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Biological transport networks are highly optimized structures that ensure power-efficient distribu-
tion of fluids across various domains, including animal vasculature and plant venation. Theoretically,
these networks can be described as space-embedded graphs, and rich structures that align well with
observations emerge from optimizing their hydrodynamic energy dissipation. Studies on these mod-
els typically use regular grids and focus solely on edge width optimization. Here, we present a
generalization of the hydrodynamic graph model which permits additional optimization of node po-
sitioning. We achieve this by defining sink regions, accounting for the energy dissipation of delivery
within these areas, and optimizing by means of differentiable physics. In the context of leaf venation
patterns, our method results in organic networks that adapt to irregularities of boundaries and node
misalignment, as well as overall improved efficiency. We study the dependency of the emergent net-
work structures on the capillary delivery conductivity and identify a phase transition in which the
network collapses below a critical threshold. Our findings provide insights into the early formation
of biological systems and the efficient construction of transport networks.

Transport networks are ubiquitous in nature and in
living systems. The efficiency of such networks is crucial
for the evolutionary fitness of organisms such as those
observed in leaf venation [1–3] and blood vasculature
systems [3–5], and emerges in complex systems such as
river networks [6] and human transport systems [7–9].
Understanding the structure and morphogenesis of such
network structures has been facilitated by studying ener-
getically optimal solutions to static, hydrodynamic net-
works [10–13].

The optimization of hydrodynamic transport networks
is traditionally approached as an edge-optimization prob-
lem [2, 5, 10, 13], assuming systems where network nodes
serve as sinks for their local area. Thus, optimizing
the energy dissipation leads to optimal edge conductivi-
ties [10], while the positions of the nodes themselves are
considered fixed. In principle, this approach can be used
to model any bounded system if enough nodes are used.
However, for a finite number of nodes confined within a
bounded system, it is evident that the node placement it-
self influences the optimality of the fluid delivery system.
In many systems, the finite number of nodes is a physical
fact and must be imposed, e.g., due to a lower bound on
the vein thicknesses determined by the capillary size.

Here, we consider bounded systems of finite nodes and
generalize the hydrodynamic model to have well-defined
optima both in edge conductivities and node positioning.
Specifically, we model a bounded leaf venation network
and let the boundary represent the leaf margin. Each
node represents a source or sink (we set a single node
at the leaf base as the source, and let all other nodes be
sinks) and each edge represents a vein between two nodes.
Fig. 1a shows the optimal solution obtained for a fixed,
hexagonal grid in a bounded system. The imposition of
the domain boundary and the inability of the nodes to
adapt positionally results in non-uniform areas associ-

ated with each node. As fluid dissipation will typically
be proportional to area, this thus implies that the sinks
become non-uniform. By removing the spatial constraint
on the node positions, we find more energy-efficient solu-
tions, which yield networks that appear organic and more
consistent with networks observed in nature (Fig. 1b).
The power of the transport network is given by [10]

Pt =
∑

e∈edges

(
F 2
e

Ce
+ ct C

γ
e

)
Le, (1)

where Fe is the flux associated with edge e, which has
length Le and conductivity Ce. The constant ct de-
fines the metabolic cost of maintaining the edge, which is
equivalent to considering a system with a finite amount
of resources. γ is a parameter that determines how the
material cost scales with the conductivities, which we set
to γ = 1/2 in this Letter. The flow is pressure-driven,

(a) (b)

FIG. 1. Optimization and relaxation on an inclined leaf
(φ0 = 60◦, β = 0.4, N = 175). Non-suppressed edges and
delivery regions of each sink node are shown. The source is
marked with a red dot. (a) Result after transport network
optimization solving Eq. (3) on a hexagonal grid. (b) Result
after relaxation, where the network optimizes P = Pt + Pd.
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such that the flux over a (directed) edge e = i → j is
given by Fe = (pi − pj)Ce/Le. The pressures are indi-
rectly determined by the need to satisfy Kirchhoff’s law∑

e∈i ±eFe = si, where si is the source/sink at node i
and the sign is set by the direction of the edge. This
can be solved efficiently with hardware acceleration [14].
Typically, the sink magnitudes are assumed to be equal.
However, once the nodes are permitted to move, these
values must change as well. Thus, taking the source
s0 = 1, we define si = −Ai/

∑
Ai (i ≥ 1), where Ai

is the area surrounding a node, implicitly defined by the
associated Voronoi cell.

