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We describe the duality of incompressible Navier-Stokes fluid dynamics in three dimensions, leading to its
reformulation in terms of a one-dimensional momentum loop equation. The momentum loop equation
does not have finite-time blow-up solutions. The decaying turbulence is a solution of this equation
equivalent to a string theory with discrete target space made of regular star polygons and Ising degrees of
freedom on the sides. This string theory is solvable in the turbulent limit, equivalent to the quasiclassical
approximation in a nontrivial calculable background. As a result, the spectrum of decay indexes is
analytically computed, and it agrees very well with real and numerical experiments. Among
the decay indexes there are complex conjugate pairs related to zeros of the Riemann zeta function. The
Kolmogorov scaling laws are replaced by certain number theory functions, nonlinear in log-log scale.
Keywords: Turbulence, Fractal, Fixed Point, Velocity Circulation, Loop Equations

I. INTRODUCTION

The incompressible Navier-Stokes (NS) equation is
more than a partial differential equation with quadratic
nonlinearity; it encapsulates deep hidden symmetries, re-
flecting the geometric nature of fluid flows. Arnold2 first
revealed the geometric aspects of fluid dynamics, showing
the relationship between the evolution of fluid elements,
preserving volume, and diffeomorphism groups.

This insight has sparked considerable mathematical in-
vestigation, yet it has not resolved the enduring problem
of explosive solutions in NS dynamics. Power counting
suggests that finite-time singularities (poles) might arise
in the NS equation, but is a deeper mechanism preventing
such outcomes?

In 1993, we introduced a new geometric approach to
the NS equation called the loop equation7. This approach
predicted the Area Law for the probability distribution
of turbulent velocity circulation around large stationary
loops, a prediction later confirmed numerically5,6.

More recently, we found an exact solution to the loop
equation9, yielding explicit energy spectrum formulas for
decaying turbulence, which closely align with experimen-
tal and simulation data10.

This paper, however, focuses on the broader duality be-
tween fluid dynamics and a Schrödinger equation in loop
space. This duality reveals a hidden one-dimensional
quantum system underlying classical NS dynamics in any
spatial dimension. The dimensional reduction and the
quantum nature embedded in everyday fluids open new
avenues for study.

We present a general framework for solving the NS
equation’s Cauchy problem with rough initial data of fi-
nite variance σ. Classical solutions are recovered in the
limit σ → 0. From a physical standpoint, this limit
is unnecessary, as real fluids always experience thermal
noise, which the NS evolution can amplify or diminish
over time.

We highlight five key features of this new representa-
tion:

1. It uncovers a duality between classical fluid dynam-
ics and quantum mechanics.

2. It reduces the problem from (d + 1) to (1 + 1) di-
mensions, introducing fractal curves as solutions.

3. It allows for exact solutions characterized by fixed
trajectories.

4. One such trajectory provides an exact solution for
decaying turbulence9,10.

5. The explosive solutions are ruled out.

II. LOOP FUNCTIONAL AND ITS GENERAL
PROPERTIES

The loop functional is defined as a phase factor asso-
ciated with velocity circulation, averaged over the initial
distribution v⃗0 of the velocity field

Ψ(γ,C) =
〈

exp
( ıγ
ν

Γ
)〉

v⃗0
; (1)

Γ =
∮

C

v⃗(r⃗) · dr⃗; (2)

We use viscosity ν as a unit of circulation. Both have the
same dimension L2/T as the Planck’s constant ℏ. The
viscosity will play the same role in our theory as Planck’s
constant in quantum mechanics. The variable γ with this
definition is dimensionless.

This loop functional is the Fourier transform of the
PDF for the circulation over fixed loop C

Ψ(γ,C) =
∫ ∞

−∞
dΓP (Γ, C) exp

( ıγ
ν

Γ
)

; (3)

P (Γ, C) =
∫ ∞

−∞

dγ

2πΨ(γ,C) exp
(

− ıγ

ν
Γ
)

(4)

There is an implicit dependence of time, coming from
the evolution of the velocity field by the Navier-Stokes
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Loop Functional Evolution 

  Noisy data
t=0

P∼(t+t0)
(-½);  Ѱ(t→∞)→1

Decaying turbulence

P∼(t*-t)
(-½);  Ѱ(t→t*)∈C1

Finite time Blowup?

P=P*(θ) ; Ѱ*∝e(-Σ*Σ); 
Σ=∫ C ⨯ d C;

Fixed Point

Laminar Flow

Laminar Flow

Figure 1. Asymptotic trajectories of the time evolution for the
loop functional inside the unit circle in the complex plane.
The laminar flow is the yellow region on the circle close to
Ψ = 1. Three other flows are 1) hypothetical explosion, 2)
decaying turbulence, and 3) special fixed point.

equation

∂tv⃗ = −ν∇ × ω⃗ − v⃗ × ω⃗ − ∇⃗
(
p+ v⃗2

2

)
; (5)

∇ · v⃗ = 0; (6)
ω⃗ = ∇⃗ × v⃗ (7)

We restrict ourselves to three-dimensional Euclidean
space, the most interesting case for physics applications.
The generalization to arbitrary dimension is straightfor-
ward, as discussed in previous papers7–9.

