Rin11, BO23], we characterize the

partial flag varieties of the symplectic group Sp2n (type C) and the odd-orthogonal group SO2n+1

(type B) for which Lusztig’s positivity coincides with Plücker positivity.

Let ei denote the i-th standard basis vector in a coordinate space, and e∗i its dual. For type C,

endow R2n with the symplectic bilinear form ω =
∑n

i=1(−1)ie∗i ∧e∗2n+1−i. For type B, endow R2n+1

with the symmetric bilinear form Q =
∑n+1
i=1 (−1)ie∗i · e∗2n+2−i. Let Sp2n and SO2n+1 be the linear

groups preserving the bilinear forms ω and Q, respectively. Explicitly, we have

Sp2n(R) := {A ∈ SL2n(R)|AtEA = E}, where E =




1
−1

. .
.

1
−1


 , and

SO2n+1(R) := {A ∈ SL2n+1(R)|AtE′A = E′}, where E′ =

[
−1

E

]
=




−1
1

. .
.

1
−1


 .

The additional choice of pinnings required for defining their Lusztig positive parts Sp>0
2n and SO>0

2n+1

is described in Section 2. Recall that a subspace of a vector space with a symmetric or alternating

form is isotropic if the restriction of the form to the subspace is trivial. The partial flag varieties

of these groups have the following description in terms of isotropic subspaces (see Section 3.1 for

details).

For K ⊆ [n], let

SpFlK;2n := {L• ∈ FlK;2n : each subspace Li in the flag L• is isotropic with respect to ω}, and

SOFlK;2n+1 := {L• ∈ FlK;2n+1 : each subspace Li in the flag L• is isotropic with respect to Q}.
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We define their Plücker positive (resp. nonnegative) parts as the intersections

SpFl∆>0
K;2n (resp. SpFl∆≥0

K;2n) := SpFlK;2n ∩Fl∆>0
K;2n (resp. Fl∆≥0

K;2n), and

SOFl∆>0
K;2n+1 (resp. SOFl∆≥0

K;2n+1) := SOFlK;2n+1 ∩Fl∆>0
K;2n+1 (resp. Fl∆≥0

K;2n+1).

Our main theorem is as follows.

Theorem A. In type C, for n ≥ 2 and a subset K ⊆ [n], the following are equivalent:

(1) SpFl>0
K;2n = SpFl∆>0

K;2n,

(2) SpFl≥0
K;2n = SpFl∆≥0

K;2n, and

(3) K = {k, k + 1, . . . , n} for some 1 ≤ k ≤ n.

In type B, for n ≥ 3 and a subset K ⊆ [n], the following are equivalent:

(1) SOFl>0
K;2n+1 = SOFl∆>0

K;2n+1,

(2) SOFl≥0
K;2n+1 = SOFl∆≥0

K;2n+1, and

(3) K = {k, k + 1, . . . , n} for some 1 ≤ k ≤ n.

In type B, when n = 2, the statements (1) and (2) hold for all partial flag varieties SOFlK;5.

In our proof of Theorem A, we identify a general condition (see (†) in Definition 4.3) that implies

(1) =⇒ (2), and show that a mild strengthening of the condition (see (†1′)) implies (3) =⇒ (1) for

the K = [n] case. In contrast, we show that for SO2n (type D), there exists no pinning for which the

general condition (†) is satisfied (Proposition 6.2).

Previous works. Karpman showed that the statements (1) and (2) hold for Lagrangian Grassman-

nians, i.e. SpFln;2n [Kar18]. Theorem A implies that the methods there cannot generalize to SpFlk;2n
for k 6= n. For an explanation of why, see Remark 4.7.

For a general reductive (R-split) algebraic group G of simply-laced type, Lusztig showed that

Lusztig positivity for a partial flag variety G/P coincides with positivity of the coordinates from

the canonical basis of a sufficiently large irreducible representation of G [Lus98]. However, due to

the “sufficiently large” condition, this does not recover any of the aforementioned results of Lam,

Talaska–Williams, Bloch–Karp, or Karpman. Chevalier [Che11, Example 10.2] gave an example

showing that the “sufficiently large” condition cannot be removed; we verify the example explicitly

in Section 6.

Organization. Section 2 provides background on pinnings and establishes the conventions. Sec-

tion 3 describes how the pinnings for Sp2n and SO2n+1 are compatible with the standard pin-

nings of GL2n and GL2n+1. Section 4 defines Lusztig positivity and nonnegativity, and proves

the implications (3) =⇒ (1) =⇒ (2) in Theorem A. Section 5 provides explicit examples that

establish (2) =⇒ (3), thereby completing the proof of theorem A. Section 6 discusses difficulties

that arise for flag varieties of type D. Appendix A presents two alternate proofs of the implication

(3) =⇒ (1) in Theorem A by establishing further properties of the embeddings Sp2n →֒ GL2n and

SO2n+1 →֒ GL2n+1 that may be of independent interest.
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2. PINNINGS

Let G be a connected, reductive, R-split linear algebraic group. We often identify G with its R-

valued points. A pinning of G is an additional set of choices for G that is part of the input data for

the definition of Lusztig positivity for G. We set up notations, and describe our choice of pinnings

for Sp2n and SO2n+1 in this section.

2.1. Generalities and notations. Fix a split maximal torus T inG, and letX be the character lattice

of T . Let Φ ⊂ X be the set of roots of the corresponding root system. Fix a system of positive roots

Φ+, and let B+ be the corresponding Borel subgroup of G. Let B− be the opposite Borel subgroup

such that B+ ∩ B− = T . Let U+ and U− be the unipotent radicals of B+ and of B−, respectively.

Let I be an indexing set for the set {αi : i ∈ I} of simple roots in Φ+. For every i ∈ I , fix a

homomorphism φi : SL2 → G such that in the induced map sl2 → g of Lie algebras, the element

[ 0 1
0 0 ] ∈ sl2 maps to a generator of the root space in g of weight αi. We then define homomorphisms

xi : R → U+, yi : R → U−, and χi : R
∗ → T by

xi(m) := φi

([
1 m

0 1

])
, yi(m) := φi

([
1 0

m 1

])
, and χi(t) := φi

([
t 0

0 t−1

])
.

One may observe that the choices made so far for the triple (T ,B+, {φi}i∈I ) is equivalent to a choice

of a set {(ei, fi)}i∈I of Chevalley generators of the Lie algebra g.

Definition 2.1. The data (T,B+, B−, {xi}i∈I , {yi}i∈I) is called a pinning for G.

When multiple groups are in play, we write superscripts of the root system name, for example

TΦ, sΦi , and yΦi , to distinguish between the notations for pinnings of different groups.

A pinning of G identifies the reflection group W of the root system Φ with the Weyl group

NG(T )/T , as follows. For each i ∈ I , the simple reflection si ∈W is identified with ṡiT where

ṡi := φi

([
0 −1

1 0

])
.

Given an expression w = si1si2 · · · sil , we denote ẇ = ˙si1 ˙si2 · · · ˙sil .

For a sequence i = (i1, . . . , iℓ) with entries in the indexing set I of the simple roots, we denote

by si the element

si := si1 · · · siℓ ∈W.
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When clear from context, we use si to denote also the word (si1 , . . . , siℓ). Define the function yi :

R
ℓ → G by

yi(a1, . . . , aℓ) := yi1(a1) · · · yiℓ(aℓ),

and similarly define xi, χi, and ṡi. The length ℓ of the sequence i is denoted |i|.

In typeAn−1, whenG = GLn, we use the standard pinning (TA, BA+ , B
A
−, {xAi }i∈[n−1], {yAi }i∈[n−1]),

defined as follows. The torus TA consists of diagonal matrices with non-zero entries on the diago-

nal. The Borels BA+ and BA− consist of upper and lower triangular invertible matrices, respectively.

The set of simple roots is {e1 − e2, . . . , en−1 − en}. Accordingly, for each i ∈ [n − 1], the maps φAi
are given by

φAi

((
a b

c d

))
:=

i i+ 1






1
. . .

i a b

i+ 1 c d
. . .

1

,

where unmarked off-diagonal matrix entries are 0. The Weyl group is the permutation group Sn

on [n] with sAi the transposition (i i+ 1).

2.2. Pinnings of Sp2n and SO2n+1. We provide explicit descriptions of the pinnings of Sp2n and

SO2n+1 in §2.2.1 and §2.2.2, respectively. One may verify that they are indeed valid pinnings from

[BL00], which provides explicit descriptions of Chevalley generators of the Lie algebras sp2n and

so2n+1. We record the key properties of these pinnings that we will use in Section 3.

2.2.1. Type C pinning. The pinning (TCn , BCn+ , BCn− , {xCni }i∈[n], {yCni }i∈[n]) of Sp2n is defined as

follows. The torus TCn consists of matrices




t1

t2
. . .

tn

t−1
n

. . .

t−1
2

t−1
1




,

where ti ∈ R∗ for i ∈ [n] and all off-diagonal entries are 0. The BorelsBCn+ andBCn− consist of upper

and lower triangular matrices in Sp2n, respectively, with nonzero entries on the diagonal. The set
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of simple roots is {e1 − e2, . . . , en−1 − en, 2en}. Accordingly, for i ∈ [n − 1], the map φCni is given

by

φCni

((
a b

c d

))
=

i i+ 1 2n− i 2n− i+ 1






1
. . .

i a b

i+ 1 c d
. . .

2n− i a b

2n− i+ 1 c d
. . .

1

,

where all unmarked off-diagonal entries are 0. For i = n, the map φCnn is given by

φCnn

((
a b

c d

))
=

n n+ 1






1
. . .

n a b

n+ 1 c d
. . .

1

,

where all unmarked off-diagonal entries are 0.

2.2.2. Type B pinning. The pinning (TBn , BBn+ , BBn− , {xBni }i∈[n], {yBni }i∈[n]) of SO2n+1 is defined as

follows. The torus TBn consists of matrices



t1

t2
. . .

tn

1

t−1
n

. . .

t−1
2

t−1
1




,

where ti ∈ R∗ for i ∈ [n] and all off-diagonal entries are 0. The Borels BBn+ and BBn− consist of

upper and lower triangular matrices in SO2n+1, respectively, with nonzero entries on the diagonal.
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The set of simple roots is {e1 − e2, . . . , en−1 − en, en}. Accordingly, for i ∈ [n − 1], the map φBni is

given by

φBni

((
a b

c d

))
=

i i+ 1 2n− i+ 1 2n− i + 2






1
. . .

i a b

i+ 1 c d
. . .

2n− i+ 1 a b

2n− i+ 2 c d
. . .

1

,

where all unmarked off-diagonal entries are 0. For i = n, the map φBnn is determined by

φBnn

((
t 0

0 t−1

))
=

n n+ 1 n+ 2






1
. . .

n t2

n+ 1 1

n+ 2 t−2

. . .

1

,

φBnn

((
1 m

0 1

))
=

n n+ 1 n+ 2






1
. . .

n 1
√
2m m2

n+ 1 1
√
2m

n+ 2 1
. . .

1

,

and
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φBnn

((
1 0

m 1

))
=

n n+ 1 n+ 2






1
. . .

n 1

n+ 1
√
2m 1

n+ 2 m2
√
2m 1

. . .

1

,

where all unmarked off-diagonal entries are 0.

3. COMPATIBILITY OF PINNINGS

We record here some key properties of the pinnings of Sp2n and SO2n+1. These properties

describe how their pinnings are compatible with the standard pinnings of GL2n and GL2n+1 under

the embeddings Sp2n →֒ GL2n and SO2n+1 →֒ GL2n+1. To avoid repeated arguments in this and

subsequent sections, we shall often use notations as in the following general setup.

Setup 3.1. Let G be a connected, reductive, R-split linear algebraic group with a fixed pinning

(T,B+, B−, {xi}i∈I , {yi}i∈I) with simple roots I in the root system Φ. Let ι : G →֒ GLN be an

embedding, and fix a function ψ : I → {nonempty sequences in [N − 1]}. We write ψ also for the

function {sequences in I} → {sequences in [N − 1]} defined by

(i1, . . . , iℓ) 7→
(
the concatenation of ψ(i1), . . . , ψ(iℓ)

)
.

For ι : Sp2n →֒ GL2n, we define ψ(i) = (i, 2n− i) for i ∈ [n− 1], and ψ(n) = n. For ι : SO2n+1 →֒
GL2n+1, we define ψ(i) = (i, 2n+1−i) for i ∈ [n−1], and ψ(n) = (n, n+1, n). The following lemma

is verified straightforwardly from the explicit descriptions of the pinnings of Sp2n and SO2n+1.

Lemma 3.2. The pinning (TC , BC+ , B
C
− , {xCi }i∈[n], {yCi }i∈[n]) of Sp2n relates to the standard pinning

of SL2n by χCi (t) = χAi (t)χ
A
2n−i(t) if i ∈ [n− 1] and χCn (t) = χAn (t), and moreover,

yCi (m) =




yAi (m)yA2n−i(m) if i ∈ [n− 1]

yAn (m) if i = n
and ṡCi =




ṡAi ṡ

A
2n−i if i ∈ [n− 1]

ṡAn if i = n.