In order for a transport system to have stable and
well-defined optima in node positioning, the above model
must be expanded to account for the power dissipation
within the Voronoi cells. To achieve this, we add a simple
power-delivery term, Pd, to the conventional formulation
for transport power [10], and thus assume that the total
power can be described by the sum of two contributions
P = Pt + Pd. With the goal of defining a self-consistent
model that equally considers both transport and delivery
costs, we take

Pd =
∑

i∈sinks

s2i

Ĉi

⟨ℓ⟩i. (2)

This is analogous to the first term in the transport for-
mulation (Eq. (1)), but considers the power dissipation
due to the delivery of the sink fluid si over an average
Voronoi distance ⟨ℓ⟩i. Ĉi is the delivery conductivity,
which effectively models a capillary system. Physically,
this term favors equally sized and isotropic sink areas.
We assume that the delivery conductivity is an intrinsic
property of the material, such that Ĉi = Ĉ is fixed and
equal for all nodes.

Optimization — Our scheme to minimize P consists
of the combination of an edge conductivity optimiza-
tion and a node relaxation process. We employ a fully
connected graph and initialize all edge conductivities
to the same value. For a given node positioning {xi},
we optimize the conductivities by using an adaptation
model [2, 13]

dCe

dt
=

(
F 2
e

Cγ+1
e

− γct

)
Ce + c0e

−λt, (3)

where the term F 2
e /C

γ+1
e is the squared wall shear stress,

and γct represents the optimal squared shear stress. Fur-
thermore, we include a growth term characterized by the
area growth rate λ, which has proven to be a robust strat-
egy to achieve better optima [2]. To facilitate smooth
convergence, we also decrease exponentially the magni-
tude of the growth term c0(τ) ∝ e−ντ during the node
positioning relaxation process. Here, we use τ to denote
the timescale of node relaxation and t for the conductiv-
ity optimization.
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FIG. 2. Transport and delivery power terms (Eqs. (1) and
(2)) during optimization. (a) Optimization of Pt by using
Eq (3). (b) Node relaxation process. At each timestep one
complete optimization of Pt is performed, resulting in an im-
provement of both power terms.

Crucially, even though our transport network is fully
connected, optimization results in a sparse, planar
graph (Fig. 1). While networks with static nodes can
simplify the incidence matrix by, for instance, employing
Delaunay triangulation to account for sparse connections,
we rely on the derivative information of the entire graph
during the optimization to accurately determine the cor-
rect gradients for node displacement and to allow for the
spontaneous creation and suppression of connections.
To optimize over {xi}, we use gradient descent com-

puted by automatic differentiation techniques [15, 16].
To propagate the gradients across the solution of the
adaptation model in Eq. (3), we employ a custom back-
propagation method based on the implicit function the-
orem [17], detailed in [18]. Importantly, the fact that we
use Voronoi cells to define the sink magnitudes si and
the delivery distances ⟨ℓ⟩i means that all terms vary con-
tinuously with node positions, yet it requires the abil-
ity to differentiate through Voronoi calculations. We
achieve this with a custom differentiable implementation
of Voronoi tessellation [19–21], clipped by the domain
boundary [22] (see [18] for details). Crucially, this proce-
dure is parallelizable and amenable to hardware acceler-
ation. As Voronoi cells are guaranteed to be convex, we
can split the integrals over these cells into triangles T ,
e.g.,

⟨ℓ⟩i =
1

Ai

∑
T∈vori

∫∫
T

∥xi − x∥ dA, (4)

over which the integrals can be evaluated analytically
(see [18]). We note that our optimization schemes are
local optimizers and will generally not find global optima.

During the optimization of conductivities, delivery cost
remains fixed (Fig. 2a). On the other hand, during
node placement relaxation, we see that while delivery
costs are monotonically decreasing, transport costs ex-
perience a phase of stochasticity where the efficiency is
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reduced (Fig. 2b). Nevertheless, the total power con-
tinuously decreases, and after some iterations both the
transport power Pt and the delivery power Pd reach lower
values than those achievable in the regular grid, showing
that the terms are not opposing criteria and that the
simultaneous optimization yields networks that show in-
creased power efficiency in both.

