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Abstract

In this note we prove a conjecture by Constantin–Strauss–Vărvărucă related to the finite depth water wave prob-
lem, tightening their results. The proof uses identities related to Jacobi Theta functions. We also discuss potential
implications of the improvement.

1 Introduction
In this paper we will be concerned with the periodic Hilbert transform on a strip. Let d ą 0 and let

Rd “ tpx, yq P R2 : ´d ă y ă 0u

be the strip of depth d. Then, if w P C0,αpRq, is 2π-periodic, has zero mean and the Fourier series expansion

wpxq “

8
ÿ

n“1

an cospnxq `

8
ÿ

n“1

bn sinpnxq, x P R,

the Hilbert transform operator Cd acts as

`

Cdpwq
˘

pxq “

8
ÿ

n“1

an cothpndq sinpnxq ´

8
ÿ

n“1

bn cothpndq cospnxq, x P R . (1)

The Hilbert transform is of central importance in the study of the water wave problem, since it arises in the context
of the Dirichlet-Neumann operator and the linearized equation around a flat wave. See [8, 9] for further references on
the Hilbert Transform and [5, 11] for comprehensive surveys on the water wave problem.

In [3], the authors conjectured the following:

Conjecture 1.1 ([3] Lemma 1, Remark, p.252, abridged, see also [6] Lemma 2)). Let us recall from Appendix A in
[2] that, for any smooth 2π-periodic function F : R Ñ R with mean zero over each period, we have

pCkhpF qqpxq “
1

2π
PV

ż π

´π

βkhpx ´ sqF psq ds , x P R , (2)

where (with d “ kh) the kernel βd : Rz2πZ Ñ R, is given by

βdpsq “ ´
s

d
`

π

d
coth

´πs

2d

¯

`
π

d

8
ÿ

n“1

2 sinh
`

πs
d

˘

cosh
`

πs
d

˘

´ cosh
`

2π2n
d

˘ (3)

“ ´
s

d
`

π

d

8
ÿ

n“´8

!

coth
´ π

2d
ps ´ 2πnq

¯

` sgnpnq

)

.

Moreover, let us write x “ π2{2d and consider βdpπ{2q as a function of x P p0,8q.
Since letting d Ñ 8 is equivalent to letting x Ñ 0 in the formula

πβdpπ{2q “ 2x cothpx{2q ´ x ´ 4x sinhpxq

8
ÿ

n“1

1

coshp4nxq ´ coshpxq
,

1
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we get

π lim
dÑ8

βdpπ{2q “ 4 ´ 8
8
ÿ

k“1

1

16n2 ´ 1
“ π .

It is an interesting conjecture whether actually

βdpπ{2q ě 1 for all d P p0,8q .

Numerical computation in Octave/Matlab suggests that the issue is quite subtle.

Our main result in this note is the following:

Theorem 1.2. Conjecture 1.1 is true.

Remark 1.3. The subtlety in this conjecture lies in the fact that the function grows extremely slowly for small values
of x, as seen in Figure 1. Indeed, it is difficult to obtain a lower bound for the function via conventional means (such
as for example Taylor expansions) since βdpπ{2q remains so close to 1, corroborated by how x “ 0.1 evaluates to
1 with 42 digits of accuracy according to Mathematica simulations. Hence, it is a non-trivial task to estimate the
function’s growth around 0. Instead we establish the lower bound by proving the equivalence between the function β
and a Jacobi Theta function, and then establishing monotonicity.
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Figure 1: The function βd

`

π
2

˘

as a function of x.

We defer the proof to Section 2. We now mention several small improvements as corollaries of the theorem. They
are related to better bounds on some of the constants implied by the better bound on the function βd

`

π
2

˘

. For simplicity
we refer to the corresponding papers for the definitions:

Corollary 1.4 (Strengthening of Theorem 4 of [3]). Let Υ ě 0. Then, along the whole global bifurcation curve K´,
we have the estimate

vp0q ´ vpπq ď

d

36g2

Υ4
`

24πg

Υ2kβhkpπ
2 q

´
6g

Υ2
ď

c

36g2

Υ4
`

24πg

Υ2k
´

6g

Υ2
if Υ ą 0, (4a)

and
vp0q ´ vpπq ă

2π

kβkhpπ
2 q

ď
2π

k
if Υ “ 0. (4b)

Corollary 1.5 (Strengthening of Theorem 1.3 of [6]). Consider a smooth water wave that belongs to the bifurcation
curve C in the adverse case γ ą 0 and assume that either the slope |η1| or the convexity |η2| of the wave is bounded.
Then the wave amplitude A (the elevation difference between the crest and trough) is uniformly bounded by a certain
constant provided γ is sufficiently small. The upper bound depends only on a certain explicit function of the constants
g,Q,m and the conformal depth d.

As an example, the upper bound can be chosen to be 12π, if we assume that each of the quantities γ,Qγ, |m|γ2,
as well as either Nγ2 or Mγ4, are less than certain explicit functions of g and d.
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2 Proof of Theorem 1.2
Proof. We will show that βd

`

π
2

˘

ě 1 for all d P p0,8q where x “ π2{d and

πβdp
π

2
q “ 2x coth

´x

2

¯

´ x ´ 4x sinhpxq

8
ÿ

n“1

1

coshp4nxq ´ coshpxq
. (5)

We will also deduce that βd

`

π
2

˘

is strictly increasing in x for x ą 0.
We use the following intermediate lemma to begin our proof.

Lemma 2.1.
8
ÿ

n“1

2 sinhpxq

coshp4nxq ´ coshpxq
“

8
ÿ

n“1

sinhpxq

sinh
`

4n`1
2 x

˘

sinh
`

4n´1
2 x

˘ .

