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INTEGRAL CAYLEY GRAPHS

OVER A FINITE SYMMETRIC ALGEBRA

TUNG T. NGUYEN, NGUY˜̂eN DUY TÂN

ABSTRACT. A graph is called integral if its eigenvalues are integers. In this article, we provide

the necessary and sufficient conditions for a Cayley graph over a finite symmetric algebra R

to be integral. This generalizes the work of So who studies the case where R is the ring of

integers modulo n. We also explain some number-theoretic constructions of finite symmetric

algebras arising from global fields, which we hope could pave the way for future studies on

Paley graphs associated with a finite Hecke character.

1. INTRODUCTION

An undirected graph G is said to be integral if all of its eigenvalues are integers. The

notion of integral graphs was first introduced by Harary and Schwenk in [3]. In the same

article, the authors asked whether one can classify integral graphs. Since then, there has been

a vast literature on this topic. We refer interested readers to [1] for a survey about known

examples of integral graphs.

While the general question is quite challenging, the situation becomes more manageable

when we consider graphs with additional structures, such as Cayley graphs over a finite

ring. In this case, we can exploit the interplay between the additive and multiplicative struc-

tures of the ring to study the arithmetics of these Cayley graphs. As one might naturally

expect, this investigation bridges various fields, including number theory, character theory,

and commutative algebra. Below, we provide further details about some old and recent

studies for this line of research.

In [6], Klotz and Sander study unitary Cayley graphs over Z /n and their natural gener-

alization: the gcd-graphs Gn(D) where D is a subset of proper divisors of n. Let us quickly

recall the definition of Gn(D). The vertices of Gn(D) are elements of the finite ring Z /n and

two elements a, b are adjacent if gcd(a − b, n) ∈ D. Using the theory of Ramanujan sums,

Klotz and Sander show that the gcd-graphs Gn(D) are integral. They also ask whether the

converse is also true; namely, if a Cayley graph over Z /n is integral, it is true that it is a gcd-

graph? In [11], So provides an affirmative answer to this question. In [9], inspired by the

analogy between number fields and function fields, we study gcd-graphs over polynomial

rings. Among various things that we find, we show that the spectrum of these gcd-graphs

also has an explicit formula via Ramanujan sums. An important insight of our work is the

notion of a symmetric Fp-algebra (see [9, Definition 6.2]). By their very definition, symmetric
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algebras are self-dual, and consequently, their characters are parametrized by their elements,

which allows us to calculate the associated Gauss and Ramanujan sums quite explicitly.

In this article, we apply this circle of ideas to study integral graphs over a finite ring. Our

main goal here is to generalize So’s theorem to finite symmetric algebras (we refer the reader

to the Definition 2.2 for the precise definition of a symmetric algebra.) More precisely, we

prove the following.

Theorem 1.1. Let R be a finite symmetric Z /n-algebra and S ⊂ R \ {0} such that S = −S. Then

the undirected graph Γ(R, S) is integral if and only if S is stable under the action of (Z /n)×.

We remark that our main theorem works for all S but since we only work with undirected

graphs, we impose the above conditions on S. When R = Z /n, this recovers So’s theorem.

We note, however, that our theorem applies to a much wider class of finite rings. More

precisely, as we will show in the last section, all finite quotients of the ring of integers in a

global field are symmetric. We believe that this observation could pave the way for future

studies on gcd-graphs over such rings as well as Paley graphs associated with finite Hecke

characters.

2. MAIN RESULTS

Let R be a finite Z /n-algebra. In this paper, we study Cayley graphs of the form Γ(R, S)

where S is a symmetric subset of R \ {0}. We recall that Γ(R, S) is the undirected graph

equipped with the following data.

(1) The vertex set of Γ(R, S) is R.

(2) Two elements a, b ∈ R are adjacent if there exists s ∈ S such that b = a + s.

We are interested in the case where Γ(R, S) is integral; i.e, all of their eigenvalues are integers.

By the circulant diagonalization theorem for finite abelian groups (see [5]), the spectrum of

Γ(R, S) is given by the family
{

∑
s∈S

ψ̂(s)

}

ψ̂

,

where ψ̂ runs over the dual group R̂ := Hom(R, C×) of all characters of (R,+). We remark

that since R is an Z /n-algebra, ψ̂(s)n = 1 for all ψ̂ ∈ R̂ and s ∈ R. As a result, once we fix

a primitive nth root of unity ζn ∈ C×, an element ψ̂ ∈ R̂ can be expressed uniquely in the

form

ψ̂(s) = ζ
ψ(s)
n ,

where ψ : R → Z /n is a group homomorphism. For the rest of our discussion, we will use

this formulation to identify ψ̂ and ψ.

