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ON SHARP CONSTANTS IN HIGHER ORDER ADAMS-CIANCHI

INEQUALITIES

PRASUN ROYCHOWDHURY AND DANIEL SPECTOR

ABSTRACT. The main results of this paper are the establishment of sharp con-
stants for several families of critical Sobolev embeddings. These inequalities were
pioneered by David R. Adams, while the sharp constant in the first order case is
due to Andrea Cianchi. We also prove a trace improvement of an inequality ob-
tained independently by K. Hansson and H. Brezis and S. Wainger.

1. INTRODUCTION

Let Ω ⊂ R
n be an open, bounded set and suppose u ∈ W k,p

0 (Ω) with kp = n.
This regime is critical for the Sobolev embedding, where a well-known result is
the exponential integrability of u at an appropriate power: There exist constants
c, C > 0 such that

ˆ

Ω

exp

(
c

∣∣∣∣
u(x)

‖∇ku‖Lp

∣∣∣∣
p′)

dx ≤ C,(1.1)

for all u ∈W k,p
0 (Ω), where∇ku is the usual iterated gradient, i.e. ∇ku = ∇(∇k−1u),

and ‖∇ku‖Lp ≡ ‖|∇ku|‖Lp(Ω). The history of such an estimate has been accounted
for many times (see, e.g. [10]), in particular the assertions of Yudovich concerning
estimates for Riesz potentials [19, Theorem 3 on p. 808] and of Pohozaev in two
dimensions [26, Lemma 1 on p. 1409], Peetre’s result for the Besov spaces [25, The-
orem 8.2 on p. 302], Trudinger’s result with the best exponent in the first order case
[32, Theorem 2 on p. 478], Strichartz’s result for Bessel potentials which obtains the
correct exponent [31], and Hedberg’s result for Riesz potentials [18]. In particular,
the inequality (1.1) can be argued by Hedberg’s estimate and a simple pointwise
bound for a function in terms of its Riesz potential:

|u(x)| ≤ cIk|∇ku|(x)(1.2)

for some c = c(k, n) > 0 (see Section 2 for a precise definition of Iα, α ∈ (0, n)).
It seems less well-known that the inequality (1.1) admits an improvement with

respect to the dimension of integration, the trace exponential integrability inequal-
ity: For every d ∈ (0, n], there exist constants cd, Cd > 0

ˆ

Ω

exp

(
cd

∣∣∣∣
u(x)

‖∇ku‖Lp

∣∣∣∣
p′)

dν ≤ Cd(1.3)

for all u ∈ W k,p
0 (Ω) and for all Radon measures ν which satisfy the ball growth

condition

ν(B(x, r)) ≤ C′
dr

d(1.4)
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for all x ∈ R
n and r > 0. Indeed, when d = k ∈ N and ν = Hk|Ω∩H for any hy-

perplaneH , an inequality in the spirit of (1.3) for Riesz potentials is a more precise
recounting of Yudovich’s assertion in [19, Theorem 3 on p. 808]. For general Radon
measures ν which satisfy (1.4), the analogous estimate for a Bessel potential is due
to D.R. Adams [2, Theorem 3(ii) on p. 912], while an estimate involving Riesz po-

tentials can be found in the paper of the second author and Á. Martinez [20] (see
also [3,4,8] for similar critical estimates and [27] for a related dual estimate). As in
the estimate (1.1), the inequality (1.3) can be argued by a Riesz potential estimate
[20, Corollary 1.4 on p. 880] and the representation inequality (1.2).

Concerning the family of inequalities (1.1), there is a fairly complete picture
with regard to the best constant. In the first order case, Moser [23] showed that

one may take c = nω
n/(n−1)
n in the inequality (1.1) and that the inequality fails for

any larger value of c. This first order case with the best constant has been called the
Moser-Trudinger inequality, while when the order of the derivative is greater than
one, D.R. Adams gave a fundamental contribution toward a higher order Moser-
Trudinger inequality in his paper [1], which paved the way for the establishment
of the best constant in this setting. In particular, in his paper, Adams obtains the
best constant for the case of the analogous Riesz potential embedding, which gives
the sharp constant for p = n

k = 2, while the remaining cases were subsequently
settled in the paper [29]. The program initiated by Adams and completed in [29]
involves two main steps:

(1) Obtain the best constant in the analogous Riesz potential embedding;
(2) Derive and utilize a sharp form of the representation formula (1.2).

The second step played a more minor role in Adams’ paper, as in place of ∇ku, he
utilized the differential operator

Dku :=

{
∇(−∆)(k−1)/2u, k odd,
(−∆)k/2u, k even.

This simplifies the sharp representation formulas bounding u in terms of the Riesz
potential of |Dku|, as a similar inequality between u and the Riesz potential of
|∇ku| turns out to be more subtle. This sharp representation was obtained by I.
Shafrir and the second author in [29], based on Shafrir’s work on a sharp constant
in the critical L∞ embedding [28] and ideas developed by the second author and
R. Garg [14, 15].

The purpose of this paper is to give an analogous treatment of the question
of best constant for the family of inequalities (1.3). To this end, we first recall the
remarkable result of A. Cianchi, who among other results, in [9] obtained the sharp
constant in the inequality (1.3) in the first order case, as well as when |∇u| is in a
critical Lorentz space. Cianchi’s result is a natural extension of Moser’s celebrated
result [23] concerning the sharp constant for first-order gradients in (1.1), and we
will refer to this first order case as the Adams-Cianchi inequality. Concerning the
higher order Adams-Cianchi inequality, a fundamental contribution was made in
the paper of Fontana and Morpurgo [11], where they obtained the sharp constant
in the analogue of Adams’ result [1] for the Riesz potential where the Lebesgue
measure is replaced by general Radon measures ν which satisfy (1.4), along with
the sharp constant for the analogous inequality utilizing Adams’ derivative Dku.
As in the case of Adams’ work, this includes the sharp constant in (1.3) for p = n

k =
2 (see [11, Theorem 12 on p. 5104]). That one cannot improve the constant requires
a non-degeneracy condition on the measure, that the general upper bound has a
matching lower bound at some place in the domain: There exists x0 ∈ Ω, ̺0 > 0,



ON SHARP CONSTANTS IN HIGHER ORDER ADAMS-CIANCHI INEQUALITIES 3

and C0 > 0 such that

C0̺
d ≤ ν(B(x0, ̺) ∩ Ω) for all 0 < ̺ ≤ ̺0.(1.5)

Thus one observes that a principle remaining question is that of the establish-
ment of sharp constants in the family of inequalities (1.3) for k ∈ N, 1 < k < n
for p 6= 2. Secondary points of interest (the latter two anticipated by Fontana and
Morpurgo [11, Remark 1 on p. 5073 and the bottom of p. 5093]) include whether
one has a similar sharp trace inequalities for

(1) ∇ku in critical Lorentz spaces;
(2) the Riesz potentials acting on functions in critical Lorentz spaces;
(3) Adams’ derivative Dku in critical Lebesgue and Lorentz spaces.

Note that for the Lebesgue measure, the Lorentz scale extension of Adams’ result
in (2) and (3) have been addressed by A. Alvino, V. Ferone, G. Trombetti [6] and
A. Alberico [5].

In this paper, we obtain the sharp constants in the family of inequalities (1.3)
and complete the picture concerning (1), (2), and (3) for the Lorentz spacesLp,q(Ω)
for p critical and 1 < q < +∞. In particular, we demonstrate the validity of these
various inequalities with a particular constant, and assuming the non-degeneracy
condition (1.5), show the optimality of these constants. The computations for opti-
mality involve variants of a standard test function for this regime – the logarithm
of the distance to a point. For ∇k, Dk we utilize the test functions from [28, 29],
while for the Riesz potential we use Adams’ capacitary test functions [1].

Our first result is an answer to the principle question, on the sharp constants in
the higher order Adams-Cianchi inequalities (1.3), including their extension to the
Lorentz scale, the following

Theorem 1.1. Let Ω be an open bounded subset of Rn, n ≥ 2. Let k ∈ N, 1 ≤ k < n,
1 < q < ∞, and set q′ = q/(q − 1). Let ν be any positive Borel measure on Ω which
satisfies (1.4) and (1.5) for some d ∈ (0, n]. Then there exists positive constant C =
C(n, k,Ω, C′

d, q) such that
ˆ

Ω

exp
(
β|u(x)|q′

)
dν ≤ C,(1.6)

for every β ≤ dn
q′

q ω
k
n q′

n

√
ℓkn

q′

and every u ∈ W k
0 L

n
k ,q(Ω) with ‖ |∇ku| ‖

L
n
k

,q(Ω)
≤

1. Moreover, the result is sharp in the sense that the l.h.s. of (1.6), with any β >

dn
q′

q ω
k
n q′

n

√
ℓkn

q′

, cannot be uniformly bounded for every u ∈ W k
0 L

n
k ,q(Ω) with

‖ |∇ku| ‖
L

n
k

,q(Ω)
≤ 1.

