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Abstract

We develop the concept of a homogeneity supermanifold, which is more general than
most of the approaches to graded manifolds present in the literature. Instead of doing it
via ringed spaces and sheaves of graded algebras, we prefer a purely differential geometric
language and view gradings as provided by an additional structure on supermanifolds,
namely the weight vector field. This gives us a privileged atlas with homogeneous local
coordinates. The fact that the transition maps ‘preserve weights’ is then automatic, but
weights of homogeneous coordinates may vary from one chart to the other. Moreover,
such local homogeneous coordinates may have arbitrary real weights, not only integers.
We study homogeneity submanifolds, homogeneity Lie supergroups, tangent and cotan-
gent lifts of homogeneity structures, homogeneous distributions and codistributions, and
other related concepts. The main achievements in this framework are proofs of the
homogeneous Poincaré Lemma and a homogeneous analog of the Darboux Theorem.
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1 Introduction

In this paper, we study the concept of a homogeneity supermanifold which is, roughly speaking,
a supermanifold M on which a notion of homogeneity is defined. We do not use the term
‘graded manifold’, since it has various meanings in the literature.

Many graded objects in the geometric literature are based on the assumption that for a
privileged family of (local) functions (sections of a sheaf, elements of a vector space, etc.)
we have assigned weights (or degrees), which usually are integer numbers, in supergeometry
additionally equipped with a Z2-grading. To have the grading properly defined, this family
contains certain privileged functions (on manifolds they are usually local coordinates), together
with the assumption that the weights are preserved by transition functions of a given class.
This is usually not precisely formulated in the literature but it will be clear in our approach.

∗Research funded by the National Science Centre (Poland) within the project WEAVE-UNISONO, No.
2023/05/Y/ST1/00043.
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In the ’70s, supermanifolds were introduced and studied, to provide a geometric background for
the idea of supersymmetry, coming from physics. This was Berezin who first realized that, in
analogy with standard algebra, analysis, and geometry, one can construct algebra and analysis
of functions depending also on anticommuting variables and develop a mathematically precise
approach to manifolds with commuting and anticommuting coordinates. These ideas found
very important applications to physics, especially quantum field theory. Following Berezin, the
whole ‘Russian School’ of supergeometry was working on the subject. In the Berezin [3], Leites
[30] and Kostant [25] approach, supermanifolds are defined as Z2-graded commutative locally
ringed spaces (see also books by Rogers [32] Tuynman [42], and the supersymmetry-motivated
book [12]).

Note that supermanifolds are often called just graded manifolds, but we will consequently
use the term ‘supermanifold’, reserving the term ‘graded manifold’ for other gradings, e.g.,
various concepts of Z-graded manifolds. There is also a rapidly developing setting of Zn

2 -graded
supergeometry, see [10, 11, 13, 14], generalizing the standard Z2-grading on supermanifolds
and finding applications in quantum field theory [1, 5].

From the late ’90s, an introduction of a Z-grading was necessary for some studies related
to Poisson geometry, Lie algebroids, and Courant algebroids. For instance, such structures
appeared in the works of Kontsevich [24], Roytenberg [33] and Ševera [38], who introduced
the concept of an N-manifold, which is a Z-graded supermanifold (in practice, N-graded) with
the parity induced by the Z-grading. Since then, the Z-graded manifolds appeared in many
works, as for example Mehta [31], Fairon [16], Salnikov, Hamdouni, and Loziienko [34], or the
recent papers [27, 45, 46, 47], but in these cases, the Z-grading also determines the parity.

In some cases, it is quite easy to replace the Z-grading with gradings enumerated by
elements of some other commutative groups or even monoids [28], as it was done for Z

n
2 -

manifolds and for the additive group of R in our case. Our homogeneity supermanifolds
are in a sense Z2 × R-graded, where the element in Z2 indicates the parity and the element
in R indicates the weight. The parity and weight are compatible (like in [44]) only in the
sense that they commute, and therefore form together a Z2 × R-grading. On the other hand,
Voronov worked with general gradings not linked to parity (cf. also [43]), but he concentrated
only on Z-gradings, assuming additionally that coordinates with non-zero even Z-degrees are
‘cylindrical’, and that transition functions are polynomial in coordinates.

Almost all recent papers on graded manifolds use, from the very beginning, the language
of ringed spaces and sheaves of graded algebras, introduced and widely applied in algebraic
geometry. Differential geometry, however, was born and developed in order to conduct differ-
ential calculus on ‘curved objects’, which is usually ignored in algebraic geometry. In this way,
we have ‘graded manifolds’ with graded algebras of local or global functions (sections of the
structural sheaf) which are too poor to allow for a reasonable calculus. Moreover, localization
of arguments is usually problematic in the ringed space approach and, moreover, it could be
hardly accessible for many physicists to whom our setting is also addressed.

Let us present an easy example. The sheaf O of polynomial functions on R is a sheaf of
algebras, canonically graded by the homogeneity degree of a polynomial. This defines a ‘graded
manifold’ (R,O), whose graded algebra O(R) of ‘smooth functions’ consists of polynomials only.
But the differential calculus on polynomials is rather poor: we do not have exponentials nor
trigonometric functions, and even rational functions, like 1/(1 + x2) are not present in the
picture. This example can be directly generalized to vector bundles as graded manifolds, with
the sheaf of local functions that are polynomial in fibers. Of course, one could use shaves of
graded algebras canonically embedded into the standard structural sheaf of smooth functions
on a supermanifold, but this is very close to what we propose in this paper.

The way out is clear: we should work with true (super)manifolds, with the whole differential
calculus on them, and treat the grading as an additional geometric structure. In the case
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of polynomials, this structure can be given by the canonical action of the monoid (R, ·) of
multiplicative reals by homotheties ht, ht(x) = tx or, equivalently, by the Euler vector field
∇ = x∂x. A function f is declared to be homogeneous of weight w ∈ R if f ◦ ht = twf for
t > 0. Equivalently, ∇(f) = w ·f . One can easily prove that the only homogeneity weights are
positive integers and that the graded algebra of homogeneous functions consists of polynomials.
Hence, we know homogeneous functions, but they are placed in an environment allowing for
full differential calculus. Of course, this viewpoint is not new (see, e.g., the fundamental paper
by Roytenberg [33]), but it has been superseded by the ringed spaces approach.

A homogeneous framework was applied in a paper by Grabowski and Rotkiewicz [21],
where smooth action of the monoid (R, ·) on (purely even in this case) manifolds have been
studied under the name homogeneity structures. The corresponding objects turned out to
carry canonical structures of a fiber bundle with the typical fiber R

k, for some k, and were
called graded bundles. The transition functions, preserving the N-weights, are automatically
polynomials in homogeneous coordinates of non-zero weight. Graded bundles were further
investigated with some applications to geometric mechanics in a series of papers [6, 7, 8, 9, 18].
A supersymmetric variant of this framework covers N-manifolds and can be found in [29]. This
approach is extremely useful for working with vector bundles and double vector bundles [20].

A nontrivial message from [21] is that for any homogeneity structure on a manifold F , un-
derstood as an action of the monoid (R, ·), there exists an atlas consisting of homogeneous
coordinates (xi), thus local vector fields of the form

∇ =
∑

i

wi · xi ∂xi ,

where wi ∈ N is the weight of the homogeneous coordinate xi. As homogeneity is preserved by
transition functions, these local vector fields give rise to a global vector field ∇ on F , called the
weight vector field, which defines the homogeneity by the identity ∇(f) = w · f . This concept
of homogeneity works well also for arbitrary tensor fields K and the condition £∇(K) = wK,
where £ denotes the Lie derivative.

In this paper, ∇ is the weight vector field which defines the graded structure on a super-
manifold. We consider general weight vector fields, just assuming wi ∈ R. In this sense, our
gradation is an R-gradation and the graded algebras, thus the derived sheaves, are not direct
sums of homogeneous parts but rather ‘direct integrals’. What is more, there is no problem
with defining a larger class of multi-gradings represented by commuting weight vector fields.
The most important is an additional N grading, appearing canonically in the case of vector
superbundles.

The weight vector field is globally defined, so there is no problem with preserving homogeneity
by transition maps. However, we want to note that ‘preserving weights’ by transition functions
does not mean that the set of weights for local coordinates is the same for each homogeneous
chart. Actually, an important observation is that the systems of weights of local homogeneous
coordinates may strongly depend on the choice of a coordinate system. As this observation is
crucial for a proper understanding of our general concept, let us see a trivial example.

Consider the manifold R
× = R \ {0} and choose x as the standard coordinate inherited from

R. If we give x the weight 1, then the weight vector field is ∇ = x ∂x. On the other hand,
y = 1/x is a function of weight −1 which can be also taken as a coordinate in R

×, and the
corresponding weight vector field is ∇′ = −y∂y. The transition function is

ϕ : R× → R
× , y = ϕ(x) =

1

x
.

It is easy to see that ϕ∗(∇) = ∇′. Hence, the weight vector field is respected under the change
of coordinates, so homogeneous functions have the same weight in both charts. On the other
hand, the weights of the coordinates are different.
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Actually, we will show that homogeneity supermanifolds in our sense can admit homogeneous
functions of arbitrary real weight, which is rather exceptional in the literature. On the other
hand, we prove that, in a neighbourhood of a point m ∈ |M | of the body of M at which the
weight vector field vanishes, the weights of homogeneous coordinates around this point are
the same, up to permutation, independently on what homogeneous coordinates we choose. In
particular, if the weights are integers for one system of coordinates, then they are integers for
any other system. This suggests that it could be interesting to consider a narrower class of
homogeneity supermanifolds, assuming that we deal with an atlas such that ∇ vanishes at
some point in each chart.

Studying the geometry of general homogeneity supermanifolds we will introduce and investi-
gate homogeneity superbundles, homogeneity Lie supergroups, tangent and cotangent lifts of
homogeneity structures, homogeneity distributions, and codistributions. The main result in
this part is the homogeneous Poincaré Lemma. The enclosed examples will show how useful is
the concept of homogeneity, e.g., in an elegant and effective treatment of vector superbundles.

In the final part of the paper, we concentrate on homogeneous symplectic manifolds. Symplec-
tic geometry serves as a natural geometric framework for classical mechanics and integrability
of differential equations. There are many different generalizations of symplectic geometry to
be found in the literature. One non-classical aspect of supergeometry is the existence of odd
geometric structures In particular, the category of supermanifolds allows for even and odd
contact [19] and symplectic structures, the latter is widely used in the BV-BRST formalism
(see [26, 36, 37]). Another interesting concept is that of symplectic N-manifolds of Roytenberg
[33], where an explicit description of symplectic forms of degrees 1 and 2 is provided. It leads
to an effective geometric approach to Courant algebroids and the associated geometry.

There are analogs of the Darboux Theorem for general even and odd symplectic forms, see
Shander [40] and Schwarz [35, 37]. Also in works by Kostant [25] and Rogers [32], we can
find these results for symplectic forms on supermanifolds, however, without detailed proofs.
The corresponding Darboux local form is more complicated than their purely even counter-
parts, since wedge-commuting 1-forms could exist. In this paper, motivated by the studies of
symplectic structures on Z

n
2 -manifolds by Bruce and Grabowski [10], we study homogeneous

symplectic structures on homogeneity supermanifolds and examine their local forms, proving
the corresponding general graded Darboux Theorem.

Let us stress that our approach to homogeneity supermanifold was traditional differential
geometric: via collections of charts with coordinates, glued properly by transition maps. We
have avoided direct references to sheaves and ringed spaces which should make our paper
accessible also for theoretical physicists.

2 Weight vector fields

As we have already mentioned, for a given even vector field ∇ on a supermanifold M we can
define (local) homogeneous functions f of weight w ∈ R (and write w(f) = w) as (local) smooth
superfunctions on M for which ∇(f) = w · f . We say that such a function is homogeneous of
degree λ = (σ, w) ∈ Z2 × R (and write deg(f) = λ) if, additionally, f has the parity σ. We
will call λ even if σ = 0 and odd if σ = 1. Note, however, that local homogeneous functions
form, generally, a ‘direct integral’ rather than a direct sum of homogeneous subspaces. For
instance, on R with ∇ = ∂x there exist homogeneous functions of any weight w ∈ R, namely
ewx. Hence, the topology in the corresponding graded algebra is unclear. This concerns as
well the corresponding sheaves, so the ringed manifold approach to such graded structures is
problematic.
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Definition 2.1. (Weight vector fields) An even vector field ∇ on a supermanifold M with
the body (reduced manifold) |M | we call a weight vector field if in a neighbourhood of every
p ∈ |M | we can always find local coordinates which are homogeneous with respect to ∇. We
do not assume that such coordinates vanish at p. Charts with homogeneous coordinates we
call homogeneity charts.

The following is obvious.

Proposition 2.2. If ∇ is a weight vector field on a supermanifold M , then there is an atlas
on M with local (super)coordinates (xi) such that

∇M =
∑

i

wi · xi ∂xi , (1)

where wi ∈ R represents the weight of the homogeneous coordinate xi.

Example 2.3. According to the above Proposition, the vector field ∇1 = x ∂x is a weight
vector field on R. On the other hand, the vector field ∇2 = x2 ∂x is not a weight vector field.
Indeed, if y = y(x) is a homogeneous coordinate of weight w ∈ R in a neighbourhood of 0 ∈ R,
then y′(0) = a 6= 0 and ∇2(y) = x2 · y′(x) = w y(x). The derivative of the left side is 0 at
0 ∈ R, so w = 0, but x2 y′(x) = 0 has only constant solutions y(x). Note, however, that in a
neighbourhood of 0 ∈ R there exist non-constant homogeneous functions with respect to ∇2.
For instance, the function

f(x) =

{
0 if x ≤ 0

e−1/x if x > 0

is homogeneous with respect to ∇2 with weight 1.

Before we go to a characterization of weight vector fields, let us note that if an even vector
field X on a supermanifold M of dimension (n|m) vanishes at p ∈ |M |, then there is a well-
defined differential DpX ∈ End(TpM) ≃ gl(n,m). Indeed, we can view DpX as TpX : TpM →
V0pTpM , identifying canonically the vertical part V0pTpM of the tangent space T0pTpM with
TpM . Note that this works only because X(p) = 0. In this case, the condition (1) means that
Dp∇ is diagonal.