Proof. Use the difference to product rule for hyperbolic cosine and simplify:

coshpaq ´ coshpbq “ 2 sinh

ˆ

a ` b

2

˙

sinh

ˆ

a ´ b

2

˙

.

Let q “ e´x. Denoting the sum by 2S and expanding in terms of q, we obtain

2S “

8
ÿ

n“1

sinhpxq

sinh
`

4n`1
2 x

˘

sinh
`

4n´1
2 x

˘ “ 2
8
ÿ

n“1

pq´1 ´ qq

pq´p4n`1q{2 ´ qp4n`1q{2qpq´p4n´1q{2 ´ qp4n´1q{2q
.

Simplifying by multiplying qp4n`1q{2qp4n´1q{2 in the numerator and denominator, we obtain

8
ÿ

n“1

pq4n´1 ´ q4n`1q

p1 ´ q4n`1qp1 ´ q4n´1q
“

8
ÿ

n“1

ppq4n´1 ´ 1q ` p1 ´ q4n`1qq

p1 ´ q4n`1qp1 ´ q4n´1q
,

which leads to

S “

8
ÿ

n“1

sinhpxq

coshp4nxq ´ coshpxq
“

8
ÿ

n“1

ˆ

1

1 ´ q4n´1
´

1

1 ´ q4n`1

˙

“

8
ÿ

n“1

ˆ

q4n´1

1 ´ q4n´1
´

q4n`1

1 ´ q4n`1

˙

.

By [10, Theorem 259, Chapter 12], a series of the form
ř

k akz
k{p1 ´ zkq (known as a Lambert series) converges

if
ř

k akz
k converges and |z| ‰ 1. This implies that since q P p0, 1q,

ř

k q
k{p1´qkq converges since

ř

k q
k converges,

and for the same reason so do
ř

n q
4n´1{p1 ´ q4n´1q and

ř

n q
4n`1{p1 ´ q4n`1q for x P p0,8q, implying that the

whole series converges for x P p0,8q. As a result, we may split and rearrange the terms as follows:

S “

8
ÿ

n“1

ˆ

q4n´1

1 ´ q4n´1
´

q4n`1

1 ´ q4n`1

˙

“

ˆ

q3

1 ´ q3
´

q5

1 ´ q5

˙

`

ˆ

q7

1 ´ q7
´

q9

1 ´ q9

˙

` ¨ ¨ ¨

“
q

1 ´ q
´

ˆˆ

q

1 ´ q
´

q3

1 ´ q3

˙

`

ˆ

q5

1 ´ q5
´

q7

1 ´ q7

˙

` ¨ ¨ ¨

˙

“
q

1 ´ q
´

8
ÿ

n“1

ˆ

q4n´3

1 ´ q4n´3
´

q4n´1

1 ´ q4n´1

˙

.

Plugging this back into (5) and expanding each term in q, we obtain

πβd

´π

2

¯

“ x
”

2 coth
´x

2

¯

´ 1 ´ 4S
ı

“ x

«

2

ˆ

1 ` q

1 ´ q

˙

´ 1 ´ 4

˜

q

1 ´ q
´

8
ÿ

n“1

ˆ

q4n´3

1 ´ q4n´3
´

q4n´1

1 ´ q4n´1

˙

¸ff

,
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and simplifying this expression yields

πβd

´π

2

¯

“ x

«

1 ` 4
8
ÿ

n“1

ˆ

q4n´3

1 ´ q4n´3
´

q4n´1

1 ´ q4n´1

˙

ff

. (6)

We now introduce the elliptic theta function ϑ3pz|τq, defined in [12] as

ϑ3pz|τq “

8
ÿ

n“´8

eπiτn
2

`2πinz,

where z P C and τ P H, the upper half complex plane. Notice that setting z “ 0 and writing q “ eπiτ gives the
representation

ϑ3p0, qq “ ϑ3 p0|τq “

8
ÿ

n“´8

qn
2

, (7)

with τ “ ix{π having positive imaginary part for x ą 0. By [4, Theorem 312, Chapter XVII] (see [7] for the original
proof), we have that

˜

8
ÿ

n“´8

qn
2

¸2

“ 1 ` 4
8
ÿ

n“1

ˆ

q4n´3

1 ´ q4n´3
´

q4n´1

1 ´ q4n´1

˙

,

and since the right hand side equals x´1πβdpπ{2q by (6), we have

πβd

´π

2

¯

“ xϑ2
3p0, qq.

Additionally, using [1, Equation (9.2)]

8
ÿ

n“´8

e´xn2

“

c

π

x

8
ÿ

n“´8

e´π2n2
{x,

and the definition of ϑ3, this implies

xϑ2
3p0, e´xq “ πϑ2

3

´

0, e´ π2

x

¯

.

Hence, we obtain
βd

´π

2

¯

“ ϑ2
3

´

0, e´ π2

x

¯

.

Monotonicity then follows from (7). Recalling that d “ π2{x and

lim
dÑ8

βd

´π

2

¯

“ 1,

we deduce that βdpπ{2q ě 1 for d P p0,8q.

Acknowledgements
JGS was partially supported by NSF through Grants DMS-2245017 and DMS-2247537; by the AGAUR project 2021-
SGR-0087 (Catalunya) and by the MICINN (Spain) research grant number PID2021-125021NA-I00. We are very
grateful to Susanna Haziot and Walter Strauss for many stimulating discussions and constructive comments.

4



References
[1] R. Bellman. A brief introduction to theta functions. Athena Series: Selected Topics in Mathematics. Holt,

Rinehart and Winston, New York, 1961.
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