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THE LINEARIZED ISRAEL-STEWART EQUATIONS WITH A

PHYSICAL VACUUM BOUNDARY

RUNZHANG ZHONG∗#

Abstract. In this article, we consider the Israel-Stewart equations of relativistic viscous
fluid dynamics with bulk viscosity. We investigate the evolution of the equations linearized
about solutions that satisfy the physical vacuum boundary condition and establish local
well-posedness of the corresponding Cauchy problem.
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1. Introduction

The study of relativistic fluids comprises a large and active field of study in mathematics
and physics. Many important physical systems in astrophysics, high-energy physics, and
cosmology are described with the formalism of relativistic hydrodynamics. See, e.g., [75] for
an overview of the topic and its applications. Relativistic hydrodynamics is also a fertile
source of mathematical problems, see e.g. [12, Chapter IX] and the reviews [3, 17].

On the mathematical side, most of the community’s focus has been on studies of relativistic
ideal fluids, i.e., fluids without viscosity, which are described by the well-known relativistic
Euler equations. While many important problems remain regarding the mathematical prop-
erties of the relativistic Euler equations (see the two recent reviews [3, 17] for a discussion
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of recent progress and open problems), there are also compelling reasons to investigate rel-
ativistic fluids with viscosity. Indeed, there are two important situations where viscosity is
needed for an accurate description:

• The quark-gluon plasma. The quark-gluon plasma is an exotic state of matter that
forms at extreme temperatures and densities achieved in modern-day particle colliders
such as the Large Hadron Collider and the Relativistic Heavy Ion Collider. During a
brief period of time after the collision, matter deconfines and quarks and gluons enter
into a plasma-like state. Study of this plasma-like state provides researchers with a
unique opportunity to understand properties of matter at extreme conditions. In
fact, the discovery of the quark-gluon plasma was named by the American Physical
Society as one of the ten most important discoveries in physics in the first decade
of this century [1]. Careful analysis of data from these experiments reveals that the
quark-gluon plasma behaves like a relativistic fluid with viscosity [76].

• Neutron star mergers. The recent detection of gravitational waves produced in the
merger of binary neutron stars [2] opened the door to a whole range of previously
inaccessible phenomena and has the potential to revolutionize our understanding of
nature [16, 50]. While for a long time theoretical studies of mergers of neutron stars
assumed that they could be reasonably modeled by the Einstein-Euler system, recent
state-of-the-art numerical simulations convincingly show that viscous effects can be
relevant for such systems [4]. In particular, effects of viscosity on the gravitational-
wave signal emitted by mergers of neutron stars are expected to be within the sensi-
tivity range of the next-generation of gravitational wave detectors [63, 64].

Despite their importance in physics, the mathematical study of theories of relativistic fluids
with viscosity has traditionally been slow. The last decade, however, has seen increasing
interest from the mathematical community in theories of relativistic viscous fluids, with
several rigorous results finally established, including local [5–8,25,31–33] and global [28–30,
79, 80] well-posedness, formation of singularities [19, 27], existence of viscous shocks [26, 71,
72], and the study of the Einstein constraint equations [21] for viscous matter.

In this paper, we initiate the study of relativistic viscous hydrodynamics in a free-boundary
setting, thus providing a further step on the mathematical development of relativistic fluids
with viscosity. In the absence of viscosity, the study of free-boundary relativistic fluids goes
back to the ’30s with the seminal works of Tolman, Oppenheimer, and Volkoff [70, 82, 83],
wherein they derived the now-famous TOV equations that describe a general relativistic
static star, and Oppenheimer and Snyder [69], who introduced the first model of gravitational
collapse and subsequent formation of a black hole in general relativity, in what is now known
as the Oppenheimer-Snyder model. Subsequent works on relativistic free-boundary ideal
fluids include [9, 10, 18, 34, 36–41, 47, 52–62, 66–68, 73, 74, 84]. See section 1.6 of [20] for a
review of previous works on free-boundary relativistic fluids without viscosity.

Inclusion of viscosity is important in relativistic free-boundary models in order to describe
dissipative effects in star evolution, especially in the case of neutron stars (see [22, 23],
references therein, and the above discussion), and, more recently, accretion disks near black
holes [11, 14, 24], where viscous effects can be important to understand some measurements
made by the Event Horizon Telescope [13]. This work is the first one to mathematically
address a model of relativistic viscous hydrodynamics in a free-boundary context. More
precisely, we investigate equations of Israel-Stewart type originally introduced in [15] and
that are widely used in applications devoted to viscous effects in the quark-gluon plasma
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[76] and neutron star mergers [77, 78]. We focus on the case when the fluid satisfies the
well-known physical vacuum boundary condition, which in the absence of viscosity is needed
to ensure that the fluid-vacuum interface can accelerate. We remark that when viscosity is
present, further conditions, in comparison to the non-viscous case, are needed to ensure that
the free boundary moves with bounded non-zero acceleration. In other words, our first task
below is to determine what the physical vacuum boundary condition means in the viscous
context, i.e., what assumptions are needed in order to guarantee that the free boundary can
accelerate.

As said, the model we will investigate was originally introduced in [15]. This model is
sometimes referred to as the DNMR model after its authors, although for historical reasons it
is more often called a Israel-Stewart, Israel-Stewart-like, or Israel-Stewart-Mueller model due
to its similarities with a model of relativistic viscous fluids introduced by Israel and Stewart
in the ’70s [43–46,81], which in turn was inspired by a model of non-relativistic viscous fluids
introduced earlier by Mueller [65]. The DNMR or Israel-Stewart model contains a wide range
of fluid variables, including three types of viscosity, namely, bulk and shear viscosity and
heat conductivity. The local well-posedness of these equations has been obtained only in
the special case when bulk viscosity is the only viscous contribution. Thus, it would be
premature to study it in a free boundary context with all viscous contributions, and we
restrict ourselves to the situation where only bulk viscosity is present.

In comparison with previous works on ideal fluids with a physical vacuum boundary, the
main new difficulty we encounter is that viscosity in Israel-Stewart models is governed by
a new variable satisfying an additional equation of motion, see the third equation in (1.3).
This is a transport equation sourced by the divergence of the fluid’s velocity, and a simple
derivative counting shows that direct application of transport estimates leads to a derivative
loss. In the case of a physical vacuum boundary, this problem is compounded by the need to
control the fluid variables in weighted spaces that have to be introduced due to the fluid’s
degeneracy on the free boundary. We overcome this difficulty by uncovering some special
structures at the level of the linearized equations.

It turns out that the linearized equations by themselves already present a rich and complex
structure, and their local well-posedness cannot be derived from standard techniques. Thus,
here we focus on establishing local well-posedness for the linearized Israel-Stewart equations
with a physical vacuum boundary and bulk viscosity. The solution to the linearized equations
will be the basis for our solution to the full nonlinear problem that we will present in an
upcoming work [85]. In order to shorten the presentation, we will focus on aspects of the
problem that are genuinely new compared to the case of an ideal fluid. Thus, we will be
brief when arguments are a simple modification of those employed in the case of an ideal
fluid with a physical vacuum boundary, mostly notably to those found in [20, 42, 48].

1.1. The Equations of Motion. In this article, we consider the equations of Israel-Stewart
type with bulk viscosity proposed in [15], which is the most widely used model of relativistic
fluids with viscosity [76]. We consider the situation when the only viscous contribution comes
from bulk viscosity, thus ignoring the dissipation due to shear and heat flux. The fluid is
characterized by an energy-momentum tensor

Tµν = ̺uµuν + (p+Π)∆µν , (1.1)
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and a conserved quantity called rest-mass current

Jµ = nuµ,

where ̺ is the energy density, Π is the bulk viscosity, n is the baryon density, p is the pressure
subject to the equation of state

p = p(̺, n),

u is the 4-velocity of the fluid subject to the normalization condition

uµuµ = −1, (1.2)

and the 2-tensor ∆µν = gµν + uµuν is the projection onto the space orthogonal to u. Ad-
ditionally, g is the space-time metric, which we will take to be the Minkowski metric in
that this already contains many difficulties in the study of a free-boundary fluids which we
introduce below.

The evolution of the fluid is given by the system





∂µT
µν = 0,

∂µJ
µ = 0,

τΠu
µ∂µΠ + Π+ λΠ2 + ζ∂µu

µ = 0,

(1.3)

where the first equation is the conservation of energy and momentum, the second equation
is the conservation of mass and the third equation is the additional relaxation-type equation
satisfied by the bulk scalar Π, in which τΠ = τΠ(̺) is the bulk relaxation time, λ = λ(̺) is
a transport coefficient and ζ = ζ(̺) is the coefficient of bulk viscosity.

Throughout and including the above, we adopt the rectangular spacetime coordinate
{xα}α=0,1,2,3 of R

1+3, where we identify x0 with the time coordinate t. We use x = (x1, x2, x3)
to denote the spatial coordinates. Einstein sum convention is employed. The vector field ∂α
is a short-hand expression for ∂

∂xα . Greek indices will vary from 0 to 3, and Latin indices
will vary from 1 to 3. Indices are raised and lowered with the Minkowski metric g.

1.2. Physical Vacuum Boundary. It was shown in [6] that the system is strongly hyper-
bolic if the following causality condition is satisfied

[
ζ

τΠ
+ n

(
∂p

∂n

)

̺

]
1

̺+ p+Π
≤ 1−

(
∂p

∂̺

)

n

, (1.4)

where ρ + p + Π > 0 and τΠ > 0. One can use the standard theory of FOSH developed by
Friedrichs-Lax-Kato [35, 49, 51] to prove the local well-posedness.

In this article, we consider the physical situation where vacuum states are allowed, i.e.,
the density ̺ is allowed to vanish, and the boundary has finite non-zero acceleration. Then,
the gas is located in the region where the density is non-vanishing, i.e., the following moving
domain at time t,

Ωt = {x ∈ R
d|ρ(t, x) > 0},

whose boundary denoted by Γt := ∂Ωt is called the vacuum boundary at time t, which is
advected by the fluid velocity u. So, the dynamics of the fluid is confined within

DT =
⋃

t∈[0,T ]

Ωt

for the time existence T > 0 of the solutions.
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We will consider the gas where the pressure p is determined by the density ̺ through the
following equation of state,

p(̺) = ̺κ+1, (1.5)

where κ > 0. Such gas is called a barotropic gas. With the equation of state (1.5), the
variable n gets decoupled from the system (1.3), which, with the energy-momentum tensor
T given by (1.1), can be written as the following Cauchy problem





uµ∂µ̺+ (̺κ+1 + ̺+Π)∂µu
µ = 0,

(̺κ+1 + ̺+Π)uµ∂µu
α + (κ+ 1)̺κ∆αµ∂µ̺+∆αµ∂µΠ = 0,

τΠu
µ∂µΠ+ Π + λΠ2 + ζ∂µu

µ = 0,

uµuµ = −1,

(̺, u,Π)|t=0 = (ρ0, u0,Π0),

(1.6)

where the first two equations in the system (1.6) is derived from the projections of the first
equation in the system (1.3) onto the space parallel and orthogonal to u and ρ0, u0,Π0 are
initial data for the system. Due to the absence of matter (̺ = 0) on the free boundary Γt,
it is natural to assume that the bulk viscosity Π also vanishes on Γt. Then, the system (1.6)
becomes degenerate due to the vanishing of both ̺ and Π. In this case, the classical theories
no longer apply.

It turns out that the decay rates of ̺ and Π play a crucial role in the problem. In view
of finite speed of propagation of hyperbolic system, the behavior of the fluid away from Γt

is essentially the same as the non-free-boundary case and thus can be solved with classical
theory. Near the free boundary Γt, obtained from the second equation of (1.6), the fluid
evolves with the 4-acceleration

aα = uµ∂µu
α = −

(κ+ 1)̺κ∆αµ∂µ̺+∆αµ∂µΠ

̺κ+1 + ̺+Π
. (1.7)

We will consider appropriate decay rates that allow Γt to move with a bounded non-zero
acceleration. We denote by d(t, x) := dist(x,Γt) the distance from the free boundary Γt at
time t. Assume that at the leading order ̺ and Π decays like a power of d, i.e.,

̺ ≃ dσ,Π ≃ dη (1.8)

for some σ, η > 0, where by f ≃ g we mean there exists a constant C > 0 such that

1

C
g ≤ f ≤ Cg.