Network stability — The delivery term Pd depends on
the capillary conductivity Ĉ. To understand its influence
on the network dynamics, we consider a one-dimensional
system, where the nodes are solely connected to their
adjacent nodes. This removes the need for Voronoi cal-
culations, where instead the average delivery distance is

⟨ℓ⟩i =
1

2(xR − xL)

[
(xR − xi)

2 + (xi − xL)
2
]
, (5)

where xL and xR are the midpoints between the left and
right neighbor, respectively (see [18]). Figs. 3a–b show
the mean node separation ⟨d⟩ in this 1D system con-
fined to a fixed domain for increasing values of Ĉ. We
observe a smooth phase transition: When Ĉ is small,
the energy is largely dominated by the delivery energy,
which is minimal when the nodes are uniformly spread.
As we increase the delivery conductivity of the system,
we observe a continuous change in the network until the
network collapses (Fig. 3b).
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FIG. 3. Network collapse as a function of effective deliv-
ery conductivity. (a) Phase diagram of (normalized) average

nearest-neighbor distance for different Ĉ and network sizes
in the one-dimensional system. The line shows the scaling
of Ĉ at constant Ω, (analytically obtained from the scaling
analysis). (b) Individual network sizes from (a) showing the
sudden but continuous collapse. (c) Resulting networks with

Ĉ above and below the critical value in two dimensions.

To understand the origin of this transition, we con-
sider the contributions of each power term. If the en-
ergy needed to transfer fluid from a sink node to the
surrounding region is significantly greater than the en-
ergy required for transportation (small Ĉ), the cost in-
curred by reducing the connections between nodes – and
thereby minimizing transport energy – is too high to jus-
tify compromising the size discrepancies of the regions.
In contrast, when the delivery conductivity is sufficiently
high to allow effectively energy-free fluid transfer from
the sink to the region, the optimal solution is achieved
by reducing the transport cost, i.e., moving all the nodes
to the source, as a single node can then deliver fluid to the
entire domain cheaply. This leads us to study the tran-
sition using the dimensionless power ratio Ω = Pt/Pd.

Scaling analysis of the one-dimensional system reveals
that O(Ω) = N4/3 (see [18]). Since Ω ∝ Ĉ, we observe
that the abrupt collapse of the system in Fig. 3a aligns
with the outcomes of the scaling analysis. This analysis
can be extended to the two-dimensional formulation, re-
sulting inO(Ω) = N5/3, which predicts that valid relaxed
networks only emerge below the critical Ĉ∗, as shown in
Fig. 3c. Although more complex in two dimensions, the
phase transition still occurs.

We note that the above scaling laws are derived for
a fixed domain space. If instead, we consider a 2D do-
main that increases with network size, e.g., O(L) =

√
N

(i.e., a growing leaf), we find the resulting scaling to
be O(Ω) = N−1/3. Thus, for fixed domains, the more
densely packed the network is, the lower the capillary
conductivity must be in order for the formulation to hold.
If, however, the domain expands, the system can main-
tain the same effective conductivity during growth – as
expected of an intrinsic property. For systems with a
scaling domain, delivery costs become negligible at large
network sizes, where instead the transport costs domi-
nate completely.

Adaptability — One constraint of regular lattice
graphs is that their optimal solutions are dependent on
the alignment of the main axis of the leaf with the grid.
Typically, this alignment is chosen so that the main axis
follows the shortest path between neighboring nodes, re-
sulting in network shapes where the leaf main branch is
perfectly parallel with the main axis (Fig. 1a). Another
issue is the aforementioned non-uniformity of the sink ar-
eas along the leaf boundary. Thus, for fixed grids, careful
construction and alignment of the network boundary is
required. To illustrate this, we construct a leaf shape
that can be rotated relative to the grid by using a sim-
plified version of Gielis’ superellipse equation [23], as it
describes a broad range of leaf shapes accurately [24]:

r(φ;φ0, β) =
(∣∣cos (φ−φ0

4

)∣∣+ ∣∣sin (φ−φ0

4

)∣∣)−1/β

. (6)
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FIG. 4. Model adaptability on differently aligned leaves.
(a-b) The deviation σ (a), as well as power P (b) are 60◦-
periodic for the regular grid, and non-periodic for the relax-
ation model. (c-d) Resulting leaves for maximum alignment
(c) and misalignment (d) are fundamentally different for the
regular grid (c-d, left), but similar for the relaxation model
(c-d, right).