Since R is an Z /n-algebra, (Z /n)× acts naturally on R. The following proposition gives

a sufficient condition for Γ(R, S) to be integral.

Proposition 2.1. Suppose that S is stable under the action of (Z /n)×. Then Γ(R, S) is an integral

graph.
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Proof. The Galois group of Q(ζn)/ Q is naturally isomorphic to (Z /n)×. More precisely, the

map

χ : (Z /n)× → Gal(Q(ζn)/ Q),

defined by sending a 7→ σa, where σa(ζn) = ζa
n, is an isomorphism. For each ψ ∈ Hom(R, Z /n)

and a ∈ (Z /n)×, we have

σa

(

∑
s∈S

ψ̂(s)

)
= σa

(

∑
s∈S

ζ
ψ(s)
n .

)
= ∑

s∈S

ζ
aψ(s)
n = ∑

s∈S

ζ
ψ(as)
n = ∑

s∈S

ζ
ψ(s)
n .

The last equality follows from the fact that S is stable under the action of (Z /n)×. This

shows that ∑s∈S ζ
ψ(s)
n ∈ Z . We conclude that Γ(R, S) is integral. �

Our goal is to study the converse of Proposition 2.1. In this article, we provide a partial

answer to this question. More precisely, we will show that the converse of Proposition 2.1

holds for the class of symmetric Z /n-algebras, whose definition we now recall.

Definition 2.2. A finite Z /n-algebra R is called symmetric if there exists ψ ∈ Hom(R, Z /n)

such that the kernel of ψ does not contain any non-zero ideal of R. When ψ exists, we call it

a non-degenerate linear functional on R.

Let R be a finite symmetric Z /n-algebra equipped with a fixed linear functional ψ : R →

Z /n. For each r ∈ R, we can define

ψr ∈ Hom(R, Z /n),

by the rule ψr(t) = ψ(rt). Furthermore, the map

Φ : R → Hom(R, Z /n),

defined by sending r 7→ ψr is a group homomorphism. Since ψ is non-degenerate, Φ is

injective, hence surjective. In summary, we have the following proposition.

Proposition 2.3. Let R be a finite symmetric Z /n-algebra with a fixed non-degenerate linear func-

tional ψ. Then for each every character ψ̂ of R, there exists a unique element r ∈ R such that for all

t ∈ R

ψ̂(t) = ζ
ψr(t)
n = ζ

ψ(rt)
n .

For the rest of the article, we will implicitly fix an indexing of elements in R. Let O1, O2, . . . , Od

be the orbits of R under the action of (Z /n)×. Let vi ∈ Q|R| be the characteristics vector of

Oi; namely

vi[r] =





1, if r ∈ Oi

0, if r 6∈ Oi.

By definition, v1, v2, . . . , vd are linear independent over Q. Let V be the Q-vector space gen-

erated by the vi’s.

Let AR = (ζ
ψr(t)
n )r,t∈R = (ζ

ψ(rt)
n )r,t∈R be the DFT matrix associated with R (see [5]). Then

for each R-circulant matrix C formed by a 1 × |R|-vector v, the spectrum of C is given by the

vector ARv. In particular, the spectrum of Γ(R, S) is given by AR1S where 1S is the charac-

teristic vector of S.
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Following [11], we define the following vector space.

A = {v ∈ Q|R| | ARv ∈ Q|R|}.

By the proof of Proposition 2.1, we know that V ⊂ A.

Proposition 2.4. If v ∈ A then ARv ∈ V .

Proof. Let v = (vt)t∈R ∈ Q|R| and ARv = (ur)r∈R. Because v ∈ A, ur ∈ Q for all r. By

definition

ur = ∑
t∈R

ζ
ψ(rt)
n vt.

We claim that if r1, r2 belong to the same equivalence class (r1, r2 belong to the same orbit)

then ur1
= ur2 . This would imply that ARv ∈ V . To prove this statement, we remark that

since r1, r2 belong to the same equivalence class, we can find a ∈ (Z /n)× such that ar1 = r2.

We then have

ur1
= σa(ur1

) = ∑
t∈R

ζ
ψ(ar1t)
n vt = ∑

t∈R

ζ
ψ(r2t)
n vt = ur2 . �

Corollary 2.5. A = V . In particular {vi}
d
i=1 forms a basis for A.