If, in turn, X(p) 6= 0, then it is well known that X can be locally written as ∂x1 in a coordinate
system (xa). This is a version of the straightening out theorem for supermanifolds and even
vector fields [39, Theorem 1]. For odd vector fields, it works under the integrability condition
[X,X ] = 0. If ∂x1 is a weight vector field, then x1 must be even and we can change this
coordinate system to (x̃1, x2, . . . , xn), where x̃1 = ex

1

. In this system, x̃1 is invertible and the
weights of coordinates are 1 for x̃1 and 0 for xi, i > 1. This means that we can always choose
coordinates with weights (1, 0, . . . , 0) in a neighbourhood of a point of |M |, where the weight
vector field is non-vanishing. We can as well use the coordinate ew·x1

, with w 6= 0, which is of
degree w.

Proposition 2.4. An even vector field ∇ on a supermanifold M is a weight vector field if and
only if Dm∇ is diagonal for each m ∈ |M | at which ∇ vanishes. In particular, non-vanishing
even vector fields are weight vector fields.

If in local homogeneous coordinates (xi) we have

∇M =

n∑

i=1

wi · xi ∂xi,

then:
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• In the case ∇M(m) = 0, all weights of systems of homogeneous coordinates around m
are the same for each system of homogeneous coordinates up to permutations among
weights of even and odd coordinates separately. In particular, if ∇M admits local homo-
geneous coordinates with weights in a subset Γ ⊂ ×R (e.g., with integer weights), then
all homogeneous coordinate systems around m have weights in Γ (have integer weights).

• In the case ∇(m) 6= 0, the vector (w′
i) ∈ R

p+q consists of weights of a system of local
homogeneous coordinates in a neighbourhood of m if and only if not all weights of even
coordinates are 0. In particular, for any w, vi ∈ R, i = 2, . . . , n, w 6= 0, there are
coordinates (x, zi), i = 2, . . . , . . . n in a neighbourhood of m, such that x is even, x(m) =
1, zi(m) = 0, and

∇M = w · x ∂x +
n∑

i=2

vi · zi ∂zi .

Proof. In the first case, let us take local homogeneous coordinates (ya, ξα), ya even and ξα

odd, with weights ua and vi, so that

∇ =
∑

a

ua · ya∂ya +
∑

α

vα · ξα∂ξα

and m = 0 in these coordinates. For another homogeneous coordinate system (ȳa, ξ̄α), we
have the Taylor expansions

ȳa = tab · yb + o(y, ξ)

ξ̄α = sαβ · ξβ + o(y, ξ). ,

where [tab ] and [sαβ ] are invertible real matrices. It is clear that ȳa is homogeneous of weight ūa
only if ūa = ub for all b for which tab 6= 0. Thus, any weight ūa belongs to the set of weights
of (yb). On the other hand, as the matrix [tab ] is invertible, any weight ub is present in the
sequence (ūa) as many times as it appears in the sequence (ua). All this works also for odd
coordinates.

In the second case, there is an even coordinate, say x1, such that w1 · x1(m) 6= 0. Hence,
x1/x1(m) = 1 and x1/x1(m) is positive in a neighbourhood of m. Moreover, the function
t = (x1/x1(m))1/w1 is an even function of weight 1 with t(m) = 1 (so t is positive in a
neighbourhood of m) and (dt)(m) 6= 0 is proportional to dx1, so that we can use t as a
coordinate complementary to (xi), i > 1. If we take w 6= 0 and vj ∈ R, j = 2, . . . , n, then
putting x = tw, zi = xi ·t(vi−wi)−xi(m) for i = 2, . . . , n, we get a system (x, zi) of homogeneous
local coordinates for which x(m) = 1, x is of degree (0, w), and the coordinate zi has weight
vi and vanishes at m.

Corollary 2.5. If ∇M(m) 6= 0, then there exist local coordinates (t, z2, . . . , zp+q) in a neigh-
bourhood ofm such that t is even and t(m) = 1, zi(m) = 0, and in these coordinates ∇M = t ∂t.
A function g(t, za) is homogeneous of degree λ = (σ, w), if and only if

g(t, z) = tw · h(z) ,

where h is any smooth function in variables zi of parity σ.

Proof. The existence of a coordinate system of the desired form was established in Proposition
2.4. The function g has weight w if and only if

∇M(g)(t, z) = t
∂g

∂t
(t, z) = w · g(t, z) .
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This is, actually, an ordinary differential equation with respect to t with parameters (zi). All
solutions are of the form tw · h(z) and the corollary follows.

It is interesting that for some weight vector fields there exist non-zero and simultaneously flat
at some point homogeneous functions of arbitrary degree w ∈ R, as shown in the following
example.

Example 2.6. Take R
2 with coordinates (x, y), where x is of degree 1 and y is of degree −1,

so that the weight vector field is ∇ = x∂x − y∂y. Take a non-zero function ϕ : R → R which
is flat (ϕ and all derivatives of ϕ vanish) at the point 0 ∈ R, but ϕ(x) is positive for x 6= 0.
Then, f(x, y) = ϕ(xy) is of degree 0 with respect to ∇, but it is not constant. The function
f1(x, y) = x ·ϕ(xy) is of degree 1 but it is not a polynomial in coordinates, while the function

{
fd(x, y) = |x|dϕ(xy) for x 6= 0;

fd(x, y) = 0 for x = 0 ,

where d ∈ R, is clearly smooth (ϕ is flat at 0) and of degree d ∈ R.

Remark 2.7. Proposition 2.4 shows that the restrictions on weight vector fields are not very
tight. Especially, in charts where ∇M is non-vanishing, the situation is rather pathological
and not very interesting. In particular, any nowhere-vanishing vector field on a supermanifold
M is a weight vector field with homogeneous coordinates having any weights we declare (but
at least one even coordinate must have a non-zero weight), so for many purposes, we may
restrict our concept of a weight vector field. For instance, one can assume that the atlas
consists of homogeneous charts with the additional assumption that ∇ vanishes at some point
in every chart. Then the degrees of homogeneity of coordinates will be locally fixed (up to a
permutation, of course). We will postpone a deeper study of this case for a separate paper.

Now, we will present a description of all possible weights of local homogeneous functions on
a homogeneity supermanifold M in a neighbourhood of a certain m ∈ |M |. As the case
∇M(m) 6= 0 is already completely described (all real weights are possible), we will concentrate
on the case ∇M(m) = 0 which is more complicated. Since local smooth functions on M are
polynomials in odd variables ξi and coefficients being local smooth functions on |M |, and since
monomials in ξi are always homogeneous, the knowledge about homogeneous functions on M
reduces to the knowledge of homogeneous functions on (|M |,∇|M |). Therefore we can assume
that M is purely even.

Let

∇M =

p∑

a=1

wa · xa ∂xa

be the local form of a weight vector field on a purely even homogeneity manifold M of dimen-
sion p in a neighbourhood of m ∈ M such that ∇M(m) = 0. With W∇M

(m) we denote the
set

W∇M
(m) =

{∑

a

na · wa |na ∈ N

}
.

According to Proposition 2.4, this definition is correct, i.e., does not depend on the choice of
local homogeneous coordinates in a neighbourhood of m. It is obvious that all monomials in
variables xa are homogeneous with weights in W∇M

(m) and that W∇M
(m) ⊂ Z if all wa are

integers.
We can divide the coordinates (xa) into two families: (yα) with non-zero weights, and (zj)

with weights 0, so that

∇M =
∑

α

wα · yα ∂yα
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and yα(m) = 0 for all α. We can assume that also zj(m) = 0 for all j. In particular, any
homogeneous function with a non-zero weight is vanishing on the submanifold ya = 0.

Proposition 2.8. Under the above assumptions, we have the following.

1. If all wα > 0 (resp., wα < 0), then any homogeneous function f near m is a polynomial in
variables yα with coefficients being functions in variables zj. The weights of homogeneous
functions around m are precisely the elements of W∇M

(m) which is in this case a discrete
subset of R≥0 (resp., R≤0). In particular, allowed are only non-negative (resp., non-
positive) weights of homogeneous functions.

2. If there are positive and negative wα, say, w1 > 0 and w2 < 0, then there are local
homogeneous functions of weight 0 which are not of the form g(z). If a local homogeneous
function f of weight w is not flat at m modulo a constant (i.e., a non-zero derivative
of f does not vanish at m), then w ∈ W∇M

(m). On the other hand, there are local
homogeneous functions of arbitrary weight w ∈ R and flat at m.

Proof. 1. Let ht(y
α, zj) = (twα · yα, zj) fot t ∈ R close to 1. Since all wα are positive, we can

choose a neighbourhood U of m such that ht in U is defined for all 0 < t ≤ 1. It is easy to see
that f(y, z) is homogeneous of degree w ∈ R if and only if f ◦ ht = tw ◦ f . We will prove now
that all homogeneous functions of weight w ≤ 0 are of the form f(z), so that w = 0.

Let (yα) = (ui, ξa) (resp., (zj) = (vI , ηA)), where the coordinates ui are even and ξa are
odd (resp. vI are even and ηA are odd). Any function f(y, z) is a polynomial in coordinates
(ξ, η) with coefficients of the form g(u, v). Consider a monomial

P (y, z) = g(ui, vI) ξa1 · · · ξak ηA1 · · · ηAl

being a summand in the polynomial f . If f is homogeneous with weight w, then P ◦ht = tw ·P ,
so

(P ◦ ht)(y, z) = (g ◦ ht)(u, v) ξa1 · · · ξak ηA1 · · · ηAl · t(wa1
+···+wak

) = tw · P (y, z) ,

so that (g ◦ ht) = tw
′ · g, where w′ = w − wa1 − · · · − wak . If w < 0, then clearly w′ < 0 (as

was > 0). In particular,

(g ◦ ht)(u, v) = g(twi · ui, v) = tw
′ · g(u, v) .

Note that g is a (local) smooth function on M . If g is nonzero, there is (u0, v0) such that
g(u0, v0) 6= 0. But wi > 0, so

g(0, v0) = lim
t→0+

(g ◦ ht)(u0, v0) 6= lim
t→0+

tw
′

g(u0, v0) = ±∞ ;

a contradiction. Hence, w′ = 0, so consequently w = 0 and the monomial P does not depend
on (ui, ξa).

Let now a > 0 be the minimal number in the finite set of positive reals {wα}. We will show
inductively with respect to n that all homogeneous functions of weight ≤ na are polynomial.
The case n = 0 we have just proved. So, suppose that all homogeneous functions of weight
≤ na are polynomials in yα with coefficients in the form g(z) and let f(yα, zj) be homogeneous
with weight w ≤ (n+ 1)a. Then, according to Lemma 3.11, the partial derivative ∂f

∂yk
(y, z) is

of weight w − wk ≤ (n+ 1)a− wk ≤ na, so it is a polynomial in variables ya with coefficients
of the form g(z). We will show that f itself is of the desired form, using another (this time
finite) induction with respect to the number r of variables yα.

The case r = 0 is trivial, so assume the inductive assumption for r. Having now (r + 1)
variables y1, . . . , yr+1, consider a function f(yα, zj) whose partial derivative with respect to

8



y1 is a homogeneous of weight (w − w1), polynomial in variables yα and coefficients being
homogeneous functions in (zj). In particular,

∂f

∂y1
(y, zj) =

∑

i

gi(z)y
ai ,

where ai are multi-indices, ai = (ai1, . . . , a
i
r+1), and

ya
i

= (y1)a
i
1 · · · (yr+1)a

i
r+1 .

It is easy to see that ya
i

is homogeneous with weight |ai| =
∑r+1

α=1 a
i
α ·wα, so that |ai| = w−w1

for all i. It is clear now that

f(yα, zj) =
∑

i

gi(z)

ai1 + 1
ya

i · y1 + f1(y
2, . . . , yr+1, zj),

for some function f1 which is of weight w and depends only on r variables from (yα). Now, we
apply the inductive assumption. All this implies immediately that the set of possible weights
of local homogeneous functions is exactly W∇M

(m). The proof of the case wα < 0 is completely
analogous.

2. Let a = −w1/w2. Then, a > 0 and the function g(y, z) = y1 |y2|a is homogeneous of weight
0 on the open subset defined by y2 6= 0. Of course, this function is generally not smooth at
points for which y2 = 0, but we can compose it with a smooth function h : R → R which is
flat at 0. Then, the function f(y, z) = h(y1 |y2|a) is smooth and flat at m. Actually, it is flat
at all points (y, z) with y1 · y2 = 0. Lemma 3.11 implies now that f is homogeneous of weight
0. Let us take any w ∈ R. The function

fw(y, z) = (y1)w/w1f(y, z)

is clearly smooth and of weight w.
On the other hand, if f(y, z), vanishing at m, is not flat at m, then there is a Taylor

decomposition f(y, z) = P (y, z) + o(y, z) of f around 0, with P being a non-zero polynomial
of degree r in variables (y, z), and o(y, z) being infinitesimal of order < r. We have

∇M(f) = ∇M(P )(y, z) + ∇M(o)(y, z) = w · (P (y, z) + o(y, z)) .

Since ∇M(m) = 0, also ∇M(o)(y, z) = o′(y, z), is infinitesimal of order < r. But the Taylor
polynomial of degree r is uniquely determined up to order r, so ∇M(P ) = w · P , i.e., the
polynomial P is homogeneous of degree w. All monomials in variables (y, z) are homogeneous
functions with weights in W∇M

(m), so w ∈ W∇M
(m).

3 Homogeneity supermanifolds

Definition 3.1. (Homogeneity supermanifolds) A supermanifold M equipped with a
weight vector field ∇M and an atlas of homogeneity charts we will call a homogeneity super-
manifold. The charts from this atlas we call allowed charts and the weights of homogeneous
coordinates in allowed charts – allowed weights. If the allowed weights belong to a certain
subset Γ ⊂ R we will say that (M,∇M) is a Γ-homogeneity supermanifold.