Here
√
ℓkn is a combinatorial constant such that

|∇k log |x|| =
√
ℓkn

|x|k ,(1.7)

for x 6= 0, see Section 2 below. The appearance of this constant in optimality
emerged through a technique pioneered by I. Shafrir in [28] and further developed
by Shafrir and the second author in [29]: Up to proper normalization, log |x| is the
fundamental solution of the family of elliptic equations

(−1)k divk |x|2k−n∇ku = 0.

This fact yields (1.2) with a constant that finds no loss in the critical regime of
interest to us. This reduces the question to a sharp estimate for Riesz potentials,
and so the proof of Theorem 1.1 follows from this representation and
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Theorem 1.2. Let Ω be an open bounded subset of Rn, n ≥ 2. Let α ∈ (0, n), 1 < q <∞,
and set q′ = q/(q − 1). Let ν be any positive Borel measure on Ω which satisfies (1.4) and
(1.5) for some d ∈ (0, n]. Then there exists positive constant C = C(n, α,Ω, C′

d, q) such
that

ˆ

Ω

exp
(
β|Iαf(x)|q

′
)
dν ≤ C,(1.8)

for every β ≤ d
nγ(α)

q′ω
−n−α

n q′

n and every f ∈ L
n
α ,q(Ω) with ‖ |f | ‖

L
n
α

,q(Ω)
≤ 1. More-

over, the result is sharp in the sense that the l.h.s. of (1.8), with any β > d
nγ(α)

q′ω
−n−α

n q′

n ,

cannot be uniformly bounded for every f ∈ L
n
α ,q(Ω) with ‖ |f | ‖

L
n
α

,q(Ω)
≤ 1.

Note that the preceding theorem also gives an answer to (2). Concerning (3),
we prove the following theorem which gives the sharp constant for the differential
operators employed by Adams [1] and Alberico [5].

Theorem 1.3. Let Ω be an open bounded subset of Rn, n ≥ 2. Let k ∈ N, 1 ≤ k < n,
1 < q < ∞, and set q′ = q/(q − 1). Let ν be any positive Borel measure on Ω which
satisfies (1.4) and (1.5) for some d ∈ (0, n]. Then there exists positive constant C =
C(n, k,Ω, C′

d, q) such that
ˆ

Ω

exp
(
β|u(x)|q′

)
dν ≤ C,(1.9)

for every β ≤ βn,k,q (as defined in (2.5)) and every u ∈ W k
0 L

n
k ,q(Ω) with

‖ |Dku| ‖q
L

n
k

,q(Ω)
≤ 1. Moreover, the result is sharp in the sense that the l.h.s. of

(1.9), with β > βn,k,q , cannot be uniformly bounded for every u ∈ W k
0 L

n
k ,q(Ω) with

‖ |Dku| ‖
L

n
k

,q(Ω)
≤ 1.

As asserted in Theorems 1.1, 1.2, and 1.3, the constants are sharp in the sense
that the coefficient multiplying u may not be replaced by any larger number. We
next turn our attention to the endpoint q = +∞. Here, as in Cianchi’s work, we
establish the validity of the inequality on an open interval. For the higher order
case involving the Riesz potential, we are able to prove the complete analogue, as
we demonstrate a failure at the endpoint via capacitary test functions. This gives
a complete picture in the following analogue of Theorem 1.2.

Theorem 1.4. Let Ω be an open bounded subset of Rn, n ≥ 2. Let α ∈ (0, n). Let ν be
any positive Borel measure on Ω which satisfies (1.4) and (1.5) for some d ∈ (0, n]. Let

γ <
(
d
n

)
γ(α)ω

−n−α
n

n . Then there exists positive constant C = C(n, α,Ω, C′
d, γ) such

that
ˆ

Ω

exp (γ|Iαf(x)|) dν ≤ C.(1.10)

for every f ∈ L
n
α ,∞(Ω) with || |f | ||

L
n
α

,∞(Ω)
≤ 1. Moreover, the result is sharp in the

sense that the l.h.s. of (1.10), with γ ≥
(
d
n

)
γ(α)ω

−n−α
n

n , cannot be uniformly bounded

for every f ∈ L
n
α ,∞(Ω) with || |f | ||

L
n
α

,∞(Ω)
≤ 1.

For the higher order gradient we have the following analogue of Theorem 1.1.

Theorem 1.5. Let Ω be an open bounded subset of Rn, n ≥ 2. Let k ∈ N, 1 ≤ k < n. Let
ν be any positive Borel measure on Ω which satisfies (1.4) and (1.5) for some d ∈ (0, n].

Let γ < dω
k
n
n

√
ℓkn. Then there exists positive constant C = C(n, k,Ω, C′

d, γ) such that
ˆ

Ω

exp (γ|u(x)|) dν ≤ C,(1.11)
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for every u ∈ W k
0 L

n
k ,∞(Ω) with || |∇ku| ||

L
n
k

,∞(Ω)
≤ 1. Moreover, the result is sharp in

the sense that the l.h.s. of (1.11), with γ > dω
k
n
n

√
ℓkn, cannot be uniformly bounded for

every u ∈ W k
0 L

n
k ,∞(Ω) with || |∇ku| ||

L
n
k

,∞(Ω)
≤ 1.

Finally, for Adams’ derivativeDkuwe have the following analogue of Theorem
1.3.

Theorem 1.6. Let Ω be an open bounded subset of Rn, n ≥ 2. Let k ∈ N, 1 ≤ k < n. Let
ν be any positive Borel measure on Ω which satisfies (1.4) and (1.5) for some d ∈ (0, n].
Let γ < βn,k,∞ for βn,k,∞ as defined in (2.5). Then there exists positive constant C =
C(n, k,Ω, C′

d, γ) such that
ˆ

Ω

exp (γ|u(x)|) dν ≤ C,(1.12)

for every u ∈ W k
0 L

n
k ,∞(Ω) with || |Dku| ||

L
n
k

,∞(Ω)
≤ 1. Moreover, the result is sharp in

the sense that the l.h.s. of (1.12), with γ > βn,k,∞, cannot be uniformly bounded for every
u ∈W k

0 L
n
k ,∞(Ω) with || |Dku| ||

L
n
k

,∞(Ω)
≤ 1.

One observes that in Theorems 1.5 and 1.6, in contrast to the case q < +∞ for
any of the differential or integral operators, or q = +∞ for the Riesz potential,
the validity of the inequality at the endpoint is not settled. In particular, while
our Theorem 1.4 for the Riesz potential shows a failure at the endpoint which
is in agreement with Cianchi’s establishment of the failure of the inequality at
the endpoint in the first order case regime [9, Theorem 2.2 on p. 2010], the test
functions we utilize in the higher order differential case are not sufficient to settle
the endpoint. This motivates

Open Question 1.7. Can one construct test functions which show the failure of Theorems

1.5 and 1.6 at their unresolved endpoints, γ = dω
k
n
n

√
ℓkn and γ = βn,k,∞, respectively?

This question of the endpoint behavior for these limiting inequalities is related
to an interesting underlying phenomena. In particular, for q = +∞ there is a
difference in character of the embedding, as in contrast to the case q < +∞, the

usual test function of a cutoff function1 times log |x| is an element of the space
W k

0 L
n
k ,∞(Ω). For q < +∞, the typical element of W k

0 L
n
k ,q(Ω) is a cutoff function

times log(2 + log |x|), which has slightly better behavior. This alternative direction
of improvement to exponential integrability for functions in critical Sobolev spaces
has been observed in the literature in the work of K. Hansson [17, Eqn 3.13 on
p. 101] and H. Brezis and S. Wainger [7, Theorem 2 on p. 781], where the relevant
functional inequality is the Hansson-Brezis-Wainger embedding: Let 1 < q < +∞.
There exists a constant C > 0 such that



ˆ |Ω|

0


 (Iαf)

∗(t)

1 + log
(

|Ω|
t

)




q

dt

t




1
q

≤ C‖f‖Ln/α,q(Ω)(1.13)

for every f ∈ L
n
α ,q(Ω). Here for a measurable function g, g∗ is the usual non-

increasing rearrangement of g, see e.g. [16, Definition 1.4.1 on p. 44], i.e., for any
t ∈ (0,∞), we have

g∗(t) = inf{λ > 0; |{x ∈ Ω; |g(x)| > λ}| ≤ t}.(1.14)

1The cutoff function is to ensure compact support in the domain, and handling this error or finding

another mechanism is what must be done to establish failure of the endpoint.
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When one takes into account (1.2), this translates to an estimate for Sobolev func-
tions as



ˆ |Ω|

0


 u∗(t)

1 + log
(

|Ω|
t

)




q

dt

t




1
q

≤ C′‖∇ku‖Ln/α,q(Ω)(1.15)

for every u ∈ W k
0 L

n
k ,q(Ω).