Here φ0 is the inclination of the major axis of the leaf,
and β is a shape parameter.

We quantify the discrepancies by rotating the leaf and
measuring the power P and the average deviation of
the main branch with the grid, σ = 1 −

〈
ci cos(θi −

φ0)
〉
/
〈
ci
〉
. Here, θi and ci are the angle and conduc-

tivity of the i’th edge of the main branch, respectively.
The main branch is found by greedily following the edges
with the highest conductivity, from the source to a leaf
node. On the hexagonal grid, angles φ0 ≡ 0 (mod 60◦)
correspond to maximum alignment of the leaf with the
grid, whereas φ0 ≡ 30◦ (mod 60◦) correspond to maxi-
mum misalignment.

Fig. 4a shows the average main branch deviations for
the outputs of the regular grid and the relaxation model.
For the regular grid, we see that the deviation is com-
pletely dependent on angle, with a minimum of σ = 0 at
the maximum values of leaf alignment, as well as peaks
at maximum misalignment. The slightly non-smooth
changes in deviation are caused by the discrete differ-
ences in the initializations of the node positions due to
boundary clipping. For the deviations in the relaxation
model, there is no apparent dependency on angle, which
indicates that our model is independent of initial bound-
ary alignment, with the noisiness explained by the fact
that the relaxation model output is the result of local
optimization. While zero deviation is never reached for
the relaxation model (due to the stochastic nature of
the optimization), the average deviation σavg = 0.026
is nonetheless lower than σavg = 0.033 for the regular
grid.

The resulting power from the same data can be seen
in Fig. 4b. The mean power is significantly lower for the
relaxation model, which indicates that the solutions in
general are more optimal. We note that at maximum
alignment we still see a lower power in the relaxation
model, even though the regular grid output has lower
deviation, which can be attributed to the fact that power
is not solely determined by the structure of the main
branch, but by the network in its entirety.

Figs. 4c-d show illustrations of the output of the two
models for maximum alignment and misalignment, re-
spectively. The regular-grid model yields two extremes
where the main branch either completely follows the
main axis (Fig. 4c, left), or splits into two similarly sized
branches (Fig. 4d, right). In contrast, all outputs from
the relaxation model preserve the central main branch
(Figs. 4c-d, right).

Vein curvature — A characteristic feature of our re-
sulting networks is the emergence of smoothly curving
veins. This is particularly noticeable in the branches ex-
tending from the main branch and leads to venation pat-
terns that appear more organic compared to those pro-
duced by a regular grid. Previous work relied on comple-
mentary initialization techniques in order to effectively
mimic biological stochasticity, for example by using dis-
ordered tessellation grids [2]. Such a method works by
enforcing a repulsive potential between sink nodes that
leads to evenly spaced positions in the domain. This is
approximately equivalent to independently optimizing Pd

in our formulation.

In Fig. 5 we compare the resulting morphologies of a
leaf that mimics the domain of L. xylosteum (Fig. 5a),
and observe how venation patterns agree with biological
observations in our formulation (Fig. 5b), and a regular
grid (Fig. 5c), respectively. In Fig. 5d we show the re-
sult of sequential optimization, i.e., one optimization of

(a) (b)

(c) (d)

FIG. 5. Comparison between a real leaf and model vena-
tion patterns (β = 0.25, N = 100). (a) Sample of L. xy-
losteum [14]. (b-d) Model output from the (b) relaxation
model, (c) regular grid, and (d) sequential optimization.
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Pd without accounting for transport cost, and one sub-
sequent optimization of Pt. We observe sub-optimal so-
lutions where the venation patterns do not match those
of the real leaf. Instead, we find that the optimization of
Pt identifies approximately straight lines in the optimal
node positions, and uses these to form the main branch.