In the next sections, we shall study the Cauchy prob-
lem for the loop equation7,8, which follows from the
Navier-Stokes equation. Here, we state some general
properties of the loop function and various scenarios of
its evolution. The first obvious property is that this
evolution goes inside the unit circle

|Ψ(γ,C)| ≤ 1; ∀t; (8)

At a small enough time passed from initial data, t < tc,
turning off the noise would bring us to the usual unique
laminar solution of the Navier-Stokes equation, corre-
sponding to the loop functional at the unit circle with
a small enough phase.

lim
σ→0

|Ψ(γ,C)| = 1; ∀t < tc; (9)

Here, σ denotes the variance of the Gaussian distribu-
tion of the velocity field around some smooth initial
value. Generally speaking, we could expect the follow-
ing fixed points (see Fig.1) of the time evolution for the
loop functional11.

1. Special solution. There is a fixed point corre-
sponding to the global random rotation of the fluid
(see7–9).

2. Decaying Turbulence. The evolution of loop av-
erage reaches some fixed trajectory, independent

of initial data, and covers some nontrivial mani-
fold (see9,10). At infinite time, this fixed trajectory
leads to zero velocity, corresponding to all the ki-
netic energy dissipated by viscous effects.

3. Finite-time explosion? The vorticity could blow
up at some finite or infinite point in time, leading
to infinite circulation. In this case, the loop func-
tional would cover the unit circle at this moment
of singularity.

In the following sections, we elaborate on each of these
possible regimes. The finite-time explosion is proven to
be inconsistent and is therefore ruled out.

III. LOOP EQUATION

The first step is to write down the loop equation by
projecting the Hopf equation to the loop space.

Before doing that, we have to specify certain bound-
ary conditions which we assume in our fluid dynamics.
Namely, we consider infinite space, with boundary con-
dition of vanishing or constant velocity at infinity.

Vorticity can be everywhere in space, but not at infin-
ity, where the velocity gradients vanish by our boundary
conditions. We also assume that there are no internal
boundaries, such as the surfaces of the bodies which our
fluid flows around. We do not eliminate some surfaces
with singular vorticity in the limit of zero viscosity, such
as vortex lines and sheets, as long as these singular re-
gions are located in a finite part of the volume, in agree-
ment with our boundary conditions. At finite viscosity,
these regions have finite thickness proportional to

√
ν,

which leads to anomalous dissipation in the turbulent
flow.

The computations leading to the loop equation were
performed in the old papers7,8. For the reader’s con-
venience, we repeat them here using another language,
hopefully more clear for mathematicians.

The straightforward time derivative of the loop func-
tional, assuming the constant loop C and using time
derivative (5) of the velocity field in the circulation, yields

∂tΨ(γ, C⃗) =〈
ıγ

ν

∮
dC⃗(θ) · L⃗(C⃗(θ)) exp

( ıγ
ν

Γ(v⃗, C⃗)
)〉

sol

; (10)

L⃗(r⃗) = −ν∇⃗ × ω⃗(r⃗) + ω⃗(r⃗) × v⃗(r⃗) (11)

The averaging ⟨⟩sol goes, as before, over all NS solutions
v⃗(r⃗), ω⃗(r⃗) = ∇⃗ × v⃗(r⃗) with a given set of initial values
v⃗0(r⃗). It is implied that a probability measure (see ex-
amples below) is supplied for this set of initial velocity
fields. The phase factor of circulation is averaged over
initial data using this measure.

The gradient terms ∇⃗
(
p+ v⃗2

2

)
in (5) dropped in the

time derivative of the circulation as the integral of a
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gradient of some single-valued function of coordinate
H(r⃗) = p(r⃗) + v⃗2(r⃗)

2 around the closed loop:∮
dC⃗(θ) · ∇⃗H(C⃗(θ)) =

∮
dH(C⃗(θ)) = 0.

The velocity field v⃗ is a solution of the Poisson equation,
relating it to vorticity by incompressibility condition

v⃗(r⃗) = 1
∇⃗2

∇⃗ × ω⃗(r⃗) (12)

This representation leaves vorticity as the main unknown
variable in the time derivative of the loop functional.