We do not know of any work to establish the optimal constant in the inequalities
(1.13) and (1.15). Yet given our work on extending the optimal constants in the
inequalities (1.1) to the trace embeddings (1.3), it is natural to ask whether there is
a trace improvement of the Hansson-Brezis-Wainger embedding. Indeed, we here
prove such an inequality in

Theorem 1.8 (Trace Hansson-Brezis-Wainger). Let Ω be an open bounded subset of
R

n, n ≥ 2. Let α ∈ (0, n). Let ν be any positive Borel measure on Ω which satisfies (1.4)
for some d ∈ (0, n]. Then there exists positive constant C = C(n, α,Ω, C′

d, q) such that



ˆ ν(Ω)

0

((Iαf)
∗
ν(t))

q

(
1 + | log t

ν(Ω) |
)q

dt

t




1
q

≤ C‖f‖
L

n
α

,q(Ω)
(1.16)

for every f ∈ L
n
α ,q(Ω).

Note here that (Iαf)
∗
ν is the rearrangement taken with respect to the Radon mea-

sure ν: For a ν measurable function g and t ∈ (0,∞),

g∗ν(t) = inf{λ > 0; ν({x ∈ Ω; |g(x)| > λ}) ≤ t}.(1.17)

In the sequel, when there is no possibility of ambiguity, for notational convenience
we drop the subscript of ν in g∗ν(t) and write g∗(t) for rearrangements taken with
respect to both ν and the Lebesgue measure.

Finally, let us record the following easy consequence of Theorem 1.8 and in-
equality (1.2).

Corollary 1.9. Let Ω be an open bounded subset of Rn, n ≥ 2. Let k ∈ N, 1 ≤ k < n.
Let ν be any positive Borel measure on Ω which satisfies (1.4) for some d ∈ (0, n]. Then
there exists positive constant C = C(n, k,Ω, C′

d, q) such that



ˆ ν(Ω)

0

(u∗ν(t))
q

(
1 + | log t

ν(Ω) |
)q

dt

t




1
q

≤ C‖∇ku‖
L

n
k

,q(Ω)
(1.18)

for every u ∈ W k
0 L

n
k ,q(Ω).

Remark 1.10. One also has the inequality for ‖∇ku‖
L

n
k

,q(Ω)
replaced with ‖Dku‖

L
n
k

,q(Ω)
.

The plan of the papers is as follows. In Section 2, we recall some necessary
preliminaries, including several Hardy inequalities, the precise definitions of the
constants appearing in the paper, and some background on non-increasing rear-
rangements. We also recall and prove several lemmas involving non-increasing
rearrangements that will be useful in the sequel. In Section 3, we prove Theorems
1.1, 1.2, and 1.3. In Section 4, we prove Theorems 1.4, 1.5, and 1.6. Finally, in
Section 5 we prove Theorem 1.8 and Corollary 1.9.
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2. PRELIMINARIES

We begin this section by fixing some notation. Throughout the paper, we as-
sume Ω is a bounded open set in R

n with dimension n ≥ 2. Our results are quanti-
fied over d ∈ (0, n] and all non-negative Borel measures satisfying the ball growth
conditions (1.4) and (1.5).

For k ∈ N, we denote by

∇ku(x) =

{
∂ku

∂xi1
· · · ∂xik

}

ik,··· ,ik∈In

where In = {1, · · · , n},

the tensor consisting of the nk partial derivatives of u of order k at the point x and

|∇ku|(x) denotes the Euclidean norm of this vector in R
nk

.
We now recall two Hardy inequalities that will be useful in the sequel. The first

is the classical Hardy inequality, see e.g. [21, Eqn. (1.3.1) on p. 40]:

Lemma 2.1. Let 1 < p <∞ and w > 1. If ψ ≥ 0 is measurable, then

ˆ ∞

0

t−w

(
ˆ t

0

ψ(s) ds

)p

dt ≤
(

p

w − 1

)p ˆ ∞

0

t−w(tψ(t))p dt.

The second is [7, Lemma 1 on p. 782] (with R replacing 1), which we state as

Lemma 2.2. Let 1 < p <∞ and R > 0. If ψ ≥ 0 is measurable, then

ˆ R

0

(
´ R

t
ψ(s) ds

)p

(
1 + | log

(
t
R

)
|
)p

dt

t
≤
(

p

p− 1

)p ˆ R

0

tp−1ψp(t) dt.

We next recall the definition of the Riesz potentials. For α ∈ (0, n] and f ∈
L1
loc(R

n) we define

Iαf(x) :=
1

γ(α)

ˆ

Rn

f(y)

|x− y|n−α
dy,

where

γ(α) :=
πn/22αΓ (α/2)

Γ
(
n−α
2

) ,(2.1)

see for example, [30, p. 117]. It is also useful to use this constant to define each
α ∈ [0, n),

(2.2) γ̃(α) =

{
αγ(α) if α > 0 ;
nωn if α = 0 .

Note that γ̃(α) is continuous at α = 0.
With this preparation, we introduce several representation formulas. First, we

have the formula recorded in [1, Lemma 2] (see also the discussion in [29]). For
k ∈ N and u ∈ C∞

c (Rn) we have

(2.3) u(x) =

{
1

γ(k)

´

Rn |x− y|k−nDku(y) dy if k is even;
1

γ̃(k−1)

´

Rn |x− y|k−1−n(x − y) ·Dku(y) dy if k is odd.

From (2.3) and using the definition of the Riesz potential, one has the pointwise
inequality

(2.4) |u(x)| ≤
{

Ik
(∣∣Dku

∣∣) (x) if k is even;
γ(k)

γ̃(k−1) Ik
(∣∣Dku

∣∣) (x) if k is odd.
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For the differential operators Dk, it will be useful to define constants that de-
pend on the parity of k: For k ∈ N, 1 ≤ k < n, we define

(2.5) βn,k,q =

{ (
d
n

) 1
q′ γ(k)ω

−n−k
n

n if k is even;
(
d
n

) 1
q′ γ̃(k − 1)ω

−n−k
n

n if k is odd.

We next recall the definition of a few relevant constants and their relation with
the function log |x|. First, we recall the combinatorial constant which appears in
(1.7) (see e.g. [22]):

ℓkn = (k)!

⌊k/2⌋∑

l=0

(k − 2l)!(l)!

(
n− 3

2
+ l

)

l




k−l∑

t=⌈k/2⌉

22t−k+l (−1)t

2t

(
t

k − t

)(
k − t

l

)


2

where

(µ)i =

{ ∏i−1
j=0(µ− j) for µ ∈ R, i ∈ N;

1 for µ ∈ R, i = 0.

This constant makes an appearance in the following lemma which will be useful
in the sequel (and whose demonstration follows easily from the computations in
[29]).