Our observations indicate that incorporating coupled
energy costs in the power formulation leads to solu-
tions influenced by domain boundaries, closely resem-
bling those found in vivo (Fig. 5b). This is reproduced
to a lesser extent when performing sequential optimiza-
tion (Fig. 5d) and is completely absent when relying on
regular grids (Fig. 5c).

In this Letter, we have addressed the limitations of
traditional transport network optimization models by al-
lowing the optimization over the node positions them-
selves. We have shown this to be a well-defined problem
when incorporating the cost of resource delivery into the
energy formulation, with resulting configurations that
show adaptability to domain boundaries and misalign-
ment. The study has been enabled by exploiting a fully
differentiable process including the Voronoi tessellation
of the domain and the steady state of the conductivity
adaptation model. Our results demonstrate the advan-
tages of node localization both internally and in adapting
to external domain boundaries and allow the emergence
of natural organic networks. Our approach could find
applications in the efficient design of human-engineered
networks [25]. We identified a phase transition as a func-
tion of the conductivity Ĉ of the delivery system, showing
network collapse above a critical value, reminiscent of the
well-known phase transition in γ for static transport net-
works [10]. Scaling analysis further reveals that physical
networks remain stable during network growth only if
the domain expands along with the network. While our
goal has been a minimal extension of the hydrodynamic
network model, we note that a main insight is the ad-
dition of some delivery power term and not necessarily
precisely the one of Eq. (2). For instance, similar phase
transition behavior emerges from considering, e.g., ⟨ℓ2⟩
(diffusion-limited costs). Our approach is limited by the
local behavior of gradient descent and the presence of
many local optima. Resulting patterns are thus sensitive
to initial conditions even though the energy dissipation
is similar between them. This problem similarly prevails
in edge optimization alone [10]. Our findings pose an
interesting question for further research: how can appro-
priate local feedback models [2, 13] be formulated that
optimize Pt + Pd? Finally, we note that in this Letter
we do not consider fluctuations in the sink magnitudes
or similar phenomena that can result in reticulate net-
works [11, 12, 26], the relevance of which becomes evi-
dent for larger network sizes. This can be incorporated
by choosing a suitable parameterization that allows for
area-weighted sinks [14].
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Spatially continuous sinks: integrals

In this section, we provide a detailed analysis of the area computation of the region where the sink nodes deliver
to and explore the integration of distance metrics in a triangle within the polygon. Take a star convex polygon (such
as those that result from Voronoi tesselations), and consider a triangle ABC in that polygon:

A

B

C

FIG. 6. Diagram of a triangle of a Voronoi cell. A is the sink node and B and C are vertices resulting from the tessaration.

The area of such a triangle is trivial to calculate, and thus the total area is:

A =
∑

T∈triangles

AT , (7)

where AT is trivially computed with

AT =
1

2
|(xA − xB)× (xA − xC)| . (8)

Likewise, we need the average distance from A to all points in the polygon. This becomes:

⟨L⟩ = 1

A

∑
T∈triangles

∫
AT

||xA − x|| dA. (9)

This integral is not easy, but can be done by using polar coordinates. We write

x(r, θ) = xA + r

(
cos θ
sin θ,

)
(10)

and the integral becomes

I =

∫
AT

||xA − x||dA =

∫ θ2

θ1

dθ

∫ R(θ)

0

dr r2 =
1

3

∫ θ2

θ1

R(θ)3 dθ, (11)

where R(θ) is the distance from A to the line BC with angle θ,

R(θ) =
xa(yb − yc) + xb(yc − ya) + xc(ya − yb)

(yc − yb) cos θ + (xb − xc) sin θ
, (12)

thus, our integral becomes

I =
1

3
[xa(yb − yc) + xb(yc − ya) + xc(ya − yb)]

3
∫ θ2

θ1

1

(δy cos θ − δx sin θ)3
dθ,

where δx = xc − xb and δy = yc − yb. This integral can be evaluated using Weierstrass substitution to give∫
1