To find the loop equation, we must replace the vorticity
and its gradients with certain operators acting on the
loop independently of the vorticity and velocity fields.
As a result of such transformation, the vector function
L⃗( vecC(θ)) will be replaced by a certain operator L̂(θ)
in loop space acting on Ψ(γ, C⃗)

L̂(θ) exp
( ıγ
ν

Γ(v⃗, C⃗)
)

=(
−ν∇⃗(θ) × ω̂(θ) + ω̂(θ) × v̂(θ)

)
exp

( ıγ
ν

Γ(v⃗, C⃗)
)

;(13)

∂tΨ(γ, C⃗) = ıγ

ν

∮
dC⃗(θ) · L̂(θ)Ψ(γ, C⃗) (14)

As this operator does not depend on the dynamical vari-
ables v⃗, ω⃗, it can taken out of the averaging over trajecto-
ries starting from various initial data v⃗0(r⃗), so that this
operator acts on the loop average Ψ(γ, C⃗). Such is the
plan of the proof of the loop equation. We define the
loop operators and follow this plan in the next section.

IV. THE DEFINITIONS OF THE LOOP OPERATORS
AND THE PROOF OF THE LOOP EQUATION

The operators in the loop equation were introduced in7

and explained at length in my review paper8.
In this paper, we do not assume any knowledge of the

previous work; instead, we derive the loop operators from
scratch using a simpler method.

First, we replace the smooth loop C by a polygon with
N sides with the vanishing length in the limit N → ∞.
We postpone this local limit until we solve the discrete
loop equation. This limit will define the continuum the-
ory in the same way as in the QFT; the functional integral
is discretized using a lattice with the lattice spacing go-
ing to zero at the end of the calculation. In this limit,
the theory’s parameters vary with the lattice spacing to
provide a finite result for the physical observables.

The first observation is that with smooth velocity and
finite vorticity field, the discrete circulation around the
polygon C⃗k, k = 0, . . . N − 1, C⃗N = C⃗0 converges to the
circulation around the smooth loop

Γ ≡
∑

k

∆Ck · v⃗(C⃗k) →
∮
dC⃗(θ) · v⃗(C⃗(θ)); (15)

∆Ck = C⃗k+1 − C⃗k; (16)

The finite difference becomes derivative for the smooth
loop; the error will vanish as O(1/N).

The next property is also easy to prove using the Stokes
theorem for a small triangle

(
C⃗k−1, C⃗k, C⃗k+1

)
∇⃗k ≡ ∂C⃗k

; (17)

∇⃗kΓ ∝
(

∆C⃗k + ∆C⃗k+1

)
× ω⃗(C⃗k) → 0 (18)

This first derivative vanishes as ∆C⃗k ∼ O(1/N) in the
local limit.

The second derivative, however, stays finite. We prefer
to use another set of variables

s⃗k = ∆C⃗k; (19)
η⃗k = ∂s⃗k

; (20)
∇⃗k = −∆η⃗k−1; (21)

The last relation follows from the chain rule

∇⃗k = ∂s⃗k

∂C⃗k

· η⃗k + ∂s⃗k−1

∂C⃗k

· η⃗k−1 =

η⃗k−1 − η⃗k = −∆η⃗k−1 (22)

The vorticity can be represented as

η⃗k × ∇⃗kΓ → ω⃗(C⃗k) +O(1/N); (23)

The contour C becomes an open line when we move
all s⃗k independently, without restricting

∑
s⃗k = 0. How-

ever, the contribution to the time derivative of circula-
tion from the extra gap between the endpoints ∆∂tΓ ∝
H(C⃗N ) − H(C⃗1) where H(r⃗) = p(r⃗) + v⃗2(r⃗)

2 is the en-
thalpy, which is supposed to be differentiable. Thus, this
error term goes to zero as 1/N which justifies our ap-
proximations.

Finally, the velocity field at the vertex v⃗(C⃗k) can be
related to the vorticity through the Biot-Savart law

v⃗(C⃗k) exp (ıΓ) = −1/(∇⃗2
k)∇⃗k × ω⃗(C⃗k) exp (ıΓ) ;(24)

Let us verify this relation using the Biot-Savart integral
formula for the inverse Laplace operator

v⃗(C⃗k) exp (ıΓ) = O(1/N)
1

4π

∫
d3r

r⃗ × ω⃗(C⃗k + r⃗)
|r⃗|3

exp
(
ıΓ̃(r⃗)

)
; (25)

Γ̃(r⃗) = Γ|C⃗k⇒C⃗k+r⃗ (26)

At first glance, the loop in the new circulation Γ̃(r⃗)
involves two long ”wires”: (C⃗k−1, C⃗k + r⃗) and (C⃗k +
r⃗, C⃗k+1).

However, in the local limit, when the distance |C⃗k+1 −
C⃗k−1| ≪ |r|, these two wires have zero area inside the
arising thin triangle, so they effectively cancel in virtue
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of the Stokes theorem, assuming the Biot-Savart integral
converges.

Γ̃(r⃗) → Γ̃(0) = Γ (27)

This produces the desired result in the Biot-Savart for-
mula.