Lemma 2.3. Let k ∈ N and α ∈ (0, n). For x 6= 0 one has

|∇k log |x|| =
√
ℓkn

|x|k ,(2.6)

|∇(−∆)(k−1)/2 log |x|| = γ̃(k − 1)

nωn

1

|x|k ,(2.7)

|(−∆)α/2 log |x|| = γ(α)

nωn

1

|x|α .(2.8)

The preceding lemma is useful in establishing the following pointwise estimate
for u in terms of ∇ku given in [29, Corollary 3.1]. Let k ∈ N, 1 ≤ k < n. Then for
u ∈ C∞

0 (Rn), one has

|u(x)| ≤ γ(k)

nωn

√
ℓkn
Ik(|∇ku|)(x).(2.9)

We next recall the definition of the Lorentz spaces and Sobolev–Lorentz spaces.
For 1 ≤ p, q ≤ ∞ we denote by Lp,q(Ω) the Lorentz space of those measurable
functions u for which the following quantity

‖u‖Lp,q(Ω) :=





(
´ |Ω|

0

(
s

1
p u∗(s)

)q
ds
s

) 1
q

if q <∞;

sup
0<s<|Ω|

s
1
pu∗(s) if q = ∞,

is finite.
We also recall an alternative formulation of the Lorentz spaces given in [16,

Proposition 1.4.9 on p 53]:

‖u‖Lp,q(X) :=




p

1
q

(
´∞

0

[
dXu (s)

1
p s
]q ds

s

) 1
q

if q <∞;

sup
s>0

s dXu (s)
1
p if q = ∞,

where the distribution function dXu is defined on [0,∞) as follows:

dXu (s) := |{x ∈ X : |u(x)| > s}| .
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For any integer k ≥ 1 and any 1 ≤ p, q ≤ ∞, we define

W k
0 L

p,q(Ω) = {u : u is a real-valued function in Ω whose continuation by 0 out

side Ω is k-times weakly differentiable in the whole space R
n, and

‖ |∇ku| ‖Lp,q(Ω) <∞},
where |∇ku| is the Euclidean norm of ∇ku defined earlier.

Let us observe that for any k ≥ 1, and p ≥ 1, we have

Lp,p(Ω) = Lp(Ω) and hence W k
0 L

p,p(Ω) =W k,p
0 (Ω).

In connection to the sharpness of the constants, a useful result to record is

Lemma 2.4. Let α ∈ (0, n), c > 0. Then for x0 ∈ Ω,
∥∥∥∥

c

| · −x0|α
∥∥∥∥
Ln/α,∞(Ω)

≤ cωα/n
n .

Proof. The claim follows from the computation

t

∣∣∣∣
{
x ∈ Ω:

c

|x− x0|α
> t

}∣∣∣∣
α/n

≤ t

∣∣∣∣B
(
0,
(c
t

)1/α)∣∣∣∣
α/n

= cωα/n
n .

�

Another useful observation that will be helpful in dealing with the quasi-norm
in pieces of the domain is

Lemma 2.5. Let 1 ≤ p < ∞, and 1 ≤ q ≤ ∞. Assume A, and B be measurable subsets
of Rn such that A ∩B = ∅. Then for any measurable function u on A ∪B, there holds

‖u‖Lp,q(A∪B) ≤ ‖u‖Lp,q(A) + ‖u‖Lp,q(B).(2.10)

Proof. Let X be a measurable subset of Rn. For any s ∈ [0,∞), we notice

{x ∈ A ∪B : |u(x)| > s} = {x ∈ A : |u(x)| > s} ∪ {x ∈ B : |u(x)| > s}.
Moreover, the above union is disjoint due to the fact A ∩ B = ∅. Therefore, we
have

dA∪B
u (s) = dAu (s) + dBu (s).(2.11)

Given that p ≥ 1, using (2.11), we have

dA∪B
u (s)

1
p ≤ dAu (s)

1
p + dBu (s)

1
p(2.12)

for any 0 ≤ s < ∞. Now suppose the exponent q = ∞. Then multiplying both
side of (2.12) by s and taking supremum over it, we have

‖u‖Lp,∞(A∪B) ≤ ‖u‖Lp,∞(A) + ‖u‖Lp,∞(B).

Now consider the case 1 ≤ q <∞. Then, observe that

‖u‖Lp,q(A∪B) = p
1
q

(
ˆ ∞

0

[
dA∪B
u (s)

1
p s1−

1
q
]q

ds

) 1
q

= p
1
q ‖dA∪B

u (s)
1
p s1−

1
q ‖Lq(0,∞).

Hence, using (2.12) we note

‖dA∪B
u (s)

1
p s1−

1
q ‖Lq(0,∞) ≤ ‖

(
dAu (s)

1
p + dBu (s)

1
p

)
s1−

1
q ‖Lq(0,∞)

≤ ‖dAu (s)
1
p s1−

1
q ‖Lq(0,∞) + ‖dBu (s)

1
p s1−

1
q ‖Lq(0,∞),

where in the last line we use the triangle inequality for the space Lq(0,∞) with

1 ≤ q < ∞. Finally, multiplication by p
1
q and using the equivalent definition of

Lorentz space quasi-norm, we deduce (2.10). �
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Suppose that (Rn,Ln) and (Ω, ν) are measure spaces and T is an integral oper-
ator defined as

Tf(x) =

ˆ

Rn

K(x, y)f(y) dy for x ∈ Ω,

where K : Ω × R
n → [−∞,+∞] be ν × Ln-measurable and f : Rn → [0,+∞] be

Ln-measurable functions. Now, let us define the partial non-increasing rearrange-
ments below: for t > 0, we define

k∗x(t) = inf
s≥0

{s : |{y ∈ R
n : |K(x, y)| > s}| ≤ t} for x ∈ Ω,

k∗y(t) = inf
s≥0

{s : ν({x ∈ Ω : |K(x, y)| > s}) ≤ t} for y ∈ R
n.

Then maximal non-increasing rearrangements are defined as

k∗1(t) = sup
x∈Ω

k∗x(t) and k∗2(t) = sup
y∈Rn

k∗y(t),

for t > 0. Similarly, for t > 0 we define

(Tf)∗(t) = inf
s≥0

{s : ν({x ∈ Ω : |Tf(x)| > s}) ≤ t},

and

(Tf)∗∗(t) =
1

t

ˆ t

0

(Tf)∗(s) ds.

When K(x, y) = 1
γ(α) |x − y|α−n for 0 < α < n, Tf(x) is just the Riesz potential

defined above. For this operator one computes, for t > 0,

k∗x(t) =
1

γ(α)
ω

n−α
n

n t−
n−α

n , and hence k∗1(t) =
1

γ(α)
ω

n−α
n

n t−
n−α

n ,

where ωn is the volume of unit ball in R
n.

Now, under the assumption that a non-negative Borel measure ν satisfies (1.4),
for any fixed y ∈ R

n, we have

ν({x ∈ Ω : |K(x, y)| > s}) = ν(Ω ∩B
(sγ(α))

− 1
n−α

(y))

≤ C′
d(sγ(α))

− d
n−α .

In particular, the value s = t−
n−α

d C′
d

n−α
d /γ(α) is an element of the set

{s : ν({x ∈ Ω : |K(x, y)| > s}) ≤ t}.

Therefore,

k∗y(t) = inf
s≥0

{s : ν({x ∈ Ω : |K(x, y)| > s}) ≤ t}

≤ 1

γ(α)
C′

d

n−α
d t−

n−α
d .

and so we have

k∗2(t) = sup
y∈Rn

k∗y(t) ≤
1

γ(α)
C′

d

n−α
d t−

n−α
d .

A key result that relates the rearrangement of a convolution to the rearrange-
ments of the convolved functions is due to O’Neil [24]. Here we use a modified
version which can be found in [12, Lemma 5].



ON SHARP CONSTANTS IN HIGHER ORDER ADAMS-CIANCHI INEQUALITIES 11

Lemma 2.6. Assume 0 < α < n and 0 < d ≤ n. Let f : Ω → [0,+∞] be Ln-measurable
function. Then for any

max

{
1,
n− d

α

}
< r <

n

α
, and defining θ =

rd

n− αr
,(2.13)

there exists a constant C = C(α, n, d, C′
d, r) > 0 such that

(Iαf)
∗∗(t) ≤ Cmax{τ− d

nθ , t−
1
θ }
ˆ τ

0

f∗(u)u−1+ 1
r du+

1

γ(α)
ω

n−α
n

n

ˆ |Ω|

τ

f∗(u)u−
n−α
n du

(2.14)

for all τ , t > 0.

We also make use of an extension of Moser’s original one-dimensional lemma
established in [1], the following

Lemma 2.7. Let 1 < q < ∞ and define where q′ = q/(q − 1). Let a(s, t) be a non-
negative measurable function on [0,∞)× [0,∞) such that for almost every s, t > 0

(2.15) a(s, t) ≤ 1, when 0 ≤ s < t,

(2.16) sup
t>0

(
ˆ ∞

t

a(s, t)q
′

ds

)1/q′

= b <∞.

Then there is a constant c = c(q, b) such that for every non-negative φ : (0,∞) → [0,∞]
which satisfies

(2.17)

ˆ ∞

0

φ(s)q ds ≤ 1,

one has

(2.18)

ˆ ∞

0

e−F (t) dt ≤ c,

where

(2.19) F (t) = t−
(
ˆ ∞

0

a(s, t)φ(s) ds

)q′

.