Remark 3.2. Note that, since ∇M is a well-defined global geometric object on M , the tran-
sition functions respect ∇M , so they are in this sense ‘weight-preserving’. In particular, as the
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property of being a (local) homogeneous function of weight w with respect to ∇M does not
depend on the choice of coordinates, homogeneous functions of weight w are the same for local
coordinate systems on their intersection. Consequently, one can construct homogeneity su-
permanifolds by choosing an atlas, declaring the weights of local coordinates, and demanding
that the corresponding transition maps preserve the local weight vector fields, which therefore
give rise to a globally defined weight vector field.

Remark 3.3. This idea of homogeneity supermanifolds is essentially known (see, e.g., [33, 38],
where the corresponding objects are called graded manifolds), although usually restricted to
(mainly non-negative) integers. In the mentioned papers, only those N-homogeneity super-
manifolds are studied for which the parity of homogeneous coordinates is determined by the
weight; they are called N-manifolds. They have been studied also in [21, 29] in a simplifying
framework.

A more general concept of a graded manifold, probably the closest to ours, was that by
Voronov [44] (cf. also [31]). In his approach, acceptable weights are also integers but not linked
to parity. The allowed charts have the form U×R

k|l, where the fiber coordinates have non-zero
integer degrees and U is an open subset of Rn|m with the trivial homogeneity structure, so the
manifold has a structure of a fiber bundle (Voronov says that even coordinates of non-zero
weight are ‘cylindrical’). There is an additional strong requirement that the allowed transition
maps are polynomial in fiber coordinates, so we deal with a polynomial fiber bundle, so not
all homogeneous charts are allowed. Of course, our approach covers all these examples based
on homogeneous coordinates.

As we already mentioned in the Introduction, graded manifolds understood as graded
ringed spaces are qualitatively different, as smooth functions, being sheaf sections, belong for-
mally to a small class, generally unapplicable for a wider differential calculus. However, in the
case when the structure sheaf is naturally embedded in the traditional sheaf of superfunctions,
we can adapt also such graded manifolds by assuming that the allowed transition maps respect
this subsheaf.

Definition 3.4. (Morphisms) A morphism of a homogeneity supermanifold (M,∇M) into
a homogeneity supermanifold (N,∇N) is a morphism ϕ : M → N of supermanifolds which
relates ∇M with ∇N . In other words, the pullbacks of (local) homogeneous functions on N
are homogeneous on M with the same degree. More generally, a morphism ϕ : M → N of
supermanifolds is called of weight λ ∈ R if the pullbacks of (local) homogeneous functions of
weight w ∈ R are homogeneous of weight w + λ.

The following is obvious.

Theorem 3.5. Homogeneity supermanifolds with morphisms defined as above form a category
which we will denote HSMan.

Proposition 3.6. (Cartesian products) If (M,∇M) and (N,∇N) are homogeneity super-
manifolds, then the Cartesian product M ×N carries a canonical structure of a homogeneity
supermanifold whose weight vector field ∇M×N is defined as the sum ∇̃M + ∇̃N , where ∇̃M

(resp. ∇̃N ) is understood as the unique vector field on M × N whose projections on M
and N are ∇M and 0 (resp. 0 and ∇N )). We will just write, with some abuse of notation,
∇M×N = ∇M +∇N , and we will call (M×N,∇M +∇N) the Cartesian product of homogeneity
supermanifolds (M,∇M) and (N,∇N).

Proof. Indeed, if (xa) and (yj) are homogeneous coordinates on M and N with weights (wa)
and (vj), respectively, then in local coordinates (xa, yj) on M × N the weight vector field
∇M×N reads

∇M×N =
∑

a

wa · xa∂xa +
∑

j

vj · yj∂yj .
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Definition 3.7. A submanifold N of a homogeneity supermanifold M we call homogeneous
submanifold if ∇M is tangent to N .

Proposition 3.8. If N is a homogeneous submanifold of a homogeneity supermanifold M ,
then N is canonically a homogeneity supermanifold itself with the weight vector field ∇N being
the restriction of ∇M to N , i.e., ∇N = ∇M

∣∣
N
.

Proof. Suppose that the total dimensions are: dim(N) = n and dim(M) = m. For m = n
the proposition is obvious, so let us consider m > n. There is a covering of M with some
coordinate neighbourhoods U with coordinates (y1, . . . , ym) such that N ∩ U is defined by
the system of equations yn+1 = 0, . . . , ym = 0. Of course, these coordinates are not a priori
homogeneous. Making U smaller if necessary, we can have on U also homogeneous coordinates
(x1, . . . , xm), so that ∇M =

∑
awa · xa ∂xa . There are n coordinates from (xa), say, x1, . . . , xn

such that their restrictions x̃1, . . . , x̃n to N give a system of coordinates on U∩N . As functions
in coordinates ya, they read x̃i = xi(y1, . . . , yn, 0, . . . , 0). But xi is homogeneous with weight
wi, so that

∇M

∣∣
N

(x̃i) = ∇M

(
xi(y1, . . . , yn, 0, . . . , 0)

)
= wi · xi(y1, . . . , yn, 0, . . . , 0) = wi · x̃i .

Hence, (x̃1, . . . , x̃n) are local coordinates in N which are homogeneous with respect to ∇M

∣∣
N

.

It is easy to see the following.

Proposition 3.9. For each homogeneity supermanifoldM , the weight vector field ∇M induces
on the body (called also the reduced manifold) |M | of M a weight vector field ∇|M |, which
for homogeneous local coordinates (yi, ξa)(yi even and ξa odd) on M takes the form

∇|M | =
∑

i

wi y
i∂yi

and makes |M | into a purely even homogeneity manifold. In other words, (|M |,∇|M |) is a
homogeneous submanifold of (M,∇M).

Let now M0 ⊂ |M | be the set of zeros of the vector field ∇|M |.

Proposition 3.10. The set M0 is, actually, a submanifold of the even manifold |M |, thus
also an even submanifold of M . The manifold M0 is a homogeneous submanifold in M with
the trivial homogeneity structure.

Proof. The manifold |M | is a purely even homogeneity manifold with the weight vector field
written locally as ∇|M | =

∑
i wi y

i ∂yi , where (yi) are even homogeneous local coordinates in
M , so homogeneous coordinates in |M |. Hence, the submanifold M0 of |M | is described by the
system of equations yi = 0 for that i for which wi 6= 0. As a submanifold in M , the manifold
|M | is described in homogeneous coordinates (yi, ξa) by the system of equations ξa = 0 and
yi = 0 for those i for which wi 6= 0.

Since nowhere-vanishing vector fields are automatically weight vector fields, M0 may be empty.
A useful Lemma we will use many times is the following.

Lemma 3.11. Let M be a homogeneity supermanifold, and let (xa) be local homogeneous
coordinates with degrees (λa) in a neighbourhood of m ∈ |M |.
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1. If g(x) is an even (resp., odd) homogeneous function of weight 0, and h : R → R is
smooth (resp., h(ξ) is an odd function on R

0|1), then f(x) = h(g(x)) is also an even
(resp., odd) homogeneous function of weight 0.

2. If f and g are homogeneous functions of degrees λf and λg, then f · g is homogeneous
of degree λf + λg.

3. If f(xa) is a homogeneous function of degree λ, then ∂xk(f)(xa) is of degree λ− λk.

4. If f is a homogeneous even and positive function of weight w, then f v is homogeneous
even and positive of weight vw for any v ∈ R.

Proof. For the first statement, we calculate

∇M(f)(x) =
∑

a

wa · xa
∂f

∂xa
(x) =

∑

a

h′(g(x)) · wa · xa ·
∂g

∂xa
(x) = h′(g(x)) · ∇M(g)(x) = 0 .

The second statement follows immediately from the Leibniz rule. As for the third one, we
have

w · ∂xk(f) = ∂xk(∇M(f)) = ∇M(∂xk(f) + [∂xk ,∇M ](f) = ∇M(∂xk(f)) + wk · ∂xk(f) ,

so
∇M(∂xk(f)) = (w − wk) · ∂xk(f) .

And finally,
∇M(f v) = v · f v−1 · ∇M(f) = v · f v−1 · w · f = (v w) · f v .

The notion of the weight of homogeneity can be easily extended from just functions to arbitrary
tensor fields by using the Lie derivative £∇M

.

Definition 3.12. Let ∇ be a weight vector field on a supermanifold M . We say that a (local)
tensor field K is of weight w ∈ R if

£∇M
(K) = w ·K.

If additionally K has a defined parity, say σ, then we call it simply homogeneous of degree
λ = (σ, w) ∈ Z2 × R.

Remark 3.13. (Flows) It is not widely known that the tangent bundle TM of a supermani-
fold M , via the functor of points, can be identified with the first jet bundle of smooth curves in
M , i.e., smooth morphisms γ : R → M (see [4]). Moreover, every even vector field Y induces
a flow Exp(t Y ) of local diffeomorphisms of M [42, Chapter V] such that

d

ds

∣∣∣∣
s=0

Exp(sY )(x) = Y (x) .

For a tensor field K, the Lie derivative £Y (K) can be understood as the infinitesimal action
of the one-parameter group Exp(sY ) of local diffeomorphisms on the tensor K:

d

ds

∣∣∣∣
s=0

Exp(sY )⋆(K) = £YK ,

where Exp(sY )⋆ denotes the action (pullback) of the local diffeomorphism Exp(sY ) on tensor
fields. More precisely, Exp(sY )⋆(K) is the standard pullback if K is covariant, and it is
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understood as Exp(−sY )∗(K) if K is contravariant, extended then in an obvious way to all
tensor fields. Therefore, the Lie derivative £YK is well defined for any tensor field K, not
only for K even or odd. Moreover, the bracket [Y,X ] of vector fields is well defined, although
vector fields on supermanifolds do not generally represent (graded) derivations in the algebra
A(M) of superfunctions on M , that is sometimes stated in textbooks in an misleading way.
In the case of the weight vector field Y = ∇M (see (1)), the corresponding flow reads

gs(x) = Exp(s∇M)(x) =
(
ewi·s · xi

)
, (2)

for s sufficiently close to 0, with ‘sufficiently’ depending on the neighbourhood in the body
part of homogeneous coordinates. It is easy to see that a function f is homogeneous of weight
w if and only if f ◦ gs = ew·sf . It will be convenient to change the parameter s ∈ R into the
parameter t = es > 0 and put

ht(z) = (twi · zi) .
Then, ht ◦ hu = htu, and the condition for homogeneity of f(z) with weight w is

f ◦ ht = tw · f . (3)

The vector field is complete if ht is globally defined for all t > 0.

Corollary 3.14. A weight vector field ∇ is complete if and only if ∇ is the generator of a
smooth action h : R+ ×M →M of the multiplicative group R+ of positive reals on M , in the
sense that

d

dt

∣∣∣∣
t=1

ht = ∇.

Our method of defining graded manifold via homogeneity structures is very effective and leads
immediately to a concept of multi-homogeneity structures.

Definition 3.15. A multi-homogeneity structure on a supermanifold M is a finite sequence
(∇1, . . . ,∇k) of weight vector fields on M which are compatible, i.e., they commute pairwise,
[∇i,∇j] = 0. In this case, we call it a k-tuple homogeneity structure. Tensor fields which
are homogeneous with respect to each ∇i with weight wi we call homogeneous with k-weight
(w1, . . . , wk) ∈ R

k. Morphisms of k-tuple homogeneity manifolds are morphisms of superman-
ifolds relating ∇1

i with ∇2
i for all i.

Any k-tuple homogeneity structure we will view as an R
k-grading. Of course, in practice,

some parts are Z or N gradings. A particularly important for the geometry of vector bundles
are N× R-gradings.

Example 3.16. Consider on M = R
p×R

q with coordinates (xa, yi) compatible weight vector
fields

∇1 =
∑

i

yi∂yi , ∇2 =
∑

a

wax
a∂xa +

∑

i

viy
i∂yi ,

where wa, vi ∈ Z. This gives an N × Z-gradation on M . The N-part of the gradation is
responsible for the obvious trivial vector bundle structure on M ,

τ : Rp × R
q → R

q.

4 Examples

Example 4.1. (Trivial example) Any supermanifold M is a homogeneity supermanifold
with the trivial (zero) weight vector field.
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Example 4.2. (Vector superbundles) Consider the trivial vector superbundle of rank
(n|m) over a supermanifold M , E = M × R

n|m, with the obvious surjective submersion
τ : E →M . If (ya, ηj) are the standard linear coordinates in R

n|m, then

∇E =
∑

a

ya∂ya +
∑

j

ηj∂ηj

is a weight vector field on E, called the Euler vector field, and the coordinates (ya, ηj) are all
of weight 1. Hence, E is canonically a homogeneity manifold, and M is a submanifold in E
defined as the zero-locus of all 1-homogeneous functions. For M being a single point, we get
a canonical homogeneity structure on the supermanifold R

n|m. Homogeneity supermanifolds
of this type we call linear supermanifolds.

If F = N × R
p|q is another trivial vector superbundle, with projection π : F → N ,

then VB-morphisms Φ : E → F are just morphisms of these homogeneity manifolds. They
automatically induce morphisms ϕ : M → N of supermanifolds such that the diagram

E
Φ

//

τ

��

F

π

��

M
ϕ

// N

is commutative.

Now, a general vector superbundle can be described as a fiber bundle τ : E → M , equipped
with an atlas of local trivializations (Ua, ϕa),

ϕa : Va = τ−1(Ua) → Ua × R
n|m,

such that the transition maps

ϕb ◦ ϕ−1
a : (Ub ∩ Ua) × R

n|m → (Ub ∩ Ua) × R
n|m

are automorphisms of the homogeneity manifolds (Ub ∩ Ua) × R
n|m. Consequently, the local

weight vector fields ∇a give rise to a globally defined weight vector field ∇E on E, called
the Euler vector field, so E is canonically a homogeneity manifold, with M embedded as a
submanifold being the zero-locus of all 1-homogeneous functions.

Note that the weight vector field ∇ is in this case complete, and the corresponding flow ϕt of
automorphisms of the homogeneity manifold E is the multiplication by s = et ∈ R+ in R

n|m.
An important observation is that this R+-action on E extends canonically to a smooth action
of the monoid (R, ·) of multiplicative reals. This is exactly the effective way of defining vector
(super)bundles [21, 29] without any reference to the addition in fibers.