The convergence of the Biot-Savart integral follows
from our boundary conditions, assuming no vorticity at
infinity or even stronger requirement of finite support of
vorticity. The phase factor exp

(
ıΓ̃(r)

)
does not influence

the absolute convergence, so it can be set to exp (ıΓ) for
that purpose and taken out of the integral, returning us
to the convergence of the ordinary Biot-Savart integral.

Therefore, with O(1/N) accuracy, we can replace the
right side of the (10) by its discrete version with operators
involving ∇⃗k

∂t ⟨exp (ıΓ)⟩ =
ıγ

ν

∑
k

∆C⃗k · L̂k ⟨exp (ıΓ)⟩ +O(1/N); (28)

L̂k = −ν∇⃗k × ω̂k + ω̂k × v̂k; (29)
v̂k = −1/(∇⃗2

k)∇⃗k × ω̂k; (30)
ω̂k = η⃗k × ∇⃗k; (31)

We restrict ourselves to the velocity vanishing at in-
finity and no internal boundaries in the physical domain.
With this boundary condition, the harmonic potential is
zero, and there is no zero mode to add to the inverse
Laplace operator.

In the rest of the paper, we shall use the lan-
guage of the continuum theory, implying the limit
N → ∞ of a polygon C⃗ with N sides. While the
lengths of the sides of C⃗ vanish in the local limit
N → ∞, the sides of P⃗ polygon are not at our dis-
posal, so they may stay finite (this will happen in
the decaying turbulence below).

V. SCHRÖDINGER EQUATION IN LOOP SPACE

Before we investigate the solutions of the loop equa-
tion, let us consider its physical and mathematical mean-
ing and its relation to the geometry of the incompressible
flow.

By definition, the loop functional Ψ(γ, C⃗) is a su-
perposition of the phase factors exp

(
ıγ
ν Γ(v⃗, C⃗)

)
with

the circulation Γ of a particular solution v⃗(r⃗, t) of the
Navier-Stokes equation. These solutions have initial val-
ues v⃗(r⃗, 0) = v⃗0(r⃗), distributed by some distribution P [v⃗]
which we assume Gaussian with the mean given by some
smooth initial field and some coordinate-independent
variance σ.

In the turbulent scenario, the Navier-Stokes trajecto-
ries initiated from a narrow vicinity of some smooth ve-
locity field eventually expand and cover some attractor,

slowly varying with time and asymptotically converging
to v⃗ = 0,Ψ = 1.

The alternative smooth solution of the Navier-Stokes
equation, sought after in numerous mathematical papers,
would correspond to these trajectories staying close and
converging to a single trajectory in the limit σ → 0. This
single trajectory would go along the unit circle, bounding
our disk.

With this generalization of a definition of the Cauchy
problem for the Navier-Stokes equation, we can address
the existence of smooth, explosive, or stochastic (i.e., tur-
bulent) solutions within the loop equation’s framework.

The transformation from the Navier-Stokes equation
to the loop equation is similar to that from the Newton
equation of the particle in random media to the diffusion
equation. We add dimension to the problem, switching
to the probability distribution in Rd, after which the par-
ticle’s infinitesimal time steps translate into probability
derivatives by coordinates.

There are two essential differences, however. Our
loop space is not just higher-dimensional; it is infinite-
dimensional. The second difference is that in addition to
diffusion in loop space, we have nonlocal terms affecting
the evolution of the distribution in loop space.

Our definition of the loop functional already by con-
struction has superficial similarities with quantum me-
chanics. We are summing phase factor over a manifold
of solutions of the Navier-Stokes equations. The circula-
tion plays the role of classical Action, and viscosity plays
the role of Planck’s constant.

This analogy becomes a complete equivalence when the
time derivative of the loop functional is represented as an
operator L⃗(C⃗(θ)) ⇒ L̂(θ) in the loop space acting on this
functional.

Now we have quantum mechanics in loop space, with
the Hamiltonian

Ĥ ∝
∮
dC⃗(θ) · L̂(θ).

The operator L̂(θ) depends of functional derivatives
δ

δC⃗(θ)
, as was determined, and discussed in previous

works7–9. Our polygonal approximation has no func-
tional derivatives, just ordinary derivatives ∇⃗k = ∂C⃗k

.
Thus, our quantum-mechanical system has 3(N−1) con-
tinuum degrees of freedom.

This Hamiltonian is not Hermitian, which reflects the
dissipation phenomena. The time reversal leads to com-
plex conjugation of the loop functional, a nontrivial
transformation, as there is no symmetry for the reflec-
tion of velocity field v⃗(r⃗, t) → −v⃗(r⃗, t).