Proof. By Proposition 2.4 we know that ARA ⊂ V . Since AR is invertible, we conclude that

dim(A) ≤ dim(V). Since V ⊂ A, we conclude that A = V . �

Theorem 2.6. Let R be a finite symmetric Z /n-algebra and S ⊂ R. Then Γ(R, S) is an integral

graph if and only if S is stable under the action of (Z /n)×.

Proof. The forward direction has been proved in Proposition 2.1. Let us prove the other direc-

tion. Suppose that Γ(R, S) is integral. Then by Corollary 2.5, 1S ∈ V . Since the components

of 1S are in the set {0, 1}, we conclude that S is a union of some of the orbits O1, O2, . . . , Od.

In other words, S is stable under the action of (Z /n)×. �

Remark 2.7. If R = Z /n then R is a symmetric Z /n-algebra where ψ : R → Z /n is the

identity map. Furthermore, we can see that the orbits of (Z /n) under the action of (Z /n)×

are precisely {Gn(d)}d|n where

Gn(d) = {m ∈ Z /n | gcd(m, n) = d}.

We then see that Theorem 2.6 is a generalization of [11, Theorem 6.2].

3. EXAMPLES OF SYMMETRIC ALGEBRAS

In this section, we provide some constructions of finite symmetric Z /n-algebras. The first

example is quite standard (see [7, Example 3.15E]).

Example 3.1. Let G be a finite abelian group and R = Z /n[G] the group algebra of G with

coefficients in Z /n. Let ψ : R → Z /n be the linear functional defined by

ψ

(

∑
g

agg

)
= ae.

Then ψ is non-degenerate and hence R is a symmetric Z /n-algebra.
4



We now show that all finite quotient rings of the ring of integers in a global field is a

symmetric Z /n-algebra where n is the characteristic of the ring. We start this investigation

with a series of simple lemmas.

Lemma 3.2. If R1, R2 are two symmetric Z /n-algebras then so is R1 × R2.

Proof. Let ψ1 : R1 → Z /n and ψ2 : R2 → Z /n be two non-degenrate linear functionals. Let

ψ : R1 × R2 → Z /n be defined as

ψ(r1, r2) = ψ1(r1) + ψ2(r2).

We can check that ψ is a non-degenerate Z /n-linear functional on R1 × R2. By definition,

R1 × R2 is a symmetric Z /n-algebra. �

Lemma 3.3. If R1 is a symmetric Z /n1-algebra and R2 is a symmetric Z /n2-algebra with gcd(n1, n2) =

1, then R1 × R2 is a symmetric algebra over Z /n, where n = n1n2.

Proof. This follows from the Chinese remainder theorem and the proof of Lemma 3.2. �

Lemma 3.4. If R is a symmetric Z /n-algebra then R is also a symmetric Z /m-algebra for all n | m.

Proof. There is an embedding of ιn,m : Z /n → Z /m defined by a 7→ m
n a. Let ψ : R → Z /n be

a non-degenerate linear functional. Then the composition of ψ with ιn,m is a non-degenerate

linear functional of R over Z /m. �

Proposition 3.5. Let A be an integral domain. Let f ∈ A such that R = A/ f is a finite ring of

characteristics n. Suppose that R is a symmetric Z /n-algebra. Then for each g | f , A/g is also a

symmetric Z /n-algebra.

Proof. Let ψ f /g : A/g → Z /n be defined by

ψ f /g(a) = ψ

(
f

g
a

)
,

We can see that ψ f /g is a linear function on A/g. We claim that it is non-degenerate as well.

Suppose to the contrary that the kernel of ψ f /g contains a non-zero ideal I ⊂ A/g. Let ā be

an arbitrary element in I and let a be a lift of ā to A/ f . By definition, 〈ā〉 ⊂ I. As a result, for

all b ∈ A/ f

ψ

(
f

g
āb

)
= ψ

(
f

g
ab

)
= 0.

This shows that the ideal generated by
f
g a belongs to the kernel of ψ. Since ψ is non-degenerate,

we conclude that 〈 f
g a〉 is the zero ideal in A/ f . As a result, we can find h ∈ A such that

f
g a = f h. Since A is an integral domain, this implies that a = hg and hence ā = 0. �

Lemma 3.6. Let K be a finite extension of Qp and OK its ring of algebraic integers. Let I ⊂ OK be

a non zero ideal in OK and pa be the power of p such that

I ∩ Zp = pa Zp .