Example 4.3. (Linear homogeneity supermanifolds) Consider a linear supermanifold
M = R

k|l with the standard global coordinates (ya, ηj), where ya are even and ηj are odd, and
a multi-index

µ = (w1, . . . , wk, v1, . . . , vl) ∈ R
k × R

l .

The weight vector field on M ,

∇µ =
k∑

a=1

wa · ya ∂ya +
l∑

j=1

vj · ηj ∂ηj , (4)

is compatible with the Euler vector field

∇E =
∑

a

ya∂ya +
∑

j

ηj∂ηj ,
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so defines a double homogeneity structure on R
k|l, denoted R

n|m(µ). Double homogeneity su-
permanifolds (Rk|l,∇E,∇µ) we will call linear homogeneity supermanifolds of type µ. Weights
of homogeneous functions take values in N×R. If all weights (wa, vj) are positive, we call the
linear homogeneity supermanifold positive.

Example 4.4. (Homogeneity spheres) Consider R
n+1 with the standard coordinates

(x0, x1, . . . , xn), and the 1-sphere Sn ⊂ R
n+1 defined as the submanifold of points satisfy-

ing the equation
∑n

i=0 x
2
i = 1. Let us distinguish on Sn two charts, ϕi : Ui → R

n, where
Ui consists of points of Sn such that x0 = (−1)i, i = 0, 1, associated with the stereographic
projections from the north (1, 0, . . . , 0) and the south pole (−1, 0, . . . , 0),

Xk = [ϕ0(x)]k =
xk

1 − x0
, Yk = [ϕ1(x)]k =

xk
1 + x0

, k + 1, . . . , n .

It is easy to see that the transition map is

ϕ10 = ϕ1 ◦ ϕ−1
0 : (Rn)× = R

n \ {0} → (Rn)× = R
n \ {0} , Y = ϕ10(X) =

1∑n
k=1X

2
k

X .

In other words, Yk = Xk/s
2, where s2 =

∑n
k=1X

2
k . Suppose now we declare the weight 1

for all coordinates Xk and the weight −1 for all coordinates Yk. In that case, the transition
map preserves the weights and the weight vector field ∇ on Sn, which is ∇ =

∑
kXk∂Xk

in
coordinates (Xk) and ∇ = −

∑
k Yk∂Yk

in coordinates (Yk), is well defined and introduces a
homogeneity structure on Sn, which is therefore a compact homogeneity manifold.

A particular case is that of a circle. With respect to the standard parametrization of the
unit circle in R

2, t 7→
(

cos(t), sin(t)
)
, and the poles being p∓ = (±1, 0), the above weight

vector field ∇ on S1 reads ∇ = sin(t)∂t. On S1 \ {p+}, we have t = 2 arctan(1/x), and ∇
is equivalent to the vector field x∂x on R, where homogeneous functions are homogeneous
polynomials having weights ≤ 0, and on S1 \ {p−}, this is equivalent to −y∂y on R, where
homogeneous functions are homogeneous polynomials having weights ≤ 0. Hence, global
homogeneous functions on S1 are only constants.

Example 4.5. (Graded bundles) The graded bundles of Grabowski and Rotkiewicz [21] (see
also [6, 7, 8, 9]) are purely even manifolds with an action of the monoid of multiplicative reals,
ht : F → F , with h1 = idF and ht ◦ hs = hts. Somehow unexpectedly, it leads to a structure
of a homogeneity manifold on F as follows. It is easily seen that h0 is a surjective submersion
of F onto the submanifold M = h0(F ). One proves that it is, in fact, a fiber bundle with the
typical fiber Rp for some p and there is an atlas of local trivializations h−1

0 (U) ≃ U ×R
p, with

coordinates (xa) on M and linear coordinates yi on R
p, such that the R-action looks like

ht(x
a, yi) = (xa, twiyi) ,

where wi are non-negative integers. The weight vector field ∇F is the generator of the one-
parameter group of diffeomorphisms ht, t > 0. Clearly, ∇ =

∑
i wi · yi∂yi . The transition

functions are automatically polynomial in yi, usually non-linear, so F is generally not a vector
bundle. This is therefore a purely even version of a graded manifold of Voronov [44], however,
defined in terms of an action of (R, ·) and not with homogeneous coordinates from the very
beginning. One can introduce analogously also N-manifolds (see [29]), as supermanifolds
equipped with an (R, ·)-action h such that h−1 acts as the parity operator.

Example 4.6. (Homogeneity superspheres) Consider M = R
3|2 with coordinates (x0, x1, x2, ξ, η),

and the submanifold S2|2 in M defined by the equation

x20 + x21 + x22 − ξ · η = 1
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(the supersphere). Similarly as above, define two open submanifolds U± in S2|2 defined by
x0 6= ±1. We can consider U± as charts with coordinates ϕ± : U± → R

2|2 given by

φ±((x0, x1, x2, ξ, η) = (X±
1 , X

±
2 , ξ

±, η±) ,

where
X±

i =
xi√

1 + ξ η ± x0
and (ξ±, η±) = (ξ, η) , i = 1, 2 .

By direct calculations, one gets

X+
i =

X−
i

(X−
1 )2 + (X−

2 )2
, i = 1, 2 ,

so the weight vector fields ∇± on U± read

∇± = ∓
(
X±

1 ∂X±

1
+X±

2 ∂X±

2

)
+ w ξ± + v η± ,

where w, v are arbitrary real numbers, giving rise to a globally defined weight vector field ∇
on the supersphere S2|2.

Example 4.7. (Projective homogeneity manifold) Take a linear homogeneity manifold
M = R

n|m(µ), coordinates (yi, ξa), n > 0, and µ = (w1, . . . , wn, v1, . . . , vm) (cf. Example 4.3).
Let (Rn|m(µ))× be the open submanifold of Rn|m(µ) characterized by y 6= 0. We define the
projective homogeneity supermanifold PR

(n−1)|m(µ) as the manifold of cosets of (Rn|m(µ))×

with respect to the equivalence relation

(y1, . . . , yn, ξ1, . . . , ξm) ∼ (t · y1, . . . , t · yn, t · ξ1, . . . , t · ξm) , (5)

where t 6= 0. This space can also be understood as the set of orbits of the obvious action of
the group R

× of multiplicative reals on (Rn|m(µ))×, so that the canonical projection

τ : Rn|m(µ)× → PR
(n−1)|m(µ) (6)

carries a structure of an R
×-principal bundle.

Let us denote the class of coordinates (yi, ξa) with respect to the identification (5) with
[(yi, ξa)]. The projective space PR

n|m(µ) is canonically a homogeneity supermanifold, covered
by coordinate neighbourhoods Ui = {[(y, ξ)] | yi 6= 0}, i = 1, . . . , n, with coordinates ϕi : Ui →
R

(n−1)|m(µi),

ϕi : [(y1, . . . , yn, ξ1, . . . , ξm)] 7→
(
z1i =

y1

yi
, . . . , ŷi, . . . , zni =

yn

yi
, θ1i =

ξ1

yi
, . . . , θmi =

ξm

yi

)
,

where ‘̂’ stands for omission. Here, the coordinates (z1i , . . . , z
i−1
i , zi+1

i , . . . , zni ) and (θ1i , . . . , θ
m
i )

have weights

(w1 − wi, . . . , wi−1 − wi, wi+1 − wi, . . . , wn − wi) and (v1 − wi, . . . , vm − wi) ,

respectively. The transition functions are (for i < j):

ϕj ◦ ϕ−1
i

(
z1i , . . . , z

i−1
i , zi+1

i , . . . , zni , θ
1
i , . . . , θ

m
i

)
=

(
z1i
zji
, · · · , 1

zji
, . . . ,

zj−1
i

zji
,
zj+1
i

zji
, . . .

zni
zji
,
θ1i
zji
, . . . ,

θmi
zji

)
.

It is now clear that the transition functions are smooth and transforms homogeneous coordi-
nates into homogeneous coordinates, so PR

(n−1)|m(µ) is a homogeneity supermanifold. It is
also easily seen that its body is the projective space RP

(n−1).
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5 Homogeneity vector superbundles

To introduce homogeneity vector superbundles, let us start with the trivial case, E = M ×
R

k|l(µ), where M is a homogeneity manifold with the weight vector field ∇M , and R
k|l(µ) is a

linear homogeneity supermanifold of type µ. In other words, Rk|l(µ) is a double homogeneity
supermanifold with two weight vector fields, the Euler vector field ∇E and the weight vector
field ∇µ (cf. 4). On E, we have therefore again a double homogeneity structure: one of the
structures is the product homogeneity manifold with the weight vector field ∇M + ∇µ, and
the other is the Euler vector field ∇E. 2-weights take values in R× N.

Definition 5.1. A homogeneity vector superbundle of type µ ∈ R
k×R

l is a vector superbundle
τ : E → M over a homogeneity supermanifold M , with the typical fiber R

k|l(µ) and an
atlas of local trivializations ti : τ−1(Ui) → Ui × R

k|l(µ) such that the transition maps are
automorphisms of the double homogeneity manifolds Uij × R

k|l(µ), where Uij = (Ui ∩ Uj).

Of course, for any local trivialization, on our homogeneity vector superbundle of type µ we
can find local coordinates (xα, ya, ηj), where (xα) are local homogeneous coordinates in M
with 2-weights in R×{0}, and (ya, ηj) are canonical super-coordinates in R

k|l having weights
(wa, 1) and (vj , 1), respectively. Such coordinates we will call allowed. The transition maps
respect these 2-weights.

We can weaken our assumptions and start not with a vector superbundle of rank (k|l) but
with an arbitrary fiber bundle τ : E → M , with a typical fiber F carrying a homogeneity
structure ∇F , and assume that the transition maps for local trivializations respect the product
homogeneity structure, i.e.,

tij : Uij × F → Uij × F

are morphisms of the corresponding homogeneity manifolds. Such structures we will call
homogeneity superbundles.

Remark 5.2. An important observation is that on homogeneity superbundles with a typical
fiber F = R

k|l(µ) and the trivial homogeneity structure on the base, we have a well-defined
action h : R+×E → E of the multiplicative group R+ of positive reals. This action in allowed
local coordinates takes the form

ht(x
α, ya, ηj) = (xα, twa · ya, tvj · ηj) , t > 0 . (7)

Note that ht ◦ hs = hts, so that (ht)t>0 is a one-parameter group of (global) diffeomorphisms
of E.

Moreover, it is clear that each ht preserves the weights of homogeneous functions and
preserves the form of allowed charts, so that it is an automorphism of the homogeneity su-
perbundle E. The ∇µ-weight of a homogeneous function f can be recognized as w ∈ R

such that f ◦ ht = tw · f for t > 0. Similarly, for a w-homogeneous vector field X , we have
(ht)∗(X) = tw ·X , and for a w-homogeneous differential form ω we have (ht)

∗(ω) = tw · ω.

If wi and vj are integers (as in the case of graded manifolds of Mehta [31] and Voronov
[44], i.e., F is Z-graded, then this action can be extended to an action of the multiplicative
group of reals R

× in the obvious way. Diffeomorphisms ht of this action, t 6= 0, are called
in [44] scaling transformations. For N-graded superbundles, these scaling transformations are
actually defined for all t ∈ R and the bundle projection τ is h0.

6 Cartan calculus

Let M be a Γ-homogeneity supermanifold with local homogeneous coordinates (xa), deg(xa) =
(σa, wa), and let m ∈ |M |. If X is a vector field on M , X =

∑
a fa(x)∂xa , then we denote with
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X(m) the vector X(m) =
∑

a f̃a(m)∂xa , where f̃ is the restriction of f to the submanifold |M |;
we just kill all odd coordinates. We say that a vector field X (a differential form ω) on M is
non-zero at m ∈ |M | if X(m) 6= 0 (resp., ω(m) 6= 0), and that X (ω) is nowhere-vanishing if
X(m) 6= 0 (ω(m) 6= 0) for all m ∈ |M |. It is easy to see that a one-form is nowhere-vanishing
if and only if there is a vector field X such that iXα = 1. The vector field X is then also
nowhere-vanishing.

The tangent space TmM is a (−Γ)-graded vector superspace consisting of all X(m), i.e., it
is spanned by vectors ∂xa(m). If xa is of degree (σa, wa), then ∂xa(m) is of degree (σa,−wa).
Similarly, we define ω(m) for a (local) differential 1-form ω as an element of T∗

mM . The 1-form
dxa a linear function on TmM of degree (σa, wa).

All this implies that with every system of homogeneous local coordinates (xa) on a homo-
geneity supermanifold M we can associate the adapted coordinate systems in the tangent
and cotangent bundles: (xa, ẋb) on TM and (xa, pb) on T∗M . The linear functions ẋb corre-
spond to differential forms dxb and the linear functions pb correspond to vector fields ∂xb . In
other words, sections of TM are linear functions on T∗M and vice versa. The degree of pa is
−deg(xa), and the degree of ẋa is deg(xa).

Remark 6.1. Note, however, that, because vector fields and one-forms have two natural
A(M)-module structures, the left and the right, there are a priori two possibilities of repre-
senting vector fields and one-forms as ‘submanifolds’ in TM and T∗M , respectively. The first
is that ẋa represent the left coefficients of vector fields and pa represent the right coefficients,
so that

(
xa, f b(x)

)
in TM represents the vector field X =

∑
a f

a(x) · ∂xa , and
(
xa, ga(x)

)
in

T∗M represents the one-form α =
∑

a dxa · ga(x). Hence, for the pairing

〈·, ·〉∗ : TM × T∗M → R ,

we have 〈X,α〉∗ =
∑

a f
a(x) ga(x). This convention we will call of the first kind.

The other possibility is that ẋa represent the right coefficients of vector fields and pa
represent the left coefficients of one-forms, so that

(
xa, f b(x)

)
in TM represents the vector

field X =
∑

a ∂xa · fa(x), and
(
xa, ga(x)

)
in T∗M represents the one-form α =

∑
a ga(x) · dxa.