3. PROOFS OF THE MAIN RESULTS

In this section, we prove Theorems 1.1, 1.2, and 1.3. Following the program of
Adams from [1], we begin with the establishment of sharp potential estimates in
the

Proof of Theorem 1.2. It suffices to establish the estimate for β =
(
d
n

) 1
q′ γ(α)ω

−n−α
n

n .

Let r be any admissible exponent in the range specified in (2.13) and choose τ = t
n
d

in (2.14). Then we have

(Iαf)
∗(t) ≤ (Iαf)

∗∗(t) ≤ Ct−
1
θ

ˆ t
n
d

0

f∗(u)u−1+ 1
r du+

1

γ(α)
ω

n−α
n

n

ˆ |Ω|

t
n
d

f∗(u)u−
n−α
n du

= Ct−
1
θ

ˆ t

0

f∗(s
n
d )s−1+ n

dr ds+
n

dγ(α)
ω

n−α
n

n

ˆ |Ω|
d
n

t

f∗(s
n
d )s−1+α

d ds
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Now, take t1 = max{ν(Ω), |Ω| dn } and we deduce

ˆ

Ω

exp

((
d

n

) 1
q′

γ(α)ω
−n−α

n
n |Iαf(x)|

)q′

dν

=

ˆ ν(Ω)

0

exp

((
d

n

) 1
q′

γ(α)ω
−n−α

n
n (Iαf)

∗(t)

)q′

dt

≤
ˆ ν(Ω)

0

exp

((
d

n

) 1
q′

γ(α)ω
−n−α

n
n (Iαf)

∗∗(t)

)q′

dt

≤
ˆ t1

0

exp

(
Ht−

1
θ

ˆ t

0

f∗(s
n
d )s−1+ n

dr ds+
(n
d

) 1
q

ˆ t1

t

f∗(s
n
d )s−1+α

d ds

)q′

dt,

where H is some suitable generic constant. Next, we apply the changes of vari-
ables s = e−x, t = e−y and define y1 = − log t1. This yields

ˆ t1

0

exp

(
Ht−

1
θ

ˆ t

0

f∗(s
n
d )s−1+ n

dr ds+
(n
d

) 1
q

ˆ t1

t

f∗(s
n
d )s−1+α

d ds

)q′

dt

≤
ˆ ∞

y1

exp

[(
He

y
θ

ˆ ∞

y

f∗(e−
nx
d )e−

nx
dr dx+

(n
d

) 1
q

ˆ y

y1

f∗(e−
nx
d )e−

αx
d dx

)q′

− y

]
dy.

We next define φ(x) =
(
n
d

) 1
q f∗(e−

nx
d )e−

αx
d on [y1,∞). By the change of variables

s = e−
nx
d , we have

‖φ‖qLq(y1,∞) =
n

d

ˆ ∞

y1

f∗(e−
nx
d )e−

αx
d dx ≤

ˆ |Ω|

0

f∗q(s)s
αq
n −1 ds = ‖ |f | ‖

L
n
α

,q(Ω)
≤ 1.

Therefore, to establish (1.8), we need to verify

ˆ ∞

y1

exp

[(
H

ˆ ∞

y

φ(x)e−
nx
dr +αx

d + y
θ dx+

ˆ y

y1

φ(x) dx

)q′

− y

]
dy ≤ C,

where H is a suitable constant.
Define

g(x, y) =





1 if y1 ≤ x ≤ y;

He−
nx
dr +αx

d + y
θ if y1 ≤ y < x <∞;

0 elsewhere,

and

F (y) =




y −

(
´∞

y1
g(x, y)φ(x) dx

)q′
if y1 ≤ y <∞;

0 elsewhere.

We claim a = g and φ satisfy the conditions of Lemma 2.7. The inequality (2.15)
follows easily from the definition of g, while the preceding computation shows φ
satisfies (2.17). Concerning (2.16), this follows from the computation

sup
y>0

(
ˆ ∞

y

Hq′e−
nq′x
dr +αq′x

d + q′y
θ dx

)1/q′

= Hq′ sup
y>0

(
ˆ ∞

y

e
q′(y−x)

θ dx

)1/q′

=
θ

q′
Hq′ <∞,



ON SHARP CONSTANTS IN HIGHER ORDER ADAMS-CIANCHI INEQUALITIES 13

which makes use of the identity θ = rd
n−αr from (2.13). Therefore (1.8) follows from

an application of Lemma 2.7.
We next show the optimality of the constant. In fact, it would suffice to show

that one cannot improve the constant for Theorem 1.1 or Theorem 1.3, since an
improvement of the constant in this inequality would yield an improvement of
the constant in both of those inequalities, which would result in a contradiction.
However, the test functions to show optimality in this inequality turn out to be
useful in the case q = +∞, allowing us to resolve the analogous sharpness of the
constant for the Riesz potential, but not for the differential operators, and so we
here give the construction.

Without loss of generality, we let Ω = B, the unit ball centered at the origin.
Otherwise, up to rescaling and translating we can assume B ⊂⊂ Ω. Let Br be the
ball of radius r with 0 < r < 1 and centered at the origin. Assume that for some
β > 0, there holds

ˆ

B

exp

(
β|Iαf(x)|

‖ |f | ‖
L

n
α

,q(B)

)q′

dν ≤ C(3.1)

for every f ∈ L
n
α ,q(B). Now, for 0 < r < 1 and x ∈ B, let us define

fr(x) =

{
|x|−α

nωn log(1/r) for r < |x| < 1;

0 otherwise.

We then follow the computation in [1, Theorem 2], with some additional details
here for the convenience of the reader. In the region |x| ≤ r, we have

γ(α)Iαfr(x) = (nωn)
−1(ln 1/r)−1

ˆ

r<|y|<1

|x− y|α−n|y|−α dy

= (nωn)
−1(ln 1/r)−1

[
ˆ

|y|≤1

|x− y|α−n|y|−α dy −
ˆ

|y|≤r

|x− y|α−n|y|−α dy

]

= (ln 1/r)−1 [I(1)− I(r)] ,

where for any radius R > 0, the integral is defined as

I(R) := 1

nωn

ˆ

|z|≤R

|x− z|α−n|z|−α dz.

We will evaluate the integral I(R), a computation which goes back to Fuglede
[13, p. 7]. Introducing spherical coordinates, we write dz = |z|n−1d|z| dw, where
w is in the sphere. Now, because of homogeneity, and writing t = |x|/|z|, we have

I(R) = 1

nωn

ˆ

|z|≤R

|x− z|α−n|z|−α dz =

ˆ ∞

ρ
R

t−1uα(t) dt,

where ρ = |x|, and where ux(l) denotes the Riesz potential of order α of the uniform
distribution of unit mass on the unit sphere in R

n, evaluated at a point of distance
t from the origin. One observes that uα(t) is differentiable for t > 1 and for 0 ≤
t < 1, and integrable over a neighbourhood of t = 1. Moreover,

uα(0) = 1; u′α(0) = 0; uα(t) = O
(
tα−n

)
, for t→ +∞.

Therefore, the function vα defined by

vα(t) =

{
t−1uα(t) for t > 1;

t−1 (uα(t)− 1) for 0 < t < 1,
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is bounded near t = 0 and integrable over (0,+∞). We now obtain

I(R) = log
R

ρ
+ V

( ρ
R

)
,

where V (t) =
´∞

t
vα(s) ds is a continuous function and admits the limit

lim
t→0

V (t) =

ˆ ∞

0

vα(t) dt.

Therefore,

γ(α)Iαfr(x) = (ln 1/r)−1

[
ln

1

|x| + V (|x|) − ln
r

|x| − V

( |x|
r

)]

= (ln 1/r)−1

[
(ln 1/r) +

ˆ |x|/r

|x|

vα(t) dt

]
.

Now, for every ǫ > 0 there exists sufficiently small r0 > 0 such that for all 0 < r <
r0, there holds

∣∣∣∣(ln 1/r)
−1

ˆ |x|/r

|x|

vα(t) dt

∣∣∣∣ ≤ (ln 1/r0)
−1

ˆ ∞

0

|vα(t)| dt < ǫ.

In particular,

γ(α)Iαfr(x) ≥ 1− ǫ, whenever |x| ≤ r and ∀r ≤ r0.

This gives that for any ǫ > 0, there exist r0 = r0(ǫ), such that for every 0 < r < r0,
there holds

γ(α)Iα[(1− ǫ)−1fr](x) ≥ 1, whenever |x| ≤ r < r0.