The pinning (TB, BB+ , B
B
− , {xBi }i∈[n], {yBi }i∈[n]) of SO2n+1 relates to the standard pinning of

SL2n+1 by χBi (t) = χAi (t)χ
A
2n+1−i(t) if i ∈ [n− 1] and χBn (t) = χAn (t

2)χAn+1(t
2), and moreover,

yBi (m) =




yAi (m)yA2n+1−i(m) if i ∈ [n− 1]

yAn (
m√
2
)yAn+1(

√
2m)yAn (

m√
2
) if i = n

and ṡBi =




ṡAi ṡ

A
2n+1−i if i ∈ [n− 1]

ṡAn ṡ
A
n+1ṡ

A
n if i = n.

Note also that in SL2n+1, we have

yAn (
m√
2
)yAn+1(

√
2m)yAn (

m√
2
) = yAn+1(

m√
2
)yAn (

√
2m)yAn+1(

m√
2
) and ṡAn ṡ

A
n+1ṡ

A
n = ṡAn+1ṡ

A
n ṡ

A
n+1.
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In the lemma above, the notation yAi denoted a map into either GL2n or GL2n+1, depending on

context, and likewise for χAi and ṡAi . We will continue this abuse of notation, as we trust that this

ambiguity will cause no confusion.

In what follows, we describe in detail the implications of Lemma 3.2 for partial flag varieties in

Section 3.1, and for Bruhat orders of Weyl groups in Section 3.2.

3.1. Partial flag varieties. Let G be as in the Setup 3.1. For a subset J ⊆ I , let WJ = 〈si : i ∈ J〉 be

the corresponding parabolic subgroup of W , and let PJ be the corresponding parabolic subgroup

of G containing B+ (so P∅ = B+). When I = [n], given J ⊆ [n], we often denote K := [n] \ J .

In type A with the standard pinning of GLn, for k ∈ [n − 1] the quotient GLn/P[n−1]\{k}
is identified with the Grassmannian Grk;n = {L a k-dimensional subspace of Rn} by taking the

column span of first k columns. Let
(
[n]
k

)
denote the set of k-subsets of [n]. The Plücker embedding

Grk;n →֒ P(
∧k

Rn) ≃ P(R(
[n]
k )) is given by

Grk;n ∋ L 7→ (∆S(A))S∈([n]
k )

where A is a n × k matrix A whose column span is L, and ∆S(A) is the maximal minor of A

corresponding to the rows labelled by S. In this case, we call the sequence (∆S(A))S∈([n]
k )

the

Plücker coordinates of L. Plücker coordinates are well defined projective coordinates, that is, they

are well-defined up to a global nonzero scalar multiple.

We now describe the partial flag varieties of Sp2n and SO2n+1. We prepare with the following

lemma. For a subspace L of a finite dimensional vector space V with a fixed nondegenerate

symmetric or alternating bilinear form B(·, ·), denote by L⊥ := {v ∈ V : B(v, ℓ) = 0 for all ℓ ∈ L}.

Note that L is isotropic if and only if L ⊆ L⊥, and that (L⊥)⊥ = L. We say that L is coisotropic if

L⊥ ⊆ L.

Lemma 3.3. Let E be an anti-diagonal n × n matrix with alternating ±1, defining a symmetric

or alternating bilinear form, depending on n. For a matrix M , let Li denote the span of its first i

columns. Then, for any matrix M satisfying M tEM = E, we have Ln−i = L⊥
i . Moreover, for any

L ⊆ Rn, the set of Plücker coordinates of L and that of L⊥ are equal (up to a global nonzero scalar).

Proof. To see Ln−i = L⊥
i , one notes that the top-left (n − i) × i submatrix of E is the zero matrix,

which implies that Ln−i pairs trivially under E with Li. That dimLn−i + dimLi = n then implies

that Ln−i = L⊥
i .

For the statement about the Plücker coordinates, let us first recall some multilinear algebra. Let

0 → L → V → M → 0 be a short exact sequence of vector spaces with dim V = n and dimL = k.

Multiplying via the wedge product on the left defines the map
∧k

V → Hom(
∧n−k

V,
∧n

V ).

The image of
∧k

L under this map, which is a line, is equal to the image of the natural map

Hom(
∧n−k

M,
∧n

V ) → Hom(
∧n−k

V,
∧n

V ). Choosing a basis (e1, . . . , en) of V , and the isomor-

phism
∧n

V ≃ R where e1 ∧ · · · ∧ en 7→ 1, the map
∧k

V → ∧n−k
V ∨ is then given by

eI 7→ sign(I, [n] \ I)e∨[n]\I ,
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where we denote eI = ei1 ∧ · · · ∧ eik for I = {i1 < · · · < ik} (and similarly for the dual vectors e∨I ),

and sign(I, [n] \ I) is the sign of the permutation (I, [n] \ I) of [n] in which both I and [n] \ I are

ordered in the increasing order.

Now, let ϕ be the isomorphism V
∼→ V ∨ induced by the pairing E. Under this isomorphism, the

subspace M∨ ⊆ V ∨ ≃ V is equal to L⊥. Hence, the desired result about Plücker coordinates of L

and L⊥ follows from the following claim: denoting by J := {n+ 1− j : j ∈ J} for J ⊆ [n], one has

that the composition
∧k V → ∧n−k V ∨ → ∧n−k V is given by either

eI 7→ e[n]\I for all I ∈
(
[n]

k

)
or eI 7→ −e[n]\I for all I ∈

(
[n]

k

)
.

To show this claim, we first note that an explicit description of ϕ is given by

ϕ(ei) = (−1)n−ie∨n+1−i for all i ∈ [n].

The composition
∧k V → ∧n−k V ∨ → ∧n−k V is thus given by

eI 7→ sign(I, [n] \ I) · (−1)#{j∈[n]\I:n−j odd} · e[n]\I .

The sign of sign(I, [n] \ I) · (−1)#{j∈[n]\I:n−j odd} is independent of the k-subset I , since replacing

i ∈ I with j ∈ [n] \ I either changes the signs in both factors or leaves both unchanged. �

For a subset K = {k1 < · · · < kj} ⊆ [n] and an integer m, denote by m − K the set {m − kj <

· · · < m − k1} with 0 omitted if it occurs. We have the following descriptions for the partial flag

varieties of Sp2n and SO2n+1. Let SpFlK;2n and SOFlK;2n+1 (and SpFl∆>0
K;2n and SOFl∆>0

K;2n+1) be as

defined in the introduction. Denote J = [n] \K .

Corollary 3.4. For a subset K ⊆ [n], we have

Sp2n /P
C
J = {L• ∈ FlK∪(2n−K);2n : Li = L⊥

j if dimLi + dimLj = 2n} ≃ SpFlK;2n, and

SO2n+1 /P
B
J = {L• ∈ FlK∪(2n+1−K);2n+1 : Li = L⊥

j if dimLi + dimLj = 2n+ 1} ≃ SOFlK;2n+1 .

Moreover, under the last isomorphisms, we have (Sp2n /P
C
J ) ∩ Fl∆>0

K∪(2n−K);2n ≃ SpFl∆>0
K;2n and

(SO2n+1 /P
B
J ) ∩ Fl∆>0

K∪(2n+1−K);2n+1 ≃ SOFl∆>0
K;2n+1, and similarly with ∆ ≥ 0 in place of ∆ > 0.

Proof. It follows from Lemma 3.2 that

PCJ = Sp2n ∩PA[2n−1]\(K∪(2n−K)) and PBJ = SO2n+1 ∩PA[2n]\(K∪(2n+1−K)).

In particular, the left-hand-sides of the equations in the corollary are subsets of the right-hand-

sides by Lemma 3.3. For the other inclusion, let us prove the type C case first. Given such an L•
in the right-hand-side FlK∪(2n−K);2n, we need to construct A ∈ Sp2n such that L• = L•(A). Since

every isotropic subspace is contained in an isotropic space of dimension n (by Witt’s theorem) and

subspaces of isotropic subspaces are isotropic, it suffices to do the case when K = [n]. We may pick

a 2n×2n column-reduced matrixA such that L•(A) = L•. By the isotropicity condition on L•, such

a matrix A has the property that AtEA is an anti-diagonal matrix with nonzero entries. Since E is

skew-symmetric, the i-th and (2n+ 1 − i)-th entry of this anti-diagonal matrix has opposite signs.

Hence, by replacing the i-th column of A by its negative if necessary for i ∈ [n], and by scaling

columns of A by positive scalars if necessary, we obtain the desired A satisfying AtEA = E. The
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proof in the type B case is nearly identical, with the extra step that one may negate the (n + 1)-th

column of the analogous (2n + 1) × (2n + 1) matrix A, which leaves AtEA unchanged, to ensure

that detA = 1. Lastly, the statements about the Plücker positive or nonnegative parts follow from

Lemma 3.3 �

3.2. Bruhat orders. LetW be a Weyl group with simple reflections {si : i ∈ I}. We use a bold letter

for an expression (i.e. a word) in the simple reflections, whose un-bolded letter denotes the element

in W obtained by multiplying the simple reflections in that expression. We will say an expression

w = si1 · · · sil for w ∈ W has length ℓ(w) = l. The expression is reduced if it is an expression for w

of minimal length. We write ℓ(w) for the length of a reduced expression for w. Denote by w0 ∈ W

the element of longest length.

For a reduced expression v = si1 · · · sip of an element v ∈ W , a subexpression u of v is a choice of

either 1 or sij for each j ∈ [p]. We will record this by writing u as a string whose jth entry is either

1 or sij . We may interpret the subexpression u as an expression for some u ∈ W by ignoring the 1s.

The Bruhat order < on W is defined by u < v if there is a subexpression for u in some, equivalently

any, expression for v. For a general background on Weyl groups and Bruhat orders, we refer to

[BB05] or [Hum90].

The Weyl groups of Sp2n and SO2n+1 are isomorphic and known as signed permutation groups. We

refer the reader to [BB05, Chapter 8.1] for relevant background on signed permutation groups, and

record the key facts that we need here. In terms of the embeddings Sp2n →֒ GL2n and SO2n+1 →֒
GL2n+1, Lemma 3.2 yields the following two realizations of the signed permutation group as a

subgroup of a type A Weyl group.

Remark 3.5. For Sp2n, relabel [2n] as [n, n] := {1, 2, . . . , n, n, . . . , 2, 1}, where we view the “bar” as

an involution i = i. Then, Lemma 3.2 identifies sCi with (i i + 1)(i i+ 1) for i ∈ [n − 1], and sCn
with (n n). In particular, we may identify WC as the subgroup of S2n consisting of permutations

σ of [n, n] such that σ(i) = σ(i) for all i ∈ [n]. Similarly for SO2n+1, relabel [2n + 1] as [n, 0, n] :=

{1, 2, . . . , n, 0, n, . . . , 2, 1}. Then, we have the same description for the sBi , and WB is the subgroup

of S2n+1 consisting of permutations σ of [n, 0, n] such that σ(0) = 0 and σ(i) = σ(i) for all i ∈ [n].

Using the descriptions of WC and WB in the remark, we now record explicit descriptions for

lengths of elements in terms of inversions.

Definition 3.6. Let us linearly order 1 < 2 < · · · < n < 0 < n < · · · < 2 < 1. For w ∈ WA ≃ Sn,

a pair (i, j) ∈ [n] × [n] is an inversion of w if i < j and w(j) < w(i) . For w ∈ WC ⊂ S2n (resp.

WB ⊂ S2n+1), a pair (i, j) ∈ [n] × [n, n] is an inversion if i < j and w(j) < w(i), or equivalently,

w(i) < w(j).

Definitions of inversions in other Weyl groups can be found in [BB05].

Proposition 3.7. Let W =WA,WB, or WC . For w ∈W , its length ℓ(w) is the number of inversions

of w.

We use inversions to record some useful facts about reduced expressions and subexpressions,

and how ψ acts on them. We work with two pairs (ι, ψ) here, namely, ι : Sp2n →֒ GL2n and
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ι : SO2n+1 →֒ GL2n+1, with the corresponding maps ψ defined below Setup 3.1. We will slightly

abuse notation by referring to both pairs by the same symbols, trusting that it is clear from context

which we mean. For the rest of this section, Φ stands for C or B whenever it appears. For an

expression v = sΦi1 · · · sΦiℓ in WΦ, let us write ψ(v) for the expression sψ(i1,...,iℓ) in WA.

Remark 3.8. For the proof of Theorem A, the only property we will need is the following: there

exists a reduced word w0 for wΦ
0 ∈ WΦ such that ψ(w0) is a reduced word for wA0 ∈ WA.