(δy cos θ − δx sin θ)3
dθ =

1

δ3
tanh−1

(
δx+ δy tan(θ/2)

δ

)
+

δx cos θ + δy sin θ

2δ2(δy cos θ − δx sin θ)2
, (13)
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where we defined δ =
√

δx2 + δy2. Note that

tan(θ/2) =
sin θ

1 + cos θ
, (14)

so this can all be written in terms of cos θ and sin θ (i.e. no need to actually calculate θ). Thus, the formula is
complete by specifying

cos θ1 =
xB − xA

||xB − xA||
, sin θ1 =

yB − yA
||xB − xA||

, (15)

cos θ2 =
xC − xA

||xC − xA||
, sin θ2 =

yC − yA
||xC − xA||

. (16)

As Weierstrass substitution has problems at θ = π, the integral is only valid when the triangle is aligned with node
A west of nodes B,C — but this is always achievable by a simple rotation.
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Solution for the 1-Dimensional case

Here, we show the derivations and explanations to find the optimal distribution of x in the simplified case of a
one-dimensional (1D) leaf. We begin by considering a system with a single source s0 = 1 at x0 = 0, and n delivery
nodes positioned at locations x = {x1, x2, . . . , xn}, which get constrained to x ∈ [0, L].
Similar to the 2D case, the sink values si represent the rate at which flow is absorbed or removed at each node xi.

The sink value is calculated based on the distances between the neighbouring nodes, normalized by the system length
L. An exception to this is the first and last nodes, where the distance to the boundary is used instead.

si = − 1

2L
(xi+1 − xi−1), (17)

with special attention to correct at x0 and xn.

x0 = 0
x1

s1

x2

s2

xi

si

xi+1

si+1

xn

sn

xn+1 = L

FIG. 7. Diagram of the 1D transport networks with moving nodes (blue) and a fixed source (red).

Next, we compute the flow values Fi of the passing flow through each node. Since we are in 1D, we assume that
the nodes are only connected to the nodes on their sides. Hence, the flow expression for each edge simplifies to

Fi+1 = Fi − si = F1 −
∑
j≤i

sj , (18)

given that F1 = 1.
The conductivity at each node denoted Ci, is a function of the flow Fi. We can find the optimal conductivity for

this system by minimizing the transport power Pt given by

Pt =
∑

i∈transport

Li

(
F 2
i

Ci
+ ctC

γ
i

)
, (19)

by setting ∂P
∂C = 0, we find the conductivity at node xi to be:

Ci =

(
F 2
i

ctγ

) 1
1+γ

. (20)

This formula captures the non-linear dependence of conductivity on the square of the flow, modulated by the param-
eters ct and γ.
The total power P of the system consists of two components: the transport power Pt and the delivery power Pd.

The transport power is given by:

Pt =
∑

i∈transport

Li

(
F 2
i

Ci
+ ctC

γ
i

)
, (21)

where Li represents the length of the transport segment corresponding to node xi, and the two terms inside the
summation represent the power due to flow and the power related to the conductivity, respectively.

The delivery power, on the other hand, is the power used to deliver flow from the sink nodes to their surrounding
areas, and it depends on the sink values si and the average delivery distance ⟨ℓi⟩. The delivery power is expressed as:

Pdelivery =
∑

i∈delivery

⟨ℓi⟩
s2i

Ĉ
, (22)

where Ĉ represents the delivery conductivity, and ⟨ℓi⟩ is the average distance over which the flow must be delivered.
The average delivery distance ⟨ℓi⟩ for a node at position xi is computed using the positions of the left and right

domain edges, denoted xL and xR, respectively. The formula for the average delivery distance is the weighted average:

⟨ℓi⟩ =
(xR − xi)

xR − xL
· (xR − xi)

2
+

(xi− xL)

(xR − xL)
· (xi − xL)

2
=

1

2(xR − xL)

[
(xR − xi)

2 + (xi − xL)
2
]

(23)

This formula accounts for the spatial distribution of the flow and the relative positions of the nodes within the system.
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Scaling for different network sizes

One-dimensional network

We analyze the scaling of the total power P given by

P = Pt + Pd, (24)

with respect to the number of elements N on the 1 dimensional case using the expressions above. For this, we assume
the domain to be fixed with N .
Starting by the transport term, we have