Now by the definition of non-increasing rearrangement, we have: For s > 0

(1− ǫ)−1f∗
r (s) =

{
0 if s ≥ ωn(1− rn);

(1−ǫ)−1

nωn log(1/r)
1

(sω−1
n +rn)

α
n

if s < ωn(1− rn).

Utilizing this we can estimate

‖ |(1− ǫ)−1fr| ‖q
L

n
α

,q(B)

=

ˆ ωn

0

s
αq
n −1

(
(1− ǫ)−1fr

)∗q
(s) ds

=
(1 − ǫ)−q

nqωq
n(log(1/r))q

ˆ ωn(1−rn)

0

s
αq
n −1

(sω−1
n + rn)

αq
n

ds

=
ω

αq
n
n (1− ǫ)−q

nqωq
n(log(1/r))q

ˆ r−n−1

0

t
αq
n −1

(t+ 1)
αq
n

dt

≤ ω
αq
n
n (1− ǫ)−q

nqωq
n(log(1/r))q

[
ˆ 1

0

t
αq
n −1 dt+

ˆ r−n

1

1

t
dt

]

=
ω

(α−n)q
n

n (1− ǫ)−q

nq−1(log(1/r))q

[
1

αq
+ log(1/r)

]

≤ n1−qω
(α−n)q

n
n (1− ǫ)−q(1 + δ)

q

q′ (log(1/r))1−q ,
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for every δ > 0 and r ≤ R(r0, δ). Hence, using this and making use of (3.2) we
deduce

C

ˆ

B

exp

(
β|Iα[(1− ǫ)−1fr](x)|
‖ |(1− ǫ)−1fr| ‖Ln

α
,q(B)

)q′

dν

≥
ˆ

Br

exp


 β γ−1(α)

n
− 1

q′ ω
(α−n)

n
n (1− ǫ)−1(1 + δ)

1
q′ (log(1/r))

− 1
q′




q′

dν

≥ C0 r
d exp


 βq′ γ−q′(α)

n−1ω
(α−n)q′

n
n (1 − ǫ)−q′(1 + δ)

log(1/r)




= C0

(
1

r

) βq′ γ−q′ (α)

n−1ω

(α−n)q′

n
n (1−ǫ)−q′ (1+δ)

−d

.

To ensure finiteness of this quantity as r → 0, we must have

βq′ γ−q′(α)

n−1ω
(α−n)q′

n
n (1− ǫ)−q′(1 + δ)

− d ≤ 0

=⇒ β ≤ (1 + δ)
1
q′ (1− ǫ)−1

(
d

n

) 1
q′

γ(α)ω
−n−α

n
n .

Since, δ and ǫ are arbitrary, we first send ǫ→ 0 and then δ → 0 to obtain

β ≤
(
d

n

) 1
q′

γ(α)ω
−n−α

n
n ,

which is the required result. �

We next give the

Proof of Theorem 1.1. To establish the positive result, it suffices to prove the inequal-

ity for β = d
1
q′ n

1
q ω

k
n
n

√
ℓkn. From (2.9), we have

d
1
q′ n

1
q ω

k
n
n

√
ℓkn |u(x)| ≤

(
d

n

) 1
q′

γ(k)ω
−n−k

n
n Ik

(
|∇ku|

)
(x),

and the claimed inequality follows from the inequality established in Theorem 1.2.
We next turn our attention to optimality. Without loss of generality, by transla-

tion and dilation, we assume Ω = B2, a ball of radius 2 and centered at the origin.
Assume that for some β, there holds

ˆ

B2

exp

(
β|u(x)|

‖ |∇ku| ‖
L

n
k

,q(B2)

)q′

dν ≤ C,(3.2)

for every u ∈ W k
0 L

n
k ,q(B2). We want to show that β ≤ d

1
q′ n

1
q ω

k
n
n

√
ℓkn, and to this

end we consider the test functions {uǫ}ǫ>0 ⊂ C∞
c (Rn), described in [29, Proposi-

tion 2.1]. They satisfy

uǫ(x) = log(1/|x|) on B1 \Bǫ,(3.3)

‖uǫ‖L∞(Rn) = uǫ(0) = log(1/ǫ) +O(1),(3.4)

supp(uǫ) ⊂ B2,(3.5)

‖ |∇kuǫ| ‖L∞(Bǫ) = O(ǫ−k), 1 ≤ k ≤ n,(3.6)

‖ |∇kuǫ| ‖L∞(B2\B1) = O(1), 1 ≤ k ≤ n.(3.7)
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Here we write C as a generic constant everywhere. From the definition of non-
increasing rearrangement (1.17), we have that for two non-negative functions f
and g, if f(x) ≤ g(x) for x ∈ Ω, there holds

f∗(s) ≤ g∗(s) for s > 0.

Now from (3.6), we have (χBǫ |∇kuǫ|)∗(s) ≤ (CχBǫǫ
−k)∗(s) for s > 0. Mean-

while

(CχBǫǫ
−k)∗(s) =

{
0 if s ≥ ωnǫ

n;
Cǫ−k if s < ωnǫ

n.

Therefore, we find

‖ |∇kuǫ| ‖q
L

n
k

,q(Bǫ)
=

ˆ ǫnωn

0

s
kq
n −1|∇kuǫ|∗

q
(s) ds

≤ Cǫ−kq

ˆ ǫnωn

0

s
kq
n −1 ds = O(1).

Similarly using (3.7), we observe (χB2\B1
|∇kuǫ|)∗(s) ≤ (CχB2\B1

)∗(s) for s > 0,
and we have

(CχB2\B1
)∗(s) =

{
0 if s ≥ ωn(2

n − 1);
C if s < ωn(2

n − 1).

Hence, using this we find

‖ |∇kuǫ| ‖q
L

n
k

,q(B2\B1)
=

ˆ ωn(2
n−1)

0

s
kq
n −1|∇kuǫ|∗

q
(s) ds

≤ C

ˆ ωn(2
n−1)

0

s
kq
n −1 ds = O(1).

Next, from (3.3), we know |∇kuǫ| = |∇k log(|x|)| in B1 \Bǫ. Also for 1 ≤ k < n,
we know

|∇k log(|x|)| =
√
ℓkn

|x|k for x 6= 0.

Making use of this fact we deduce

‖ |∇kuǫ| ‖q
L

n
k

,q(B1\Bǫ)
=

ˆ ωn(1−ǫn)

0

s
kq
n −1

∣∣∣∣∣χB1\Bǫ
(·)
√
ℓkn

| · |k

∣∣∣∣∣

∗q

(s) ds.

For s > 0, we know

∣∣∣∣χB1\Bǫ
(·)
√
ℓkn | · |−k

∣∣∣∣
∗

(s) = inf
t≥0

{t : Ln({x ∈ B1 \Bǫ : |
√
ℓkn |x|−k| > t}) ≤ s}.

Therefore,

∣∣∣∣χB1\Bǫ
(·)
√
ℓkn | · |−k

∣∣∣∣
∗

(s) =





0 if s ≥ ωn(1− ǫn);√
ℓkn

(sω−1
n +ǫn)

k
n

if s < ωn(1− ǫn).
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Hence, using this for small ǫ, we have

‖ |∇kuǫ| ‖q
L

n
k

,q(B1\Bǫ)

=

ˆ ωn(1−ǫn)

0

s
kq
n −1|∇kuǫ|∗

q
(s) ds

=

(√
ℓkn

)q ˆ ωn(1−ǫn)

0

s
kq
n −1

(sω−1
n + ǫn)

kq
n

ds

=

(
ω

k
n
n

√
ℓkn

)q ˆ ǫ−n−1

0

t
kq
n −1

(t+ 1)
kq
n

dt

≤
(
ω

k
n
n

√
ℓkn

)q ˆ 1

0

t
kq
n −1 dt+

(
ω

k
n
n

√
ℓkn

)q ˆ ǫ−n

1

1

t
dt

= O(1) +

(
n

1
q ω

k
n
n

√
ℓkn

)q

log

(
1

ǫ

)
.