Corollary 3.13 here states that for any reduced word w0 for wΦ
0 , the expression ψ(w0) is a reduced

word for wA0 . The reader seeking a minimal path to Theorem A may skip the rest of this section by

verifying this property directly for a choice of reduced word for wΦ
0 .

Proposition 3.9. If v is a reduced expression for some v ∈ WΦ, then ψ(v) is a reduced expression

as well.

Proof. Let S±
n be the signed symmetric group. Recall that sCi generates a subgroup of S2n isomor-

phic to S±
n , and sBi generates a subgroup of S2n+1 isomorphic to S±

n . We proceed by induction on

length in S±
n . When ℓ(v) = 0, there is nothing to check.

We first consider reduced expressions v = sCi for elements v of WC ∼= S±
n ⊂ S2n. If v, ψ(v), and

vsCi are all reduced expressions, we want to show that ψ(vsCi ) is reduced as well. By reducedness,

sCi multiplied to the right of v introduces an inversion to v. By definition of an inversion in S±
n ,

and from the explicit description of S±
n and S2n given in Remark 3.5, multiplication by ψ(sCi ) adds

either one or two inversions to ψ(v) depending on whether i = n or i 6= n. Since ψ(sCi ) is a product

of one or two simple transpositions, respectively, ψ(vsCi ) is reduced.

We next consider reduced expressions v = sBi for elements v of WB ∼= S±
n ⊂ S2n+1. If v,

ψ(v), and vsBi are all reduced expressions, we want to show that ψ(vsBi ) is reduced as well.

By reducedness, sBi multiplied to the right of v introduces an inversion to v. By definition of

an inversion in S±
n , and from the explicit description of S±

n and S2n+1 given in Remark 3.5,

multiplication by ψ(sBi ) adds either three or two inversions to ψ(v) depending on whether i = n

or i 6= n. Since ψ(sBi ) is a product of three or two simple transpositions, respectively, ψ(vsBi ) is

reduced. �

Proposition 3.10. Let v be a reduced expression for some v ∈ WΦ. Then, vsΦi is reduced if and

only if ψ(v)ψ(sΦi ) is reduced.

Proof. Suppose vsΦi is reduced. Then, since ψ(vsΦi ) = ψ(v)ψ(sΦi ), the latter is reduced by Propo-

sition 3.9. If vsΦi is not reduced, then there is a reduced subexpression u contained in it such that

vsΦi = u. By Proposition 3.9, ψ(u) is reduced. Both ψ(u) and ψ(v)ψ(sΦi ) are expressions for the

same Weyl group element. Also, ψ(u) is a strict subexpression of ψ(v)ψ(sΦi ). Thus, ψ(v)ψ(sΦi ) is

not reduced. �

Corollary 3.11. For i < n and v = sCi an expression for some v ∈ WC , either both or neither of

ψ(v)sAi and ψ(v)sAi s
A
2n−i are reduced.

Proof. This follows directly from Proposition 3.10, using our explicit description of sCi in Remark 3.5.

�



ON TWO NOTIONS OF TOTAL POSITIVITY FOR GENERALIZED PARTIAL FLAG VARIETIES OF CLASSICAL LIE TYPES 13

Corollary 3.12. For i < n and v = sBi an expression for some v ∈ WB , either both or neither of

ψ(v)sAi and ψ(v)sAi s
A
2n+1−i are reduced. Moreover, either all or none of ψ(v)sAn+1, ψ(v)sAn+1s

A
n ,

ψ(v)sAn+1s
A
n sn+1, ψ(v)sAn , and ψ(v)sAn s

A
n+1 are reduced.

Proof. This follows directly from Proposition 3.10, using our explicit description of sBi in Remark 3.5

and the fact that sAn+1s
A
n s

A
n+1 = sAn s

A
n+1s

A
n . �

Corollary 3.13. If v is a reduced expression for wΦ
0 ∈ WΦ, then ψ(v) is a reduced expression for

wA0 ∈WA.

Proof. By Proposition 3.9, ψ(v) is reduced. Moreover, by Proposition 3.10 and Corollary 3.11 or

Corollary 3.12, depending on whether Φ = C or Φ = B, multiplication by any sAi causes ψ(v) to no

longer be reduced. �

4. LUSZTIG POSITIVITY AND THE PROOF OF (3) =⇒ (1) =⇒ (2)

4.1. Lusztig’s total positivity. Let G be a connected, reductive, R-split linear algebraic group with

a fixed pinning (T,B+, B−, {xi}i∈I , {yi}i∈I). We recall Lusztig’s definition of total positivity for G.

Definition 4.1. For a sequence i in I such that si is a reduced expression for the longest element

w0 ∈ W , define U>0
− (resp. U≥0

− ) to be the image yi(R
|i|
>0) (resp. yi(R

|i|
≥0)), and similarly define U>0

+

and U≥0
+ in terms of xi. Define T>0 to be the subgroup of the R-split torus T generated by the

elements χ(t) for t ∈ R>0 and χ : R∗ → T a cocharacter of T . Define the positive (resp. nonnegative)

part of G to be

G>0 := U>0
− T>0U>0

+ (resp. G≥0 := U≥0
− T>0U≥0

+ ).

The sets yi(R
|i|
>0) and yi(R

|i|
≥0) depend only on the element si ∈ W as long as si is a reduced

expression [Lus94]. In particular, the space G>0 as defined is independent of the choice of the

reduced word for w0. When G = GLn with the standard pinning, it is a classical result [Cry73,

Cry76] that GL>0
n (resp. GL≥0

n ) as defined here is the space of invertible matrices with all positive

(resp. nonnegative) minors. For a detailed survey of totally positive matrices, see [FJ11].

For a parabolic subgroup P ⊂ G containing B+, let π : G → G/P be the projection map to the

partial flag variety G/P . For a subset S ⊆ G/P , we denote by S its closure with respect to the

Euclidean topology on (G/P )(R).

Definition 4.2. Define the positive (resp. nonnegative) part of the partial flag G/P to be

(G/P )>0 := π(G>0) (resp. (G/P )≥0 := π(G>0)).

We caution that although G≥0 is the closure of G>0 [Lus94], the image π(G≥0) may be strictly

contained in (G/B+)
≥0, since π : G→ G/B+ may not be proper. However, note that the projection

map G/B+ → G/P is proper, and hence (G/P )≥0 is the image of (G/B+)
≥0.
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4.2. Proof of (1) =⇒ (2). We first show a statement in the general setting of Setup 3.1, where

ι : G →֒ GLN is an embedding and ψ maps sequences in I to sequences in [N − 1]. Let G have root

system Φ.

Definition 4.3. We say that (ι, ψ) has property (†) if the following are satisfied.

(†1) For every i ∈ I , we have ṡΦi = ṡAψ(i), and we have yΦi (a) = yAψ(i)(f1(a), . . . , f|ψ(i)|(a)) for

some sequence (f1, . . . , f|ψ(i)|) of continuous functions fj : R → R such that fj(R>0) ⊆ R>0,

and similarly for xΦi and χΦ
i .

(†2) For some sequence i in I such that sΦi is a reduced word for the longest element w0 ∈ WΦ,

the word sAψ(i) is a reduced word for the longest element of WA.

Note that the property (†1) implies that BΦ
+ ⊆ BA+ . In particular, if (ι, ψ) satisfies (†) and P is a

parabolic subgroup of GLN containing BA+ , then P ∩G is a parabolic subgroup of G containing BΦ
+.

Proposition 4.4. Suppose (ι, ψ) has property (†). Then, we have the following.

(a) G>0 ⊆ GL>0
N .

(b) For J ⊆ [N − 1], let PAJ ⊇ BA+ be the parabolic subgroup of GLN , so that GLN/P
A
J = FlK;N

where K = [N − 1] \ J . Let P = PAJ ∩G. Then, we have that

(G/P ) ∩ Fl∆≥0
K;N =

(
(G/P ) ∩ Fl∆>0

K;N

)
.

Proof. The property (†) implies that (UΦ
−)>0 ⊆ (UA− )>0, (TΦ)>0 ⊆ (TA)>0, and (UΦ

+ )>0 ⊆ (UA+ )>0,

from which the statement (a) follows. For the statement (b), let p be a point in (G/P ) ∩ Fl∆≥0
K;N . We

exhibit p as a limit of points in (G/P ) ∩ Fl∆>0
K;N , as follows. Let K = {k1, . . . , kj}.

For an N ×N matrix M , let L•(M) denote the flag of subspaces whose i-th subspace is the span

of the first ki columns ofM . By definition, there is anN×N matrixM in ι(G) such that p = L•(M),

and such that for every 1 ≤ i ≤ j, the first ki columns ofM have all nonnegative maximal minors, at

least one of which is positive by invertibility ofM . By the Cauchy–Binet formula, for anyA ∈ GL>0
N

and 1 ≤ i ≤ j, the first ki columns of AM have all positive maximal minors, i.e. L•(AM) ∈ Fl∆>0
K;N .

Thus, for any curve A(t) : R>0 → G>0 ⊆ GL>0
N such that limt→0A(t) equals the identity, the curve

L•(A(t)M) lies in (G/P )∩Fl∆>0
K;N and limits to p as t→ 0. Such a curve exists sinceG≥0 is the closure

of G>0, or explicitly, one may take A(t) = yΦ
i (t, . . . , t)χ

Φ
i (1, . . . , 1)x

Φ
i (t, . . . , t) where si = wΦ

0 . �

Applying this proposition to Sp2n and SO2n+1 yields Theorem A (1) =⇒ (2), as follows.

Proof of Theorem A (1) =⇒ (2). Since by definition (G/P )≥0 is the closure of (G/P )>0, the implica-

tion (1) =⇒ (2) would follow from Corollary 3.4 once we show that the Plücker nonnegative part is

the closure of the Plücker positive part. To show this, by Proposition 4.4(b) it suffices to verify that

the embeddings Sp2n →֒ GL2n and SO2n+1 →֒ GL2n+1, along with our choice of pinnings, satisfy

the property (†). That these embeddings satisfy (†) follows from Lemma 3.2 and Corollary 3.13. �

4.3. Proof of (3) =⇒ (1). We again work first in the general setting as stated in Setup 3.1 involving

an embedding ι : G →֒ GLN and a map ψ. We prepare by recalling the following fact.

Lemma 4.5 ([MR04, Proposition 5.2, Theorem 11.3]). Suppose si is a reduced expression for the

longest element w0 ∈ W of length ℓ = ℓ(w0), and let ẙi : (R
∗)ℓ → G/B+ be the composition of the
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restriction of the map yi : R
ℓ → G to the torus (R∗)ℓ with the projection map G→ G/B+. The map

ẙi is an isomorphism onto a Zariski open subset of G. In particular, the map ẙi has a dense image

in G/B+, and induces a bijection (R>0)
ℓ ∼→ (G/B+)

>0.

Proposition 4.6. Suppose the pair (ι, ψ) satisfies the property (†), and satisfies the following strength-

ening of (†1):

(†1′) For each i ∈ I , the functions fj : R → R appearing in (†1) further satisfy the property that:

• fj(R≤0) ⊆ R≤0;

• fj(R
∗) is a closed subset of R∗ (in Euclidean topology);

• lima→+∞ fj(a) = +∞ for at least one j;

• lima→−∞ fj′(a) = −∞ for at least one j′.

Then, one has

(G/B+)
>0 = (G/B+) ∩ Fl∆>0

[N−1];N .

Proof. By Theorem 1.1 (also [Bor23, Theorem 4.11]), we may prove the statement with Fl∆>0
[N−1];N

replaced by Fl>0
[N−1];N . Fix a sequence i such that si is a reduced expression for the longest element

of WΦ, as in (†2), and denote U = image(̊yΦ
i ) and V = image(̊yAψ(i)). The strengthening (†1′)

implies that the image of the map R∗ → (R∗)|ψ(i)| given by a 7→ (fj(a))j∈ψ(i) is closed for all i ∈ I .

Therefore, we have thatU is a closed subset of V under the embeddingG/B+ →֒ Fl[N−1];N induced

by ι : G →֒ GLN . As U is dense in G/B+ by Lemma 4.5, and as G/B+ →֒ Fl[N−1];N is a closed

embedding, we find that U is dense and closed in (G/B+) ∩ V , and hence U = (G/B+) ∩ V . The

desired equality for the Lusztig positive part now follows from Lemma 4.5, since (†1) and (†1′)
imply that f−1

j (R>0) = R>0. �

We now prove Theorem A (3) =⇒ (1).

Proof of Theorem A (3) =⇒ (1). Let n ≥ 2. As the embeddings Sp2n →֒ GL2n and SO2n+1 →֒ GL2n+1

satisfy (†), Definition 4.1 and Proposition 4.4(a) together imply that SpFl>0
K;2n ⊆ SpFl∆>0

K;2n and

SOFl>0
K;2n+1 ⊆ SOFl∆>0

K;2n+1 for any K ⊆ [n]. It remains to show the reverse inclusions when

K = {k, k + 1, . . . , n} for some k ∈ [n].