Pt =
∑

i∈transport

Li

(
F 2

Ci
+ ctC

γ
i

)
, (25)

where O(F 2
i ) ≈ 1/N2, and thus O(Ci) = ( 1

N2 )
2/3 according to Eq. (20). We also assume ct constant and γ = 0.5 as

in the main text. Taking into account Li ∝ L
N , and splitting the terms we find:

O(Pt) = O(Σ) O(L) O(F 2) O(C−1) +O(Σ) O(L) O(C1/2) = N− 2
3 = N− 2

3 +N− 2
3 . (26)

Hence, the transport network scales as O(Pt) = N−2/3.
In the case of the delivery term, given by

Pd =
∑

i∈delivery

⟨ℓi⟩
s2i

Ĉ
, (27)

where ⟨ℓi⟩ ∝ L
N , s2i ∝ 1

N2 and Ĉ is constant, giving:

O(Pd) = O(Σ) O(⟨ℓ⟩) O(s2) = N−2. (28)

The ratio between the transport and cost terms to the delivery term scales as:

O(Ω) =
O(Pd)

O(Pt)
=

N−2

N− 2
3

= N− 4
3 (29)

Therefore, the ratio scales as O(Ω) = N−4/3.
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Two-dimensional network

In the case of two dimensions, such as the ones on the networks of the main paper, we need to approximate the
scaling of the edges. This is due to the optimized conductivities making the graph sparse, resulting in a linear scaling
of the edges.

Similarly to , we want to understand the scaling of the terms of the power by analyizing how its components scale
with N .

Here, the scaling of the flow O(F 2) is unknown because it depends on the network structure and therefore γ.
Empirically O(F 2) ≈ 1/N if γ = 1/2 and O(F 2) ≈ 1/

√
N if γ = 1/4. This is approximate because in reality F 2 does

not scale uniformly: some edges have O(1) and some have O(1/N).

Here we assume γ = 1/2 and take

O(F 2) = N−1 (30)

The remaining terms have known scaling with N :

C =

(
F 2

ctγ

) 1
1+γ

⇒ O(C) = O(ct)
− 2

3 N− 2
3 (31)

O(L) = N− 1
2 (32)

O(⟨ℓ⟩) = N− 1
2 (33)

O(
∑

) = N (34)

O(s2) = N−2 (35)

So we find

O(Pt) = O(Σ) O(L) O(F 2) O(C−1) +O(Σ) O(L) O(C1/2) = N
1
6 +N

1
6 = N

1
6 (36)

and analogously

O(Pd) = O(Σ) O(⟨ℓ⟩) O(s2) = N−3/2. (37)

Therefore, the resulting power ratio scales as

O(Ω) =
O(Pd)

O(Pt)
=

N−3/2

N1/6
= N−10/6 = N−5/3 (38)

which changes the scaling w.r.t. the one dimensional case.
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Differentiable Voronoi

In this section, we show an overview of the clipped Voronoi tessellation implementation used. Notably, our approach
to make it differentiable relies on a pre-calculation using SciPy, and leveraging that information to efficiency construct
the resulting diagram.

Algorithm 1 Differentiable Voronoi Tessellation Clipped by a Boundary

Require: Set of points x = {(xi, yi)}, convex boundary polygon boundary
Ensure: Voronoi nodes and regions clipped within the boundary
1: procedure differentiable voronoi(x, boundary)
2: Voronoi Pre-calculation (non-differentiable using SciPy and CPU)
3: Extend x by scaling the boundary to avoid infinite regions:

xext = x ∪ (boundary + 100 · (boundary−mean(x)))

4: Compute initial Voronoi regions and Delaunay triangulation using scipy.spatial.
5: Identify regions needing clipping by checking intersections of Voronoi edges with boundary edges.