Under this assumption, from (1.7), the 4-acceleration behaves like

a ≃

{
dσκ−1 + dη−σ−1 σ ≤ η

∞ σ > η
.

To obtain a bounded nonzero acceleration of Γ, we either have
{
σ = 1

κ
,

η ≥ σ + 1,
(1.9)
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or
{
σ ≥ 1

κ
,

η = σ + 1.

We will define the physical vacuum boundary condition by (1.9) since this reduces to the
case without viscosity in [20]. In particular, we will solve the case η = 1

κ
+ 2. We

make this choice because any choice η < 1
κ
+ 2 leads to singular behavior of the coefficients

of the linearized equation and the energy estimate cannot be closed with our method, and
any choice n > 1

κ
+ 2 can be solved similarly as η = 1

κ
+ 2 under similar assumptions. We

also make some technical assumptions on the coefficients of the relaxation-type equation
Π satisfies. We assume that τΠ = 1

2+ 1

κ

, ζ(̺) ≃ ̺2κ+1 is a smooth function and λ = λ(̺)

is a smooth function with bounded derivatives. We remark that the above assumption is
compatible with the causality condition (1.4). Under these assumptions, we introduce new
variables

r = ̺κ, π = Π
κ

2κ+1 .

As a result, the decay rates of the new variable near the free boundary are r, π ≃ d. Using
(r, u, π) as our new variables, we write (1.6) as follows,





uµ∂µr + κra1∂µu
µ = 0,

uµ∂µu
α +

(
1 +

1

κ

)
a2∆

αµ∂µr +

(
2 +

1

κ

)
ra3∆

αµ∂µπ = 0,

uµ∂µπ + π + λ(r
1

κ )π3+ 1

κ + ra4∂µu
µ = 0,

uµuµ = −1,

r|Γt
= 0, π|Γt

= 0,

(̺, u, π)|t=0 = (ρ0, u0, π0),

(1.10a)

(1.10b)

(1.10c)

(1.10d)

(1.10e)

(1.10f)

where

a0 =
π

r
, a1 = r + 1 + r2a

2+ 1

κ

0 , a2 =
1

a1
, a3 = a

1+ 1

κ

0 a2, a4 =
ζ(r

1

κ )

rπ1+ 1

κ

.

2. Basic energy estimate for the linearized equations

In this section, we formulate the linearized problem of system (1.10) and establish the basic
energy estimate for the linearized equations, assuming suitable conditions on the background
solution about which we linearize. This energy estimate is a crucial component in proving
the local well-posedness of the linearized system.

2.1. The Linearized Equations. We consider a one-parameter family of solutions (rλ, uλ, πλ)
to the system (1.10) such that (rλ, uλ, πλ)|λ=0 = (r, u, π). Then, the variables (r̃, ũ, π̃) :=
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d
dλ
|λ=0(rλ, uλ, πλ) defined on the moving domain Ωt solve the following linearized problem,






uµ∂µr̃ + κra1∂µũ
µ + ∂µrũ

µ + V1r̃ + r2Z1π̃ = f,

uµ∂µũ
α +

(
1 +

1

κ

)
a2∆

αµ∂µr̃ +

(
2 +

1

κ

)
ra3∆

αµ∂µπ̃

+ (V2)
αr̃ + (W2)

α
β ũ

β + (Z2)
απ̃ = gα,

uµ∂µπ̃ + ra4∂µũ
µ + V3r̃ + (W3)αũ

α + Z3π̃ = h,

uµũµ = 0,

(r̃, ũ, π̃)
∣∣
t=0

= (r̃0, ũ0, π̃0),

(2.1a)

(2.1b)

(2.1c)

(2.1d)

(2.1e)

where V,W,Z are coefficients involving the background solution (r, u, π) given as the follow-
ing,

V1 = κ

[
2r + 1 +

(
1−

1

κ

)
r2a

2+ 1

κ

0

]
∂µu

µ,

(V2)
α =

{(
1

κ
ra

2+ 1

κ

0 − 1

)
a2

[(
1 +

1

κ

)
∂µr +

(
2 +

1

κ

)
ra

1+ 1

κ

0 ∂µπ

]

−
1

κ

(
2 +

1

κ

)
a
1+ 1

κ

0 ∂µπ

}
a2∆

αµ

,

V3 =
1

κ

(
r

1

κ
−1π3+ 1

κλ′(r
1

κ ) +
ζ ′(r

1

κ )r
1

κ
−1

π1+ 1

κ

)
,

W1 = 0,

(W2)
αβ =

{
∂µu

αgµβ + a2
(
uµgαβ + uαgµβ

) [(
1 +

1

κ

)
∂µr +

(
2 +

1

κ

)
ra

1+ 1

κ

0 ∂µπ

]}
,

(W3)
β = gµβ∂µπ,

Z1 = κ

(
2 +

1

κ

)
a
1+ 1

κ

0 ∂µu
µ,

(Z2)
α = −

(
2 +

1

κ

)
a

1

κ

0 a2∆
αµ

{(
1 +

1

κ

)
ra0a2∂µr +

(
2 +

1

κ

)
r2a

2+ 1

κ

0 a2∂µπ

−

(
1 +

1

κ

)
∂µπ

}
,

Z3 = 1 +

(
3 +

1

κ

)
π2+ 1

κλ(r
1

κ )−

(
1 +

1

κ

)
ζ(r

1

κ )

π2+ 1

κ

∂µu
µ.

Here, we introduce the source terms (f, g, h) to make the equations inhomogeneous, as the
proof remains the same whether or not these source terms are included. Since each member
of the one-parameter family (rλ, uλ, πλ) does not necessarily share the same domain—unlike
when working in a Lagrangian frame—there are no boundary conditions imposed on the
linearized variables (r̃, ũ, π̃) .

2.2. Function Spaces. We define the functional framework of weighted Sobolev spaces for
our analysis here. This functional framework is dictated by the degenerate hyperbolic nature
of the problem and corresponding estimates.
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Definition 2.1. The weighted L2 space with weight ω ≥ 0, denoted by L2(ω), is the space of
all distributions f such that

‖f‖2L2(ω) =

ˆ

ω|f |2 dx <∞.

The weight ω will be played out by r which is a solution to (1.10) that satisfies the physical
vacuum condition (1.9). With the above definition, the base space of the solutions (r̃, ũ, π̃)
to the linearized system (2.1) is

H := H(Ωt) = L2(r
1−κ
κ (t, •))× L2(r

1

κ (t, •))× L2(r
1

κ (t, •)).

The energy admitted by the linearized system is the following,

E(t) =

ˆ

Ωt

r
1

κ
−1

[
r̃2 +

κ2

κ+ 1
ra21G

αβ ũαũβ +
(2κ+ 1)κ

κ+ 1
r
rπ1+ 1

κa
1+ 1

κ

0 a1

ζ(r
1

κ )

]
dx

=
1

2

ˆ

Ωt

r
1

κ
−1

[
r̃2 +

κ2

κ + 1
ra21ũαũ

α +
(2κ+ 1)κ

κ + 1
r
rπ1+ 1

κa
1+ 1

κ

0 a1

ζ(r
1

κ )

]
dx.

(2.2)

It can be shown the energy E(t) can serve as an equivalent norm of the base space H. (See
Lemma 2.8) Now, we define high-order weighted Sobolev spaces.

Definition 2.2. We define Hj,σ := Hj,σ(Ωt), where j ≥ 0 is an integer and σ > −1
2
, to be

the space of all distributions in Ωt such that

‖f‖2Hj,σ :=
∑

|α|≤j

‖rσ∂αf‖L2(Ωt)
<∞.

The weighted spaces Hj,σ satisfy the following hardy-type embedding. We refer readers
to [42] for the proofs.

Lemma 2.3. Assume that j1 > j2 ≥ 0 and σ1 > σ2 > −1
2
with j1 − j2 = σ1 − σ2. Then we

have

Hj1,σ1 ⊂ Hj2,σ2.

As a corollary of the above lemma we have embeddings of the weighted Sobolev spaces
into standard Sobolev spaces:

Corollary 2.4. Assume that σ > 0 and σ ≤ j. Then we have

Hj,σ ⊂ Hj−σ.

Then, by the standard Sobolev embedding theorem, we have

Corollary 2.5.

Hj,σ ⊂ Cs, 0 ≤ s ≤ j − σ −
d

2
.

We define the high-order space H2l for the regular solutions as

H2l = H2l, 1

2κ
+l− 1

2 ×H2l, 1

2κ
+l ×H2l, 1

2κ
+l.
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2.3. Basic Energy Estimate. Here, we establish the basic energy estimate of the solutions
(r̃, ũ, π̃) to the linearized equations (2.1) under suitable assumptions on the background
solutions (r, u, π). Throughout the proof, we will use the following differential formula for
the moving domain,

d

dt

ˆ

Ωt

fdx =

ˆ

Ωt

1

u0
Dtf dx+

ˆ

Ωt

∂i

(
ui

u0

)
dx. (2.3)

Notation 2.6. We denote the material derivative parallel to the 4-velocity by

Dt = uµ∂µ.

Notation 2.7. We let y = (y1, y2, y3) be the coordinate on the initial surface Ω0 induced by
the rectangular spacetime coordinate {xα}α=0,1,2,3. We define the map η : I × Ω0 → R

1+3 to
be the flow map of the 4-velocity, where I is the interval of proper time containing t = 0,
i.e., η = η(τ, y) solve the following equation

{
∂τη = u ◦ η

n(0, y) = (0, y)
. (2.4)

Similar as before, we identify the proper time τ with y0.We use Capital Latin indicesK,L,M, ...,
etc. ranging from 0 to 3 to denote the indices of Lagrangian spacetime coordinates. We use
∂K to denote the derivative ∂

∂yK
with respect to the Lagrangian coordinate.

We use the following lemma to control the coefficient a0 = π
r
of the linearized equation

(2.1).

Lemma 2.8. Let (r, u, π) be the solutions to the nonlinear system (1.10) such that

sup
t∈[0,T ]

‖r‖W 2l+1,∞(Ωt)
, sup
t∈[0,T ]

‖π‖W 2l+1,∞(Ωt)
, sup
t∈[0,T ]

‖u‖W 2l+1,∞(Ωt)
≤ K,

where K > 0 is a constant. Then, there exists T ∗ = T ∗

(
K,
∥∥∥π0

r0

∥∥∥
W 2l,∞(Ω0)

,
∥∥∥ r0
π0

∥∥∥
W 2l,∞(Ω0)

)
>

0 such that

sup
t∈[0,T ∗]

∥∥∥
π

r

∥∥∥
W 2l,∞(Ωt)

≤ 2

∥∥∥∥
π0

r0

∥∥∥∥
W 2l,∞(Ω0)

,

sup
t∈[0,T ∗]

∥∥∥
r

π

∥∥∥
W 2l,∞(Ωt)

≤ 2

∥∥∥∥
r0

π0

∥∥∥∥
W 2l,∞(Ω0)

,

sup
t∈[0,T ∗]

∥∥∥∥∥
ζ(r

1

κ )

r2+
1

κ

∥∥∥∥∥
W 2l,∞(Ωt)

≤ 2

∥∥∥∥∥
ζ(r

1

κ

0 )

r
2+ 1

κ

0

∥∥∥∥∥
W 2l,∞(Ω0)

.