The loop in our theory is a continuous (but not nec-
essarily differentiable) periodic function of the angular
variable θ. Geometrically, this is a map of the unit cir-
cle into Euclidean space S1 7→ Rd. In particular, there
could be several smaller periods, in which case this loop
becomes a set of several closed loops connected by back-
tracking wires like in Fig.2. Also, this map could have an
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Figure 2. The ”hairpin” loop C used in defining the pair cor-
relation of vorticity. The little circles are the loop variations
needed to bring down vorticity at two points in space. The
backtracking contribution to the circulation cancels at van-
ishing separation between these parallel lines.

arbitrary winding number n corresponding to the same
geometric loop in Rd traversed n times.

The linearity of the loop equation is the most impor-
tant property of this transformation from Navier-Stokes
equation to the quantum mechanics in loop space.

This transformation is an example of how the nonlinear
PDE reduces to the linear problem projected from high
dimensional space. In our case, this space is the loop
space, which is infinite-dimensional.

As a consequence of linearity, the generic solution of
the loop equation is a superposition of particular solu-
tions with various parameters. More generally, this is an
integral (or sum, in discrete case) over the space S of
solutions of the loop equation.

In the case of the Cauchy problem in loop space, the
measure for this integration over space S is determined by
the initial distribution of the velocity field. The asymp-
totic turbulent solution9 uniformly covers the Euler en-
semble, like the microcanonical distribution in Newton’s
mechanics covers the energy surface.

This turbulent solution does not solve a Cauchy prob-
lem; it rather solves the loop equation with the boundary
condition at infinite time Ψt=∞ = 1.

In the next section, we simplify the loop equation using
Fourier space; this will be the foundation for the subse-
quent analysis.

VI. MOMENTUM LOOP EQUATION

The loop operator, L̂ in (28), dramatically simplifies
in the functional Fourier space, which we call momentum
loop space. In our discrete approximation the momentum
loop will also be a polygon with N sides.

The origin of this simplification is the lack of direct
dependence of the loop operator L̂(θ) on the loop C itself.
Only derivatives ∇⃗k enter this operator.

From the point of view of quantum mechanics in loop
space, our Hamiltonian only depends on the canonical
momenta but not on the canonical coordinates. This
property is exact as long as we do not add external forces.

This remarkable symmetry property (translational in-
variance in loop space) allows us to look for the ”plain

wave” Ansats:

Ψ(γ,C) = ⟨ψp⟩init ; (32a)

ψp = exp
(

−ıγ
ν

∑
k

C⃗k · ∆P⃗k(t)
)

(32b)

The operators ∇⃗k, η⃗k become ordinary vectors when ap-
plied to ψp in (32):

∇⃗kψp = − ıγ

ν
∆P⃗kψp; (33)

η⃗kψp = ıγ

ν
P⃗kψp; (34)

The discrete loop equation (28) would be satisfied pro-
vided P⃗k(t) satisfies the following momentum loop equa-
tion (MLE)8,9

ν∂tP⃗ = −γ2(∆P⃗ )2P⃗ +

∆P⃗
(
γ2P⃗ · ∆P⃗ + ıγ

(
(P⃗ · ∆P⃗ )2

∆P⃗ 2
− P⃗ 2

))
; (35)

P⃗ ≡ P⃗k + P⃗k+1

2 ; (36)

∆P⃗ ≡ P⃗k+1 − P⃗k (37)

In the local limit N → ∞, the momentum loop will
have a discontinuity ∆P⃗ (θ) at every parameter 0 < θ ≤
2π, making it a fractal curve in complex space Cd. Such
a curve can only be defined using a limit like a polygonal
approximation.

You can regard this curve as a periodic random pro-
cess hopping around the circle (more about this process
below, in the context of the decaying turbulence).

Generally, there is also a discontinuity at the endpoint,
making this momentum loop open P⃗N ̸= P⃗0. With open
momentum loop, the loop functional Ψ(γ,C) is not trans-
lational invariant

Ψ(γ,C + a) =〈
exp

(
−ıγ
ν

(
a⃗ · ∆P⃗0(t) +

∑
k

C⃗k · ∆P⃗k(t)
))〉

init

;(38)

The details can be found in8,9. We will skip the argu-
ments t, θ in these loop equations, as there is no explicit
dependence of these equations on either of these vari-
ables.

VII. UNIFORM CONSTANT ROTATION AND
MOMENTUM LOOP

The loop equation has several unusual features, espe-
cially the discontinuities of the momentum loop. These
discontinuities have a physical meaning related to vortic-
ity.
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It is best understood by studying an exact fixed point
of the loop equation: the global constant rotation. We
set γ = ν for simplicity in this example.

vα(r⃗|ϕ) = ϕαβrβ ; (39)
ϕαβ = −ϕβα; (40)

Ψ[C] = exp
(
ıϕαβ

∮
dCα(θ)Cβ(θ)

)
; (41)

We present two implementations of the momentum loop
for this simple model: one using an infinite Fourier ex-
pansion and another using the limit of polygonal approx-
imation of the loop. This will allow us better understand
the origin and the meaning of these discontinuities.