We first reduce to the case K = [n] as follows. We show this reduction for the Sp2n case; the

case of SO2n+1 is similar. By Corollary 3.4, a point in SpFl∆>0
K;2n is a point L• in (Sp2n /P

C
K ) ∩

Fl∆>0
K∪(2n−K);2n. Since K ∪ (2n − K) consists of consecutive integers by our assumption on K ,

Theorem 1.1 implies Fl∆>0
K∪(2n−K);2n = Fl>0

K∪(2n−K);2n. Since by definition Fl>0
K∪(2n−K);2n is the

projection of Fl>0
[2n−1];2n, we may extend the flag L• to a flag L̃• in Fl>0

[2n−1];2n = Fl∆>0
[2n−1];2n. Because

subspaces of isotropic subspaces are isotropic, the projection of L̃• to Fl[n];2n is a point in SpFl∆>0
[n];2n.

In particular, by Lemma 3.3, we may choose L̃• such that L̃• ∈ (Sp2n /B+) ∩ Fl∆>0
[2n−1];2n. Hence, if

Lusztig positivity and Plücker positivity agrees for the case of K = [n], then L̃• ∈ (Sp2n /B)>0 so

that its projection L• is Lusztig positive also.

Lastly, the case of K = [n] follows from Proposition 4.6 and Corollary 3.4 once we show that the

embeddings Sp2n →֒ GL2n and SO2n+1 →֒ GL2n+1 satisfy the property (†) and the strengthening

(†1′). The property (†) was already verified in the proof of (1) =⇒ (2), and (†1′) follows from

Lemma 3.2, which displays that the fj are linear functions with positive coefficients. �
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Remark 4.7. Karpman [Kar18, Proposition 6.1] showed that the statements (1) and (2) in Theorem A

hold for Lagrangian Grassmannians SpFln;2n. However, her method does not extend to other

symplectic Grassmannians SpFlk;2n, as indicated by our main theorem. Specifically, when k 6= n,

the poset of type C projected Richardson varieties in SpFlk;2n is not compatible with the poset

of positroid varieties in Grk;2n, which means that [Kar18, Corollary 3.3] and [Kar18, Proposition

3.4] cannot be generalized. Instead, we adopted a new approach by leveraging Theorem 1.1 from

[Bor23] and [BK23].

5. EXAMPLES, NON-EXAMPLES, AND THE PROOF OF (2) =⇒ (3)

5.1. Proof of (2) =⇒ (3). Let G be either Sp2n or SO2n+1. As we have shown (3) =⇒ (1) =⇒ (2),

in particular for K = [n], we have that (G/B+)
≥0 = (G/B+)

∆≥0. We now provide examples to

demonstrate the contrapositive of (2) =⇒ (3), as follows. For each relevantK ⊆ [n] and J = [n]\K ,

we will find a Plücker nonnegative point in G/PJ that does not extend to a Plücker nonnegative

point in G/B+. Such a point cannot be in the Lusztig nonnegative part (G/PJ )
≥0, since (G/PJ )

≥0

is the projection of (G/B+)
≥0 = (G/B+)

∆≥0.

5.1.1. Type C examples. Our examples for Sp2n will be constructed from the following observation.

Lemma 5.1. For n ≥ 2, define by L1;2n the subspace L1;2n = span(e1 + e2n) ⊂ R2n. Then, L1;2n is a

point in SpFl∆≥0
1;2n that does not extend to a point in SpFl∆≥0

1,2;2n.

Proof. Since L1;2n is 1-dimensional, it is isotropic with respect to the alternating form ω defined in

the introduction. It is also manifestly Plücker nonnegative. Now, suppose for a contradiction that

L1;2n extends to a point in SpFl∆≥0
1,2;2n. That is, suppose we have a 2-dimensional isotropic subspace

L2 containing L1;2n such that (L1;2n, L2) ∈ SpFl∆≥0
1,2;2n. Such a subspace L2 is the row-span of a

matrix of the form [
1 0 . . . 0 1

0 x2 . . . x2n−1 x2n

]
.

In order for 2× 2 minors to be nonnegative, we find x2 = · · · = x2n−1 = 0, but then the isotropicity

of the row-span of the matrix demands x2n = 0. This contradicts that L2 is 2-dimensional. �

Let us denote by [L1;2n] the vector

[L1;2n] =
[
1 0 . . . 0 1

]
,

whose row-span is L1;2n.

We now demonstrate how to construct a point in SpFl∆≥0
K;2n \ SpFl≥0

K;2n for all n ≥ 2 and K not of

the form {k, k + 1, . . . , n} for some 1 ≤ k ≤ n. Fix such a subset K , and denote g to be the integer

satisfying g /∈ K and {g + 1, g + 2, . . . , n} ⊂ K , i.e. “the first gap from the right.” We have three

cases: (i) g = n, (ii) g = n−1, and (iii) g ≤ n−2. In each case, we will produce a point L• ∈ SpFl∆≥0
K;2n

that does not extend to a point in SpFl∆≥0
[n];2n. For all cases, denote f = max{i | i ∈ K and i < g}.

Note that f + 1 /∈ K .
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Case (i). By assumption f ≤ n− 1. Consider the f × 2n matrix

M =

[
If−1 0 0

0 [L1;2(n−f+1)] 0

]
,

where If−1 is the (f − 1)× (f − 1) identity matrix. Observe that the rows are linearly independent,

and that for all 1 ≤ i ≤ k, the matrix formed by the first i rows ofM has isotropic row-span and has

all nonnegative Plücker coordinates; that is, the matrix defines a point L• ∈ SpFl∆≥0
K;2n. However, we

claim that it cannot be extended to a point in SpFl∆≥0
K∪{f+1};2n. Suppose there is such an extension,

say by adding a row vector v to the matrix. Then, we may assume that v1 = . . . = vf−1 = 0

(since row-reduction does not change the row-span), and furthermore v2n = . . . = v2n+1−(f−1) = 0

since ω(ei,v) = 0 for all 1 ≤ i ≤ f − 1. Since the form ω restricted to span(ef , . . . , e2n−f+1) can

be identified with the usual alternating form on R2(n−f+1) (up to a global sign), we have from

Lemma 5.1 then that v = 0.

Case (ii). By assumption f ≤ n− 2. Let ℓ = n− f − 2. Consider the n× 2n matrix

M =




If−1 0 0 0

0 0 1 0 0 0 0 1 0

0 (−1)ℓIℓ 0 0

0 0
0 1 0 0 0 0

0 0 1 0 0 0
0



.

Observe that all rows are linearly independent, and that for all i ∈ {1, 2, . . . , f} ∪ {n}, the matrix

formed by the first i rows of M has isotropic row-span and has all nonnegative maximal minors.

That is, the matrix defines a point (Li)i∈K ∈ SpFl∆≥0
K;2n. Suppose for a contradiction that it can

be extended to a point (L1 ⊂ · · · ⊂ Ln) ∈ SpFl∆≥0
[n];2n. We recall that intersecting by a coordinate

subspace spanned by standard basis vectors of consecutive indices preserves Plücker nonnegativity

[BK23, Lemma 2.12]. We thus let L′ = span(en−2, en−1, . . . , en+3), and let ((L1 ∩ L′) ⊆ · · · ⊆
(Ln ∩ L′)) be the intersection flag (with repetitions removed), considered as a point in SpFl∆≥0

K′;6 for

someK ′. Since dim(Li∩L′)−dim(Li−1∩L′) ≤ 1 for all i, we find thatK ′ must consist of consecutive

integers. Since by construction {1, 3} ⊂ K ′, we have K ′ = [3]. This in particular implies that we

have an extension of L1;6 to a point in SpFl∆≥0
[3];6 , which contradicts Lemma 5.1.

Case (iii). We use the construction from Bloch and Karp. Namely, consider the n× 2n matrix

M =




0 If−1 0 0

B 0 0 0

0 0 In−f−3 0

C 0 0 0




where

B = (−1)f−1



1 0 0 1

0 1 0 0

0 0 1 0


 and C = (−1)n−f−3

[
0 0 0 1

]
.

Since every row of M is contained in span(e1, . . . , en), row-spans are isotropic. Moreover, for every

i 6= f + 1, the matrix formed by the first i rows of M has all nonnegative maximal minors. In
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particular, the matrix defines a point L• in SpFl∆≥0
K;2n. Bloch and Karp showed that, considered as a

point in Fl∆≥0
K;n , the flag L• does not admit an extension to a point in Fl∆≥0

[n];n [BK23, Proof of Theorem

1.1 (ii) =⇒ (iii)].

5.1.2. Type B examples. Since (2) =⇒ (3) fails for B2 (see Remark 5.4), we assume n ≥ 3 throughout.

Our examples will be constructed from the following observation.

Lemma 5.2. For n ≥ 3, let the subspace L1;Bn ⊂ R2n+1 be defined by

L1;Bn :=




span(e1 +

√
2en+1 + e2n+1) if n is odd

span(e2 +
√
2en+1 + e2n) if n is even.

Then, L1;Bn is a point in SOFl∆≥0
1;2n+1 that does not extend to a point in SOFl∆≥0

[n];2n+1.

Proof. In both cases (odd and even n), one verifies the isotropicity with respect to the symmetric

form Q defined in the introduction by 2 · 1 · 1 −
√
2
2
= 0. Plücker nonnegativity is clear. We show

more strongly thatL1;2n does not extend to a pointL• in SOFl∆≥0
1,2,3;2n+1. Suppose for a contradiction

otherwise. We treat the two cases, odd and even n, separately.

When n is odd, the 2-dimensional subspace L2 in the flag L• is the row-span of a matrix of the

form [
1 0 . . . 0

√
2 0 . . . 0 1

0 x2 . . . xn xn+1 xn+2 . . . x2n x2n+1

]
.

In order for 2×2 minors to be nonnegative, we find x2 = · · · = xn = xn+2 = · · · = x2n = 0, but then

the isotropicity of the second row of the matrix demands xn+1 = 0, after which the isotropicity of

the two rows with each other demands x2n+1 = 0. This contradicts that L2 is 2-dimensional.

When n is even, the 2-dimensional subspace L2 in the flag L• is the row-span of a matrix of the

form [
0 1 0 . . . 0

√
2 0 . . . 0 1 0

−a 0 0 . . . 0 b 0 . . . 0 c d

]
.

Here, several entries in the second row have been forced to be 0 by row-reduction or the nonneg-

ativity of the 2×2 minors. Because the isotropicity of the two rows implies 2ad = b2 and c =
√
2b,

we find that either a or d must be nonzero, since otherwise a = b = c = d = 0. Without loss

of generality, let us set a = 1, since the argument that follows is similar for the case of d = 1 by

symmetry. Now, the 3-dimensional subspace L3 in the flag L• is the row-span of a matrix of the

form 


0 1 0 . . . 0
√
2 0 . . . 0 1 0

−1 0 0 . . . 0 b 0 . . . 0 c d

0 0 x3 . . . xn xn+1 xn+2 . . . x2n−1 x2n x2n+1


 .

For each i ∈ {3, . . . , n} ∪ {n + 2, . . . , 2n − 1}, we have that xi = P12i = −P1i(2n), so that Plücker

nonnegativity implies xi = 0. Then, the isotropicity of the third row implies xn+1 = 0, after which

the isotropicity of the third row with the first and the second row implies x2n = 0 and x2n+1 = 0,

respectively. This contradicts that L3 is 3-dimensional. �
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Let us write [L1;Bn ] for the nonnegative matrix whose row-span is L1;Bn . We make one more

observation in preparation.

Lemma 5.3. The 2-dimensional subspace defined as the row-span of
[
1 2 2 2 2 1 0

0 1 2 2 2 2 1

]

is a point in SOFl∆≥0
1,2;7 that does not extend to a point in SOFl∆≥0

[3];7 .

Proof. Suppose it extends, so that the 3-dimensional subspace in the extension is the row-span of a

matrix of the form 

1 1 0 0 0 −1 −1

0 1 2 2 2 2 1

0 0 a b c d e


 .

The nonnegativity of the Plücker coordinates P134 and P145 implies a ≤ b ≤ c, whereas the

nonnegativity of P346 and P456 implies a ≥ b ≥ c, so that a = b = c. Then, the isotropicity of

the bottom row implies 2ac = b2, which implies a = b = c = 0. Lastly, the isotropicity of the bottom

row with the first and the second row implies d = e and d = 0, respectively. �

We now demonstrate how to construct a point in SOFl∆≥0
J;2n+1 \ SOFl≥0

J;2n+1 for all n ≥ 3 and K

not of the form {k, k + 1, . . . , n} for some 1 ≤ k ≤ n. Given the Lemmas 5.2 and 5.3, the arguments

are nearly identical to the type C case, so we will omit details.