Then OK /I is a symmetric Z /pa-algebra.
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Proof. Since OK is a DVR, I is a principal ideal; namely I = 〈 f 〉 for some f ∈ OK . We then

have, OK /I ∼= OK / f . By Proposition 3.5, it is enough to show that OK /pa is a symmetric

Z /pa-algebra. It is well-known that OK is monogenic over Zp, i.e, there is α ∈ OK such that

OK = Zp[α] (see [10, Chapter 3, Section 6, Proposition 12]). Let m = [K : Qp], then every

element in OK /pa can be written uniquely as ∑
m−1
i=0 aiα

i where αi ∈ Zp /pa = Z /pa. We can

define a linear functional ψ : OK /pa → Z /pa by

ψ

(
m−1

∑
i=0

aiα
i

)
= am−1.

By an identical argument for the proof of [9, Proposition 6.7], we can check that ψ is non-

degenerate and hence OK /pa is a symmetric Z /pa-algebra. �

Proposition 3.7. Let K be a local field of characteristics p and OK its ring of integers. For each

non-zero ideal I ⊂ OK, OK /I is a symmetric Fp-algebra.

Proof. A local field of characteristic p is isomorphic to the Laurent series Fq((t)) for some q.

As a result, OK
∼= Fq[[t]]. We can then find a such that I = 〈ta〉. We then have Fq[[t]]/I ∼=

Fq[[t]]/ta ∼= Fq[t]/ta . By [9, Corollary 6.8], Fq[t]/ta is a symmetric Fp-algebra. �

Theorem 3.8. Let K be a number field, I ⊂ OK be a non-zero ideal. Let n be the positive integer

such that

n Z = OK ∩I .

Then OK /I is a symmetric Z /n-algebra.

Proof. Let I = ∏
d
i=1 Pei

i be the factorization of I into the product of distinct prime ideals in

OK . By the Chinese remainder theorem

OK /I ∼=
d

∏
i=1

OK /Pei
i =

d

∏
i=1

(OK)Pi
/Pei(OK)Pi

,

where (OK)Pi
is the completion of OK at Pi. By Lemma 3.2, Lemma 3.3 and Lemma 3.4 and

Lemma 3.6, we conclude that OK /I is a symmetric Z /n-algebra. �

For function fields, we have an analogous statement.

Theorem 3.9. Let K be a finite extension of Fp(t) and OK its ring of integers. For each non-zero

ideal I ⊂ OK, OK /I is a symmetric Fp-algebra.

By Theorem 2.6 and Theorem 3.9, we have the following corollary which answers a ques-

tion posed in [9, Remark 6.22].

Corollary 3.10. Let K be a finite extension of Fp(t) and OK its ring of integers. Let I ⊂ OK be a

non-zero ideal and R = OK /I . Let S ⊂ R \ {0} be a subset such that S = −S. Then Γ(R, S) is an

integral graph if and only if S ∪ {0} is an Fp-vector subspace of R.
6



3.1. Integral generalized Paley graphs. Let OK be the ring of integers of a number field

K. Let I be a non-zero ideal of OK. Suppose χ : (OK /I)× → C× is a character such that

χ(−1) = 1. The following definition is motivated by the definition of the quadratic Paley

graphs as defined and studied in [8] and [2, Section 4.2].

Definition 3.11. The Paley graph Pχ associated with χ is defined to be the Cayley graph

Γ(OK /I , ker(χ)) where

ker(χ) = {a ∈ (OK /I)×|χ(a) = 1.}

By Theorem 3.8 and Theorem 2.6 , we have the following.

Proposition 3.12. Pχ is an integral graph if and only if the induced Dirichlet character of χ on

(Z /n)× is trivial. Here n is the positive integer such that

n Z = OK ∩I .

Remark 3.13. There are various constructions of χ with the property that the induced Dirich-

let character on (Z /n)× is trivial. For example, let us consider K = Z[i]. For each n ∈ Z, let

χn : (Z[i]/n)× → C× be the quartic residue symbol associated with n (see [4, Chatper 9]).

Then, by [4, Proposition 9.8.3], we know that χn(a) = 1 for all a ∈ (Z /n)×. As a result, the

Paley graph Pχ is integral.

It seems to be interesting to study some further arithmetic properties of the eigenvalues

of Pχ in this case. We hope to do so in a future work.
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support.

REFERENCES
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