Proof. We prove the lemma by induction and continuity argument. We first prove the base
case l = 0. Assume

sup
t∈[0,T ∗]

∥∥∥
π

r

∥∥∥
L∞(Ωt)

≤ 2

∥∥∥∥
π0

r0

∥∥∥∥
L∞(Ω0)

,

sup
t∈[0,T ∗]

∥∥∥
r

π

∥∥∥
L∞(Ωt)

≤ 2

∥∥∥∥
r0

π0

∥∥∥∥
L∞(Ω0)

,

sup
t∈[0,T ∗]

∥∥∥∥∥
ζ(r

1

κ )

r2+
1

κ

∥∥∥∥∥
L∞(Ωt)

≤ 2

∥∥∥∥∥
ζ(r

1

κ

0 )

r
2+ 1

κ

0

∥∥∥∥∥
L∞(Ω0)

,
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for T ∗ > 0. We compute the evolution for a0 =
π
r
, 1

a0
= r

π
and ζ(r

1
κ )

r2+
1
κ
and obtain the following

Dt(a0) = [κ(r + 1)− 1] a0 +
(
κr2 − λ(r

1

κ )r2+
1

κ

)
a
3+ 1

κ

0 −
ζ(r

1

κ )

rπ1+ 1

κ

∂µu
µ,

Dt

(
1

a0

)
= [1− κ(r + 1)]

1

a0
+
(
λ(r

1

κ )r2+
1

κ − κr2
)
a
1+ 1

κ

0 +
ζ(r

1

κ )r

π3+ 1

κ

∂µu
µ,

Dt

(
ζ(r

1

κ )

r2+
1

κ

)
= ∂µu

µ(r + 1 + r2a
2+ 1

κ

0 )

(
(2κ+ 1)ζ(r

1

κ )

r2+
1

κ

−
ζ ′(r

1

κ )

r2

)
.

(2.5)

We integrate above along the flow line and by a direct estimate, we have for any (τ, y) ∈
η−1(DT ∗),

|a0 ◦ η(τ, y)| ≤

∣∣∣∣
π0

r0
(y)

∣∣∣∣+ T ∗
C

(
K,

∥∥∥∥
π0

r0

∥∥∥∥
L∞(Ω0)

,

∥∥∥∥
r0

π0

∥∥∥∥
L∞(Ω0)

)
,

∣∣∣∣
(

1

a0

)
◦ η(τ, y)

∣∣∣∣ ≤
∣∣∣∣
r0

π0
(y)

∣∣∣∣+ T ∗
C

(
K,

∥∥∥∥
π0

r0

∥∥∥∥
L∞(Ω0)

,

∥∥∥∥
r0

π0

∥∥∥∥
L∞(Ω0)

)
,

∣∣∣∣∣

(
ζ(r

1

κ )

r2+
1

κ

)
◦ η(τ, y)

∣∣∣∣∣ ≤
∣∣∣∣∣
ζ(r

1

κ

0 )

r
2+ 1

κ

0

(y)

∣∣∣∣∣ + T ∗
C

(
K,

∥∥∥∥
π0

r0

∥∥∥∥
L∞(Ω0)

,

∥∥∥∥
r0

π0

∥∥∥∥
L∞(Ω0)

)
.

We take T ∗ > 0 such that

T ∗
C

(
K,

∥∥∥∥
π0

r0

∥∥∥∥
L∞(Ω0)

,

∥∥∥∥
r0

π0

∥∥∥∥
L∞(Ω0)

)
<

1

2
min






∥∥∥∥
π0

r0

∥∥∥∥
L∞(Ω0)

,

∥∥∥∥
r0

π0

∥∥∥∥
L∞(Ω0)

,

∥∥∥∥∥
ζ(r

1

κ

0 )

r
2+ 1

κ

0

∥∥∥∥∥
L∞(Ω0)






to close the bootstrap. The high order case can be proven by differentiating the evolution
(2.5), induction and a similar continuity argument. �

We also need the following Gronwall-type inequality for the energy estimate.

Lemma 2.9. Let d(t) be a non-negative function that satisfies the following integral inequal-
ity,

d(t) ≤ c(t) +

ˆ t

0

a(s)d(s) + b(s)dα(s) ds, (2.6)

where a, b, c are continuous non-negative functions for t ≥ 0 and 0 < α < 1. Then,

d(t) ≤

(
c1−α(t) exp

(
(1− α)

ˆ t

0

a(s) ds

)

+ (1− α)

ˆ t

0

b(s) exp

(
(1− α)

ˆ t

s

a(r) dr

)
ds

) 1

1−α

(2.7)

Proof. Given τ > 0, let cτ = c(τ). For t ∈ [0, τ ], we define

φ(t) = cτ +

ˆ t

0

a(s)d(s) + b(s)dα(s) ds.
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From (2.6), we have d(t) ≤ φ for t ∈ [0, τ ]. We differentiate φ,

φ′(t) = a(t)d(t) + b(t)dα(t)

≤ a(t)φ(t) + b(t)φα(t).

Dividing both sides by φα, this gives us a linear differential inequality in φ1−α,

(
φ1−α(t)

)′
≤ (1− α)a(t)φ1−α(t) + (1− α)b(t).

By an elementary method of integrating factor,

(ψ(t)φ1−α(t))′ ≤ (1− α)b(t)ψ(t),

where

ψ(t) = exp

(
ˆ t

0

(α− 1)a(s) ds

)
.

Taking integral with respect to t, and considering that τ is arbitrary, we have (2.7). �

Now, we prove the basic estimate for the linearized equation.

Remark 2.10. Due to the finite speed of propagation, we can divide the domain into two
regions: the bulk region away from the free boundary and the region close to the free boundary.
In the bulk region, we can apply the classical theory of hyperbolic equations. Our primary
focus is on the degenerate quasilinear hyperbolic system near the free boundary, where r ≪ 1
is small. In this case, we interpret each integral over Ωt as being restricted to the region near
the free boundary Γt . By using a partition of unity argument, we can extend the solution to
the entire domain Ωt .

Theorem 2.11. Let (r, u, π) be sufficiently smooth solutions to (1.10) satisfying the physical
vacuum boundary condition (1.9) such that

sup
t∈[0,T ]

‖(r, u, π)‖W 1,∞(Ωt) ≤ K, (2.8)

where K > 0 is a constant. Then, there exists T = T (K) > 0 such that if the func-
tions (r̃, ũ, π̃) are sufficiently smooth solutions to the linearized Cauchy problem (2.1) with
(f, g, h) ∈ L1([0, T ],H), then the solutions obey the following estimate,

‖(r̃, ũ, π̃)‖H ≤ C (K)

(
‖(r̃(0), ũ(0), π̃(0))‖H +

ˆ t

0

‖(f, g, h)‖H ds

)
, (2.9)

for any t ∈ [0, T ], where C (K) > 0 is a constant continuously dependent on and increasing
with respect to K.
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Proof. We multiply the equation (2.1a) by r
1

κ
−1, the equation (2.1b) by κ2

κ+1
r

1

κa21G
β
α and the

equation (2.1c) by (2κ+1)κ
κ+1

r
1

κ
rπ1+ 1

κ a
1+ 1

κ
0

a1

ζ(r
1
κ )

, we have the system





r
1

κ
−1uµ∂µr̃ + κr

1

κa1∂µũ
µ + r

1

κ
−1∂µrũ

µ + r
1

κ
−1V1r̃ + r

1

κ
+1Z1π̃ = r

1

κ
−1f,

κ2

κ+ 1
r

1

κa21G
β
αu

µ∂µũ
α + κr

1

κa1∆
βµ∂µr̃ +

(2κ+ 1)κ

κ+ 1
r

1

κ
+1a

1+ 1

κ

0 a1∆
βµ∂µπ̃

+
κ2

κ + 1
r

1

κa21(V2)
β r̃ +

κ2

κ+ 1
r

1

κa21G
β
α(W2)

α
γ ũ

γ

+
κ2

κ+ 1
r

1

κa21(Z2)
βπ̃ =

κ2

κ+ 1
r

1

κa21G
β
αg

α,

(2κ+ 1)κ

κ+ 1
r

1

κ
rπ1+ 1

κa
1+ 1

κ

0 a1

ζ(r
1

κ )
uµ∂µπ̃ +

(2κ+ 1)κ

κ+ 1
r

1

κ
+1a

1+ 1

κ

0 a1∂µũ
µ

+
(2κ+ 1)κ

κ + 1
r

1

κ
rπ1+ 1

κa
1+ 1

κ

0 a1

ζ(r
1

κ )
V3r̃

+
(2κ+ 1)κ

κ+ 1
r

1

κ
rπ1+ 1

κa
1+ 1

κ

0 a1

ζ(r
1

κ )
(W3)αũ

α

+
(2κ+ 1)κ

κ + 1
r

1

κ
rπ1+ 1

κa
1+ 1

κ

0 a1

ζ(r
1

κ )
Z3π̃ =

(2κ+ 1)κ

κ + 1
r

1

κ
rπ1+ 1

κa
1+ 1

κ

0 a1

ζ(r
1

κ )
h.

(2.10)

We let L be the operator of the above linear system, then the equation can be denoted
as

L




r̃

ũ

π̃



 =




r
1

κ
−1f

κ2

κ+1
r

1

κa21G
•
αg

α

(2κ+1)κ
κ+1

r
1

κ
rπ1+ 1

κ a
1+ 1

κ
0

a1

ζ(r
1
κ )

h.


 (2.11)

Now, we multiply the first equation of (2.10) by r̃, the second by ũ and the third by π̃. This
yields the following identities,
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1

2
r

1

κ
−1Dtr̃

2 + κr
1

κa1∂µũ
µr̃ + r

1

κ−1∂µrũ
µr̃ + r

1

κ
−1V1r̃

2 + r
1

κ
+1Z1π̃r̃ = r

1

κ
−1f r̃,

1

2

κ2

κ+ 1
r

1

κa21Dt(ũ
αũα) + κr

1

κa1∂µr̃ũ
µ +

(2κ+ 1)κ

κ+ 1
r

1

κ
+1a

1+ 1

κ

0 a1∂µπ̃ũ
µ

+
κ2

κ+ 1
r

1

κa21(V2)
β r̃ũβ +

κ2

κ + 1
r

1

κa21(W2)
α
γ ũ

γũα +
κ2

κ+ 1
r

1

κa21(Z2)
βπ̃ũβ =

κ2

κ+ 1
r

1

κa21g
αũα,

1

2

(2κ+ 1)κ

κ+ 1
r

1

κ
rπ1+ 1

κa
1+ 1

κ

0 a1

ζ(r
1

κ )
Dtπ̃

2 +
(2κ+ 1)κ

κ+ 1
r

1

κ
+1a

1+ 1

κ

0 a1∂µũ
µπ̃

+
(2κ+ 1)κ

κ + 1
r

1

κ
rπ1+ 1

κa
1+ 1

κ

0 a1

ζ(r
1

κ )
V3r̃π̃ +

(2κ+ 1)κ

κ + 1
r

1

κ
rπ1+ 1

κa
1+ 1

κ

0 a1

ζ(r
1

κ )
(W3)αũ

απ̃

+
(2κ+ 1)κ

κ + 1
r

1

κ
rπ1+ 1

κa
1+ 1

κ

0 a1

ζ(r
1

κ )
Z3π̃

2 =
(2κ+ 1)κ

κ+ 1
r

1

κ
rπ1+ 1

κa
1+ 1

κ

0 a1

ζ(r
1

κ )
hπ̃.

We sum over these identities and obtain

1

2
r

1

κ
−1Dtr̃

2 +
1

2

κ2

κ + 1
r

1

κa21Dt(ũ
αũα) +

1

2

(2κ+ 1)κ

κ+ 1
r

1

κ
rπ1+ 1

κa
1+ 1

κ

0 a1

ζ(r
1

κ )
Dtπ̃

2 = r
1

κ
−1f r̃

+
κ2

κ+ 1
r

1

κa21g
αũα +

(2κ+ 1)κ

κ+ 1
r

1

κ
rπ1+ 1

κa
1+ 1

κ

0 a1

ζ(r
1

κ )
hπ̃

−
(
κr

1

κa1∂µũ
µr̃ + r

1

κ−1∂µrũ
µr̃ + κr

1

κa1∂µr̃ũ
µ
)

−

(
(2κ+ 1)κ

κ + 1
r

1

κ
+1a

1+ 1

κ

0 a1∂µπ̃ũ
µ +

(2κ+ 1)κ

κ+ 1
r

1

κ
+1a

1+ 1

κ

0 a1∂µũ
µπ̃

)

−
(
r

1

κ
−1V1r̃

2 + r
1

κ
+1Z1π̃r̃

)

−

(
κ2

κ+ 1
r

1

κa21(V2)
β r̃ũβ +

κ2

κ+ 1
r

1

κa21(W2)
α
γ ũ

γũα +
κ2

κ + 1
r

1

κa21(Z2)
βπ̃ũβ

)

−

(
(2κ+ 1)κ

κ+ 1
r

1

κ
rπ1+ 1

κa
1+ 1

κ

0 a1

ζ(r
1

κ )
V3r̃π̃ +

(2κ+ 1)κ

κ+ 1
r

1

κ
rπ1+ 1

κa
1+ 1

κ

0 a1

ζ(r
1

κ )
(W3)αũ

απ̃

+
(2κ+ 1)κ

κ + 1
r

1

κ
rπ1+ 1

κa
1+ 1

κ

0 a1

ζ(r
1

κ )
Z3π̃

2

)
. (2.12)

The blue terms form a perfect derivative modulo some terms that can be controlled by the
energy, i.e.,

κr
1

κa1∂µũ
µr̃ + r

1

κ
−1∂µrũ

µr̃ + κr
1

κa1∂µr̃ũ
µ = κ∂µ

(
r

1

κa1r̃ũ
µ
)

− r
1

κ

[
(1 + κ)∂µr + (2κ+ 1)ra

1+ 1

κ

0 ∂µΠ̂
]
r̃ũµ. (2.13)
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We also group the purple terms into one term. We will show later that this term can be
controlled.