Fix such a subsetK , and denote g to be the integer satisfying g /∈ K and {g+1, g+2, . . . , n} ⊂ K ,

i.e. “the first gap from the right.” We have three cases: (i) g = n, (ii) g = n − 1, and (iii) g ≤ n− 2.

For all cases, denote f = max{i | i ∈ K and i < g}. Note that f + 1 /∈ K .

Case (i). By assumption f ≤ n− 1. We further divide into two cases. When f = n− 1, consider the

k × (2n+ 1) matrix

M =

[
If−2 0 0

0 A 0

]
where A =

[
1 2 2 2 2 1 0

0 1 2 2 2 2 1

]
.

When f ≤ n− 2, so that n− f + 1 ≥ 3, consider the f × (2n+ 1) matrix

M =

[
If−1 0 0

0 [L1;Bn−f+1
] 0

]
.

In both cases, the appropriate row-spans define a point in SOFl∆≥0
K;2n+1 that does not extend to a

point in SOFl∆≥0
[n];2n+1.

Case (ii). By assumption f ≤ n− 2. Let ℓ = n− f − 2. The n× (2n+ 1) matrix

M =




If−1 0 0 0 0

0 0 1 0 0
√
2 0 0 1 0 0

0 (−1)ℓIℓ 0 0 0

0 0
0 1 0 0 0 0 0

0 0 1 0 0 0 0
0 0




provides the desired example.
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Case (iii). In this case, the construction from Bloch and Karp, identical to the one recalled here in

the type C case, provides the desired example.

Remark 5.4. Let us treat the B2 case. We claim that every point in SOFl∆>0
1;5 extends to a point in

SOFl∆>0
1,2;5. Let L be the row-span of a positive matrix [a b c d e]. For it to be isotropic, we have

2ae+ c2 = 2bd. We may assume a = 1, and thus e = bd− c2

2 . Consider then the matrix
[
1 b c d bd− c2

2

0 1 2x 2x2 2bx2 + d− 2cx

]
.

One verifies the isotropicity, and notes that every minor is a polynomial in x whose leading term is

positive. Hence, for a sufficiently large x > 0, the matrix represents a point in SOFl∆>0
1,2;5.

6. TYPE D COUNTEREXAMPLES

In this section, we will discuss counterexamples that arise in type D when applying the methods

used above in type B and C. First, we show that replacing Plücker positivity by “Pfaffian positivity”

fails to detect Lusztig positivity. Second, we show that the proof strategy used for types B and C

does not apply in type D, by showing that there is no type D pinning satisfying (†). A test for

Lusztig positivity in terms of Plücker coordinates in type D will be shown using a different method

in an forthcoming work involving one of the authors.

6.1. Pfaffian positivity. We have so far compared Plücker positivity with Lusztig positivity. Plücker

coordinates may be thought of as arising from the action of G on exterior powers of the standard

representation of G. Types B and D also have spin representations, not arising from tensor powers

of the standard representation, which give coordinates resembling matrix Pfaffians. One might

wonder whether these coordinates also may be used for positivity tests. In this section, we will

show that these Pfaffian coordinates fail to detect Lusztig positivity for an orthogonal Grassman-

nian of type D4. This also gives a counterexample to [Rie98, Chapter 4, Proposition 5.1] and the note

at the end of [Lus98], which (as a special case) asserted that the canonical basis for a fundamental

representation detects positivity for its associated Grassmannian.

6.1.1. Pinning for SO2n. Set E0 =

[
(−1)n

. .
.

−1

]
. We take so2n to be the 2n× 2n matrices A so that

AtE + EA = 0, where

E =

[
Et0

E0

]
=




−1
1

. .
.

(−1)n

(−1)n

. .
.

1
−1



.

Then O2n is the invertible 2n × 2n matrices A so that AtEA = E, and SO2n is its subgroup of

determinant 1 matrices. We take the maximal torus to be diag(t1, . . . , tn, t
−1
n , . . . , t−1

1 ).

Remark 6.1. We pick the embedding of SO2n into GL2n so that the matrix E defining SO2n is

antidiagonal, to maintain consistency with the other groups considered in this paper. One could
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instead use E =

[
0 In

In 0

]
, which would make the canonical basis coordinates for the orthogonal

Grassmannian (equivalently, generalized minors for the spin representation) coincide with matrix

Pfaffians on the nose. The two embeddings are related via conjugation by

[
In

E0

]
. See [GP20,

Remarks 5.2 and 5.5] for more discussion.

The simple roots are {e1−e2, . . . , en−1−en, en−1+en}. We write the corresponding fundamental

weights as ̟1, . . . , ̟n, and denote the irreducible representation of highest weight λ by Vλ. For

i ∈ [n− 1], the map φDni is given by

φDni

((
a b

c d

))
=

i i+ 1 2n− i 2n− i+ 1






1
. . .

i a b

i+ 1 c d
. . .

2n− i a b

2n− i+ 1 c d
. . .

1

,

where all unmarked off-diagonal entries are 0. For i = n, the map φDnn is given by

φDnn

((
a b

c d

))
=

n− 1 n n+ 1 n+ 2





1
. . .

n− 1 a b

n a b

n+ 1 c d

n+ 2 c d
. . .

1

,

Set i = 2n − i + 1. The Weyl group Dn acts via permutations of {1, . . . , n, n, . . . , 1} so that

σ(i) = σ(i) and so that an even number of un-barred elements are sent to barred elements.

6.1.2. Spin representations. Let Q(·, ·) be the symmetric form on C
2n determined by E and let {ei}

be the standard basis of C2n. Consider C, the tensor algebra T (C2n) modulo the relations

v ⊗w +w ⊗ v −Q(v,w).
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The resulting algebra C is called the Clifford algebra. The underlying vector space of C is graded by

C =
⊕2n

i=0 Ci, where Ci is spanned by products of i pairwise orthogonal vectors. In particular, the

degree 1 part C1 is C2n. The degree 2 part C2 is a Lie algebra under commutator bracket. It has a

basis of the form 1
2 (eiej − ejei)i<j and acts on C1 via commutator bracket. This action identifies C2

with so2n. Explicitly, if Eij is the matrix with 1 at position (i, j) and 0s elsewhere, then the vector
1
2 (eiej − ejei) is sent to Eij − Eji.

Let C2n = W ⊕ W ∗ be the decomposition of C2n into the span of e1, . . . , en and the span of

en+1, . . . , e2n. We can identify W ∗ as the dual space of W using the bilinear form Q. The spin

representationS = S−⊕S+ = V̟n−1⊕V̟n has underlying vector space
∧•W =

∧oddW⊕∧evenW .

This space is a module for C, with action induced by w ·ω = w∧ω for w ∈ W and w∗ ·ω = ιw∗ω for

w∗ ∈W ∗. Here ιw∗ is the interior product, determined recursively by ιw∗(1) = 0 and ιw∗(w∧ω′) =

(w∗,w)ω′ −w ∧ ιw∗ω′ for w ∈ W .

If I = {i1 < · · · < ir}, then write eI = ei1 ∧ · · · ∧ ein . We see that Eij − Eji in so2n acts via
1
2 (eiej − ejei). Hence eI is a weight vector of weight

∑
i∈I

1
2ei −

∑
i6∈I

1
2ei, and {eI | I ⊆ [n]} is

a weight basis of S. The weight spaces associated to V̟n−1 are those with |I| odd, and the weight

spaces associated to V̟n are those with |I| even. Since the basis {eI | I ⊆ [n], |I| even} of V̟n
(resp. the basis {eI | I ⊆ [n], |I| odd} of V̟n−1 ) is a single WDn -orbit containing a highest weight

vector, it coincides with the Lusztig canonical basis.

6.1.3. The Grassmannian SOGr(n, 2n). The orthogonal Grassmannian SOGr(n, 2n)+ is (one of two

components of) the space of n-dimensional isotropic subspaces of C2n under the symmetric form

defined by E. It is the maximal parabolic quotient associated to the simple root αn, and hence

embeds in PV̟n . A representative element is the isotropic subspace spanned by e1, . . . , en−1, en.

We can represent an element of SOGr(n, 2n)+ by a full-rank 2n×nmatrix

[
A

B

]
satisfying AtE0B+

BtEt0A = 0, up to right multiplication by an invertible matrix. We remark that the isotropic sub-

space spanned by e1, . . . , en−1, en is not an element of SOGr(n, 2n)+; it is instead in SOGr(n, 2n)−,

which we identify as the maximal parabolic quotient associated to the simple root αn−1.

6.1.4. Coordinates on SOGr(n, 2n)+. The weight vector coordinates on V̟n = S+ induce homoge-

neous coordinates on SOGr(n, 2n)+. Let PfI denote the coordinate g 7→ 〈e[n]\I , ge[n]〉, for I ⊆ [n]

with |I| even. (Here 〈e[n]\I , ge[n]〉 means the e[n]\I -coefficient of ge[n] in the basis {eI}.) If |I| is odd,

then set PfI = 0. If X =

[
A

B

]
represents a point in SOGr(n, 2n)+, then the vector (PfI(X)2)I⊆[n]

coincides with the vector (∆
Ĩ
)I⊆[n] up to rescaling. Here ∆

Ĩ
is the minor ofX with rows ([n] \ I)⊔I ,

and PfI(X) is the value of PfI on an element of (the universal cover Spin2n lifting an element of)

SO2n of the form

[
A ?

B ?

]
. These vectors coincide because the highest weight of V̟n ⊗ V̟n is

the same as the highest weight of
∧n

V̟1 , so the coordinates with respect to the WDn orbit of

their highest weight vectors are the same. We normalize PfI(X) so that when X =

[
In

B

]
, then

sgn(I, [n] \ I)PfI(X) is the Pfaffian of the (antisymmetric) submatrix of E0B given by selecting
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the rows and columns indicated by I . (Points of this form make up the dense Schubert cell in

SOGr(n, 2n)+.)

6.1.5. Counterexample to SOGr(n, 2n)≥0
+ = SOGr(n, 2n)Pf≥0

+ . The spin representation S+ is minis-

cule, so its canonical basis coincides with its weight basis. Hence [Rie98, Chapter 4, Proposition

5.1] would imply that SOGr(n, 2n)≥0
+ is the locus of non-negativity of {PfI | I ⊆ [n], |I| even}

in SOGr(n, 2n)+. However, this is not the case: there is an element of SOGr(n, 2n)+ with strictly

positive values of its Pfaffians which is not in SOGr(n, 2n)≥0
+ . Indeed, consider the reduced word

w
{1,...,n−1}
0 = s4s2s3s1s2s4,

and the element y4(t1)y2(t2)y3(t3)y1(t4)y2(t5)y4(t6)P in SOGr(n, 2n)+. This element of SOGr(n, 2n)+

is represented by the matrix



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

t4t5t6 −(t2 + t5)t6 t1 + t6 0

t3t4t5t6 −t3t5t6 0 t1 + t6

t2t3t4t5t6 0 −t3t5t6 (t2 + t5)t6

0 t2t3t4t5t6 −t3t4t5t6 t4t5t6




.

The associated antisymmetric matrix is

E0B =




0 −t2t3t4t5t6 t3t4t5t6 −t4t5t6
t2t3t4t5t6 0 −t3t5t6 (t2 + t5)t6

−t3t4t5t6 t3t5t6 0 −t1 − t6

t4t5t6 −(t2 + t5)t6 t1 + t6 0


 .

The Pfaffians are Pf∅ = 1, Pf{1,2,3,4} = t1t2t3t4t5t6, and the Pfaffians with index of size 2, which

are (up to sign) the entries of the matrix,

t2t3t4t5t6, t3t4t5t6, t4t5t6, t3t5t6, (t2 + t5)t6, t1 + t6.

We see that if t1, t2, t3, t4 are positive, t5, t6 are negative, and |t6| ≪ t1 and |t5| ≪ t2, then all of

the canonical basis coordinates are positive. However, this point of SOGr(n, 2n)+ is Lusztig non-

negative if and only if ti ≥ 0 for all i.

6.2. Type D pinning. We now allow the type D Lie group SO2n to be defined as the linear sub-

group of SL2n that preserves a non-degenerate symmetric bilinear form Q on R2n. Specifically, we

have:

SO2n := {A ∈ SL2n(R)|AtEA = E},
where E is the symmetric matrix associated with Q. In this section, we will show that there is no

pinning of SO2n with nice enough properties to be treated the same way as type B and type C in

this paper.
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Proposition 6.2. There does not exist a choice of E (which determines the embedding ι : SO2n →֒
SL2n), a pinning (TD, BD+ , B

D
− , {xDi }, {yDi }) of SO2n, and a map ψ satisfying (†1) in Definition 4.3.

We first prove the following lemma.

Lemma 6.3. Given a symmetric matrix E, which determines an embedding ι : SO2n →֒ SL2n. If the

maximal torus TD of SO2n satisfies ι(TD) ⊆ TA, then E must be a monomial matrix.

Proof. It is easier to work with the Lie algebra

so2n = {A ∈ sl2n | AE + EAt = 0}.