Therefore, with the help of Lemma 2.5 and a combination of these three esti-
mates, we deduce

‖ |∇kuǫ| ‖Ln
k

,q(B2)
≤ n

1
q ω

k
n
n

√
ℓkn

(
log

(
1

ǫ

))1/q

+O(1)

≤ (1 + δ)
1
q′

(
n

1
q ω

k
n
n

√
ℓkn

)(
log

(
1

mǫ

))1/q

,

holds for every δ > 0,m ∈ N, and ǫ ≤ ǫ0(δ,m). Also, onBmǫ \Bǫ, whenmǫ ≤ 1 we
have uǫ(x) = log(1/|x|) ≥ log(1/mǫ). Furthermore, using (1.5) we have, for ǫ > 0
sufficiently small,

ν(Bmǫ \Bǫ) ≥ (C0m
d − C′

d)ǫ
d = C(ν)ǫd.

Hence, using this and by (3.2) we deduce, for ǫ sufficiently small that

C ≥
ˆ

B2

exp

(
β|uǫ(x)|

‖ |∇kuǫ| ‖Ln
k

,q(B2)

)q′

dν

≥
ˆ

Bmǫ\Bǫ

exp


 β|uǫ(x)|
(1 + δ)

1
q′

(
n

1
q ω

k
n
n

√
ℓkn

) (
log
(

1
mǫ

)) 1
q




q′

dν

≥ C(ν) ǫd exp



 β log
(

1
mǫ

)

(1 + δ)
1
q′

(
n

1
q ω

k
n
n

√
ℓkn

) (
log
(

1
mǫ

)) 1
q




q′

=
C(ν)

2d

(
1

mǫ

)
βq′

(1+δ)


n

1
q ω

k
n
n

√
ℓkn




q′
−d

.

For the above term to be finite as ǫ→ 0, we must have

βq′

(1 + δ)
(
n

1
q ω

k
n
n

√
ℓkn

)q′ − d ≤ 0

=⇒ β ≤ (1 + δ)
1
q′ d

1
q′ n

1
q ω

k
n
n

√
ℓkn.

Since δ is arbitrary, we then send δ → 0 and obtain β ≤ d
1
q′ n

1
q ω

k
n
n

√
ℓkn, which is the

desired result. �
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The last result of this section is the extension of Fontana-Morpurgo’s result
to the Lorentz scale/Alberico’s result to the case of general measures, our The-
orem 1.2.

Proof of Theorem 1.3. By (2.4), making use of the definition of βn,k,q in (2.5), we have

βn,k,q |u(x)| ≤
(
d

n

) 1
q′

γ(k)ω
−n−k

n
n Ik

(
|Dku|

)
(x),

and the claimed inequality then follows as a consequence of Theorem 1.2.
To prove the optimality of the constant in (1.9), we argue as in the proof of

Theorem 1.1, mutatis mutandis. Again, without loss of generality Ω = B2, while
we utilize the same test functions. Here the only change is that in place of the
relation (2.6) from Lemma 2.3, we utilize the relations (2.7) and (2.8), depending
on parity. Then the same argument invoking Lemma 2.5 yields the bound

‖ |Dkuǫ| ‖Ln
k

,q(B2)
≤ n

1
q−1ω

k
n−1
n γ(k)

(
log

(
1

ǫ

))1/q

+O(1)

≤ (1 + δ)
1
q′

(
n

1
q−1ω

k
n−1
n γ(k)

)(
log

(
1

mǫ

))1/q

,

for k even and

‖ |Dkuǫ| ‖Ln
k

,q(B2)
≤ n

1
q−1ω

k
n−1
n γ̃(k − 1)

(
log

(
1

ǫ

))1/q

+O(1)

≤ (1 + δ)
1
q′

(
n

1
q−1ω

k
n−1
n γ̃(k − 1)

)(
log

(
1

mǫ

))1/q

,

for k odd. These inequalities hold for every δ > 0, m ∈ N, and ǫ ≤ ǫ0(δ,m).
Again, on Bmǫ \ Bǫ, when mǫ ≤ 1 we have uǫ(x) = log(1/|x|) ≥ log(1/mǫ), and
the measure ν satisfies a lower bound on this annulus.

When k is even this leads to the following computation analogous to that in the
preceding theorem

C ≥
ˆ

B2

exp

(
β|uǫ(x)|

‖ |Dkuǫ| ‖Ln
k

,q(B2)

)q′

dν

≥
ˆ

Bmǫ\Bǫ

exp



 β|uǫ(x)|
(1 + δ)

1
q′

(
n

1
q−1ω

k
n−1
n γ(k)

) (
log
(

1
mǫ

))1/q




q′

dν

≥ C(ν) ǫd exp


 β log

(
1
mǫ

)

(1 + δ)
1
q′

(
n

1
q−1ω

k
n−1
n γ(k)

) (
log
(

1
mǫ

))1/q




q′

=
C(ν)

2d

(
1

mǫ

)
βq′

(1+δ)



n
1
q
−1

ω

k
n

−1
n γ(k)




q′

−d

.

Again, for the above term to be finite as ǫ→ 0, we must have

βq′

(1 + δ)
(
n

1
q−1ω

k
n−1
n γ(k)

)q′ − d ≤ 0

=⇒ β ≤ (1 + δ)
1
q′ d

1
q′ n

1
q−1ω

k
n−1
n γ(k).
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Since δ is arbitrary, we next send δ → 0 and obtain β ≤ d
1
q′ n

1
q−1ω

k
n−1
n γ(k) =

βn,k,q , which is the desired result. For k odd, the inequality follows by a similar
argument, we omit the details for brevity. This completes the proof of the theorem.

�

4. THE WEAK-TYPE ENDPOINT

In this section we give the proofs of Theorems 1.4, 1.5, and 1.6, addressing the
higher order Adams-Cianchi inequalities in Lorentz spaces Lp,∞(Ω) for 1 < p <
+∞ critical.

Proof of Theorem 1.4. The assumption || |f | ||
L

n
α

,∞(Ω)
≤ 1 implies

f∗(s) ≤ s−
α
n for all s ∈ (0, |Ω|).

Let r be any admissible exponent in (2.13) and choose τ = t
n
d in (2.14). Then using

the above we obtain

(Iαf)
∗(t) ≤ (Iαf)

∗∗(t)

≤ Ct−
1
θ

ˆ t

0

f∗(s
n
d )s−1+ n

dr ds+
n

dγ(α)
ω

n−α
n

n

ˆ |Ω|
d
n

t

f∗(s
n
d )s−1+α

d ds

≤ Ct−
1
θ

ˆ t

0

s−1+ n
dr−

α
d ds+

n

dγ(α)
ω

n−α
n

n

ˆ |Ω|
d
n

t

s−1ds

= A+
n

dγ(α)
ω

n−α
n

n log

(
1

t

)
,

for every t > 0. Hence, taking t1 = max{ν(Ω), |Ω| dn } and for γ <
(
d
n

)
γ(α)ω

−n−α
n

n ,
we find

ˆ

Ω

exp (γ|Iαf(x)|) dν =

ˆ ν(Ω)

0

exp (γ(Iαf)
∗(t)) dt

≤
ˆ t1

0

exp

(
γA+

nγ

dγ(α)
ω

n−α
n

n log

(
1

t

))
dt < +∞.

To verify the optimality, the failure of the estimate at the endpoint, we make use
of a variant of the test functions used in the proof of Theorem 1.2. Without loss of
generality, we let Ω = B, the unit ball centered at the origin and define

f(x) :=
χB(x)

nωn

1

|x|α .

By Lemma 2.4 one has the bound

‖f‖Ln/α,∞(B) ≤
1

n
ωα/n−1
n .

Let Br be the ball of radius r with 0 < r < 1 and centered at the origin. By the
computation in Theorem 1.2, one has

γ(α)Iαf(x) = log
1

|x| +O(1)

for |x| ≤ r, so that

γ(α)|Iαf(x)| ≥ log
1

|x| − C

for |x| ≤ r, r > 0 sufficiently small.
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When β = d
nγ(α)ω

−n−α
n

n , for this f we have

ˆ

B

exp

(
β|Iαf(x)|

‖ |f | ‖
L

n
α

,∞(B)

)
dν ≥

ˆ

Br

exp

(
d

n
ω
−n−α

n
n

log 1
|x| − C

1
nω

α/n−1
n

)
dν.(4.1)

In particular, for r > 0 sufficiently small one has

ˆ

B

exp

(
β|Iαf(x)|

‖ |f | ‖
L

n
α

,∞(B)

)
dν ≥ exp (−Cd)

ˆ

Br

1

|x|d dν

= exp (−Cd)
ˆ ∞

1/rd
ν

({
1

t1/d
> |x|

})
dt

≥ C0 exp (−Cd)
ˆ ∞

1/rd

1

t
dt

= +∞.