(2κ+ 1)κ

κ + 1
r1+

1

κa
1

κ
+1

0 a1∂µπ̃ũ
µ +

(2κ+ 1)κ

κ+ 1
r1+

1

κa
1

κ
+1

0 a1∂µũ
µπ̃

=
(2κ+ 1)κ

κ + 1
r1+

1

κa
1

κ
+1

0 a1∂µ (π̃ũ
µ). (2.14)

Differentiating the energy with (2.3), we obtain

dE

dt
=

1

2

d

dt

ˆ

Ωt

r
1

κ
−1

[
r̃2 +

κ2

κ+ 1
ra21ũαũ

α +
(2κ+ 1)κ

κ+ 1
r

1

κ
rπ1+ 1

κa
1+ 1

κ

0 a1

ζ(r
1

κ )
π̃2

]
dx

=
1

2

ˆ

Ωt

1

u0
Dt

{
r

1

κ
−1

[
r̃2 +

κ2

κ+ 1
ra21ũαũ

α +
(2κ+ 1)κ

κ + 1
r

1

κ
rπ1+ 1

κa
1+ 1

κ

0 a1

ζ(r
1

κ )
π̃2

]}
dx

+
1

2

ˆ

0

{
r

1

κ
−1

[
r̃2 +

κ2

κ+ 1
ra21ũαũ

α +
(2κ+ 1)κ

κ + 1
r

1

κ
rπ1+ 1

κa
1+ 1

κ

0 a1

ζ(r
1

κ )
π̃2

]}
∂i

(
ui

u0

)
dx

= (i) + (ii).

The latter term can be controlled readily, i.e.,

(ii) .

∥∥∥∥∂i
(
ui

u0

)∥∥∥∥
L∞(Ωt)

E(t) . C (K)E(t) ∼= C (K)‖(r̃, ũ, π̃)‖2H,

where C (K) > 0 is a constant depending on K > 0 subject to change line by line. Now, we
control the former term,

(i) =
1

2

ˆ

Ωt

(
1

κ
− 1

)
1

u0
r

1

κ
−2Dtr

[
r̃2 +

κ2

κ+ 1
ra21 (ũαũ

α) +
(2κ+ 1)κ

κ+ 1
r
rπ1+ 1

κa
1+ 1

κ

0 a1

ζ(r
1

κ )
π̃2

]
dx

+
1

2

ˆ

Ωt

1

u0
r

1

κ
−1

(
Dtr̃

2 +
κ2

κ+ 1
ra21Dt (ũαũ

α) +
(2κ+ 1)κ

κ + 1
r
rπ1+ 1

κa
1+ 1

κ

0 a1

ζ(r
1

κ )
DtΠ̃

2

)
dx

+
1

2

ˆ

Ωt

κ2

κ+ 1

1

u0
r

1

κ
−1Dt

(
ra21
)
ũαũ

αdx+
1

2

ˆ

Ωt

(2κ+ 1)κ

κ+ 1

1

u0
r

1

κ
−1Dt

[
rπ1+ 1

κa
1+ 1

κ

0 a1

ζ(r
1

κ )

]
Π̃2 dx

= (iii) + (iv) + (v) + (vi).

We must be cautious when a derivative falls on the powers of r, as this could potentially
produce terms with insufficient weight. However, this issue does not arise when the derivative
is the material derivative Dt due to (1.10a)

Dtr = −κra1∂µu
µ = rO(K),

By a direct estimate (also using Remark 2.12 to control the time derivatives ∂t(r, u, π)),

(iii), (v), (vi) . C (K)‖(r̃, ũ, π̃)‖2H.
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For (iv), we will use the identity (2.12)

(iv) =

ˆ

Ωt

1

u0
r

1

κ
−1f r̃ +

1

u0
κ2

κ+ 1
r

1

κa21g
αũα +

1

u0
(2κ+ 1)2

κ + 1
r

1

κ
a

1

κ

0 (r + 1)

1 + (1 + κ)r
hπ̃ dx

−

ˆ

Ωt

1

u0

(
κr

1

κa1∂µũ
µr̃ + r

1

κ−1∂µrũ
µr̃ + κr

1

κa1∂µr̃ũ
µ
)
dx

−

ˆ

Ωt

1

u0

(
(2κ+ 1)κ

κ + 1
r

1

κ
+1a

1+ 1

κ

0 a1∂µπ̃ũ
µ +

(2κ+ 1)κ

κ+ 1
r

1

κ
+1a

1+ 1

κ

0 a1∂µũ
µπ̃

)
dx

−

ˆ

Ωt

1

u0

(
r

1

κ
−1V1r̃

2 + r
1

κ
+1Z1π̃r̃

)
dx

−

ˆ

Ωt

1

u0

(
κ2

κ+ 1
r

1

κa21(V2)
β r̃ũβ +

κ2

κ + 1
r

1

κa21(W2)
α
γ ũ

γũα +
κ2

κ+ 1
r

1

κa21(Z2)
βπ̃ũβ

)
dx

−

ˆ

Ωt

1

u0

(
(2κ+ 1)κ

κ + 1
r

1

κ
rπ1+ 1

κa
1+ 1

κ

0 a1

ζ(r
1

κ )
V3r̃π̃ +

(2κ+ 1)κ

κ+ 1
r

1

κ
rπ1+ 1

κa
1+ 1

κ

0 a1

ζ(r
1

κ )
(W3)αũ

απ̃

+
(2κ+ 1)κ

κ+ 1
r

1

κ
rπ1+ 1

κa
1+ 1

κ

0 a1

ζ(r
1

κ )
Z3π̃

2

)
dx

= (vii) + (viii) + (ix) + (x).

By Cauchy-Schwartz, we have

(vii) =

ˆ

Ωt

1

u0
r

1

κ
−1f r̃ +

1

u0
κ2

κ+ 1
r

1

κa21g
αũα +

1

u0
(2κ+ 1)κ

κ + 1
r

1

κ
rπ1+ 1

κa
1+ 1

κ

0 a1

ζ(r
1

κ )
hπ̃ dx

. C (K)‖(f, g, h)‖H‖(r̃, ũ, π̃)‖H.

Similarly, (x), which is the sum of last 3 terms of (iv) can be estimated directly,

(x) . C (K)‖(r̃, ũ, π̃)‖2H.

From the blue terms (2.13),

(viii) = −

ˆ

Ωt

1

u0

(
κr

1

κa1∂µũ
µr̃ + r

1

κ−1∂µrũ
µr̃ + κr

1

κa1∂µr̃ũ
µ
)
dx

= −

ˆ

Ωt

1

u0
κ∂µ

(
r

1

κa1r̃ũ
µ
)
−

1

u0
r

1

κ

[
(1 + κ)∂µr + (2κ+ 1)ra

1+ 1

κ

0 ∂µΠ̂
]
r̃ũµ dx

. −

ˆ

Ωt

1

u0
κ∂µ

(
r

1

κa1r̃ũ
µ
)
dx+ C (K)‖r̃, ũ, π̃‖2H.

From the purple terms (2.14)

(ix) = −

ˆ

Ωt

1

u0

(
(2κ+ 1)κ

κ+ 1
r

1

κ
+1a

1+ 1

κ

0 a1∂µπ̃ũ
µ +

(2κ+ 1)κ

κ+ 1
r

1

κ
+1a

1+ 1

κ

0 a1∂µũ
µπ̃

)
dx

= −

ˆ

Ωt

(2κ+ 1)κ

κ+ 1
r1+

1

κa
1

κ
+1

0 a1∂µ (π̃ũ
µ) dx.
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Combining all the inequalities above, we have

dE

dt
. −

ˆ

Ωt

1

u0
κ∂µ

(
r

1

κa1r̃ũ
µ
)
dx−

ˆ

Ωt

(2κ+ 1)κ

κ+ 1
r1+

1

κa
1

κ
+1

0 a1∂µ (π̃ũ
µ) dx

+ C (K)‖(f, g, h)‖H‖r̃, ũ, π̃‖H + C (K)‖(r̃, ũ, π̃)‖2H.

Now, we take the integral with respect to time,

E(t) . E(0)−

ˆ t

0

ˆ

Ωs

1

u0
κ∂µ

(
r

1

κa1r̃ũ
µ
)
dxds

−

ˆ t

0

ˆ

Ωs

(2κ+ 1)κ

κ+ 1
r1+

1

κa
1

κ
+1

0 a1∂µ (π̃ũ
µ) dxds +

ˆ t

0

C (K)‖(f, g, h)‖H‖(r̃, ũ, π̃)‖H ds

+

ˆ t

0

C (K)‖(r̃, ũ, π̃)‖2H ds

We integrate the blue term by part,

−

ˆ t

0

ˆ

Ωs

1

u0
κ∂µ

(
r

1

κa1r̃ũ
µ
)
dxds =

ˆ t

0

ˆ

Ωs

∂µ

(
1

u0

)
κ
(
r

1

κa1r̃ũ
µ
)
dxds

−

ˆ

Ω0

1

u0
κ
(
r

1

κa1r̃ũ
µ
)
dx−

ˆ

Ωt

1

u0
κ
(
r

1

κa1r̃ũ
µ
)
dx

. ǫ(E(t) + E(0)) ∼= ǫ
(
‖(r̃, ũ, π̃)‖2H + ‖(r̃0, ũ0, π̃0)‖

2
H

)
,

where ǫ > 0 is a sufficiently small number due to an extra half power of r, which is assumed
to be small (see Remark 2.10). A similar argument is applied to the purple term, yielding
the following,

−

ˆ t

0

ˆ

Ωs

(2κ+ 1)κ

κ + 1
r1+

1

κa
1

κ
+1

0 a1∂µ (π̃ũ
µ) dxds . ǫ

(
‖(r̃, ũ, π̃)‖2H + ‖(r̃0, ũ0, π̃0)‖

2
H

)
.

Absorbing ǫ‖(r̃, ũ, π̃)‖2H to the LHS, we have

‖(r̃, ũ, π̃)‖2H . ‖(r̃(0), ũ(0), π̃(0)‖2H) +

ˆ t

0

C (K)‖(f, g, h)‖H‖(r̃, ũ, π̃)‖H ds

+

ˆ t

0

C (K)‖(r̃, ũ, π̃)‖2H ds.