A. Infinite Fourier series

Here is the implementation of the momentum loop by
an infinite Fourier series.

Pα(θ) =
∞∑

odd n=1
Pα,ne

ınθ + P̄α,ne
−ınθ; (42)

Pα,n = N (0, 1); (43)

P̄α,n = 4
πn

ϕαβPβ,n; (44)

ϕαβ = −ϕβα; (45)

The covariance matrix components are (for odd n, l)

⟨Pα,nPβ,l⟩ = 4
n
δnlϕαβ ; (46)

⟨Pα(θ)Pβ(θ′)⟩P = 2ıϕαβ sign(θ′ − θ); (47)

Ψ0[C] =
〈

exp
(
ı

∮
dC⃗(θ) · P⃗ (θ)

)〉
P

(48)

The loop functional is obtained after averaging over
Gaussian random variables Pα,n, ϕαβ . The loop function
can be computed without an explicit Functional Fourier
transform using the well-known properties of the Gaus-
sian expectation value of the exponential.〈

exp
(
ı

∮
dC⃗(θ) · P⃗ (θ)

)〉
P

∝ exp
(

−1/2

∮
dCα(θ)

∮
dCβ(θ′) ⟨Pα(θ)Pβ(θ′)⟩

)
∝ exp

(
−ı/2ϕαβ

∮
dCα(θ)

∮
dCβ(θ′) sign(θ − θ′)

)
=

exp (−ıϕαβΣαβ) ; (49)

Σαβ =
∮
dCα(θ)Cβ(θ) (50)

With this representation, it is obvious why the circu-
lation does not depend on time; the vorticity is a global
constant ϕαβ which does not depend on time nor r⃗. Sim-
ple tensor algebra in the time derivative of circulation

leads to the term∮
dCα(θ)Lα(θ) ∝ ϕαβϕβγΣγα = 0; (51)

Σαγ = −Σγα =
∮

C

rαdrγ (52)

The tensor trace vanishes by symmetry γ ↔ α, changing
the sign of Σαγ . This solution is a consequence of the
rotational symmetry of the Navier-Stokes equation.

Verification of the MLE is more tedious because, this
time, the velocity in (38) explicitly depends on the co-
ordinate. This will become 1/2ϕαβCβ(θ) in the equation,
which means that the operator L̂(θ) depends both on
C⃗, P⃗ . Still, for the proof, it suffices to know the momen-
tum loop (32) and the corresponding velocity field (38),
solving the Navier-Stokes equation for arbitrary constant
ϕ.

Though this special solution does not describe isotropic
turbulence, it helps understand the mathematical prop-
erties of the loop technology.

In particular, it shows the significance of the discon-
tinuities of the momentum loop P⃗ (θ), as it is manifest
in the correlation function(47). These discontinuities are
necessary for vorticity; they result from the divergence of
the Fourier series in (42).

The mean vorticity at the circle is proportional to ϕαβ

independently of θ〈
ωαβ(C⃗(θ))

〉
∝ ⟨Pα(θ)∆Pβ(θ)⟩ ∝ ϕαβ ; (53)

B. Polygonal approximation

The second implementation is more aligned with the
methods we use in the MLE. We approximate the loop
C as a polygon with vertices equidistant on a parametric
circle.

C ≈ {C⃗(0), C⃗(1), . . . , C⃗(N − 1)}; C⃗(N) = C⃗(0);(54)

ı

∫
C

C⃗(θ) · ϕ · dC⃗(θ) ≈ ı

N−1∑
k=0

C⃗(k) · ϕ · ∆C(k) =

ı

2

N−1∑
k,l=0

∆C⃗(k) · ϕ · ∆C⃗(l) sign(k − l); (55)

∆C⃗(k) = C⃗(k + 1) − C⃗(k); (56)

Our next task is to represent the loop functional as
a Gaussian average over the momentum loop P⃗ =
{P⃗ (0), . . . P⃗ (N − 1)} with symmetric covariance matrix

⟨Pα(k)Pβ(l)⟩ = ıϕαβ sign(k − l) (57)
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This representation will involve the following discrete
Fourier transform with Gaussian coefficients

P⃗ (k) =
N∑

n=1
ξ⃗(n) exp (ıkωn) + ξ⃗⋆(n) exp (−ıkωn) ;(58)

ωn = π(2n+ 1)/N ; (59)〈
ξα(n)ξ⋆

β(m)
〉

= ıϕαβδn,mU(n); (60)

U(n) = 2
N

N∑
k=−N

sign(k) sin (kωn) (61)

This discrete Fourier transform for U(n) reads

U(n) = 2
N tan

(
ωn

2
) ; (62)

Note that this P⃗ (k) is antiperiodic: it changes the sign
when the index goes around the loop. This, however,
keeps the solution simply periodic in C space, as only
even number of P⃗ variables have non-vanishing expecta-
tion values in this particular example.