Hence, for the pairing
〈·, ·〉∗ : T∗M × TM → R ,

we have 〈X,α〉∗ =
∑

a ga(x) fa(x). This convention we will call of the second kind.

An attempt to define the wedge products in the graded superalgebras

Ω•(M) =
∞⊕

k=0

Ωk(M) and X
•(M)

∞⊕

k=0

X
k(M)

could be, like in the purely even case, by viewing differential forms and multivector fields on
M as superfunctions on ΠTM and ΠT∗M , respectively. The explicit sign rules would be

xa · ∂xb = (−1)σa·(σb+1) ∂xb · xa , ∂xa ∧ ∂xb = (−1)(σa+1)(σb+1) ∂xb ∧ ∂xa

and
xa · dxb = (−1)σa·(σb+1) dxb · xa , dxa ∧ dxb = (−1)(σa+1)(σb+1) dxb ∧ dxa .

The above sign rules are called the Bernstein’s sign convention.

In this paper, we will use the Deligne’s sign convention:

xa · ∂xb = (−1)σa·σb ∂xb · xa , ∂xa ∧ ∂xb = −(−1)σa·σb ∂xb ∧ ∂xa (8)

and
xa · dxb = (−1)σa·σb dxb · xa , dxa ∧ dxb = −(−1)σa·σb dxb ∧ dxa , (9)

which has many advantages of the Bernstein’s one (see, e.g., [15, Appendix to §1]). We will
often skip the symbol ”∧” and write simply dxa dxb.
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Remark 6.2. Note that the graded superalgebras Ω•(M) (as well as X
•(M)) have an

additional N-gradation, so the degrees of homogeneous elements have three components:
(σ, w, r) ∈ Z2 × R× N, where r ∈ N is the rank of the differential form, r-forms have rank r,
σ is its parity, and w is its weight. Deligne’s convention comes from the Z

2
2-gradation induced

from the Z2 × N gradation, in which xa has bi-degree (σa, 0), dxa (thus ẋa) has bi-degree
(σa, 1), and the sign rule comes from the ‘scalar product’ of the bi-degrees. Consequently, the
product of homogeneous forms α and β of degrees (σa, wa, ra) and (σb, wb, rb), respectively,
has the property:

α ∧ β = (−1)σaσb+rarbβ ∧ α. (10)

We can view this product as a product of superfunctions not on a supermanifold but rather
on a Z

2
2-manifold in the sense of [13]. The main difference with standard supermanifolds is

that the parity does not determine the sign rules, so we must work with formal even variables
that are not nilpotent, thus with formal power series. On the other hand, many important
properties remain the same. For instance, an analog of Bachelor-Gawȩdzki theorem [17] is
still valid [14]. Note that the tangent and cotangent bundles of supermanifolds should be
canonically considered rather as Z2 × N-graded, where the N-gradation corresponds to the
vector bundle structure.

The standard operations of the Cartan calculus on Ω•(M) will be interpreted as the following
homogeneous vector fields, viewed as graded derivations with respect to the Z2×R×N:-grading

1. The de Rham derivative: d := ẋa ∂
∂xa , which has degree (0, 0, 1);

2. The interior product : If X = Xa(x) ∂
∂xa , then

iX := Xa(x) ∂ẋa ,

which has degree (deg(X),−1),

3. The Lie derivative: If X = Xa(x) ∂
∂xa , then

£X := [d, iX ] = d ◦ iX + iX ◦ d = ẋb
∂Xa

∂xb
(x) ∂ẋa +Xa(x)∂xa , (11)

which has degree (deg(X), 0).

Note that these operations can be applied to all, not just homogeneous differential forms. In
particular, for a 1-form α =

∑
b dxb · gb(x) on M and a vector field X =

∑
a f

a(x) · ∂xa , the
insertion operator (the contraction) reads

iXα =
∑

a

fa(x)ga(x) .

Here, we used the convention of the first kind.

If α and X are homogeneous, then iXα is a homogeneous function on M of degree deg(X) +
deg(α). Contractions gives rise to linear functions on T∗M : identifying ∂ẋa with the fiber
coordinate pa, we have

ιX(xa, pb) =
∑

a

fa(x) pa .

Similarly, for β =
∑

b gb(x) · dxb and Y =
∑

a ∂xa · fa(x), we have

iβY =
∑

a

ga(x)fa(x) and ιβ(xa, ẋb) =
∑

a

ga(x)ẋa .

For iX we will use the convention of the first type, while for iα the convention of the second
type.
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Proposition 6.3. If X, Y are homogeneous vector fields on a supermanifold M , then the
graded commutators of the vector fields on TM of the type in question are the following:

2 d2 = [d, d] = 0 , [iX , iY ] = 0 ,

[d,£X ] = 0 , [£X , iY ] = i[X,Y ] , [£X ,£Y ] = £[X,Y ] .

Moreover, the de Rham derivative satisfies

d(α ∧ β) = dα ∧ β + (−1)kα ∧ d β

for any β and any k-form α.

For two-forms and the homogeneous vector field X =
∑

i f
i(x) · ∂xi , we have

iX

(∑
i,j dxi ∧ dxj · ωij(x)

)
=
∑

a,i,j f
a(x)∂ẋa

(
ẋi ẋj · ωij(x)

)

=
∑

i,j f
i(x) ẋj · ωij(x) =

∑
i,j f

i(x) dxj · ωij(x) .

Here, due to skew-symmetry,
ωij = −(−1)σi·σjωji .

We should also stress that the de Rham derivative we use looks slightly differently from the
standard notation in the even differential geometry, i.e.,

df(x) = dxi
∂f

∂xi
(x) .

The order of factors is crucial for supermanifolds.

Note that the identity [£X , iY ] = i[X,Y ] can be seen as a definition of the Lie bracket of
homogeneous vector fields. If σX is the parity of X and σY is the parity of Y , then in local
homogeneous coordinates (xi) we have

[∑

i

X i∂xi,
∑

j

Y j∂xj

]
=
∑

j

(
X i∂xi

(
Y j
)
−
(
− 1
)σX ·σY Y i∂xi

(
Xj
))
∂xj . (12)

7 Tangent and cotangent lifts of homogeneity

In this section, we define canonical homogeneity supermanifold structures on the tangent TM
and the cotangent T∗M bundles of a homogeneity supermanifold (M,∇). In local homogeneous
coordinates, we mimic the tangent and phase lifts from the purely even situation [8, 20, 21].

Theorem 7.1. (Lifts of homogeneity structures) Let M be a homogeneity supermanifold
with the weight vector field ∇M , which in homogeneous coordinates reads

∇M =
∑

a

wa · xa∂xa .

Then, TM and T∗M are canonically homogeneity vector superbundles with the weight vector
fields written in the adapted coordinates as

dT∇M =
∑

a

wa (xa∂xa + ẋa∂ẋa) (13)

and
dT∗∇M =

∑

a

wa (xa∂xa − pa∂pa) . (14)

In particular, if M is a Γ-homogeneity supermanifold for some Γ ⊂ R, then TM is also a
Γ-homogeneity supermanifold, and T∗M is a (±Γ)-homogeneity supermanifold.
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Proof. The proof is a direct check that the transition functions in the tangent and the cotan-
gent bundles respect the local forms of the above vector fields.

Let us observe that the lifted weight vector fields dT∇M and dT∗∇M are particular cases of
the complete lifts of vector fields on M to the tangent TM and cotangent T∗M bundle, as
defined in the literature in the purely even case (e.g., [23, 48]).

For the weight vector field ∇M =
∑

awa · xa∂xa we get dT∇M as in Theorem 7.1. It is
easily seen that dTY is even for even Y .

An intrinsic construction of dTY in [23] looks as follows. The vector field X corresponds
to a linear function ιX on T∗M . The differential of this function corresponds, in turn, to a
function ιdιX on TT∗M which is linear with respect to both vector bundle structures. But,
there is a canonical isomorphism of double vector bundles εM : T∗TM → TT∗M , discovered
in 70’s by Tulczyjew [41]. Hence, ιdιX ◦ ε is a linear function on T∗TM , thus corresponds to a
(linear) vector field dTY on TM .

The cotangent lift dT∗Y , in turn, is sometimes defined as the Hamiltonian vector field on
T∗M with the Hamiltonian being the linear function H = ιY on T∗M corresponding to the
vector field Y . We propose the following simple definitions.

Definition 7.2. Let Y be a vector field on a supermanifold M . The tangent lift dTY is a
vector field on TM uniquely determined by the identity

dTY (ια) = ι£Y α , (15)

and the cotangent lift dT∗Y is a vector field on T∗M uniquely determined by the identity

dT∗Y (ιX) = ι[Y,X] , (16)

where α is an arbitrary 1-form, and X is an arbitrary vector field on M .

The tangent lift dTY of a vector field Y =
∑

a f
a(x)∂xa on M is given in the adapted local

coordinates (xa, ẋb) on TM by (see [23] for a purely even version and cf. (11))

dTY =
∑

a

(
fa(x)∂xa +

(
∑

b

ẋb
∂fa

∂xb
(x)

)
∂ ẋa

)
. (17)

The cotangent lift dT∗Y of a vector field Y =
∑

a f
a(x)∂xa of parity σ on M is given in adapted

local coordinates (xa, pb) on T∗M by

dT∗Y =
∑

a

(
fa(x)∂xa − (−1)σ·σa

(
∑

b

pb
∂f b

∂xa
(x)

)
∂pa

)
. (18)

The integral version of (15), valid for even vector fields, reads (cf. Remark 3.13)

Exp(t · dTY ) = TExp(t Y ) .

This means that dTY is the generator of the local one-parameter group of diffeomorphisms
TExp(t Y ). The integral version of (16) for even Y reads, in turn,

Exp(t dT∗Y ) = (TExp(−t Y ))∗ ,

where (TExp(t Y ))∗ : T∗M → T∗M is the local automorphism of the vector superbundle T∗M
which is dual to the local isomorphism TExp(t Y ) : TM → TM .
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Let us observe that, due to the fact that transition functions for TM are linear in coordinates
(ẋa), the shift of their degrees by λ ∈ Z2 × R, deg(ẋa) 7→ deg(ẋa) + λ, is consistent, so it
defines a new homogeneity supermanifold structure on TM . This homogeneity supermanifold
we denote T[λ]M . Similarly, we can proceed with the cotangent bundle and get T∗[λ]M . The
linear coordinates in T[λ]M and T∗[λ]M are therefore of degrees deg(ẋa) = deg(xa) + λ and
deg(pa) = −deg(xa) + λ, respectively. The dual of T[λ]M is in a natural sense T∗[−λ]M , so
the canonical pairing,

〈·, ·〉 : T[λ]M ×M T∗[−λ]M → R,

is a morphism of homogeneity supermanifolds. Note that T[(1, 0)]M and T∗[(1, 0)]M are often
denoted with ΠTM and ΠT∗M . The tangent and cotangent lifts of ∇M to T[λ]M and T∗[λ]M
have formally the same form as (13) and (14), only the degrees of ẋa and pa are shifted.

Vector fields X and one-forms α on M , that are homogeneous of degree λ, induce morphisms
of the homogeneity manifolds X♯ : M → T[λ]M and α♯ : M → T∗[λ]M , usually understood as
sections. In local homogeneous coordinates, in which X =

∑
a f

a(x) ∂xa and α =
∑

a dxa ga(x),
this sections viewed as maps look like

X♯(xa) =
(
xa, f b(x)

)
, and α♯(xa) =

(
xa, gb(x)

)
.

It is easy to check that they are indeed morphisms of homogeneity supermanifolds. Note also
that the formulae (13) and (14) define also weight vector fields on T[λ]M and T∗[λ]M for each
λ ∈ Z2 × R.

8 Homogeneity Lie supergroups

One can consider homogeneity structures on supermanifolds with additional structures such
that these structures are compatible with the homogeneity structure. What means compatibil-
ity, should be decided in each particular case. For the group structure, we define homogeneity
Lie groups as follows.

Definition 8.1. A homogeneity Lie supergroup is a group object in the category of homogene-
ity supermanifolds HSMan. In other words, a homogeneity Lie supergroup is a homogeneity
supermanifold G endowed with

1. a morphism of homogeneity manifolds

µ : G×G→ G

(the group multiplication) satisfying the associativity property,

µ ◦
(
pr1 × µ ◦ (pr2 × pr3)

)
= µ ◦

(
µ ◦ (pr1 × pr2) × pr3

)
,

where both sides are morphisms G×G×G→ G;

2. a distinguished element e ∈ |G| (the unit), thus a distinguished morphism pre : G→ G,
being the composition G→ {e} → G, and satisfying satisfying the identity property,

µ ◦
(

idG ×pre
)

= idG = µ ◦
(
pre × idG

)
;

3. a homogeneity diffeomorphism
inv : G→ G

(the inverse map), satisfying the inverse property

inv ◦
(

idG ×pre
)

= pre = inv ◦
(
pre × idG

)
.
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It is easy to see that the body |G| of a homogeneity Lie supergroup G is a homogeneity Lie
group.

Example 8.2. Let us consider the Lie supergroup GL(1, 1). As a supermanifold, it is an open
submanifold of R2|2. In canonical coordinates (x1, x2, ξ1, ξ2), this Lie supergroup is defined by
x1 · x2 6= 0. The coordinates in GL(1, 1) are usually written in the form of an 2 × 2-matrix,

[
x1 ξ1

ξ2 x2

]
, (19)

and the group operations are formally the same as for the group GL(2;R), with e being the
identity matrix.

Now, we can make G = GL(1, 1) into a homogeneity supermanifold by choosing the weight
vector field

∇G = ξ1∂ξ1 − ξ2∂ξ2 .

It is sometimes convenient to indicate the degrees of homogeneous coordinates in Z2 ×Z also
in the form of a matrix. In the above case of homogeneity group GL(1, 1), its homogeneity
structure reads

deg

[
x1 ξ1

ξ2 x2

]
=

[
(0, 0) (1, a)

(1,−a) (0, 0)

]
.