By the Grönwall-type inequality (2.7), we have our basic energy estimate (2.9). �

Remark 2.12. In this proof, we treat the time derivatives of the background solutions as L∞

coefficients, i.e., we assume ‖∂t(r, u, π)‖L∞ ≤ C (K). This differs slightly from (2.8), where
the Sobolev norms are considered only in space and not in time. However, we can express
the time derivatives in terms of spatial derivatives using (1.10). Let L(r, u, π) denote the
operator associated with the nonlinear system (1.10). This operator can be expressed as

L(r, u, π) = A0∂t



r

u

π


+ Ai∂i



r

u

π


+B



r

u

π


 ,

16



where A0 = A0[r, u, π], Ai = Ai[r, u, π], and B = B[r, u, π] are given by

A0 =




u0 κra1 0 0 0 0(
1 + 1

k

)
a2∆

0
0 u0 0 0 0

(
2 + 1

k

)
ra3∆

0
0(

1 + 1
k

)
a2∆

0
1 0 u0 0 0

(
2 + 1

k

)
ra3∆

0
1(

1 + 1
k

)
a2∆

0
2 0 0 u0 0

(
2 + 1

k

)
ra3∆

0
2(

1 + 1
k

)
a2∆

0
3 0 0 0 u0

(
2 + 1

k

)
ra3∆

0
3

0 ra4 0 0 0 u0



,

Ai =




ui 0 κra1δ
i
1 κra1δ

i
2 κra1δ

i
3 0(

1 + 1
k

)
a2∆

i
0 ui 0 0 0

(
2 + 1

k

)
ra3∆

i
0(

1 + 1
k

)
a2∆

i
1 0 ui 0 0

(
2 + 1

k

)
ra3∆

i
1(

1 + 1
k

)
a2∆

i
2 0 0 ui 0

(
2 + 1

k

)
ra3∆

i
2(

1 + 1
k

)
a2∆

i
3 0 0 0 ui

(
2 + 1

k

)
ra3∆

i
3

0 0 ra4δ
i
1 ra4δ

i
2 ra4δ

i
3 ui



,

B =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 1 + λ(r
1

κ )π2+ 1

κ



.

The determinant detA0 6= 0 when r is small, i.e., near the boundary. Furthermore,

(
A0
)−1

=




O(1) rO(1) 0 0 0 0
O(1) O(1) 0 0 0 rO(1)
O(1) rO(1) O(1) 0 0 rO(1)
O(1) rO(1) 0 O(1) 0 rO(1)
O(1) rO(1) 0 0 O(1) rO(1)
rO(1) rO(1) 0 0 0 O(1)



,

where O(1) represents some L∞ coefficients in the energy estimate. Therefore (see Notation
3.2 for the notation ≃),

∂tr ≃ ∂r + r∂u+ r2∂π + r2π,

∂tu ≃ ∂r + ∂u+ r∂π + rπ,

∂tπ ≃ r∂r + r∂u+ ∂π + π.

3. Local wellposedness of linearized equations and its high-order estimate

In this section, we build on the basic energy estimate established in the previous section
for the linearized equations to prove their local well-posedness. The basic energy estimate
yields only a weak solution to the system. To construct a more regular solution, we introduce
weighted elliptic operators derived from the second-order evolution equations of the main
system. The relevant properties of this operator, which are crucial for proving the existence
of a regular solution, will also be demonstrated in this section.
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3.1. Bookkeeping Scheme. Here, we introduce a bookkeeping scheme to track the crucial
terms and omit the less important terms during the energy estimate of the linearized equa-
tions. This allows us to greatly simplify the analysis. In view of the weighted version of the
Sobolev embedding (2.3), we make the following definition,

Definition 3.1. The order of terms of the form ra∂br̃, ra∂bũ and ra∂bπ̃ are defined to be
b− a, b− a + 1

2
and b− a + 1

2
, respectively.

In an estimate of order 2l, if b− a = l, by the embedding theorem (2.3),
∥∥ra∂br̃

∥∥
H0, 1

2κ
−

1
2
. ‖r̃‖

H2l,l+ 1
2κ

−
1
2
.

Similarly, if b− a + 1
2
= l, then

∥∥ra∂bũ
∥∥
H

0, 1
2κ

−
1
2
. ‖ũ‖

H
2l,l+ 1

2κ
,

∥∥ra∂bπ̃
∥∥
H

0, 1
2κ

−
1
2
. ‖π̃‖

H
2l,l+ 1

2κ
.

We refer to such terms as exact.
If b− a < l for r̃, b− a+ 1

2
< l for ũ and π̃, then we have a similar control as above,
∥∥ra∂br̃

∥∥
H0, 1

2κ
−

1
2
. ‖r̃‖

H2l,l+ 1
2κ

−
1
2
,

∥∥ra∂bũ
∥∥
H

0, 1
2κ

−
1
2
. ‖ũ‖

H
2l,l+ 1

2κ
,

∥∥ra∂bπ̃
∥∥
H0, 1

2κ
−

1
2
. ‖π̃‖

H2l,l+ 1
2κ
,

(3.1)

(3.2)

(3.3)

These terms are referred to as lower-order.

Notation 3.2. We will use the notation

Expression 1 ≃ Expression 2

if both Expression 1 and Expression 2 are of the same order and

Expression 1 = Expression 2+ L.O.T.,

where L.O.T. contains all the terms lower-order than Expression 1,2.

For each term in an expression, we will retain the powers of undifferentiated r of the
coefficients, as these powers of r are essential for the terms to be controlled. We will omit
the parts of the coeffcients involving the derivatives ∂≥1r, ∂≥1π of r, π of order higher than
1, as well as terms involving u, a0, a1, ..., a4 and their derivatives. The reasons for this are
twofolds. First, these parts of the coeffcients can be treated as L∞ coeffcients in the estimate.
Second, when derivatives are applied to these terms, they will generate lower-order terms.

As an example of the bookkeeping scheme, from the first equation (2.1a) of the linearized
system in the homogeneous case (i.e., f = 0):

Dtr̃ = −κra1∂µũ
µ − ∂µrũ

µ − V1r̃ − r2Z1π̃ ≃ r∂ũ+ ũ. (3.4)

Remark 3.3. Since our weighted Sobolev norms only involve spatial derivatives, in the
estimate, we need to write all time derivatives in terms of the spatial derivatives. Linearizing
the expressions in Remark 2.12, we can show that

∂tr̃ ≃ ∂r̃ + L.O.T.,

∂tũ ≃ ∂ũ + L.O.T.,

∂tπ̃ ≃ ∂π̃ + L.O.T..
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From now on, we use ∂ denotes only spatial derivatives.

Remark 3.4. Similar to (3.4), we have

Dtũ ≃ ∂r̃,

Dtπ̃ ≃ r∂ũ+ ũ.

Counting the order of RHS, Dtr̃, Dtũ, Dtπ̃ have an order of 1
2
, 1, 1

2
. So, we assign order 1

2
to

the material derivative Dt.

3.2. Weighted Elliptic Operators. The linearized equations (2.1) in its homogeneous
form (f, g, h = 0) can be rewritten as a second-order evolution that has a wave-like structure.
Applying Dt to the equation (2.1a) and using the equation (2.1b), with the bookkeeping
scheme to capture the principal part, we have

D2
t r̃ ≃ L̃1r̃,

D2
t ũ

α ≃
(
L̃2ũ

)α
,

(3.5)

where

L̃1r̃ = (κ+ 1)H ij

(
r∂i∂j r̃ +

1

κ
∂ir∂j r̃

)
,

(
L̃2ũ

)

α
= (κ+ 1)Ai

αH
jk

(
∂i (r∂j ũk) +

1

κ
∂jr∂iũk

)
,

with

Ai
α = giα −

ui

u0
g0α,

H ij = δij −
uiuj

(u0)2
.

We say the second-order evolution (3.5) has an wave-like structure because later we will

show L̃1 and L̃2 satisfy elliptic estimates. More precisely, the operator L̃2 is only associated
to the divergence of ũ. To gain the full coercivity, we need to pair it with an operator L̃3

associated with the curl of ũ, which is defined as follows,
(
L̃3ũ

)

α
= (κ+ 1)Ai

αH
ijr−

1

κ∂j

(
r

1

κ
+1 (∂kũi − ∂iũk)

)
.

We can check that L̃2L̃3 ≃ L̃3L̃2 ≃ 0. Although we will not use these operators directly in
connection to the wave equations, they play an important role in the high-order energy esti-
mates and in constructing more regular solutions of the linearized equation. We sometimes
employ a slightly modified versions L̂1, L̂2 + L̂3 of these operators L̃1, L̃2 + L̃3 for a different
purpose, but they share the same principal parts,

L̂1r̃ = (κ + 1)r1−
1

κ∂i

(
r

1

κH ij∂j r̃
)
,

(L̂2ũ)α = (κ + 1)Ai
α∂i(r

1− 1

κ∂j(r
1

κH ij ũk)),

(L̂3ũ)α = (κ + 1)Al
α∆mlr

− 1

κ∂j(r
1

κ
+1HjkH im(∂kũi − ∂iũk)).

(3.6)

We have following properties for these operators,
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Lemma 3.5. Let (r, u, π) be a sufficiently smooth solution to (1.10) satisfying the physical

vacuum boundary condition (1.9). Then, the operator L̂1 defined as an unbounded operator

of the Hilbert space H0, 1

2κ
− 1

2 with the domain

D(L̂1) := {f ∈ H0, 1

2κ
− 1

2 |L̂1f ∈ H0, 1

2κ
− 1

2 in the distributional sense}

is a non-negative, self-adjoint operator.

Proof. Similar statements and proofs can be found in [20, 42]. We first show that D(L̂∗
1) =

D(L̂1). It is sufficient to show D(L̂∗
1) ⊂ D(L̂1). Let s̃ ∈ D(L̂∗

1), then

(L̂1r̃, s̃)
H

0, 1
2κ

−
1
2
= (r̃, L̂∗

1s̃)H0, 1
2κ

−
1
2
, ∀r̃ ∈ D(L̂1).

We want to show s̃ ∈ D(L̂1), i.e., L̂1s̃ ∈ H0, 1

2κ
− 1

2 . For any φ ∈ C∞
c ,

(L̂1s̃)(φ) =

ˆ

s̃(κ+ 1)∂j(r
1

κH ij∂i(r
1

κ
−1φ))dx

= (s̃, L̂1(r
1

κ
−1φ))

H0, 1
2κ

−
1
2

= (L̂∗
1s̃, r

1

κ
−1φ)

H
0, 1

2κ
−

1
2

=

ˆ

L̂∗
1s̃φdx.

Since L̂∗
1s̃ ∈ H0, 1

2κ
− 1

2 , L̂1s̃ ∈ H0, 1

2κ
− 1

2 in the distributional sense and thus s̃ ∈ D(L̂1). In view
of Lemma 3.11, the non-negativity and self-adjointness can be proven by a simple application
of integration by parts. �

With a similar argument as the above lemma, we obtain

Lemma 3.6. Let (r, u, π) be a sufficiently smooth solution to (1.10) satisfying the physical

vacuum boundary condition (1.9). Then, the operator L̂2 + L̂3 defined as an unbounded

operator of the Hilbert space H0, 1

2κ with the domain

D(L̂2 + L̂3) := {f ∈ H0, 1

2κ |(L̂2 + L̂3)f ∈ H0, 1

2κ in the distributional sense}

is a non-negative, self-adjoint operator.

Remark 3.7. In Lemma 3.6, the operator L̂2 + L̂3 is an unbounded operator on a subspace
of H0, 1

2κ consisting of vectors orthogonal to u with respect to the Minkowski metric g . For
simplicity, we slightly abuse notation by using H0, 1

2κ to denote this subspace, to which the
linearized 4-velocity belongs.