This example shows both the discontinuities’ meaning
and the momentum loop’s approximation by a polygon.
In this example, the continuum limit N → ∞ can be
taken for the loop functional, but not at the level of the
Fourier series for the momentum loop.

The formal limit N → ∞ exists for U(n) at fixed n

U(n)N→∞ → 4
π(2n+ 1) (63)

and matches the continuum theory, but the oscillating
sum of Gaussian random variables does not converge to
any normal function; rather, this is a stochastic process
on S1 with convergent expectation values.

VIII. CAUCHY PROBLEM AND ITS SOLUTION

The Cauchy problem, notoriously difficult for nonlin-
ear PDE, can be solved analytically for the loop equation.
The hard part of the problem is now hidden in the limit
σ → 0, bringing us back to the Navier-Stokes equation
with smooth initial data.

Let us describe this solution. Assuming the MLE (35)
satisfied, we have certain conditions for the initial data
P⃗0(θ) = P⃗ (θ, 0). This data is distributed with some dis-
tribution W [P ] to be determined from the equation

Ψ0(γ,C) = Ψ(γ,C)t=0 =∫
[DP0]W [P⃗0] exp

(
−ıγ
ν

∮
C⃗ · dP⃗0

)
; (64)

This path integral is nothing but a functional Fourier
transform, which can be inverted as follows

W [P0] =
∫

[DC]Ψ0(γ,C) exp
(
ıγ

ν

∮
C⃗ · dP⃗0

)
;(65)

The definition of the parametric-invariant functional
measure in this Fourier integral was discussed in detail in
the old work7,8. The periodic vector functions C⃗(θ), P⃗ (θ)
are represented by the Fourier series, after which the
measure becomes a limit of the multiple integrals over
all the Fourier coefficients. As an alternative, one may
replace these loops with polygons with N → ∞ sides
and define the measure as a product of integrals over the
positions of the vertices of these polygons.

The explicit formulas for the Fourier measure, proof of
its parametric invariance, and some computations of the
Functional Fourier Transform can be found in8, section
7.10 (Initial data).

In the next section, we completely solve the Cauchy
problem for an interesting example – the exact fixed point
of the loop equation corresponding to a global random
rotation.

In a physically justified case of Gaussian thermal noise
ξ⃗(r⃗) added to the initial velocity field v⃗0(r⃗), we can ad-
vance solving the Cauchy problem for a generic initial
velocity field.

Averaging the initial loop functional over Gaussian
noise, we find

Ψ0(γ,C) = exp
(
ıγ

ν

∮
C

dr⃗ · v⃗0(r⃗)
)

exp
(

− γ2

2ν2

∮
C

∮
C

dr⃗ ·
〈
ξ⃗(r⃗) ⊗ ξ⃗(r⃗′)

〉
· dr⃗′

)
(66)

This Gaussian noise is correlated at small distances r0,
related to the molecular structure of the fluid, which leads
to the following estimate∮

C

∮
C

dr⃗ ·
〈
ξ⃗(r⃗) ⊗ ξ⃗(r⃗′)

〉
· dr⃗′ → |C|σ2

r2
0

; (67)

|C| =
∮ ∣∣∣dC⃗(θ)

∣∣∣ =
∫ 1

0
dθ|C⃗ ′(θ)| (68)

This estimate yields the following initial distribution of
the random loop P⃗0(θ)

W [P0] =
∫

[DC] exp (−m0|C|)

exp
(
ıγ

ν

∮
dC⃗ ·

(
v⃗0(C⃗(θ)) − P⃗0(θ)

))
; (69)

m0 = γ2σ2

2ν2r2
0

(70)

This path integral is equivalent to that of a relativistic
Klein-Gordon particle in the presence of the electromag-
netic field with vector potential v⃗0(r⃗) in three Euclidean
dimensions. The unusual feature is the distributed mo-
mentum P⃗0(θ) along the loop.

Let us compute this path integral for the uniform ini-
tial velocity v⃗0(r⃗) = const . In this case, the circulation
is zero, so we are left with the Fourier transform of the
exponential of the loop’s length.
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This path integral is equivalent1 to the Klein-Gorgon
propagator of the free massive particle with the mass
m0 up to renormalization coming from the short-range
fluctuations of the path.

The constant velocity v0(C⃗(θ)) drops from the closed-
loop integral, which brings the exponential to the or-
dinary momentum term in the Action

∮
dC⃗(θ) · P⃗0(θ).

This path integral is computed by fixing the gauge for
the parametric invariance θ ⇒ f(θ), which is studied in
the modern QFT, say in1, Chapter 9.