The group multiplication is the matrix multiplication,
[
x1 ξ1

ξ2 x2

]
·
[
y1 η1

η2 y2

]
=

[
x1 · y1 + ξ1 · η2 x1 · η1 + ξ1 · y2
ξ2 · y1 + x2 · η2 ξ1 · η1 + x2 · y2

]
.

This is a morphism of homogeneity supermanifolds, since

x1 · y1 + ξ1 · η2 and ξ1 · η1 + x2 · y2

are of degree (0, 0),
x1 · η1 + ξ1 · y1

is of degree (1, a), and
ξ2 · y1 + x2 · η2

is of degree (1,−a). The inverse matrix of (19) is




(
x1 − ξ1 (x2)−1 ξ2

)−1

−(x1)−1 ξ1
(
x2 − ξ2 (x1)−1 ξ1

)−1

−(x2)−1 ξ2
(
x1 − ξ1 (x2)−1 ξ2

)−1 (
x2 − ξ2 (x1)−1 ξ1

)−1


 .

All inverses above make sense, as x1 and x2 are invertible. It is also clear that the elements
on the diagonal are of degree (0, 0),

−(x1)−1 ξ1
(
x2 − ξ2 (x1)−1 ξ1

)−1

is of degree (1, a), and

−(x2)−1 ξ2
(
x1 − ξ1 (x2)−1 ξ2

)−1

is of degree (1,−a). Hence, the inverse map is an automorphism of G in the category HSMan.
And finally, for the identity map, we have

pre

([
x1 ξ1

ξ2 x2

])
=

[
1 0
0 1

]
,

so that pre is also a morphism in the category HSMan.
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Example 8.3. Let us consider the Lie supergroup SL(2, 1), understood as a submanifold in
R

5|4 with coordinates written in the matrix form,

X =



x11 x12 ξ13
x21 x22 ξ23
ξ31 ξ32 x33


 ,

where x are even and ξ are odd, and defined by the equation Ber(X) = 1. Here ‘Ber’ denotes
the Berezinian. We put a homogeneity structure on SL(2, 1) by

deg(X) =




(0, 0) (0, a) (1, a+ b)
(0,−a) (0, 0) (1, b)

(1,−a− b) (1,−b) (0, 0)


 .

We will also write the matrix X in the block form
[
A B
C D

]
,

where

A =

[
x11 x12
x21 x22

]
∈ GL(2,R) ,

etc. First of all, SL(2, 1) is a homogeneous submanifold of the manifold GL(2, 1) with this
homogeneity structure. In other words, the condition Ber(X) = 1 is compatible with the
homogeneity structure. In our notation, the Berezinian reads

Ber(X) = det(A− BD−1C) det(D)−1 = det(A) det(D − CA−1B)−1 = 1 .

Hence,

A− BD−1C =

[
x11 x12
x21 x22

]
− x−1

33

[
ξ13ξ31 ξ13ξ32
ξ23ξ31 ξ23ξ32

]

is of degree

deg(A−BD−1C) =

[
(0, 0) (0, a)

(0,−a) (0, 0)

]
, (20)

and its determinant, thus also Ber(X), is of degree (0, 0).
We will show that the Lie supergroup G = SL(2, 1), with the indicated homogeneity

structure, is a homogeneity Lie supergroup. Tedious but easy calculations show that the
multiplication µ : G×G→ G in G, i.e., the matrix multiplication

[
A B
C D

]
·
[
A′ B′

C ′ D′

]
=

[
AA′ +BC ′ AB′ +BD′

CA′ +DC” CB′ +DD′

]
,

is a morphism in the category of homogeneity manifolds. For instance, the degree of the
matrix

AA′ +BC ′ =

[
x11x

′
11 + x12x

′
21 + ξ13ξ

′
31 x11x

′
12 + x12x

′
22 + ξ13ξ

′
32

x21x
′
11 + x22x

′
21 + ξ23ξ

′
31 x21x

′
12 + x22x

′
22 + ξ23ξ

′
32

]

is [
(0, 0) (0, a)

(0,−a) (0, 0)

]
, (21)

and the degree of the matrix

AB′ +BD′ =

[
x11ξ

′
13 + x12ξ

′
23 + ξ13x

′
33

x21ξ
′
13 + x22ξ

′
23 + ξ23x

′
33

]
,
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is [
(1, a+ b)

(1, b)

]
,

as it should be.

For the inversion, we have

X−1 =

[
(A−BD−1C)−1 −A−1B(D − CA−1B)−1

−D−1C(A−BD−1C)−1 (D − CA−1B)−1

]
.

In view of (20), similarly like in the previous example, we get that the degree of (A−BD−1C)−1

is (21). As the degree of D−1C is [(1,−a − b), (1,−b)], it is easy to see that the degree of
D−1C(A − BD−1C)−1 also [(1,−a − b), (1,−b)]. Similarly, we get the correct results for the
second column.

Remark 8.4. We will not discuss homogeneity principal superbundles here, but let us make
a remark. As local trivializations of the R

×-principal bundle τ : Rn|m(µ)× → PR
n|m(µ) (cf.

Example 4.7), we can take ψi : τ−1(Ui) → Ui × R(wi)
×, which in coordinates (yj, ξa) on

R
n|m(µ)× and (zk, θa) on Ui read

ψi(y
j, ξa) =

(
y1

yi
, . . . , . . . ,

yi−1

yi
,
yi+1

yi
, . . . ,

yn

yi
,
ξ1

yi
, . . . ,

ξm

yi
, yi
)
.

The typical fiber is therefore the homogeneity supermanifold R[wi]
×, the even linear homo-

geneity supermanifold R[wi] with the zero-section removed. The corresponding weight vector
field is ∇ = wis∂s, where s is the standard coordinate on R (thus R

×). But F = R[w]× is not
a homogeneity Lie group for w 6= 0, since the group multiplication m : F × F → F is not a
morphism of homogeneity manifolds, as the degree of s1s2 in F × F is 2w, not w.

This suggests that the definition of a homogeneity G-principal bundle τ : P → M should
take this into account and cannot be a carbon copy of the standard definition. Consequently,
the local trivializations should not be of the form U ×G, but rather of the form U ×F , where
U × F is the Cartesian product of homogeneity supermanifolds, with a free and transitive
homogeneity action A : G× F → F . In our case G = R

× and F = R[wi]
×, with the obvious

action A(t)(s) = ts. Note here another, completely different approach to graded Lie groups
[2].

9 Homogeneous distributions and codistributions

Let M be a supermanifold of total dimension n. By a distribution D of corank k on M (and
rank (n − k)) we will understand a vector super subbundle in TM of corank k, i.e., a vector
subbundle spanned locally by (n − r) nowhere-vanishing vector fields X1, . . . , Xn−k. These
vector fields are therefore linearly independent in the sense that they form a local basis of a
locally free module over A(M).

An equivalent definition is that D is a submanifold in TM determined locally by the system
of equations ια1

= 0, ια2
= 0, . . . , ιαk

= 0, where (αi) is a system of locally nowhere-vanishing
linear (1-homogeneous with respect to the Euler vector field) functions, i.e., nowhere-vanishing
differential one-forms which are linearly independent in the above sense. These one-forms span
therefore a vector subbundle in T∗M (codistribution) of rank k (and corank (n−k)) which we
call the annihilator of D and denote Do. It is the submanifold in T∗M defined by equations
ιX1

= 0, . . . , ιXn−k
= 0. It is clear that (Do)o = D in the obvious sense.

Let us observe that it makes sense to speak about even or odd distributions (codistribu-
tions) as generated locally by even or odd vector fields (one-forms). Indeed, suppose a rank
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k distribution is locally freely generated by even vector fields, that in local coordinates (xa)
on M read Xi =

∑
a f

a
i (x)∂xa , i = 1, . . . , k. We will show that there are no free generators

of D containing an odd vector field, say, Y . Being one of the free generators, Y is nowhere
vanishing and can be written in the form Y =

∑
i g

i(x)Xi. As Y is odd and Xi even, the
functions gi must be odd, so they all vanish on the submanifold |M |; a contradiction. If Xi

are odd and Y is even, then again gi must be odd, so vanishing on |M |. Analogously for
codistributions. This makes the following definition meaningful.

Definition 9.1. A distribution D we call even (resp., odd) if it is locally freely generated by
even (resp, odd) vector fields. Similarly, we define even and odd codistributions.

Let D be a distribution on a supermanifold M . It is easy to see that we have

X ∈ D ⇔ ιX
∣∣
Do = 0 and α ∈ Do ⇔ ια

∣∣
D

= 0 . (22)

These identities we will use in the proof of the following proposition.

Proposition 9.2. Let Y =
∑

a f
a(x)∂xa be an even vector field on a supermanifold M of

dimension r, and let D be a rank k distribution on M . Then, the following are equivalent:

(1) The tangent lift dTY is tangent to the submanifold D ⊂ TM .

(2)D is invariant with respect to the local one-parameter group of diffeomorphisms Exp(t dTY )
of TM .

(3) The cotangent lift dT∗Y is tangent to the annihilator vector subbundle Do in T∗M (see
Lemma 11.7).

(4)Do is invariant with respect to the local one-parameter group of diffeomorphisms Exp(t dT∗Y )
of T∗M (see Lemma 11.7).

(5) If X1, . . . , Xk are local vector fields on M locally generating D, then

£Y (Xi) = [Y,Xi] =

k∑

j=1

f j
i (x)Xj

for some functions f j
i on M . In other words, £Y (X) ∈ D if X ∈ D.

(6) If α1, . . . , α(r−k) are local one-forms on M which locally generate Do, then

£Y (αi) =

(r−k)∑

j=1

gij(x)αj

for some functions gij on M . In other words, £Y (α) ∈ Do if α ∈ Do.

Proof. The equivalences (1) ⇔ (2) and (3) ⇔ (4) are standard. As Exp(t dTY ) = TExp(t Y ),
the local linear diffeomorphism TExp(t Y ) preserves D. But this is equivalent to the fact that
its dual (TExp(t Y ))∗ = Exp(−t dT∗Y ) preserves Do, so (2) ⇔ (4). We can easily prove also
(5) ⇔ (6). As we have 〈αi, Xj〉 = 0,

0 = £Y 〈αi, Xj〉 = 〈£Y (αi), Xj〉 + 〈αi,£Y (Xj)〉 .

Then, 〈αi,£Y (Xj)〉 = 0 if and only if 〈£Y (αi), Xj〉 = 0.
To show (1) ⇒ (6), take a one-form α ∈ Do. According to (22), this implies ια

∣∣
D

= 0. By

(1), dTY is tangent to D, so that [dTY (ια)]
∣∣
D

= 0. But dTY (ια) = ι£Y (α), so, again by (22),
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ι£Y (α)

∣∣
D

= 0, i.e., £Y α ∈ Do. It remains to show (6) ⇔ (1). A vector field is tangent to
the submanifold D ⊂ TM if and only if it differentiates local smooth functions vanishing on
D into local smooth functions vanishing on D. From the previous reasoning, we know that
ια vanish on D for all α ∈ Do and that dTY (ια)

∣∣
D

= 0. It is easy to see that the family of
functions {ια |α ∈ Do} is reach enough to assure that dTY is tangent to D.

Now, we will pass to distributions on homogeneity supermanifolds.

Definition 9.3. Suppose that D is a distribution of rank (n − k) (resp., a codistribution of
rank k) on a homogeneity supermanifold M of total dimension n and weight vector field ∇M .
We call D a homogeneous distribution (homogeneous codistribution) if the tangent lift dT∇M

(resp., the cotangent lift dT∗∇M) is tangent to D. In view of the above proposition, it is
equivalent to the fact that D is locally generated by (n− k) homogeneous vector fields (resp.,
by k homogeneous one forms).

Corollary 9.4. If D is a distribution (codistribution) on a homogeneity supermanifold gen-
erated locally by homogeneous vector fields (by homogeneous one-forms), then both D and Do

are homogeneous.

Remark 9.5. All that was said about distributions and codistributions can be generalized
for vector subbundles of homogeneity vector superbundles. Note also that there is no relevant
concept of the degree of a homogeneous distribution (codistribution) D, as shown in the
following example.

Example 9.6. Let us consider R
3 with the standard coordinates (x, y, z) and the weight

vector field ∇ = ∂x +∂y . It is indeed a weight vector fields, because for w ∈ R, w 6= 0, the new
coordinates (x′, y′, z′) = (ew·x, e−w·y, z) are global homogeneous coordinates with deg(x′) =
(0, w), deg(y′) = (0,−w), and deg(z′) = (0, 0). It is clear that the weight of the one-form on
R

3,
α = dz′ + x′ dy′ = dz + ew·x de−w·y ,

has weight 0 and is nowhere vanishing, thus generates a rank 1 codistribution [α]. Hence,
α′ = eβx α is a one-form of weight β. Moreover, α′ is another generator of [α].

10 Homogeneous Poincaré Lemma

We know from Lemma 3.11 that, in homogeneous coordinates (xi) with degrees (λi), the
partial derivative ∂xk(f) is homogeneous of degree (λ − λi) if f is homogeneous of degree λ.
A converse of the latter is the following.

Theorem 10.1. Let ∇M be a weight vector field which, in local coordinates (xi) in a neigh-
bourhood of m ∈ |M |, reads ∇M =

∑n
i=1wi · xi ∂xi, and let g(x) be a homogeneous function of

degree λ . Then, there is a function f of degree λ+ λk, f(m) = 0, such that

∂f

∂xk
(x) = g(x),

(a) for xk odd, if and only if ∂xk(g) = 0;

(b) for xk even, if (wk · xk)(m) = 0 (in particular, if ∇M(m) = 0).
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Proof. It is clear from Lemma 3.11 that if f is homogeneous and ∂xk(f) = g, then f is of
weight w + w1. Permuting coordinates, we can assume that k = 1.

If x1 = ξ is odd, then, the partial derivative ∂f
∂ξ

= g does not depend on ξ any longer, so

∂ξ(g) = 0 is a necessary condition. But in this case, it is enough to put f = ξ · g which is,
clearly, a homogeneous function of weight (w + w1) and f(m) = 0.

In the case of x1 even, define f by

f(x) =

∫ x1

x1(m)

g(s, x2, . . . , xn)ds .