3.3. Elliptic Estimates. Here, we show the elliptic estimate of the operator L̃1 and L̃2+L̃3

Lemma 3.8. Let (r, u, π) be a sufficiently smooth solution to (1.10) satisfying the physical
vacuum boundary condition (1.9). For r̃ sufficiently smooth, we have

‖r̃‖
H2, 1

2κ
−

1
2
.
∥∥∥L̃1r̃

∥∥∥
H0, 1

2κ
−

1
2

+ ‖r̃‖
H0, 1

2κ
−

1
2
. (3.7)

For a sufficiently smooth ũ orthogonal to u, we have

‖ũ‖
H2, 1

2κ
.
∥∥∥
(
L̃2 + L̃3

)
ũ
∥∥∥
H0, 1

2κ

+ ‖ũ‖
H0, 1

2κ
. (3.8)
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Proof. By a partition of unity, we can localize the estimates to a small ball. We consider the
interesting case where the ball is centered at x0 on the free boundary. The elliptic estimate

is standard otherwise. We pick a coordinate e3 =
(∇r)(x0)
|(∇r)(x0)|

and e1, ..., e2 an orthonormal basis

of the tangent space of the free boundary at x0. We have

|∂3 − 1|, |∂i′r| < ǫ,

where ǫ > 0 is sufficiently small and i′ = 1, 2. We assume the ball is small enough such that
H ij is a constant modulo perturbative error that can be absorbed onto the other side. So,
we simply assume H ij is a constant in the estimates. To prove (3.7), we first prove

‖r̃‖
H2, 1

2κ
+1

2
.
∥∥∥L̃1r̃

∥∥∥
H

0, 1
2κ

−
1
2

+ ‖r̃‖
H1, 1

2κ
−

1
2
. (3.9)

Compute
∥∥∥L̃1r̃

∥∥∥
H0, 1

2κ
−

1
2

,

∥∥∥L̃1r̃
∥∥∥
2

H0, 1
2κ

−
1
2

=

ˆ

Ωt

(κ+ 1)2H ijHkl

(
r∂i∂j r̃ +

1

κ
∂ir∂j r̃

)(
r∂k∂l +

1

κ
∂kr∂lr̃

)
dx

≃ (i) + (ii) + (iii) + (iv),

where (i) is the product of the 2-derivatives, (ii), (iii) are the products of the 1-derivatives
and 2-derivatives, and (iv) is the product of the 1-derivatives. For (i) we integrate by parts
with respect to ∂i,

(i) =

ˆ

Ωt

r
1

κ
+1H ijHkl∂i∂j r̃∂k∂lr̃ dx

= −

ˆ

Ωt

(
1

κ
+ 1

)
r

1

κH ijHkl∂j r̃ dx−

ˆ

Ωt

r
1

κ
+1H ijHkl∂j r̃∂i∂k∂lr̃ dx

= (v) + (vi).

By Cauchy-Schwartz with ǫ > 0,

|(v)| .

ˆ

Ωt

∣∣H ijHkl∂ir
∣∣
(
r

1

2κ
− 1

2 |∂j r̃|
)(

r
1

2κ
+ 1

2 |∂k∂lr̃|
)
dx

. C (K)‖r̃‖
H

1, 1
2κ

−
1
2
+ ǫ‖r̃‖2

H
2, 1

2κ
+1

2
,

where C (K) is a constant continuously depending on K > 0 and

‖(r, u, π)‖W 1,∞ . K.

For (vi), we integrate by parts with respect to ∂k,

(vi) =

ˆ

Ωt

(
1

κ
+ 1

)
r

1

κ∂krH
ijHkl∂j r̃∂i∂lr̃ dx+

ˆ

Ωt

r
1

κ
+1H ijHkl∂j∂kr̃∂i∂lr̃ dx

= (vii) + (viii).

We notice that (ii), (iii) and (vii) can be estimated similarly to (v),

|(ii)|, |(iii)|, |(vii)| . C (K)‖r̃‖2
H1, 1

2κ
−

1
2
+ ǫ‖r̃‖2

H2, 1
2κ

+1
2
.

By the ellipticity of the metric H ,

(viii) &
∥∥∥r

1

2κ
+ 1

2∂2r̃
∥∥∥
2

L2
.
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For (iv),

|(iv)| . C (K)‖r̃‖2
H1, 1

2κ
−

1
2
.

Combining all the above inequalities, we have

‖r̃‖
H2, 1

2κ
+1

2
.C (K)

∥∥∥L̃1r̃
∥∥∥
H

0, 1
2κ

−
1
2

+ ‖r̃‖
H1, 1

2κ
−

1
2
.

Now, we prove

‖r̃‖
H1, 1

2κ
−

1
2
.
∥∥∥L̃1r̃

∥∥∥
H0, 1

2κ
−

1
2

+ ‖r̃‖
H0, 1

2κ
−

1
2
. (3.10)

Consider the integral and integrate by parts with respect to ∂n,
ˆ

Ωt

r
1

κ
−1L̃1r̃∂nr̃ =

ˆ

Ωt

r
1

κ
−1∂nr̃H

ij

(
r∂i∂j r̃ +

1

κ
∂ir∂j r̃

)
dx

= − (κ+ 1)
1

κ

ˆ

Ωt

r
1

κ
−1∂irH

ij∂nr̃∂j r̃ dx

−
κ+ 1

2

ˆ

Ωt

r
1

κ∂n(H
ij∂ir̃∂j r̃) dx

+ (κ+ 1)
1

κ

ˆ

Ωt

r
1

κ
−1∂irH

ij∂nr̃∂j r̃ dx

=
κ+ 1

2κ
r

1

κ
−1∂nH

ij∂ir̃∂j r̃ dx

&
∥∥∥r

1

2κ
− 1

2∂r̃
∥∥∥
2

L2
.

Upon applying Cauchy-Schwartz with ǫ > 0 on the LHS, we have (3.10). For the basic
elliptic estimate (3.8), we again first prove the inequality

∥∥∥~̃u
∥∥∥
H2, 1

2κ
+1

.
∥∥∥
(
L̃2 + L̃3

)
ũ
∥∥∥
H0, 1

2κ

+
∥∥∥~̃u
∥∥∥
H1, 1

2κ

.

We use ~̃u to represent the spatial part of the full linearized 4-velocity ũ. This can be proved
similarly to the inequality (3.9). Then, we prove the following with a similar semi-geodesic
coordinate change in [20] to reduce the estimate into the Euclidean case in [42],

∥∥∥~̃u
∥∥∥
H1, 1

2κ

.
∥∥∥
(
L̃2 + L̃3

)
ũ
∥∥∥
H0, 1

2κ

+
∥∥∥~̃u
∥∥∥
H0, 1

2κ

.

Combining the 2 inequalities, we have
∥∥∥~̃u
∥∥∥
H2, 1

2κ
+1

.
∥∥∥
(
L̃2 + L̃3

)
ũ
∥∥∥
H0, 1

2κ

+
∥∥∥~̃u
∥∥∥
H0, 1

2κ

.

To bound the full linearized 4-velocity, we use the orthogonality to write ũ0 = ui

u0 ũi, so

∥∥ũ0
∥∥
H

2, 1
2κ

+1 =

∥∥∥∥
ui

u0
ũi

∥∥∥∥
H

2, 1
2κ

+1

.
∥∥∥
(
L̃2 + L̃3

)
ũ
∥∥∥
H

0, 1
2κ

+ ‖ũ‖
H

0, 1
2κ
,

which finishes the proof. �

Remark 3.9. The operator L̂1 and L̂2+ L̂3 satisfy a similar basic elliptic estimate as in 3.7
and 3.8 because they differ from L̃1 and L̃2 + L̃3 only by lower-order terms.
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Corollary 3.10. Let (r, u, π) be a sufficiently smooth solution to (1.10) satisfying the physical
vacuum boundary condition (1.9). For r̃ sufficiently smooth, we have

‖r̃‖
H

2, 1
2κ

−
1
2
.
∥∥∥(L̂1 + I)r̃

∥∥∥
H0, 1

2κ
−

1
2

.

For a sufficiently smooth ũ orthogonal to u, we have

‖ũ‖
H2, 1

2κ
.
∥∥∥
(
L̂2 + L̂3 + I

)
ũ
∥∥∥
H0, 1

2κ

.

Proof. By the elliptic estimate (3.7), we have
(
(L̂1 + I)r̃, (L̂1 + I)r̃

)

H
0, 1

2κ
−

1
2

=
∥∥∥L̂1r̃

∥∥∥
2

H
0, 1

2κ
−

1
2

+ 2
(
L̂1r̃, r̃

)

H
0, 1

2κ
−

1
2

+ ‖r̃‖2
H

0, 1
2κ

−
1
2

&
∥∥∥L̂1r̃

∥∥∥
2

H0, 1
2κ

−
1
2

+ ‖r̃‖2
H

0, 1
2κ

−
1
2

& ‖r̃‖2
H2, 1

2κ
+1

2
,

where
(
L̂1r̃, r̃

)

H
0, 1

2κ
−

1
2

≥ 0 follows from integration by parts. A similar proof works for the

velocity case. �

We can then identify the domain of L̂1 and L̂2 + L̂3

Corollary 3.11.

D(L̂1) = H2, 1

2κ
+ 1

2

D(L̂2 + L̂3) = H2, 1

2κ
+1,

Proof. To show: D(L̂1) = H2, 1

2κ
+ 1

2 , it is sufficient to show D(L̂1) ⊂ H2, 1

2κ
+ 1

2 . Take φ ∈

D(L̂1) ⊂ L2(r
1

κ
−1). Let σ = 1

κ
− 1. Then, r

σ
2 L̂1φ ∈ L2, we take φn ∈ C∞

c (Ω) such that

φn → r
σ
2 L̂1φ in L2. We define ψn ∈ C∞

c (Ω) by



L̂1ψn =

φn

r
σ
2

ψn|∂supp(φn) = 0

By the elliptic estimates, we have

‖ψn − ψm‖H2, σ
2
+1 .

∥∥∥L̂1(ψn − ψm)
∥∥∥
H0, σ

2

=

∥∥∥∥
φn − φm

r
σ
2

∥∥∥∥
H

0, σ
2

= ‖φn − φm‖L2 → 0

as n,m→ ∞. Thus, ψn → ψ ∈ H2,σ
2
+1. So,

r
σ
2 L̂1ψ = lim

n→∞
r

σ
2 L̂1ψn = lim

n
φn = r

σ
2 L̂1φ,

which implies L̂1(ψ − φ) = 0, where ψ − φ ∈ H0,σ
2 . Consider this under the a subdomain

Ω′ ⊂ Ω, where r is strictly positive on ∂Ω′. Since 0 is C∞, ψ−φ is C∞ on Ω′ by the standard
elliptic theory. By the weighted elliptic estimate,

‖ψ − φ‖
H2, σ

2
+1 .

∥∥∥L̂1(ψ − φ)
∥∥∥
H0, σ

2

= 0.

So, φ = ψ ∈ H2, 1

2κ
+ 1

2 . D(L̂2 + L̂3) = H2, 1

2κ
+1 can be proven similarly. �

We have the following high-order elliptic estimates.
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Lemma 3.12. Let (r, u, π) be a sufficiently smooth solution to (1.10) satisfying the physical
vacuum boundary condition (1.9). For r̃ sufficiently smooth, we have

‖r̃‖
H2l, 1

2κ
+l−1

2
.
∥∥∥L̃1r̃

∥∥∥
H2l−2, 1

2κ
+l− 3

2

+ ‖r̃‖
H0, 1

2κ

For a sufficiently smooth ũ orthogonal to u, we have

‖ũ‖
H

2l,l+ 1
2κ

.
∥∥∥
(
L̃2 + L̃3

)
ũ
∥∥∥
H

2l−2,l−1+ 1
2κ

+ ‖ũ‖
H

0, 1
2κ
.

Proof. We will prove the case for r̃ only, as the proof for ũ follows similarly. We pick a

coordinate e3 = (∇r)(x0)
|(∇r)(x0)|

and e1, e2 an orthonormal basis of the tangent space of the free

boundary at x0. We have
|∂3 − 1|, |∂i′r| < ǫ,

where ǫ > 0 is sufficiently small and i′ = 1, 2. Let σ = 1
2κ

− 1
2
. It is sufficient to show that

‖r̃‖
H2l, 1

2κ
+l−1

2
.
∥∥∥L̃1r̃

∥∥∥
H2l−2, 1

2κ
+l− 3

2

+ ‖r̃‖
H2l−2,l−1+ 1

2κ
.

To show this, we show that for any l ∈ N and any integer 0 ≤ a ≤ l,
∥∥ra∂l+ar̃

∥∥
H0,σ .

∥∥∥L̃1r̃
∥∥∥
H2l−2,l−1+σ

+ ǫ‖r̃‖H2l,l+σ + ‖r̃‖H2l−2,l−1+σ . (3.11)

We prove this statement by induction. Commuting ra∂l−1+a and L̃1, we obtain

ra∂l−1+aL̃1r̃ = L̃1(r
a∂l−1+a) +

[
ra∂l−1+a, L̃1

]
r̃,

where[
ra∂l−1+a, L̃1

]
r̃ = (κ+ 1)(l − 1 + a)raH ij∂r∂i∂j∂

l−2+ar̃

+ (κ+ 1)raH ij

l−1+a∑

γ=2

(
l − 1 + a

γ

)
∂γr∂l−1+a−γ∂i∂j r̃

+
κ+ 1

κ
raH ij

l−1+a∑

γ=1

(
l − 1 + a

γ

)
∂γ∂ir∂

l−1+a−γ∂j r̃

+ (κ + 1)ra
l−1+a∑

γ=1

(
l − 1 + a

γ

)
∂γH ij∂l−1+a−γ(r∂i∂j r̃ +

1

κ
∂ir∂j r̃)

− 2a(κ+ 1)raH ij∂ir∂j∂
l−1+ar̃ − (κ+ 1)a(a− 1)ra−1H ij∂ir∂jr∂

l−1+ar̃

− (κ + 1)araH ij∂i∂jr∂
l−1+ar̃ −

1

κ
(κ+ 1)ara−1H ij∂ir∂jr∂

l−1+ar̃

≃ ra∂l+ar̃ + ra−1∂l−1+ar̃.