Let t = diag(t1, t2, . . . , t2n) be a diagonal matrix in sl2n. Then t ∈ so2n implies tE + Et = 0,

or (ti + tj)E(i, j) = 0 for any i, j (here E(i, j) is the (i, j)th entry of E) Therefore, ti + tj = 0 if

E(i, j) 6= 0. We create a graph G on 2n vertices, where we connect i, j if the entry E(i, j) 6= 0.

Note we add a self-loop to vertex i in this graph if E(i, i) 6= 0. Note that dim(TD) is at most the

number of connected components of G since all ti’s in that connected component are the same up

to a sign. Also, since E is not degenerate, all vertices in G have degree at least one. As a result,

any connected component of size one must be a self loop, at some vertex i. This forces ti = 0.

Assume G has a connected components with size 1 and b connected components with size ≥ 2.

Then a + 2b ≤ 2n, and n = dim(TD) ≤ b. Both inequalities hold simultaneously if and only if

a = 0, b = n and all connected components have size 2. This implies E is a monomial matrix that

represents a permutation w ∈ S2n, where w is an involution with no fixed points. �

Proof of Proposition 6.2. Let eAi ∈ sl2n and eDi ∈ so2n be the Chevalley generators of the Lie algebras.

If (†1) holds, where yDi (a) = yA
ψ(i)(f1(a), . . . , f|ψ(i)|(a)) =

∏
j∈ψ(i) y

A
ij
(fj(a)), then:

eDi = lim
a→0

yDi (a)− I

a
= lim
a→0

∏
j∈ψ(i) y

A
ij
(fj(a))− I

a
= lim

a→0

∏
j∈ψ(i)(I + fj(a) · eAij )− I

a
=
∑

j∈I
f ′
j(0)e

A
ij
.

Note that since yDi gives a smooth map from R to SO2n ⊆ GL2n and yDi (0) = I , it follows that the

sum on the right-hand side is well-defined, even if f ′
j(0) is not defined for some j. Therefore, eDi

is a sub-diagonal matrix, meaning all non-zero entries lies on the diagonal directly above the main

diagonal. Let the support of eDi , denoted as supp(eDi ), be the set of entries in eDi that are non-zero.

The contradiction arises as follows:

(1) Note that eDi E is a skew-symmetric matrix since eDi ∈ so2n. If |supp(eDi )| = 1, then eDi E

would have exactly one non-zero entry, given that E is a monomial matrix by Lemma 6.3.

This is impossible for a skew-symmetric matrix, as it would violate the property of having

an even number of non-zero entries. Therefore, we conclude that |supp(eDi )| ≥ 2.

(2) For any i 6= j, supp(eDi ) ∩ supp(eDj ) = ∅. To see this, let t = diag(t1, . . . , t2n) be a generic

element in TD. If they did share entry (k, k+1), then since eDi and eDj are both eigenvectors

of TD, they both must belong to the λ = (tk − tk+1) eigenspace in order to satisfy [t, eDi ] =

λeDi in position (k, k + 1) and the analogous equation for eDj . This contradicts the fact that

eDi and eDj belong to different TD-eigenspaces.

(3) Now, all supp(eDi ) for i ∈ [n] are disjoint and each has size at least two. However, there are

only 2n− 1 entries on the sub-diagonal. This is a contradiction.
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�

Remark 6.4. We conjecture that Proposition 6.2 should hold for any embedding ι : SO2n →֒ SLN .

APPENDIX A. OTHER PROOFS OF (3) =⇒ (1)

The main body of this paper contains a rather minimalistic and general proof of (3) =⇒ (1) in

Theorem A. In this appendix, we present two other proofs which rely less on general theory and,

to varying degrees, more on the specific combinatorial properties of the flag varieties investigated.

Accordingly, these proofs provide more insight into how precisely the types B and C flag varieties

embed into the appropriate type A flag variety, which may be of independent interest. We review

relevant background in the next subsection, and present the two proofs in the second and third

subsections of this appendix.

A.1. Distinguished subexpressions and Deodhar decompositions. Introduced in [Deo85, Deo87]

(for complete and partial flag varieties, respectively), the Deodhar decomposition is a refined

decomposition of a flag variety. Marsh and Rietsch gave a combinatorial parametrization for

Deodhar components that is particularly well-suited for describing Lusztig positivity [MR04]. We

will take their parametric description as the definition of Deodhar components.

Let G be a group with a fixed pinning, and as before, let W be its Weyl group with simple

reflections {si : i ∈ I}. We start with combinatorial preparations.

Let v be an expression for v ∈W and let u be a subexpression of v for u ∈W . For k ≥ 0, we will

let u(k) be the subexpression of v which is identical to u in its first k entries and is all 1s afterwards.

Let u(k) ∈W be the element of W given by the expression u(k).

Example A.1. Suppose W = S4 and v = s1s2s3s1s2 is an expression for v = 4312 (in one-line

notation). An example of a subexpression is u = s11s3s11, which is an expression for u = 1243. We

then have u(0) = 11111, u(1) = u(2) = s11111, u(3) = s11s311, and u(4) = u(5) = u. Accordingly,

u(0) = 1234, u(1) = u(2) = 2134, u(3) = 2143, and u(4) = u(5) = u.

Definition A.2. For a subexpression u of a reduced expression v = si1 · · · sip , define

J+
u := {k ∈ [p] | u(k) > u(k−1)},
J◦
u := {k ∈ [p] | u(k) = u(k−1)}, and

J−
u := {k ∈ [p] | u(k) < u(k−1)}.

We say that the subexpression u of v is

distinguished, denoted u � v, if u(j) ≤ u(j−1)sij for all j ∈ [p]. That is, if multiplying u(j−1) on the

right by sij decreases the length of u(j−1), then u must contain sij . We say it is reverse distinguished

if u(j−1) ≤ siju(j).

The Deodhar components of the flag variety G/B correspond to the distinguished subexpres-

sions, as follows.
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Definition A.3. Let v = si1 · · · siℓ be a reduced expression for v ∈ W , and let u be a distinguished

subexpression. Define a map pu,v : RJ
−

u × (R∗)J
◦

u → G by

pu,v(m, t) := g1 · · · gℓ where gk :=





xik (mk) ˙sik
−1 if k ∈ J−

u

yik(tk) if k ∈ J◦
u, and

˙sik if k ∈ J+
u .

Denote by Gu,v the image of this map, and define the Deodhar cell Ru,v of u � v to be the image of

Gu,v in G/B under the projection map G→ G/B.

We record the properties of these cells we will need. The last statement (c) below, which ap-

peared as Lemma 4.5, follows from (a) by comparing Definitions 4.1 and A.3.

Proposition A.4. We have the following.

(a) [MR04, Proposition 5.2] In the setting of Definition A.3, the composition RJ
−

u × (R∗)J
◦

u →
Gu,v → Ru,v is a bijection. We abuse notation and write pu,v also for this composition.

(b) [MR04, Section 4.4] For each v ∈ W , fix a reduced expression v. Then, we have

G/B =
⊔

v∈W

⊔

u�v

Ru,v,

called the Deodhar decomposition of the flag variety G/B.

(c) Fix a reduced expression w0 for the longest element w0 ∈ W , and let 1 denote the subex-

pression (1, . . . , 1), which is distinguished. Then, (G/B)>0 = p1,w0
(R

ℓ(w0)
>0 ) ⊂ R1,w0

.

A.2. Proof 1: Reduction to the complete flag case. Like the proof of (1) =⇒ (2), we first work in

the general setting as stated in Setup 3.1 involving an embedding ι : G →֒ GLN and a map ψ. Here,

for an expression sΦi , we write ψ(sΦi ) for the expression sAψ(i). For a subexpression u = u1 · · ·up of

an expression v = si1 · · · sip , we modify ψ to define ψ̃(u) = ψ̃(u1) · · · ψ̃(up) where

ψ̃(uk) =




ψ(sik) if k /∈ J◦

u

(1, . . . , 1) of length |ψ(ik)| if k ∈ J◦
u,

so that ψ̃(u) is a subexpression of ψ(v).

Definition A.5. We say that the pair (ι, ψ) has property (‡) if the following are satisfied:

(‡1) The map ψ preserves the property of being reduced and distinguished. That is, for a re-

duced expression v for v ∈WΦ and a distinguished subexpression u of v, one has that ψ(v)

is a reduced expression for an element in WA, and ψ̃(u) is a distinguished subexpression of

ψ(v).

(‡2) For every i ∈ I , under the embedding ι : G →֒ GLN we have

xΦi (m)(ṡΦi )
−1 = xAi1 (f1(m))(ṡAi1 )

−1 · · ·xAiℓ(fℓ(m))(ṡAiℓ)
−1

where ψ(i) = (i1, . . . , iℓ) and (f1, . . . , fℓ) is a sequence of functions fj : R → R.

(‡3) All the functions fj : R → R appearing in (†1) further satisfy fj(R≤0) ⊆ R≤0.
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Proposition A.6. Suppose the pair (ι, ψ) satisfies the property (†), so that G/B+ naturally embeds

in Fl[N−1];N . If the pair (ι, ψ) further satisfies the property (‡), then

(G/B+)
>0 = (G/B+) ∩ Fl∆>0

[N−1];N .

Proof. By Theorem 1.1 (also [Bor23, Theorem 4.11]), we may prove the statement with Fl∆>0
[N−1];N re-

placed by Fl>0
[N−1];N . Fix reduced expressions for elements of WΦ, with w0 for the longest element.

By (†2), we may fix w0 such that ψ(w0) is a reduced expression for the longest element of WA. For

every pair u � v in WΦ, the properties (†1) and (‡) together imply that the embedding ι induces an

inclusion RΦ
u,v ⊆ RA

ψ̃(u),ψ(v)
. Since RΦ

u,v ⊆ RA

ψ̃(u),ψ(v)
is disjoint from RA

1,ψ(w0)
unless u = 1 and

ψ(v) = ψ(w0) by Proposition A.4(b), and since ψ(v) = ψ(w0) implies that v is a reduced expression

for the longest element of WΦ by (†2) and (‡1), we find that RΦ
1,w0

= (G/B)∩RA
1,ψ(w0)

. The desired

statement now follows from the property (‡3), Proposition A.4(a), and Proposition A.4(c). �

We now proceed to prove Theorem A(3) =⇒ (1). Let us prepare by recording two properties

concerning subexpressions when Φ is either C or B, which amount to stating that the property (‡1)

is satisfied. We abuse notation by using ι and ψ for both the maps starting from type C objects and

those starting from type B objects.

Proposition A.7. Let u be a reduced subexpression in v, for v a reduced expression for some v ∈
WΦ. Then ψ̃(u) is a reduced subexpression in ψ(v).

Proof. We may ignore any factors that are 1s. The result then follows from Proposition 3.9. �

Proposition A.8. Let u be a distinguished subexpression in v, for v a reduced expression for some

v ∈ WΦ. Then ψ̃(u) is a distinguished subexpression in ψ(v).

Proof. This follows from either Corollary 3.11 or Corollary 3.12, depending on whether Φ = C or

Φ = B. �

Proof of Theorem A (3) =⇒ (1). Let n ≥ 2. As the embeddings Sp2n →֒ GL2n and SO2n+1 →֒ GL2n+1

satisfy (†), Definition 4.1 and Proposition 4.4(a) together imply that SpFl>0
K;2n ⊆ SpFl∆>0

K;2n and

SOFl>0
K;2n+1 ⊆ SOFl∆>0

K;2n+1 for any K ⊆ [n]. It remains to show the reverse inclusions when

K = {k, k + 1, . . . , n} for some k ∈ [n].

We first reduce to the case K = [n] as follows. We show this reduction for the Sp2n case; the

case of SO2n+1 is similar. By Corollary 3.4, a point in SpFl∆>0
K;2n is a point L• in (Sp2n /P

C
K ) ∩

Fl∆>0
K∪(2n−K);2n. Since K ∪ (2n − K) consists of consecutive integers by our assumption on K ,

Theorem 1.1 implies Fl∆>0
K∪(2n−K);2n = Fl>0

K∪(2n−K);2n. Since by definition Fl>0
K∪(2n−K);2n is the

projection of Fl>0
[2n−1];2n, we may extend the flag L• to a flag L̃• in Fl>0

[2n−1];2n = Fl∆>0
[2n−1];2n. Because

subspaces of isotropic subspaces are isotropic, the projection of L̃• to Fl[n];2n is a point in SpFl∆>0
[n];2n.

In particular, by Lemma 3.3, we may choose L̃• such that L̃• ∈ (Sp2n /B+) ∩ Fl∆>0
[2n−1];2n. Hence, if

Lusztig positivity and Plücker positivity agrees for the case of K = [n], then L̃• ∈ (Sp2n /B)>0 so

that its projection L• is Lusztig positive also.