It is obvious that ∂f
∂x1 (x) = g(x) and f have the parity of g, so it remains to check the weight

of f . For,

∇M(f)(x) = w1 · x1
∂f

∂x1
(x) +

n∑

a=2

wa · xa
∂f

∂xa
(x)

= w1 · x1 g(x) +

∫ x1

x1(m)

(
n∑

a=2

(
wa · xa

∂g

∂xa

)
(s, x2, . . . , xn)

)
ds

= w1 · x1 g(x) +

∫ x1

x1(m)

(
w · g(s, x2, . . . , xn) − w1 · s ·

∂g

∂x1
(s, x2·, xn)

)
ds

= w1 · x1 g(x) + w · f(x) − w1 ·
∫ x1

x1(m)

s · ∂g
∂x1

(s, x2 . . . , xn) ds .

Integrating now by parts, we get

∇M(f)(x) = w1 · x1 g(x) + w · f(x)

−w1 ·
(

(s · g(s, x2, . . . , xn))
∣∣x1

x1(m)
−
∫ x1

x1(m)

g(s, x2 . . . , xn) ds

)

= w1 · x1 g(x) + w · f(x) − w1 · x1 g(x)

+w1 · x1(m) g(x1(m), x2, . . . , xn) + w1 · f(x)

= (w + w1) · f(x) + w1 · x1(m) g(x1(m), x2, . . . , xn) = (w + w1) · f(x) .

Remark 10.2. There is no extension of the above theorem to the case wk · xk(m) 6= 0.
Consider M = R with the weight vector field ∇M = x ∂x, so that x is of weight 1. In a
neighbourhood of m = 1, the function g(x) = 1/x is homogeneous of weight −1, but there
is no smooth homogeneous function f in a neighbourhood of m = 1 such that f ′(x) = g(x).
Indeed, any smooth function f satisfying f ′(x) = g(x) in a neighbourhood of 1 is of the form
f(x) = ln(x) + c, where c is a constant. No one of them is homogeneous.

Later on, we will use a modified version of Moser’s trick. To this end, we will need the following
homogeneous Poincaré Lemma.

Lemma 10.3. (Homogeneous Poincaré Lemma) Let (M,∇M) be a homogeneity super-
manifold of total dimension k, let m ∈ |M |, and let ∇M =

∑k
i=1wi · xi ∂xi in a neighbourhood

of m. In this neighbourhood, take a closed homogeneous n-form ω, n > 0, of degree λ = (σ, w).

1. If ∇M(m) = 0, then we can find a homogeneous (n − 1)-form α of degree λ such that
ω = dα. Moreover, we can choose α such that α(m) = 0.
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2. If ∇M(m) 6= 0, then there is such a form α for n > 1. For n = 1, we can find a
homogeneous function f such that ω = df , except for the case w = 0. However, the
function f does not vanish at m (except ω = 0, of course).

Proof. 1. Assume first that ∇M(m) = 0. If w 6= 0, then we can simply put

α =
1

w
· i∇M

ω .

As ∇M is of degree 0 and ω is of degree λ, the (n− 1)-form α is of degree λ and vanish at m.
Moreover,

dα =
1

w
· d i∇M

ω =
1

w
·£∇M

ω = ω .

It remains to consider the case w = 0, so let us look for a (n− 1)-form α satisfying

deg(α) = λ , dα = ω , α(m) = 0 . (23)

We will use the induction with respect to the total dimension k of M .

The first case we consider is M purely odd. If k = 1, then there is a single odd coordinate ξ of
weight w1 around m ∈ |M | = {m}. If ω is a closed n-form, then ω = (a · ξ+ b)(dξ)n, a, b ∈ R.
But dω = a · (dξ)n+1 = 0, so a = 0 and ω = b · (dξ)n. Hence, we can put α = b · ξ (dξ)n−1.

Assuming that we have proved the Theorem for all purely odd homogeneity supermanifolds M
of dimension k, let us take a purely odd homogeneity supermanifold M of dimension (k + 1)
and a closed homogeneous n-form ω on M of weight 0. For ξ = x1 we can write ω uniquely in
the form

ω =

n∑

j=0

(dξ)j ∧ ωj +

n∑

j=0

ξ (dξ)j ∧ βj ,

where the forms ωj and βj depend only on coordinates x2, . . . , xk. Of course, ωj is a homoge-
neous (n− j)-form of weight −jw1. Since

dω =

n∑

j=0

(−1)j(dξ)j ∧ dωj +

n∑

j=0

(dξ)j+1 ∧ βj +

n∑

j=0

(−1)jξ (dξ)j ∧ dβj

= dω0 +
n∑

j=1

(dξ)j ∧
(
βj−1 + (−1)jdωj

)
+ (dξ)n+1 ∧ βn +

n∑

j=0

(−1)jξ (dξ)j ∧ dβj = 0 ,

we get dω0 = 0 and βj = (−1)j dωj+1 for j = 0, . . . , n− 1, and βn = 0. Since ω0 depends only
on coordinates xi with i > 1, we can view ω0 as an n-form on the homogeneity submanifold
x1 = 0 in M with the weight vector field ∇0 =

∑k
i=2wi · ∂xi vanishing at 0 (all coordinates

are odd).
Now, applying the inductive assumption, we can find a homogeneous (n − 1)-form α0 of

weight 0 and vanishing at 0 such that dα0 = ω0. Viewing naturally α0 as an (n− 1)-form on
M , vanishing at m, we can take

α = α0 +
n∑

j=1

ξ (dξ)j−1 ∧ ωj .

Clearly, α is homogeneous of weight 0 and vanishes at m. Moreover,

dα = dα0+
n∑

j=1

(dξ)j∧ωj+
n∑

j=1

(−1)j−1ξ (dξ)j−1∧dωj = ω0+
n∑

j=1

(dξ)j∧ωj+
n−1∑

j=0

ξ (dξ)j∧βj = ω .
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This ends the inductive proof of the homogeneous Poincaré Lemma for purely odd superman-
ifolds.

Now, we pass to the case when there exist even coordinates in a neighbourhood of m and
∇M(m) = 0. Assume that x = x1 is even, and denote the rest of homogeneous coordinates
around m by yi, i = 2, . . . , k, so that ∇M = w1 · x ∂x + ∇1,

∇1 =

k∑

i=2

wi · yi ∂yi .

As ∇M(m) = 0, we can take the coordinates (x, y) vanishing at 0.
For k = 1 there are no coordinates yi and the n-form ω must be actually a one-form.

We have ω(x) = g(x) dx for a homogeneous function g(x) of weight −w1. The one-form ω
is automatically closed for any g(x). If w1 = 0, then we can put α = f(x) for any primitive
function f of g, f ′ = g. We can always choose f(m) = 0. Thus we can reduce ourselves to
the case w1 6= 0, so that w1 · x ∂x(g) = −w1 · g. Solutions of the above equation on (0,+∞)
or (−∞, 0) have the form g(x) = c · x−1, where c is a constant, which are not smooth at 0; a
contradiction, so there are no 1-forms ω satisfying the requirements. This finishes the proof
for k = 1, and we can pass to the inductive step.

Let us consider M of total dimension (k+ 1) and a homogeneous n-form ω on M of weight 0.
We can write ω as ω = dx ∧ ν1 + ν2, where ν1 and ν2 are homogeneous (n − 1) and n-forms
of degrees −w1 and 0, respectively, which do not contain dx. Put

ν1 =
∑

µ

gµ(x, y) (dy)µ ,

where µ = (µ2, . . . , µk+1) ∈ N
k is a multi-index such that

∑
i µi = n− 1 and

(dy)µ = (dy2)µ2 ∧ . . . ∧ (dyk+1)µk+1 .

Of course, µi ≤ 1 if yi is even. The function gµ(x, y) is homogeneous of weight −w1 − |µ|,
where |µ| =

∑k+1
i=2 wi · µi.

According to Theorem 10.1, we can find homogeneous functions fµ(x, y) of weight −|µ|
such that ∂x(fµ) = gµ. Moreover, fµ(0, y) = 0. Put

β =
∑

µ

fµ(x, y) (dy)µ .

The (n − 1)-form β is homogeneous of weight 0, vanishes at m, and ω1 = ω − dβ is a
homogeneous n-form of weight 0. A simple observation is that ω1 does not contain dx. But
dω1 = 0, so that the coefficients of ω1 do not depend on x. Consequently, ω1 is a homogeneous
n-form of weight 0 in coordinates (yi) with the weight vector field ∇1. As ∇1(m) = 0, we can
apply the inductive assumption and find a homogeneous (n−1)-form α1 of weight 0, vanishing
at m and depending on yi only, such that ω1 = dα1. Now, it is enough to put α = α1 + β.

2. Now, we will consider the case ∇M(m) 6= 0. As we know from Corollary 2.5, we can choose
homogeneous coordinates (x, yi) in a neighbourhood of m such that ∇M = x ∂x, x(m) = 1,
yi(m) = 0.

Take a homogeneous closed n-form ω of weight w on M , so that

ω = dx ∧ ν1 + ν2 ,
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where ν1 and ν2 do not contain dx. Since ν1 is homogeneous of weight (w − 1) and ν2 is
homogeneous of weight w, it is easy to see that ν1 = xw−1ω1 and ν2 = xw ω2, where ω1 and ω2

are forms in the coordinates (yi) only, thus homogeneous of weight 0. We have then

ω = xw−1 dx ∧ ω1 + xw ω2 ,

and

dω = d
(
(xw−1 dx) ∧ ω1 + xw ω2

)
= −xw−1 dx ∧ dω1 + w xw−1dx ∧ ω2 + xw dω2 = 0 .

Hence, dω2 = 0 and wω2 = dω1. As ω2 is an n-form in coordinates (yi) of weight 0, we can
apply our homogeneous Poincaré Lemma, proved already for the case ∇M(m) = 0, to ω2 and
write ω2 = dβ, where β is a homogeneous (n − 1)-form in coordinates (yi), vanishing at m.
Hence, dω1 = w dβ, so ω1 = w β + dγ, for a (n− 2)-form γ in coordinates (yi) with γ(m) = 0.

If w 6= 0, we can write

ω = xw−1 dx ∧ (w β + dγ) + xw dβ = d(xw) ∧ β + xw dβ + d(xw/w) ∧ dγ

= d(xw β) − d(d(xw/w) ∧ γ) = d (xw β − d(xw/w) ∧ γ) ,

so we can put
α = xw β − d(xw/w) ∧ γ .

The (n− 1)-form α is homogeneous of weight w and vanishes at m, since β and γ do.

In the case w = 0, we have ω2 = 0, dω1 = 0. If n > 1, then applying part 1. of our
homogeneous Poincaré Lemma, we can write ω1 = dα1 for a homogeneous (n − 2)-form in
coordinates (yi), vanishing at m. As ω = x−1 dx ∧ dα1, we can put

α = −dx ∧ (α1/x) .

It is homogeneous of weight 0 and vanishes at m. On the other hand, if n = 1, then ω =
(dx/x) f(y) + ν(y), where ν is a 1-form and f is a function, both depending only on variables
(yi). As dω = (dx/x) ∧ df(y) + dν(y) = 0, we get that f = c is a constant and dν = 0.
Applying again part 1 of our homogeneous Poincaré Lemma, we can write ν = dg for a
function g = g(y). But all functions α such that dα = ω = c dx/x + dg are of the form
c ln(x) + g + c1, where c1 is another constant. Such a function is homogeneous if and only
if c = 0, and we end up with ω that depends only on coordinates (y1) of weight 0; the case
which was already solved.

11 Homogeneous symplectic forms

Let us recall that a 2-form ω on a homogeneity supermanifold (M,∇) is homogeneous of degree
λ = (σ, w) ∈ Z2 × R if ω has parity σ and £∇ω = w · ω.

Example 11.1. If M is a homogeneity supermanifold of total dimension n, then on T∗[λ]M
there is a canonical symplectic form ωM [λ] of degree λ. In the adapted coordinates (xa, pb) on
T∗[λ]M , induced by homogeneous coordinates (xa) on M , we have deg(pa) = λ− deg(xa) and

ωM [λ] =
∑

a

dxa ∧ dpa .

In particular, the canonical symplectic form on ΠT∗M = T∗[(1, 0)]M is odd. Moreover,
ωM [λ] = −dθM [λ], where

θM [λ] =
∑

a

dxa · pa

is the canonical Liouville 1-form of degree λ on T∗[λ]M .
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Any two-form ω on a homogeneity supermanifold M which is homogeneous of degree λ = (σ, w)
induces a morphism of homogeneous vector superbundles

ω♯ : TM → T∗[λ]M

by contraction, X 7→ iXω. In local adapted coordinates, if ω = dxa ∧ dxb · ωab(x), then

ω♯(xa, ẋb) =

(
xa,
∑

c

ẋcωcb(x)

)
. (24)

Indeed, we have
deg(ωab) = λ− deg(xa) − deg(xb),

so

deg
(
ẋaωab(x)

)
= deg(ωab) + deg(xa)

= λ− deg(xa) − deg(xb) + deg(xa) = λ− deg(xb),

which agrees with deg(pb) in T∗[λ]M . Note also that the form ω, for any m ∈ |M |, induces an
R-linear map of degree λ,

ω(m)♯ : TmM → T∗
mM,

between homogeneity super-vector spaces. If πM is the canonical surjection πM : A(M) →
C∞(|M |), then ω(m)♯ is represented by the matrix [ωab(m)] ∈ gl(n;R), where ωab(m) =
πM(ωab)(m).

Definition 11.2. We say that a 2-form ω on a supermanifold M of total dimension n has
rank r, if ω♯ maps TM onto a rank r vector subbundle in T∗M . A closed 2-form ω on M we
call symplectic if ω♯ is an isomorphism of vector superbundles, i.e., ω♯ is of rank n.

It is easy to see that ω♯ is of rank r if and only if the n×n-matrix [ωab(x)] with coefficients in
local smooth function on M is of rank r. The following well-known lemma reduces the concept
of this rank to the case of real matrices.