By the induction hypothesis,
∥∥∥ra∂l−1+aL̃1r̃

∥∥∥
H0,σ

=
∥∥∥L̃1(r

a∂l−1+a) +
[
ra∂l−1+a, L̃1

]
r̃
∥∥∥
H0,σ

&
∥∥∥L̃1(r

a∂l−1+a)
∥∥∥
H0,σ

−
∥∥ra∂l+ar̃

∥∥
H0,σ −

∥∥ra−1∂l−1+ar̃
∥∥
H0,σ

By the basic elliptic estimate (3.7),
∥∥ra∂l−1+ar̃

∥∥
H2,1+σ .

∥∥∥L̃1r̃
∥∥∥
H2l−2,l−1+σ

+ ǫ‖r̃‖H2l,l+σ + ‖r̃‖H2l−2,l−1+σ
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Considering
∥∥ra∂l−1+ar̃

∥∥
H2,1+σ &

∥∥r∂2(ra∂l−1+ar̃)
∥∥
H0,σ −

∥∥ra∂l+ar̃
∥∥
H0,σ −

∥∥ra−1∂l−1+ar̃
∥∥
H0,σ

We use the induction again and obtain the (a + 1)-th case of the induction. It remains to
show the base case a = 0. To show this, we instead show the following equivalent statement:
for b = 0, 1, ..., l,

∥∥∂bn∂′l−br̃
∥∥
H0,σ .

∥∥∥L̃1r̃
∥∥∥
H2l−2,l−1+σ

+ ǫ‖r̃‖H2l,l+σ + ‖r̃‖H2l−2,l−1+σ , (3.12)

where ∂′ represents the tangential derivatives. We commute ∂bn∂
l−1−b and L̃1,

∂bn∂
′l−1−bL̃1r̃ = L̃1(∂

b
n∂

′l−1−br̃) +
[
∂bn∂

′l−1−b, L̃1

]
r̃

≃ L̃b
1(∂

b
n∂

′l−1−br̃) + (κ+ 1)(l − b− 1)∂′r∂i∂j∂
b
n∂

′l−b−2r̃

+ (κ+ 1)b∂nrH
i′j∂i′∂j∂

b−1
n ∂′l−b−1r̃ − (κ+ 1)bH i′j∂i′r∂j∂

b
n∂

′l−b−1r̃.

Here, L̃b
1r̃ = (κ + 1)H ij(r∂i∂j r̃ + ( 1

κ
+ b)∂ir∂j r̃) has a similar structure to L̃b

1 and a review

of the proof of Lemma 3.8 shows that L̃b
1 satisfies a similar elliptic bound. So, by induction

and the smallness of ∂′r, we have
∥∥∂bn∂′l−b−1r̃

∥∥
H1,σ .

∥∥∂bn∂′l−b−1r̃
∥∥
H2,1+σ .

∥∥∥L̃1r̃
∥∥∥
H2l−2,l−1+σ

+ ǫ‖r̃‖H2l,l+σ + ‖r̃‖H2l−2,l−1+σ .

Upon using the induction hypothesis on b again,
∥∥∂b+1

n ∂′l−b−1r̃
∥∥
H0,σ .

∥∥∥L̃1r̃
∥∥∥
H2l−2,l−1+σ

+ ǫ‖r̃‖H2l,l+σ + ‖r̃‖H2l−2,l−1+σ (3.13)

For the base case b = 0, we commute ∂′l−1 and L̃1

∂′l−1L̃1r̃ = L̃1∂
′l−1r̃ +

[
∂′l−1, L̃1

]
r̃

≃ L̃1∂
′l−1r̃ + (κ+ 1)(l − 1)H ij∂′r∂i∂j∂

′l−2r̃.

By another application of Lemma 3.8, we have the base case b = 0. Set a = l in (3.11), we
have

‖r̃‖H2l,l+σ .
∥∥∥L̃1r̃

∥∥∥
H2l−2,l−1+σ

+ ǫ‖r̃‖H2l,l+σ + ‖r̃‖H2l−2,l−1+σ .

We soak the term ǫ‖r̃‖H2l,l+σ to the LHS, which finishes the proof. �

Adding the identity to the operators, we have the following estimates

Corollary 3.13. Let (r, u, π) be a sufficiently smooth solution to (1.10) satisfying the physical
vacuum boundary condition (1.9). For r̃ sufficiently smooth, we have

‖r̃‖
H

2l, 1
2κ

+l−1
2
.
∥∥∥(L̂1 + I)r̃

∥∥∥
H

2l−2, 1
2κ

+l− 3
2

.

For a sufficiently smooth ũ orthogonal to u, we have

‖ũ‖
H

2l,l+ 1
2κ

.
∥∥∥
(
L̂2 + L̂3 + I

)
ũ
∥∥∥
H

2l−2,l−1 1
2κ

.

This corollary implies that L̂1+I and L̂2+ L̂3+I are injective mapping from H2l, 1

2κ
+l− 1

2 to
H2l−2, 1

2κ
+l− 3

2 and mapping fromH2l, 1

2κ
+l toH2l−2, 1

2κ
+l−1. Since injective self-adjoint operators

have dense ranges, Lemma 3.5 and Lemma 3.6 imply L̂1+I and L̂2+L̂3+I are isomorphisms.
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3.4. Local Wellposedness of the Linearized Equations. Here we establish the local
well-posedness of the linearized equation. The idea of the proof is similar to the proof of
Proposition 5.6 in [48].

Theorem 3.14. Let (r, u, π) be a sufficiently smooth solution to (1.10) satisfying the physical
vacuum boundary condition (1.9) such that

sup
t∈[0,T ]

‖(r, u, π)‖W 2l+1,∞(Ωt) ≤ K, (3.14)

where K > 0 is a constant and l is an integer. There exists T = T (K) > 0 such that for any
(f, g, h) ∈ L1([0, T ],H2l), there exist unique solutions (r̃, ũ, π̃) to the Cauchy problem (2.1),
satisfying the following estimate,

‖(r̃, ũ, π̃)‖H2l ≤ C (K)

(
‖(r̃0, ũ0, π̃0)‖H2l +

ˆ t

0

‖(f, g, h)‖H2l ds

)
, ∀t ∈ [0, T ], (3.15)

where C (K) > 0 is a constant continuously dependent on K.

Proof. We will construct the solution by using a duality argument. We first consider the
zero initial data case, i.e., (r̃0, ũ0, π̃0) = (0, 0, 0). Define the set of all test functions as

A :=








φ̃

ψ̃

χ̃


 ∈ C∞

c (DT )

∣∣∣∣∣∣



φ̃

ψ̃

χ̃


 |t=T= 0




 .

Let L denote the linear operator as in (2.11). We consider the weak formulation of the
Cauchy problem, i.e., we say (r̃, ũ, π̃) solves the Cauchy problem if

ˆ T

0

ˆ

Ωt



r̃

ũ

π̃


 ·L∗



φ̃

ψ̃

χ̃


 dxdt =

ˆ T

0

ˆ

Ωt




r
1

κ
−1f

κ2

κ+1
r

1

κa21G
αβgα

(2κ+1)2

κ+1
r

1

κ
a

1
κ
0
(r+1)

1+(κ+1)r
h


 ·



φ̃

ψ̃

χ̃


 dxdt,

where 

φ̃

ψ̃

χ̃


 ·



φ̄

ψ̄

χ̄


 = φ̃φ̄+ ψ̃αψ̄α + χ̃χ̄,

and L∗ is the adjoint operator of L. It can be checked that L∗ has a similar structure to
L. We consider the adjoint problem

L∗



φ̃

ψ̃

χ̃


 =



Φ̃

Ψ̃

X̃


 ,



φ̃

ψ̃

χ̃


 (0) = 0.

A similar method as in the proof of the basic energy estimate (2.9) gives us
∥∥∥∥∥∥



φ̃

ψ̃

χ̃




∥∥∥∥∥∥
L∞

t H

. C (K)

∥∥∥∥∥∥



Φ̃

Ψ̃

X̃




∥∥∥∥∥∥
L1
tH

∗

.
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Define a map J0 : L(A) → R by

J0



L∗




φ̃

ψ̃

χ̃







 =

ˆ T

0

ˆ

Ωt




r
1

κ
−1f

κ2

κ+1
r

1

κa21G
αβgα

(2κ+1)2

κ+1
r

1

κ
a

1
κ
0
(r+1)

1+(κ+1)r
h


 ·




φ̃

ψ̃

χ̃



 dxdt.

We show that J0 is bounded by the following,

∣∣∣∣∣∣
J0


L∗



φ̃

ψ̃

χ̃






∣∣∣∣∣∣
. C (K)

∥∥∥∥∥∥



f

g

h




∥∥∥∥∥∥
L1
tH

∥∥∥∥∥∥



φ̃

ψ̃

χ̃




∥∥∥∥∥∥
L∞H

. C (K)

∥∥∥∥∥∥



f

g

h




∥∥∥∥∥∥
L1
tH

∥∥∥∥∥∥
L∗



φ̃

ψ̃

χ̃




∥∥∥∥∥∥
L1
tH

∗

.

By Hahn-Banach theorem, we can extend J0 to J ∈ (L1
t (H

∗))
∗
. By Riesz representation

theorem, there exists a unique (r̃, ũ, π̃) ∈ L∞(H) to represent J , which gives us a weak
solution. We will prove the high-order case by induction. First, we prove the case where l = 1,
i.e., we establish a solution (r̃, ũ, π̃) ∈ L∞([0, T ],H2) given a source (f, g, h) ∈ L1([0, T ],H2)
satisfying the estimate

‖(r̃, ũ, π̃)‖L∞

t H2 ≤ C (K)‖(f, g, h)‖L1
tH

2 ,

where (r, u, π) satisfies

sup
t∈[0,T ]

‖(r, u, π)‖W 3,∞(Ωt) ≤ K.

Let us first argue formally. We apply L̂1, L̂2 + L̂3 and L̂1 to the first, second and third
equation of the linearized system (2.1). Commuting with L

′(r, u, π), we get

L
′(r, u, π)




L̂1r̃(
L̂2 + L̂3

)
ũ

L̂1π̃


 =




L̂1f + f(
L̂2 + L̂3

)
g + g

L̂1h +h


 ,
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where f = f[r̃, ũ, π̃], g = g[r̃, ũ, π̃] and h = h[r̃, ũ, π̃] are all the commutators given by the
following

f =
[
Dt, L̂1

]
r̃ + κra1∂µ

[(
L̂2 + L̂3

)
ũ
]µ

− L̂1 (κra1∂µũ
µ)

+ ∂µr
[(
L̂2 + L̂3

)
ũ
]µ

− L̂1 (∂µrũ
µ)−

(
L̂1V1

)
r̃ − L̂1

(
r2Z1

)
π̃,

g =
[
Dt,
(
L̂2 + L̂3

)]
ũ

+

(
1 +

1

κ

)
a2∆

•µ∂µ

(
L̂1r̃
)
−
(
L̂2 + L̂3

)[(
1 +

1

κ

)
a2∆

•µ∂µr̃

]

+

(
2 +

1

κ

)
ra3∆

•µ∂µ

(
L̂1π̃

)
−
(
L̂2 + L̂3

)[(
2 +

1

κ

)
ra3∆

•µ∂µπ̃

]

+ V2L̂1r̃ −
(
L̂2 + L̂3

)
(V2r̃)

+ (W2)β

[(
L̂2 + L̂3

)
ũ
]β

−
(
L̂2 + L̂3

)(
(W2)β ũ

β
)

+ Z2

(
L̂1π̃

)
−
(
L̂2 + L̂3

)
(Z2π̃),

h =
[
Dt, L̂1

]
π̃ + ra4∂µ

[(
L̂2 + L̂3

)
ũ
]µ

− L̂1 (ra4∂µũ
µ)

− L̂1(rV3)r̃ + (W3)α

[(
L̂2 + L̂3

)
ũ
]α

− L̂1 ((W3)αũ
α)− L̂1Z3π̃.