6: Differentiable Clipped Voronoi (GPU friendly)
7: Use Delaunay triangulation on xext to find Voronoi nodes as follows:
8: for each triangle defined by points {(ax, ay), (bx, by), (cx, cy)} do
9: Compute determinant:

D = 2 · ((ax − cx) · (by − cy)− (bx − cx) · (ay − cy))

10: Compute coordinates (ux, uy) of the Voronoi node:

ux =
(a2

x + a2
y)(by − cy) + (b2x + b2y)(cy − ay) + (c2x + c2y)(ay − by)

D

uy =
(a2

x + a2
y)(cx − bx) + (b2x + b2y)(ax − cx) + (c2x + c2y)(bx − ax)

D

11: end for
12: Determine which regions require clipping based on intersection and inclusion conditions.
13: for each Voronoi region do
14: if region needs clipping then
15: Clip the region to the boundary by finding intersections of edges (A,B) and (C,D) as follows:
16: Calculate intersection parameter:

ua =
(D − C)× (A− C)

(B −A)× (D − C)

17: If 0 ≤ ua ≤ 1, compute intersection point:

(x, y) = A+ ua · (B −A)

18: Sort clipped vertices by angle θ relative to the centroid for ordered polygon representation:

θ = − arctan 2(y − ycentroid, x− xcentroid)

19: end if
20: end for
21: Return Voronoi Nodes and Regions
22: Concatenate and reorder clipped regions to form the final set of valid Voronoi polygons within the boundary.
23: end procedure

Since this implementation is written with GPU in mind, most of the loops are instead vector operations, and
calculation occur on its majority in parallel. For calculating the gradients we rely on jax [16] automatic differentiation
rules.
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Implicit Function Theorem

During the optimization of the nodes positions, we perform a full optimization of the conductivities of the system.
To do so, we use the dynamical model defined in the main text as

dCe

dt
=

(
F 2
e

Cγ+1
e

− γct

)
Ce + c0e

−λt, (39)

until it has reached the steady state C∗. The steady state solution is equivalent to finding the fixed point of the
equation dCe

dt = 0. From now on, we are interested in solving for the implicit function f(C∗, x) = 0.

The result C∗ is dependent on the positions of the nodes x in a non-trivial manner. Namely, C∗ depends on
F e, which is a function of Le and s, all of which dependent on x. We are interested in finding dC

dx , and even
though automatic differentiation would allow to apply the chain rule through the iterative solver, the memory and
computational cost of calculating derivatives and storing them would make it computationally challenging. Luckily,
since we are iterating over an implicit function, we can make use of the implicit function theorem [17, 27], which
allows for backpropagation through a fixed-point iteration without requiring saving each iterative step into memory.

For simplicity of presentation, here we will consider that the power only depends on the optimal conductivities, i.e.

dP

dx
=

dP

dC∗ · dC
∗

dx
. (40)

In order to compute dC∗

dx (the gradients of interest here), we use its implicit form f(C, x) = 0 and obtain

df

dx
=

∂f

∂C
· dC

∗

dx
+

∂f

∂x
= 0. (41)

Letting A = ∂f
∂C (the Jacobian of f with respect to C) and B = ∂f

∂x (the Jacobian of f with respect to x), we

isolate ∂C∗

∂x :

dC∗

dx
= −A−1B. (42)

This Jacobian is memory intensive (here we are ignoring the dependencies on the solver of F ). However, we can
rephrase this as a fixed-point problem using the adjoint vector w given by

wT = vTA. (43)

where v = ∂f
∂C∗ . This means that we can solve for w iteratively if we express it in implicit form such that w = f(w) =

wT − vtA where we are around f(w) = 0, and have

df

dx
= wTB. (44)

which is equivalent to finding dC
dx in the regime where f(C, x) = f(C∗, x) = 0. Thus, by applying the implicit

function theorem, we can compute the gradient with respect to parameters in the adaptation model for conductivity
optimization, ensuring efficiency by avoiding the storage and backpropagation through each individual iteration step.

Our implementation of the fixed point approach can be found at https://github.com/kirkegaardlab/gradnodes.

https://github.com/kirkegaardlab/gradnodes

	Adaptive Node Positioning in Biological Transport Networks
	Abstract
	Acknowledgments
	References
	Spatially continuous sinks: integrals
	Solution for the 1-Dimensional case
	Scaling for different network sizes
	One-dimensional network
	Two-dimensional network

	Differentiable Voronoi
	Implicit Function Theorem