Lastly, the case of K = [n] follows from Proposition A.6 and Corollary 3.4 once we show

that the embeddings Sp2n →֒ GL2n and SO2n+1 →֒ GL2n+1 satisfy the property (‡) in addition
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to the property (†). The property (†) was already verified in the proof of (1) =⇒ (2). For the

property (‡), Proposition A.7 and Proposition A.8 implies (‡1), and the following observations,

whose verification is straightforward from the explicit descriptions of the pinnings, imply (‡2):

• For any i ∈ [n − 1], we have that any element of {xAi (m), ṡAi } commutes with any element

of {xA2n−i(m), ṡA2n−i} inGL2n, and similarly for the pairs {xAi , ṡAi } and {xA2n+1−i, s
A
2n+1−i} in

GL2n+1.

• We have xBn (m)(ṡBn )
−1 = xAn (

√
2m)(ṡAn )

−1xAn+1(−m2)(ṡAn+1)
−1xAn (

√
2m)(ṡAn )

−1. under the

embedding SO2n+1 →֒ GL2n+1. �

Remark A.9. Condition (‡2) can be weakened to a form that is more general than what we need for

our purposes. Let ι be an embedding ofG, with root system Φ, into SN . Let ψ be the corresponding

map of sequences of [N − 1]. For an interval I = {a, a + 1, . . . , a + b} ⊂ [N ], denote by wI0 the

permutation in SN which fixes [N ] \ I and maps a + i to a + b − i for 0 ≤ i ≤ b. Suppose that, in

addition to (†) and (‡1), (ι, ψ) satisfies (‡2′): For each sΦi , ψ(sΦi ) =
∏
wI0 , where the product is over

disjoint intervals of [N ]. Then, RΦ
u,v ⊆ RA

ψ̃(u),ψ(v)
. In particular, this implies that Proposition A.6

still holds. We include a proof sketch.

Proof sketch. We observe that yΦi (t) = yAψ(i)(t), where t = (f1(t), f2(t), . . . , f|ψ(i)|(t)) ∈ Rℓ(ψ(i)),

where the fi are as in (†1). Also, ṡΦi = ṡAi , and xΦi (t)(ṡ
Φ
i )

−1 = D(xAi (tj)(ṡ
A
i )

−1)i for some diag-

onal matrix D with ±1 on the diagonal and some choice of {tj}. The first two observations are

immediate. We provide more detail on the third.

Since permutation of disjoint subsets commute, it suffices to focus on the case that ψ(sΦi ) = sAi is

an expression for wA0 in Sn for some n ≤ N . Let G := xΦi (t)(ṡ
Φ
i )

−1 = xAi (t)(ṡ
A
i )

−1, with t as in the

previous paragraph. The first factor is upper triangular. The second is anti-diagonal with ±1 on

the anti-diagonal. Thus, G is a matrix with ±1 on the anti-diagonal and any non-zero entry on or

above the anti-diagonal. On the other hand, using the explicit form xAi (t)(ṡ
A
i )

−1 = φi

([
−t 1

−1 0

])
,

we compute H := (xAi (tj)(ṡ
A
i )

−1)i. To do this, we observe the following braid move:

xAi (t1)(ṡ
A
i )

−1xAi+1(t2)(ṡ
A
i+1)

−1xAi (t3)(ṡ
A
i )

−1 = xAi+1(t3)(ṡ
A
i+1)

−1xAi (t1t3 − t2)(ṡ
A
i )

−1xAi+1(t1)(ṡ
A
i+1)

−1.

This allows us to assume without loss of generality that i = (1, 2, . . . , n−1, 1, 2, . . . , n−2, . . . , 1, 2, 1).

Then, by an explicit computation by induction, we see that H has entries ±1 on the anti-diagonal

and, by making appropriate choices of {tj}, can have any entries we desire above the anti-diagonal.

Thus, for some choice of {tj}, G = HD, where D is a diagonal ±1 matrix chosen such that the anti-

diagonals of G and DH agree.

We recall the notation gk of Definition A.3. We will use superscripts to denote a root system

for gk, as we do for xi, yi and ṡi. Consider a flag F ∈ RΦ
u,v. Then F is represented by some

pu,v(m, t) = gΦ1 · · · gΦ
ℓ(v). We have shown that this matrix equals gA1 d1g

A
2 d2 · · · gAℓ(ψ(v))dℓ(ψ(v))

, where

each dAi is diagonal with ±1 on the diagonal (many of these are identity matrices, but we may get

non-identity matrices for each gΦk = xΦi (ṡi)
−1). It is straightforward to see that this can be rewritten

as gA1 g
A
2 · · · gA

ℓ(ψ(v))D
′, for some D′ diagonal with ±1 on the diagonal. However, multiplying by a
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diagonal matrix on the right does not change gA1 g
A
2 · · · gA

ℓ(ψ(v)) as a flag. By definition, the latter lies

in RA

ψ̃(u),ψ(v)
. Thus, RΦ

u,v ⊆ RA

ψ̃(u),ψ(v)
. �

A.3. Proof 2: Relating distinguished subexpressions in WΦ and WA. This subsection contains a

proof of (3) =⇒ (1), which is based primarily on the combinatorics of expressions in WΦ. For the

rest of this section, fix some K = {k, · · · , n} and the corresponding J = {1, 2, · · · , k − 1}. If Φ = C,

define Ĵ := {i | 2n− i ∈ J}. If Φ = B, define Ĵ := {i | 2n+ 1− i ∈ J}. In either case, let JA = J ∪ Ĵ
and define KA similarly. Finally, we will use J ′ = [2n− 1] \K if Φ = C and J ′ = [2n] \K if Φ = B.

Notation: In this section, we will have expressions for many different Weyl group elements

appearing. In order to help us keep track of them, we will use the following notation: forW a Weyl

group, w = si an expression for w ∈ W , and a ∈ Rℓ(w), we will write yw(a) := yi(a).

The combinatorics of partial flag varieties is related to the combinatorics of parabolic subgroups

of a Weyl group, defined as follows:

Definition A.10. Let W be a Weyl group and J a subset of the roots of the corresponding root

system. We let WJ = 〈si | i ∈ J〉 be the corresponding parabolic subgroup. We denote by W J the

quotient W/WJ .

We recall the definition of a descent in a Weyl group W .

Definition A.11. We say w has a descent at position i if the pair (i, i+ 1) is an inversion. We denote

by des(w) the set of positions of its descents.

Proposition A.12. For a subset J ⊆ [n], letwJ be the minimal length coset representative forw ∈W

in W J . Then, des(wJ ) ⊂ [n] \ J .

We present the partial flag version of Proposition A.4.

Definition A.13. Define the Deodhar cell RJ
u,v of u � v to be the image of Gu,v in G/PJ under the

projection map G→ G/PJ .

Proposition A.14. We have the following.

(a) [?, Section 3.4] Let v be an expression for a minimal length coset representative in W J . In

the setting of Definition A.3, the composition RJ
−

u × (R∗)J
◦

u → Gu,v → RJ
u,v is a bijection.

We abuse notation and write pu,v also for this composition.

(b) [?, Section 3.4] For each v a minimal length coset representative in W J , fix a reduced

expression v. Then, we have

G/B =
⊔

v∈WJ

⊔

u�v

Ru,v,

called the Deodhar decomposition of the flag variety G/B.

(c) Fix a reduced expression wJ
0 for the minimal length coset representative of the longest

element wJ0 ∈ W J , and let 1 denote the subexpression (1, . . . , 1), which is distinguished.

Then, (G/PJ )
>0 = p1,w0

J (R
ℓ(wJ0 )
>0 ) ⊂ RJ

1,wJ

0

.

We now transition to discussing the combinatorics of expressions and distinguished subexpres-

sions in WΦ and WA, which will lie at the heart of our proof.
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Proposition A.15. [MR04, Lemma 3.5] If v < w ∈ W and w is an expression for w, then there is

a unique reduced distinguished subexpression v for v in w and a unique reduced reverse distin-

guished subexpression v for v in w.

Accordingly, we will refer to the reduced distinguished subexpression and the reduced reverse

distinguished subexpression going forward.

Remark A.16. The reduced distinguished and reduced reversed distinguished subexpression of w

for v can be informally thought of as the rightmost and left most reduced subexpression of w for v,

respectively.

We leave it to the reader to verify that the following is an expression for wΦ
0 ∈WC ∼=WB ∼= S±

n :

w0
Φ = sΦn (s

Φ
n−1)s

Φ
n (s

Φ
n−2s

Φ
n−1)sn(· · · )sΦn (sΦ1 sΦ2 · · · sΦn−1)s

Φ
n (s

Φ
1 )(s

Φ
2 s

Φ
1 )(· · · )(sΦn−1 · · · sΦ1 ),

Example A.17. Let n = 4. Then wΦ
0 = sΦ4 (s

Φ
3 )s

Φ
4 (s

Φ
2 s

Φ
3 )s

Φ
4 (s

Φ
1 s

Φ
2 s

Φ
3 )s

Φ
4 (s

Φ
1 )(s

Φ
2 s

Φ
1 )(s

Φ
3 s

Φ
2 s

Φ
1 ).

Denote by (wJ0 )
Φ the minimal coset representative of wΦ

0 in (WC)J ∼= (WB)J ∼= BJ . Denote

the reduced reverse distinguished subexpression for (wJ0 )
Φ in w0

Φ by (wJ
0)

Φ. By a slight abuse of

notation, for a Weyl group element w with expression w, let ψ(w) denote the Weyl group element

given by the expression ψ(w).

Remark A.18. Observe that in general, (wJ0 )
A, (wJ

A

0 )A = ψ((wJ0 )
Φ) and

(
wJ

′

0

)A
are all pairwise

different. If w ∈ WΦ has des(w) = J ⊂ [n], then des(ψ(w)) = JA, and J ⊂ JA ⊂ J ′. We will

write ψ((wJ0 )
Φ) rather than (wJ

A

0 )A going forward. The relation between ψ((wJ0 )
Φ) and

(
wJ

′

0

)A
is

expanded on in Corollary A.21.

Proposition A.19. For i ∈ [n], we have (wJ0 )
Φ(i) =

(
wJ

′

0

)A
(i) ∈ [n].

Proof. We can write wΦ
0 = (wJ0 )

Φ((w0)J )
Φ, where ((w0)J )

Φ consists of only si with i ∈ J . Since

n /∈ J and wΦ
0 ([n]) = [n], we must have that (w0

J)Φ([n]) = [n]. Similarly, we can write wA0 =(
wJ

′

0

)A
((w0)J′)A, where ((w0)J′)A consists of only si with i ∈ J ′. Since n /∈ J ′ and wA0 ([n]) = [n],

we must have that (w0
J′

)A([n]) = [n]. Thus, (w0
J)Φ([n]) = (w0

J′

)A([n]) = [n].

Thought of as a permutation of [n], with the ordering induced from our ordering of [2n] or [2n+1]

(depending on Φ), these must both be Bruhat-maximal subject to the condition that descents can

only occur at locations K = [n] \ J = [n] \ J ′ and so they must coincide.

�

Proposition A.20. Let W be a Weyl group and let R ⊂ R′ be sets of roots in the corresponding root

system R0. Then, in WR, wR0 = wR
′

0 u where u ∈WR′

Proof. This follows from [BB05, Corollary 2.4.6]. �

Corollary A.21. We have ψ(
(
wJ0
)Φ

) =
(
wJ

′

0

)A
u for some u ∈WA

J′ .
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Proof. This follows from the fact that ψ(
(
wJ0
)Φ

) =
(
wJ

A

0

)A
and JA ⊂ J ′, together with Proposi-

tion A.20. �

In particular, Corollary A.21 implies that ψ(
(
wJ0
)Φ

) ≥
(
wJ

′

0

)A
. Thus, we can define (wJ′

0 )A to be

the reduced reverese distinguished subexpression for for (wJ
′

0 )A in ψ(
(
wJ

0

)Φ
).

Proposition A.22. We can obtain an expression (wJ
0)

Φu from w0
Φ by commutation moves and

(wJ
0)

Φ contains the prefix p = sΦn (s
Φ
n−1 · · · sΦ1 )sΦn (sΦn−1 · · · sΦ2 )sΦn · · · sΦn (sΦn−1)s

Φ
n of w0

Φ. The expres-

sion u consists of sΦi with i ∈ J .

Proof. Since wΦ
0 = (wJ0 )

Φ(w0J)
Φ, u is necessarily a reduced expression for (w0J)

Φ. Therefore, it

consists of sΦi for i ∈ J . Since J = {1, . . . , k − 1}, WΦ
J

∼= Sk, where the longest element has length(
k
2

)
[BB05]. By direct observation of the expression w0

Φ, it is possible to move
(
k
2

)
many sΦi to the

end by commutation moves, namely the sΦk−1 · · · sΦ1 from the last set of parentheses, the sΦk−2 · · · sΦ1
from the second to last set of parentheses, and so on, until taking the sΦ1 from the (k − 1)−st to last

set of parentheses. �

Proposition A.23. Let Φ = C. Then, (wJ′

0 )A contains the prefix ψ(p), where p is as in proposi-

tion A.22.