(3.16)

and satisfying

‖f[r̃, ũ, π̃]‖
H

0, 1
2κ

−
1
2
. C (K)‖(r̃, ũ, π̃)‖H2 ,

‖g[r̃, ũ, π̃]‖
H

0, 1
2κ

. C (K)‖(r̃, ũ, π̃)‖H2 ,

‖h[r̃, ũ, π̃]‖
H0, 1

2κ
. C (K)‖(r̃, ũ, π̃)‖H2 .

(3.17)

It might appear that above inequality is not true because of the red terms in (3.16). However,
we remark here that these red terms cancel with each other at the top order and reduce to
terms that can be controlled. Formally, by the basic energy estimate (2.9), we will have
∥∥∥∥∥∥∥




L̂1r̃(
L̂2 + L̂3

)
ũ

L̂1π̃




∥∥∥∥∥∥∥
H

.

∥∥∥∥∥∥∥




L̂1r̃0(
L̂2 + L̂3

)
ũ0

L̂1π̃0




∥∥∥∥∥∥∥
H

+

ˆ t

0

∥∥∥∥∥∥∥




L̂1f(
L̂2 + L̂3

)
g

L̂1h


+C(K)




f

g

h





∥∥∥∥∥∥∥
H

dt

.

∥∥∥∥∥∥∥




L̂1r̃0(
L̂2 + L̂3

)
ũ0

L̂1π̃0




∥∥∥∥∥∥∥
H

+ C (K)



ˆ t

0

∥∥∥∥∥∥∥




L̂1f(
L̂2 + L̂3

)
g

L̂1h




∥∥∥∥∥∥∥
H

dt+

ˆ t

0

∥∥∥∥∥∥



f

g

h




∥∥∥∥∥∥
H

dt




.

∥∥∥∥∥∥




r̃0
ũ0
π̃0





∥∥∥∥∥∥
H2

+ C (K)




ˆ t

0

∥∥∥∥∥∥




f

g

h





∥∥∥∥∥∥
H2

dt+

ˆ t

0

∥∥∥∥∥∥




r̃

ũ

π̃





∥∥∥∥∥∥
H2

dt




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By the elliptic estimates (3.10), we have

‖(r̃, ũ, π̃)‖H2 .

∥∥∥∥∥∥



r̃0
ũ0
π̃0




∥∥∥∥∥∥
H2

+ C (K)



ˆ t

0

∥∥∥∥∥∥



f

g

h




∥∥∥∥∥∥
H2

dt+

ˆ t

0

∥∥∥∥∥∥



r̃

ũ

π̃




∥∥∥∥∥∥
H2

dt


 .

By the standard grönwall’s inequality, we have

‖(r̃, ũ, π̃)‖H2 . C (K)




∥∥∥∥∥∥



r̃0
ũ0
π̃0




∥∥∥∥∥∥
H2

+

ˆ t

0

∥∥∥∥∥∥



f

g

h




∥∥∥∥∥∥
H2

dt


 .

In the same manner, we can prove the high-order case,

‖(r̃, ũ, π̃)‖H2l . C (K)





∥∥∥∥∥∥




r̃0
ũ0
π̃0





∥∥∥∥∥∥
H2l

+

ˆ t

0

∥∥∥∥∥∥




f

g

h





∥∥∥∥∥∥
H2l

dt



 . (3.18)

To make the argument more rigorous, we define


r̃0

ũ0

π̃0


 ∈ L∞

t (H)

by solving the Cauchy problem (2.1) with the source term replaced by




L̂1f

(L̂2 + L̂3)g

L̂1h


 .

Then, we have
∥∥∥∥∥∥



r̃0

ũ0

π̃0




∥∥∥∥∥∥
L∞H

. C (K)

∥∥∥∥∥∥




L̂1f

(L̂2 + L̂3)g

L̂1h.




∥∥∥∥∥∥
L1
tH

. C (K)

∥∥∥∥∥∥



f

g

h




∥∥∥∥∥∥
L1
tH

2

.

Next, for each i, we define



r̃i

ũi

π̃i



 ∈ L∞
t (H)

by solving the Cauchy problem (2.1) with zero data with the source term replaced by



f[L̂−1

1 r̃i−1, (L̂2 + L̂3)
−1ũi−1, L̂−1

1 π̃i−1]

g[L̂−1
1 r̃i−1, (L̂2 + L̂3)

−1ũi−1, L̂−1
1 π̃i−1]

h[L̂−1
1 r̃i−1, (L̂2 + L̂3)

−1ũi−1, L̂−1
1 π̃i−1]


 .
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By the commutator estimate (3.17) and the basic energy estimate (2.9), we have

∥∥∥∥∥∥



r̃i

ũi

π̃i




∥∥∥∥∥∥
L∞

t (H)

. C (K)

∥∥∥∥∥∥



f[L̂−1

1 r̃i−1, (L̂2 + L̂3)
−1ũi−1, L̂−1

1 π̃i−1]

g[L̂−1
1 r̃i−1, (L̂2 + L̂3)

−1ũi−1, L̂−1
1 π̃i−1]

h[L̂−1
1 r̃i−1, (L̂2 + L̂3)

−1ũi−1, L̂−1
1 π̃i−1]




∥∥∥∥∥∥
L1
tH

.

∥∥∥∥∥∥




L̂−1
1 r̃i−1

(L̂2 + L̂3)
−1ũi−1

L̂−1
1 π̃i−1




∥∥∥∥∥∥
L1
tH

2

.

∥∥∥∥∥∥




r̃i−1

ũi−1

π̃i−1





∥∥∥∥∥∥
L1
tH

. C (K)T

∥∥∥∥∥∥




r̃i−1

ũi−1

π̃i−1





∥∥∥∥∥∥
L∞

t H

. ... . (C (K)T )i−1

∥∥∥∥∥∥




f

g

h





∥∥∥∥∥∥
L1
tH

2

.

If T is chosen small enough, define


r̃

ũ

π̃


 :=

∞∑

i=0



r̃i

ũi

π̃i




and it satisfies ∥∥∥∥∥∥




r̃

ũ

π̃





∥∥∥∥∥∥
L∞

t H

. C (K)

∥∥∥∥∥∥




f

g

h





∥∥∥∥∥∥
L1
tH

2

.

By continuity, we have

L
′(r, u, π)



r̃

ũ

π̃


 =

∞∑

i=0

L
′(r, u, π)



r̃i

ũi

π̃i




=




L̂1f

(L̂2 + L̂3)g

L̂1h.



+

∞∑

i=1




f[L̂−1

1 r̃i−1, (L̂2 + L̂3)
−1ũi−1, L̂−1

1 π̃i−1]

g[L̂−1
1 r̃i−1, (L̂2 + L̂3)

−1ũi−1, L̂−1
1 π̃i−1]

h[L̂−1
1 r̃i−1, (L̂2 + L̂3)

−1ũi−1, L̂−1
1 π̃i−1]





=




L̂1f

(L̂2 + L̂3)g

L̂1h.



+




f[L̂−1

1 r̃, (L̂2 + L̂3)
−1ũ, L̂−1

1 π̃]

g[L̂−1
1 r̃, (L̂2 + L̂3)

−1ũ, L̂−1
1 π̃]

h[L̂−1
1 r̃, (L̂2 + L̂3)

−1ũ, L̂−1
1 π̃]



 .

(3.19)

Now, let

(r̂, û, π̂) := (L̂−1
1 r̃, (L̂2 + L̂3)

−1ũ, L̂−1
1 π̃) ∈ L∞

t H2.
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Then, we have

L
′(r, u, π)




L̂1r̂

(L̂2 + L̂3)û

L̂1π̂


 =




L̂1f

(L̂2 + L̂3)g

L̂1h.


+



f[r̂, û, π̂]
g[r̂, û, π̂]
h[r̂, û, π̂]


 ,

commuting the operators




L̂1

L̂2 + L̂3

L̂1



 and L
′(r, u, π), we have




L̂1

L̂2 + L̂3

L̂1




L

′(r, u, π)



r̂

û

π̂


−



f

g

h




 = 0.

By the invertibility of L̂1 and L̂2+ L̂3, we know that (r̂, û, π̂) solves the Cauchy problem and
we have the estimate,

‖(r̂, û, π̂)‖L∞

t H2 . C (K)

∥∥∥∥∥∥



f

g

h




∥∥∥∥∥∥
L1
tH

2

.

To establish the result for general l, we assume the existence of the solution

(r̃, ũ, π̃) ∈ L∞
t H2l

to the Cauchy problem (2.1) satisfying the estimate
∥∥∥∥∥∥



r̃

ũ

π̃




∥∥∥∥∥∥
L∞

t H2l

. C (K)

∥∥∥∥∥∥



f

g

h




∥∥∥∥∥∥
L1
tH

2l

given the source terms

(f, g, h) ∈ L1
tH

2l

and then show that l + 1 case holds. If given

(f, g, h) ∈ L1
tH

2l+2

The inductive assumption and the same argument for the case l = 1 give us a solution
(r̃, ũ, π̃) ∈ L∞

t H2l to (3.19) satisfying the estimate,
∥∥∥∥∥∥




r̃

ũ

π̃





∥∥∥∥∥∥
L∞

t H2l

. C (K)

∥∥∥∥∥∥




f

g

h





∥∥∥∥∥∥
L1
tH

2l+2

.

As in the case l = 2, with the high-order elliptic estimates Lemma 3.10, we define

(r̂, û, π̂) := (L̂−1
1 r̃, (L̂2 + L̂3)

−1ũ, L̂1π̃) ∈ L∞
t H2l+2.

(r̂, û, π̂) solves the Cauchy problem with the following estimates by the ellipitc bounds Lemma
3.10,

‖(r̂, û, π̂)‖L∞

t H2l+2 . C (K)

∥∥∥∥∥∥



f

g

h




∥∥∥∥∥∥
L1
tH

2l+2

.
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Now, if (r̃, ũ, π̃) ∈ L∞([0, T ],H2l) is the solution when given a source (f, g, h) ∈ C∞
c (DT ).

By solving time derivatives in terms of spatial derivatives and omitting the lower-order terms
as in 3.3, we have

∂tr̃ ≃ ∂r̃ + f + rg + r2h

∂tũ ≃ ∂ũ + f + g + rh

∂tπ̃ ≃ ∂π̃ + rf + rg + h.

(3.20)

Then, by the embedding theorem (2.3), we have

∂t(r̃, ũ, π̃) ∈ L∞
t H2l−2

Consequently, (r̃, ũ, π̃) ∈ C([0, T ],H2l). Since here l can be arbitrary, re-using the equation
(3.20), we can improve the regularity of the solution,

(r̃, ũ, π̃) ∈ C∞(DT )

By a density argument, we can obtain (r̃, ũ, π̃) ∈ C([0, T ],H2l) for (f, g, h) ∈ L1
tH

2l. Now
we consider the non-zero initial data case. If the initial data (r̃0, ũ0, π̃0) ∈ H, we consider
the system for r̂ := r̃ − r̃0, û := ũ − ũ0 and π̂ := π̃ − π̃0, where (r̃, ũ, π̃) solves the system
(2.1). The system for (r̂, û, π̂) is the system (2.1) with zero initial data, where the source
terms (f, g, h) are replaced by (f, g, h) minus some derivatives of (r̃0, ũ0, π̃0). For now, we
assume (f, g, h), (r̃0, ũ0, π̃0) ∈ C∞

c (DT ). Then, we have solutions (r̂, û, π̂) ∈ C∞
c (DT ) and

(r̃, ũ, π̃) solve the system (2.1) with nonzero initial data (r̃0, ũ0, π̃0), so (r̃, ũ, π̃) satisfies the
high-order estimate (3.18). The proof finishes with another density argument. �
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