This shows the failure of the estimate at the endpoint. �

We next give the

Proof of Theorem 1.5. Let γ < dω
k
n
n

√
ℓkn. From (2.9), we deduce

γ|u(x)| ≤ γ
γ(k)

nωn

√
ℓkn
Ik
(
|∇ku|

)
(x).

The assumption on γ implies γ γ(k)

nωn

√
ℓkn
<
(
d
n

)
γ(k)ω

−n−k
n

n . Therefore, the desired

result follows from Theorem 1.4. To see that the constant is sharp, we consider the
test functions used in [5, p. 398]. Without loss of generality, we take Ω = B, the
unit ball, and we define

ua(x) =





ϕ

(
log 1

|x|

log a

)
if x ∈ B;

0 otherwise,

for any increasing smooth function ϕ : R → [0,∞) that satisfies |ϕ′(t)| ≤ 1 and

ϕ(t) =

{
0 if t ≤ 0;
t− 1/2 if t ≥ 1.

For this test function, by the product and chain rule, one has that

|∇kua(x)| ≤
1

log a

√
ℓkn

|x|k
(
1 +

C

(log a)2

)
.

Therefore, by Lemma 2.4 we have

‖∇kua‖Ln/k,∞(B) ≤
ω
k/n
n

√
ℓkn

log a

(
1 +

C

(log a)2

)
.
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With this inequality, we find

ˆ

B

exp

(
γ|ua(x)|

‖∇kua‖Ln/k,∞(B)

)
dν

≥
ˆ

B1/a

exp


γ

(
log 1

|x|

log a − 1/2) log a

ω
k/n
n

√
ℓkn

(
1 + C

(log a)2

)


 dν

= exp



γ − log a

2ω
k/n
n

√
ℓkn

(
1 + C

(log a)2

)




ˆ

B1/a

1

|x|γa
dν

for

γa :=
γ

ω
k/n
n

√
ℓkn

(
1 + C

(log a)2

) .

However, for a large enough that (1.5) is satisfied and d > γa, we have

ˆ

B1/a

1

|x|γa
dν =

ˆ ∞

aγa

ν({ 1

t1/γa
> |x|}) dt

≥
ˆ ∞

aγa

C0
1

td/γa
dt

= +∞.

�

Proof of Theorem 1.6. Let γ < βn,k,∞. Using (2.5) and (2.4), we deduce

γ|u(x)| ≤ γ̃kIk
(
|Dku|

)
(x),

where

γ̃k =

{
γ if k is even;

γ γ(k)
γ̃(k−1) if k is odd.

The assumption on γ implies γ̃k < βn,k,∞, and therefore Theorem 1.4 yields the
desired inequality.

Concerning optimality, we utilize the test functions used in the proof of Theo-
rem 1.5 and argue the case of k odd, as the computation for k even is just a replace-
ment of constants. By the product and chain rule, one has that

|Dkua(x)| ≤
1

log a

γ̃(k − 1)

nωn

1

|x|k
(
1 +

C

(log a)2

)
.

Therefore, by Lemma 2.4 we have

‖∇kua‖Ln/k,∞(B) ≤
ω
k/n−1
n γ̃(k − 1)

n

1

log a

(
1 +

C

(log a)2

)
.
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As in the proof of the preceding Theorem’s optimality, we find

ˆ

B

exp

(
γ|ua(x)|

‖Dkua‖Ln/k,∞(B)

)
dν

≥
ˆ

B1/a

exp


γ

(
log 1

|x|

log a − 1/2) loga

ω
k/n−1
n γ̃(k−1)

n
1

log a

(
1 + C

(log a)2

)


 dν

= exp


γ

− log a

2ω
k/n−1
n γ̃(k−1)

n

(
1 + C

(log a)2

)



ˆ

B1/a

1

|x|γa
dν

for

γa :=
γ

ω
k/n−1
n γ̃(k−1)

n

(
1 + C

(log a)2

) .

However, for a large enough that (1.5) is satisfied and d > γa, we have
ˆ

B1/a

1

|x|γa
dν =

ˆ ∞

aγa

ν({ 1

t1/γa
> |x|}) dt

≥
ˆ ∞

aγa

C0
1

td/γa
dt

= +∞.

�

5. TRACE HANSSON-BREZIS-WAINGER

We begin this section with the

Proof of Theorem 1.8. As in the proofs of the preceding theorems, we let r be any
acceptable exponent within the range specified in (2.13) and choose τ = t

n
d in

(2.14) to obtain

(Iαf)
∗(t) ≤ (Iαf)

∗∗(t) ≤ Ct−
1
θ

ˆ t
n
d

0

f∗(u)u−1+ 1
r du+

1

γ(α)
ω

n−α
n

n

ˆ |Ω|

t
n
d

f∗(u)u−
n−α

n du.

This pointwise estimate and the triangle inequality imply




ˆ ν(Ω)

0

((Iαf)
∗(t))

q

(
1 + | log t

ν(Ω) |
)q

dt

t




1/q

≤ I1 + I2,(5.1)

for

Iq
1 =

ˆ ν(Ω)

0

(
´ t

n
d

0
f∗(u)u−1+ 1

r du

)q

(
1 + | log t

ν(Ω) |
)q

dt

t1+
q
θ

,

and

Iq
2 =

ˆ ν(Ω)

0

(
´ |Ω|

t
n
d
f∗(u)u−

n−α
n du

)q

(
1 + | log t

ν(Ω) |
)q

dt

t
.
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We next estimate I1 and I2 via Hardy inequalities. Concerning I1, by the change
of variables s = t

n
d we have

Iq
1 ≤
ˆ ν(Ω)

0

t−1− q
θ

(
ˆ t

n
d

0

f∗(u)u−1+ 1
r du

)q

dt

≤
ˆ ∞

0

t−1− q
θ

(
ˆ t

n
d

0

f∗(u)u−1+ 1
r du

)q

dt

=
d

n

ˆ ∞

0

s−1− dq
nθ

(
ˆ s

0

f∗(u)u−1+ 1
r du

)q

ds.

An application of the Hardy inequality recorded above in Lemma 2.1 with p = q ∈
(1,∞), w = 1 + dq

nθ > 1, and ψ(u) = f∗(u)u−1+ 1
r , yields

Iq
1 .

ˆ ∞

0

s−
dq
nθ+

q
r f∗q(s)

ds

s
=

ˆ ∞

0

(
s

nθ−d
nrθ f∗(s)

)q ds

s
= ‖f‖q

L
nrθ

nθ−d
,q
(Ω)
.

The relations θ = rd
n−αr , r < n

α , and 1 < r, imply

nθ − d

nrθ
− α

n
=

1

r
− d

nrθ
− α

n
=

(
1

r
− α

n

)(
1− 1

r

)
> 0.

In particular, nrθ
nθ−d < n

α , and since |Ω| < +∞, using the nested embedding with
respect to the second variable of Lorentz space, we have

Iq
1 . ‖f‖q

L
n
α

,q(Ω)
.(5.2)

To estimate I2, we define t1 = max{ν(Ω), |Ω| dn } and make the change of vari-
ables s

n
d = u to obtain

Iq
2 =

ˆ ν(Ω)

0

(
´ |Ω|

t
n
d
f∗(u)u−

n−α
n du

)q

(
1 + | log t

ν(Ω) |
)q

dt

t

=
(n
d

)q ˆ ν(Ω)

0

(
´ |Ω|

d
n

t
f∗(s

n
d )s−

d−α
d ds

)q

(
1 + | log t

ν(Ω) |
)q

dt

t

≤
(n
d

)q ˆ t1

0

(
´ t1
t
f∗(s

n
d )s−

d−α
d ds

)q

(
1 + | log t

t1
|
)q

dt

t
.

Here an application of the logarithmic Hardy inequality recorded above in Lemma 2.2

with p = q, R = t1, and ψ(s) = f∗(s
n
d )s−

d−α
d yields

Iq
2 .

ˆ t1

0

tq−1f∗q(t
n
d )t−

(d−α)q
d dt.

Finally, the change of variable t
n
d = s and the observation that f∗(s) = 0 for s ≥ |Ω|

yields

Iq
2 .

ˆ ∞

0

(
f∗(s)s

α
n

)q ds

s
= ‖f‖q

L
n
α

,q(Ω)
.(5.3)

The combination of (5.1), (5.2), and (5.3) yields the claimed inequality and thus
completes the proof. �

We conclude the paper with the
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Proof of Corollary 1.9. This follows immediately from Theorem 1.8 and the inequal-
ity (1.2). �
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