Proof. By Proposition A.19, (w0
J )A([n]) = [n]. The shortest element of S2n with this property is

ψ(p) and so the claim follows from the definition of reverse positive distinguished. �

Proposition A.24. Let Φ = B, and let u be a reduced distinguished subexpression of ψ(
(
wJ0
)B

).

Let i ≤ n. It is impossible to rewrite u using only commutation moves in S2n+1 as v1s
A
i s

A
i+1s

A
i v2,

with the second sAi coming from ψ(p) and v1, v2 freely chosen expressions.

Proof. Suppose i ≤ n and sAi comes from ψ(p). Note that by proposition A.22, all of ψ(p) appears in

ψ(
(
wJ0
)B

). By the description of ψ before lemma 3.2, in w0
A, sAi always appears, up to commutation

moves, immediately before an sAi+1. Thus, if we apply a braid move t = sAi s
A
i+1s

A
i =: t1t2t3 7→ r =

sAi+1s
A
i s

A
i+1 =: r1r2r3, we maintain the property of being a subexpression of w0

A: r1 and r2 take the

places of t2 and t3, respectively, whereas r3 in the position of the sAi+1 following t3, guaranteed by

the beginning of this proof. We note that this transposition is not already used in u since, if it were,

we would have a contradiction to the reducedness of u. Observe that adding r3 to u would result

in a non-reduced subexpression of w0
A. This would imply, by the definition of distinguishedness,

that r3 should appear in u, a contradiction. �

Lemma A.25. Let w be a reduced expression for w ∈ Sn. Suppose in w there are two factors

r1, r2 = sAi+1 with no sAi between them. Then, up to commutation moves, there is a subsexpression

of w of the form w1s
A
j s

A
j+1s

A
j w2, with the three simple transpositions lying weakly between r1 and

r2 in w.

Proof. We work by reverse induction on i. If i = n− 1, the hypotheses are impossible so the lemma

statement is vacuously true.

By reducedness, there is either an sAi or an sAi+2 between r1 and r2. By assumption, it is r3 = sAi+2.

If this is the only one, we can rewrite w as w1r1r3r2w2, which is in the desired form. Otherwise,
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let r3 be the leftmost of the sAi+2 occurring between r1 and r2, and r4 the second from the left.

If there were a factor r5 = sAi+1 between r3 and r4, we could rewrite w as w1r1r3r5w2, which is

in the desired form. Otherwise, there is no copy of si+1 between r3 and r4, and we are done by

induction. �

Definition A.26. Define ψ≤n(sΦi ) to be the subexpression of ψ(sΦi ) consisting of the unique factor

sAi with i < n. Extend ψ≤n to expressions by ψ≤n(si1 · · · sit) = ψ≤n(si1) · · ·ψ≤n(sil).

Proposition A.27. If n /∈ J , then
(
wJ′

0

)A
contains ψ≤n((wJ

0)
Φ) as a subexpression.

Proof. Observe thatψ≤n((wJ
0)

Φ) consists of all transpositions sAi appearing inψ((wJ
0)

Φ) with i ∈ [n].

There are exactly ℓ((wJ0 )
Φ) many of these, one each of the form ψ≤n(sΦi ) for sΦi appearing in (wJ

0)
Φ.

By Corollary A.21, we have a subexpression
(
wJ′

0

)A
for
(
wJ

′

0

)A
in ψ((wJ

0)
Φ). It suffices to show

that this subexpression uses all ℓ((wJ0 )
Φ) of the sAi with i ∈ [n] appearing in ψ((wJ

0)
Φ).

For w in WA, define ĩnv(w) to be the number of inversions plus the number of barred elements

amongst the first n entries of w. Explicitly, ĩnv(w) := |{(i, j) ∈ [n]2 | i < j, w(j) < w(i)}|+ |{i ∈ [n] |
w(i) ∈ [n]}. For w ∈ WΦ, define ĩnv(w) := ĩnv(ψ(w)) Observe that if w ∈ WA and sAi w > w, then

ĩnv(sAi w) ≤ ĩnv(w) + 1. In particular, note that ĩnv(sAi w) = ĩnv(w) if i > n. Similarly, if w ∈ WΦ,

then ĩnv(sΦi w) ≤ ĩnv(w) + 1. However, observe that ĩnv(wΦ
0 ) =

(
n+1
2

)
= ℓ(wΦ

0 ). Thus, each sΦi in

an expression for wΦ
0 contributes exactly 1 to ĩnv(wΦ

0 ). By writing w0
Φ = u((w0

J))Φ, where u is an

expression for (w0J)
Φ, we can conclude that ĩnv((wJ0 )

Φ) = ℓ((wJ0 )
Φ).

By Proposition A.19,
(
wJ

′

0

)A
(i) = ψ((wJ0 )

Φ)(i) for i ∈ [n] and so ĩnv(
(
wJ

′

0

)A
) = ĩnv((wJ0 )

Φ).

Thus,
(
wJ

′

0

)A
has at least ℓ((wJ0 )

Φ) factors of si with i ∈ [n]. However, as we observed at the

beginning of this proof, that is in fact all of them. �

Proposition A.28. An expression (wJ′

0 )Au can be obtained from ψ(wJ
0)

Φ without doing any braid

moves involving sAi for i ∈ [n].

Proof. We first observe that an expression (wJ′

0 )Au for ψ((wJ0 )
Φ) in fact exists by Corollary A.21.

Fix any expression u for the Weyl group element u appearing in Corollary A.21. We will prove

the result by multiplying ψ(wJ
0)

Φ on the right by u−1, transposition by transposition. We will move

each such transposition s through ψ(wJ
0)

Φ as far as possible using only commutation moves until

s either cancels, or cannot move any further without preforming a braid move. A braid move

involving s will be of the form sts 7→ tst for transpositions s and t which do not commute. After

preforming the braid move, we move the leftmost copy of t left by commutation moves until it

cancels or we are forced to preform another braid move. Eventually, this process must terminate

with a cancellation since multiplication by u−1 decreases the length of our permutation by ℓ(u).

If none of the braid moves performed in this process involve sAi for i ∈ [n], then the result holds.

Note that ψ(wJ
0)

Φ is by definition a reverse distinguished subexpression of itself and this process

preserves reverse distinguishedness, so it will leave us with the reduced reverse distinguished

subexpression for (wJ
′

0 )A in ψ(wJ
0)

Φ, namely, (wJ′

0 )A.

The key observation for this proof will be that, by Proposition A.27, whatever transposition ends

up actually cancelling must be an sAi with i > n.
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We prove this result inductively on transpositions appearing in u−1. Then, we may assume by

induction that we have a reduced expression w for some word w such that (wJ0 )
A < w ≤ ψ((wJ0 )

Φ).

We move some sAi which appears in u through it, from right to left, until it cancels out with another

transposition.

By Corollary A.21, u is a product of transpositions sAj with j > n and so we may assume the

sAi which we move through w has i > n. If we cannot commute sAi to the left at some point, and

it still has not been cancelled out, then we must do a braid move, either of the form sAi s
A
i−1s

A
i 7→

sAi−1s
A
i s

A
i−1 or of the form sAi s

A
i+1s

A
i 7→ sAi+1s

A
i s

A
i+1. In the either case, we may now continue to

move the new leftmost transposition to the left until it cancels with something or we are forced to

do another braid move.

Suppose we eventually perform a braid move involving an sAi for i ≤ n. In particular, along the

way, we must perform the braid move sAn+1s
A
n s

A
n+1 7→ sAn s

A
n+1s

A
n .

Let Φ = C. All copies of sAn occur in the prefix p of w0
A. Since we preformed a braid move

involving terms in the prefix p, whatever ends up cancelling must also be in p. This contradicts

proposition A.23.

Let Φ = B. We know that whatever eventually cancels out must be a transposition sAi with

i > n. Thus, we must eventually have a braid move of the form r = sAj s
A
j+1s

A
j =: r1r2r3 7→

sAj+1s
A
j s

A
j+1 with j ≤ n. Consider the first such braid move. It must be preceded by the braid move

sAj+1s
A
j s

A
j+1 7→ q = sAj s

A
j+1s

A
j =: q1q2q3, with no other braid moves in between. Observe that by

this construction, q1 = r3, in other words, we move q3 through the transposition until it is forced

into the braid move involving r. Observe that there must not be any factors of sAi in between q2

and r2 other than q1, since q1 does not cancel out as it commutes through. Moreover, since q1 is the

transposition which we are moving through our expression, it does not appear in w. Thus, in w, q2

and r2 satisfy the hypotheses of Lemma A.25. However, this contradicts Proposition A.24.

�

The following lemma is easy to verify and we record it here for completeness.

Lemma A.29. If sAi s
A
j = sAj s

A
i for i 6= j, then gAi g

A
j = gAj g

A
i , where gAi ∈ {yi(ti), ṡi, xi(mi)ṡ

−1
i }.

Proof. This follows from the observations that sAi s
A
j = sAj s

A
i if and only if |i− j| > 1, and that gAi is

block diagonal with a 2× 2 block in rows i, i+ 1 and identity blocks in all other rows. �

Proof of Theorem A (3) =⇒ (1). In this proof, G will denote either Sp2n or SO2n+1, and GFlK will

denote the corresponding flag variety, SpFlK;2n or SOFlK;2n+1, respectively. We will also denote

by FlK the flag variety FlK;2n or FlK;2n+1, respectively.

The following lemma guarantees GFl>0
K ⊆ GFl∆>0

K (in fact, for any K ⊂ [n]):

Lemma A.30. Sp>0
2n ⊆ GL>0

2n and SO>0
2n+1 ⊆ GL>0

2n+1.

Proof. This is because (UΦ
−)>0 ⊆ (UA− )>0, (TΦ)>0 ⊆ (TA)>0, and (UΦ

+ )>0 ⊆ (UA+ )>0. �

Consider a flag F in GFl∆>0
J . Since all of its Plücker coordinates are positive and in particular

nonzero, F lies in the top Richardson cell. Thus, the Deodhar decomposition of GFlJ guaran-

tees that F can be represented uniquely by a matrix M = gΦ
i , where si = (w0

J )Φ and gΦik ∈
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{yΦik(tk), ṡΦik , xΦik (mk)(ṡ
Φ
ik
)−1}. We can also view F as a flag in Fl∆>0

K′ = Fl>0
K′ by Theorem 1.1. Thus,

as a flag of rank K ′, F can also be represented uniquely by a matrix y(w0
J′ )A(b) where b is such

that each bi > 0. Let sz = (w0
J′

)A. We will show that this implies that for each k, gΦik = yΦzk(tk) with

tk > 0.

Recall that G satisfies properties (†) and (‡). Using properties (†1), (‡1) and (‡2), we have that

RΦ
u,v ⊆ RA

ψ̃(u),ψ(v)
. Thus, we can rewrite M as M = gAj , where sj = ψ((w0

J )Φ) and gAjk ∈
{yAjk(t′k), ṡAjk , xAjk (m′

k)(ṡ
A
jk
)−1}. By (‡3) the positivity of the {tk} is equivalent to the positivity of

the {t′k}.

One may check by straightforward computations that if sAα1
sAα2

sAα3
= sAβ1

sAβ2
sAβ3

are related by

a braid move and gAαk ∈ {yAαk(tk), ṡAαk , xAαk(mk)(ṡ
A
αk

)−1}, then gAα1
gAα2

gAα3
= g′Aβ1

g′Aβ2
g′Aβ3

for some

choice of {t′k,m′
k} depending on {tk,mk} and some choice of g′Aβk ∈ {yAβk(t′k), ṡAβk , xAβk(m′

k)(ṡ
A
βk
)−1}.

By the observation in the previous paragraph and Lemma A.29, together with Proposition A.28,

we can rewrite M = gAj as M = gAl g
A
p , where sp = u, sl =

(
w0

J′

)A
and each gAlk ∈ {yAlk(t′′k),

ṡAlk , x
A
lk
(m′′

k)(ṡ
A
lk
)−1} for some new choice of variables {t′′k,m′′

k}. However, Proposition A.28 and

Lemma A.29 guarantee that whenever lk < n and gAlk = yAlk(t
′′
k), we have t′′k = t′k′ for some k′.

By Corollary A.21, gAj and gAl represent the same flag of rank K ′. We saw earlier that this same

flag can be represented by a matrix y(w0
J′)A(b) where b is such that each bk > 0. By the uniqueness

of representatives in the Deodhar decomposition, we must have that each gAlk = yAzk(t
′′
k) and that

each t′′k = bk.

By Proposition A.27, gAl contains a term originating from each gΦik appearing in gΦ
i . Thus, for

each k, we have gΦik = yΦik(tk), where bk = fj(tk) for some fj appearing in condition (†1). In

particular, by (†1) and (‡3), tk > 0. This completes the proof.

�
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