Lemma 11.3. Let Mn×n(A) be the space of n×n-matrices with coefficients in the superalgebra
A(Rp|q) of functions (superfields) on M = R

p|q. Then, a matrix X = [aij] ∈ Mr×r(A) has
rank r if and only if the matrix [(aij)(m)] is of rank r for every m ∈ R

p. In particular, X is
invertible in Mn×n(A) if [(aij)(m)] ∈ GL(n;R) for all m ∈ R

p.

Corollary 11.4. A closed 2-form ω of degree λ = (σ, w) on a Γ-homogeneity supermanifold
M has rank r if and only if the maps ω(m)♯ : TmM → T∗[λ]mM are linear homogeneous maps
of rank r between graded vector spaces for all m ∈ |M |. Alternatively, the skew bilinear form
ω(m) : TmM × TmM → R is of rank r. Here, ω(m) ∈ Λ2 T∗

mM and

ω(m)(∂xa , ∂xb) = (i∂
xb
◦ i∂xa )ω(m) .

The skew-symmetry of ω(m) means that

ω(m)(e, e′) = −(−1)(σ+σ0)·(σ+σ1) ω(m)(e′, e)

for homogeneous vectors e, e′ with deg(e) = (σ0, w0) and deg(e′) = (σ1, w1).

Proof. Direct application of Lemma 11.3.
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Theorem 11.5. Let V be a (−Γ)-graded vector superspace of total dimension n, and let
g : V ×V → R be a bilinear skew-symmetric two-form of degree λ = (σ, w) ∈ Z2×R and rank
r. Then, there is a homogeneous basis (q1, . . . , qa, p1, . . . , pa, y1, . . . , yb, z

1, . . . , zc) of V such
that 2a+ b = r and

g =
a∑

i=1

(pi)
∗ ∧ (qi)∗ +

b∑

j=0

εj(y∗j ∧ y∗j ) , (25)

where (pi)
∗, (qi)∗, (yj)∗, (zk)∗ is the dual basis in the Γ-graded dual vector superspace V ∗. In

particular,
εj = ±1 , deg(pi) = λ− deg(qi) , 2deg(yj) = (0, w) .

The vectors yj must be odd, thus they can appear only if g is even.

Proof. This is a graded super-version of a well-known theorem in elementary linear algebra.
We will use a modified Gram-Schmidt process to bring g into the desired form by induction
with respect to n. For n = 1 the theorem is trivial, so suppose the theorem is true for
dimV < n and take V such that dim(V ) = n.

Let V0 = Ker(g♯) be the kernel of g♯ : V → V ∗. Since g is homogeneous, it is easy to see that
V0 is a graded vector subspace of V , so we can choose a complementary vector subspace V ′

spanned by homogeneous vectors, say e1, . . . , ek. There are two possibilities:

1. g(e1, e1) = 0 ,

2. g(e1, e1) 6= 0 .

1. In the first case we can find ei ∈ V ′, i 6= 1, such that g(e1, ei) = c 6= 0; otherwise
g = 0 and the theorem is trivial. We can permute the homogeneous base such that ei = e2.
Moreover, multiplying e2 by 1/c, we can assume that g(e1, e2) = 1. It is also clear that
deg(e1) = −λ−deg(e2). Denote e1 by p1 and e2 by q1. Let V1 be the ‘orthogonal complement’
of span〈p1, q1〉 in V ′ with respect to the non-degenerate bilinear form g

∣∣
V ′

, i.e., x ∈ V ′ is in
V1 if and only if g(p1, x) = 0 and g(q1, x) = 0. Since g is homogeneous, V1 is a homogeneous
(graded) subspace of V ′, and as a homogeneous basis of V1 we can take

(
f j = ej − g(e1, ej)e2 + (−1)(σ+σa)·(σ+σb) g(e2, ej)e1

)
(k≥j>2)

.

The vectors f j are indeed homogeneous, deg(f j) = deg(ej), since g(e1, ej)e2 and g(e2, ej)e1

are of degree deg(ej). Suppose that g(e1, ej) is non-zero. This is possible only if g1j 6= 0, i.e.,

λ+ deg(e1) + deg(ej) = λ− λ− deg(e2) + deg(ej) = 0 .

Hence, deg
(
g(e1, ej)e2

)
= deg(e2) = deg(ej). Similarly we prove deg

(
g(e2, ej)e1

)
= deg(ej),

thus f j are homogeneous for k ≥ j > 2.

In the basis dual to the homogeneous basis p1, q
1, f 3, . . . , fn of V , the bilinear form g reads

g = (p1)
∗ ∧ (q1)∗ + g1 ,

where g1 is the restriction of g to V1, thus homogeneous with degree λ and of rank (r− 2). As
dim(V1) ≤ n− 2, we can now apply the inductive assumption.

2. We can find a ∈ R such that g(ae1, ae1) = ε1 = ±1. Put y1 = ae1, which is clearly odd. We
have −2deg(e1) = λ that implies that the form g is even and of weight w = −2w1. Similarly
as above, we prove that the orthogonal complement

V1 = {x ∈ V | g(e1, x) = 0}
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of 〈e1〉 in V ′ is a graded vector subspace of V ′ with a homogeneous basis, say, f 2, . . . , fk. In
the basis dual to y1, f 2, . . . , fk, the skew bilinear form g reads

g = ε1(y∗1 ∧ y∗1) + g1 ,

where g1 is a skew-symmetric non-degenerate bilinear form on V1 of degree λ. As dim(V1) ≤
n− 1, we finish the proof, applying the inductive assumption to (V1, g

1).

11.1 The homogeneous Darboux theorem

Let M be a Γ-homogeneity supermanifold and let ω be a symplectic form of degree λ = (σ, w)
on M . By Darboux coordinates for (M,ω) we will understand local homogeneous coordinates
(p1, . . . , pj, q

1, . . . , qj, y1, . . . yk) on M , with weights in Γ, such that

ω =

j∑

i=1

dpi ∧ dqi +

k∑

l=1

εl (dyl ∧ dyl) , (26)

where εl = ±1.

Remark 11.6. This should be compared with the Darboux theorem in non-graded symplectic
supergeometry, see for example Schwarz [37], proofs of which are sketched by Kostant [25] and
Shander [40]. We remark also that Khudaverdian gave a ‘simple’ proof of the Darboux theorem
for odd symplectic supermanifolds in [26].

To use a homogeneous variant of Moser’s trick, we also need to integrate time-dependent even
vector fields on supermanifolds.

Lemma 11.7. Let X : R ×M → TM , X(t, y) = Xt(y), be a smooth family of even vector
fields on the supermanifold M and let m ∈ |M |. Then, there is an open submanifold U ⊂ M
around m ∈ |U |, and a one-parameter family of smooth maps Φ : [0, 1] × U → M , Φ(t, y) =
Φt(y), which is the flow of the time-dependent vector field X, i.e., Φt : U → M are local
diffeomorphisms for t ∈ [0, 1], Φ0 = id, and

d

dt
Φt(y) = Xt

(
Φt(y)

)
. (27)

IfM is additionally a homogeneity supermanifold and X is of weight 0, then Φt are morphisms
of homogeneity supermanifolds.

Proof. Consider the supermanifold M̃ = R ×M with the vector field X̃(s, y) = ∂s + Xs(y).

This vector field is even and nowhere vanishing, X̃(0, m) 6= 0, so it can be integrated to a local

flow ϕt on M̃ [42, Chapter V] (see also Remark 3.13). This easily follows also from a result
by Shander [39, Theorem 1] who proved that any even vector field Y on a supermanifold N ,
with Y (n) 6= 0, n ∈ |N |, can be locally written as Y = ∂x1 in a coordinate neighbourhood
(U, (xi)), m ∈ |U |.

Choosing |U | sufficiently small, we may assure that the flow of local diffeomorphisms is

defined for 0 ≤ t ≤ 1. Such a flow ϕt for the vector field X̃ looks locally like ϕt(s, y) =
(t + s,Φ(t, y)), ϕ0 = id, and it is easy to see that Φ(t, y) satisfies equation (27). The rest is
obvious.

Actually, we can consider the time-dependent vector field X as defined only on a neighbour-
hood of {0} ×M in M̃ , with no real changes in the proof. Completely analogously to the
classical (purely even) situation one proves the following.
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Proposition 11.8. If Φt is the local flow of a time-dependent even vector field Xt on a
supermanifold M , and Kt is a time-dependent tensor field on M , then

d

dt
Φ⋆

t (Kt) = (Φt)
⋆
(
£Xt

Kt + K̇t

)
, (28)

where Φ⋆
t denotes the action of the local diffeomorphism on tensor fields (the pullback).

Theorem 11.9 (Homogeneous Darboux Theorem). Any symplectic Γ-homogeneity su-
permanifold (M,ω) with symplectic form ω of degree λ = (σ, w) admits local Darboux coordi-
nates around any m ∈ |M | (see (26)). The coordinates yl can appear only if ω is even.

Remark 11.10. That the Darboux coordinates have weights in Γ puts some constraints on
possible λ namely deg(p̄i) + deg(q̄i) = λ and 2deg(ȳj) = λ. Note also that our Darboux
coordinates need not be allowed if ∇M(m) 6= 0 and an additional structure determining
allowance is involved.

Proof. We will adapt Moser’s trick for homogeneity supermanifolds. Let U be a homogeneity
superdomain in M , with Γ-homogeneous coordinates (xa), and let m ∈ |U |. According to
Theorem 11.5, we can find a coordinate neighbourhood V ⊂ U , such that m ∈ |V |, with
homogeneous coordinates

(p̄1, . . . , p̄a, q̄
1, . . . , q̄a, ȳ1, . . . , ȳb)

having weights in Γ, such that ω(m) is of the form

ω(m) =
∑

i

dp̄i(m) ∧ dq̄i(m) +
∑

j

εj
(
dȳj(m) ∧ dȳj(m)

)
, (29)

where εj = ±1. It is clear that deg(p̄i) + deg(q̄i) = λ and 2deg(ȳj) = λ. Let us consider a
two-form on V which reads

ω0 =
∑

i

dp̄i ∧ dq̄i +
∑

j

εj(dȳj ∧ dȳj) . (30)

Obviously, it is a symplectic form of degree λ on V . Put ωt = (1 − t)ω0 + tω. Of course, ωt is
a closed form of degree λ. Since ωt(m) = ω(m) is non-degenerate, we can choose V so small
that ωt is non-degenerate in V , thus symplectic, for t ∈ [0, 1].

The form ω− ω0 is a closed 2-form of degree λ, so by homogeneous Poincaré Lemma 10.3,
for a neighbourhood V of m we have ω−ω0 = dα for a one-form α of degree λ and vanishing at
m. Since the two-forms ωt are symplectic, there is a time-dependent vector field Xt, such that
iXt
ωt = −α. The vector field Xt is of degree 0, thus even. Since α(m) = 0, also Xt(m) = 0,

and we can find a sufficiently small V such that the flow Φt of Xt is defined for 0 ≤ t ≤ 1. As
the time-dependent vector field is of degree 0, the flow consists of morphisms of Γ-homogeneity
manifolds. Like in the classical situation, we have (cf. Proposition 11.8)

d

dt
Φ∗

t (ωt) = (Φt)
∗

(
£Xt

ωt +
d

dt
ωt

)
, (31)

where £Xt
= d ◦ iXt

+ iXt
◦ d is the Lie derivative along Xt. But

£Xt
ωt +

d

dt
ωt = d(iXt

ωt) + ω − ω0 = −dα + ω − ω0 = 0 .

Therefore, the form Φ∗
t (ωt) is independent on t and

Φ∗
1(ω1) = Φ∗

1(ω) = Φ∗
0(ω0) = ω0 .
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This means that ω =
(
(Φ1)

−1
)∗

(ω0), and that ω in coordinates

pi = p̄i ◦ (Φ1)
−1 , qi = q̄i ◦ (Φ1)

−1 , yj = ȳj ◦ (Φ1)
−1

reads as in (26). Since Φ1, coming from the flow of a vector field of degree 0, preserves
homogeneity degrees, the new coordinates are also homogeneous with degrees in Γ.

Remark 11.11. For N-manifolds, the Darboux coordinates mentioned in Theorem 11.9 are
also N-homogeneous with weights determining the parity. Hence, we have a homogeneous
Darboux Theorem for N-manifolds.

Corollary 11.12. If τ : M → B is a positive homogeneity vector superbundle of rank (k|l) and
m ∈ |B|, then as the Darboux coordinates in Theorem 11.9 we can take allowed coordinates,
so that (26) is valid on U × R

k|l, where U is a neighbourhood of m in B.

Proof. As (26) is valid in a neighbourhood of m in M and homogeneous functions are poly-
nomial, there is a unique (polynomial) extension of (26) to fibers of M .

12 Conclusions

We have introduced and systematically studied the concept of homogeneity structures on
supermanifolds, which generalizes various ideas of a graded manifold present in the literature.
For instance, homogeneity structures provide an elegant and very effective tool to deal with
vector superbundles, which is conceptually much simpler than the one based on locally free
sheaves. To keep the possibility of conducting differential calculus, we do not start with
ringed spaces and shaves of graded algebras, but with genuine supermanifolds endowed with an
additional geometric structure, namely the weight vector field. Of course, one can derive then
the corresponding sheaf, however, the grading in the sheaf could be an R-grading, so it does not
determine any direct sum decomposition of the algebra. In our setting, notions of homogeneous
tensor fields, homogeneous submanifolds, and homogeneous distributions have been introduced
and studied as well as homogeneity Lie supergroups; all notions were illustrated with examples.
We have also studied tangent and cotangent lifts of homogeneity structures which includes
the tangent and cotangent bundles into the category of homogeneity supermanifolds. For the
homogeneous de Rham cohomology we have proven a homogeneous Poincaré Lemma, and for
homogeneous symplectic forms an analog of the Darboux Theorem.

Of course, the present paper is just a beginning of deeper studies on this interesting part of
differential geometry which deserves further development, including applications. In partic-
ular, one can introduce concepts of homogeneous structures on homogeneity supermanifolds
for much reacher class of structures than the ones discussed in our paper, e.g., homogeneous
principal bundles, homogeneous connections, homogeneous Riemannian manifolds, or homo-
geneous contact structures. We postpone this work to a separate paper.
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