The result is the following Gaussian distribution

W [P ] ∝∫ ∞

0
dT exp

(
− γ2

2ν2

∫ T

0
ds

(
σ2

r2
0

+ P⃗ (s)2
))

; (71)

Fourier coefficients p⃗(n) can parametrize this periodic
trajectory

P⃗ (s) =
∞∑

n=−∞;n ̸=0
p⃗(n) exp

(
2πıns
T

)
; (72)

p⃗∗(m) = p⃗(−m); (73)

⟨pα(n)pβ(m)⟩ = δαβν
2

γ2T
δn,−m (74)

The term with n = 0 is omitted, as it drops from the
closed loop integral

∫
C⃗(s) · dP⃗ (s). These Fourier coeffi-

cients at fixed T are Gaussian variables with the above
variance matrix ⟨pα(n)pβ(m)⟩. This property is, in prin-
ciple, sufficient to compute the terms of the perturbative
expansions in inverse powers of viscosity (see below).

These Fourier coefficients do not decrease with num-
ber, so the curve p⃗(θ, 0) is fractal rather than smooth. In
particular, P⃗ (T ) ̸= P⃗ (0).

Note, that the limit σ → 0 of smooth initial velocity
field corresponds to the zero mass for this relativistic par-
ticle. This limit does not lead to infinities in correlation
functions in three or more dimensions. This important
question deserves more investigation in our case. If this
limit exists, we can prove the no-explosion theo-
rem for the smooth initial field.

Let us summarize the results of this section. We by-
passed the nonlinear Cauchy problem for the Navier-
Stokes equation by treating it as a limit of the solvable
Cauchy problem in the linear loop equation. As we ar-
gued, the unavoidable thermal noise in any physical fluid
makes such a limit the correct definition.

We have advanced the Cauchy problem further by re-
ducing the dimensionality from d + 1 dimensions in the
Navier-Stokes equation to 1 + 1 dimensions in the MLE.

Before elaborating on that dimensional reduction, we
consider an exact solution of the loop equation corre-
sponding to the random global rotation of the original
velocity field and the associated Cauchy problem.

IX. UNIVERSALITY AND SCALING OF MLE

Various symmetry properties affect solutions’ space,
especially their fixed trajectories.

First of all, this equation is parametric invariant:

P⃗ (θ, t) ⇒ P⃗ (f(θ), t); f ′(θ) > 0; (75)

Naturally, any initial condition P⃗ (θ, 0) = P⃗0(θ) will break
this invariance; each such initial data will generate a fam-
ily of solutions corresponding to initial data P⃗0(f(θ)).

The lack of explicit time dependence on the right side
leads to time translation invariance:

P⃗ (θ, t) ⇒ P⃗ (θ, t+ a) (76)

Less trivial but also very significant is the time-rescaling
symmetry:

P⃗ (θ, t) ⇒
√
λP⃗ (θ, λt), (77)

This symmetry follows because the right side of (35) is a
homogeneous functional of the third degree in P⃗ without
explicit time dependence.

This scale transformation is quite different from the
scale transformation in the Navier-Stokes equation,
which involves rescaling of the viscosity parameter:

v⃗(r⃗, t) ⇒ v⃗(αr⃗, λt)
αλ

; (78)

ν ⇒ ν
α2

λ
(79)

In our case, there is a genuine scale invariance without
parameter changes; in other words, no dimensional pa-
rameters are left in MLE.

Using this invariance, one can make the following
transformation of the momentum loop and its variables

P⃗ =
√

ν

2(t+ t0)
F⃗

γ
(80)

The new vector function F⃗ satisfies the following dimen-
sionless equation

2∂τ F⃗ =
(

1 − (∆F⃗ )2
)
F⃗ +

∆F⃗
(
γ2F⃗ · ∆F⃗ + ıγ

(
(F⃗ · ∆F⃗ )2

∆F⃗ 2
− F⃗ 2

))
; (81)

τ = log t+ t0
t0

; (82)

The viscosity disappeared from this equation; now
it only enters the initial data

F⃗ (θ, 0) =
√

2t0
ν
P⃗0(θ) (83)
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This universality property is extremely important. Note
that the loop functional is now represented as

Ψ(C, t) =〈
exp

−ı
∮
C⃗(θ) · dθF⃗

(
θ, log t+ t0

t0

)
√

2ν(t+ t0)


〉

(84)

with the square root of viscosity in the denominator as a
coupling constant in nonlinear QFT.

This formula immediately suggests that turbulence is
a quasiclassical phenomenon in our quantum mechani-
cal system that can be studied by the well-known WKB
method (or corresponding methods developed by Kol-
mogorov and Maslov in the mathematical literature).

In the conventional approach to fluid mechanics, based
on the Navier-Stokes equation, the Reynolds number dis-
tinguishing between the laminar and turbulent flow en-
ters the equation. One has to study various regimes in
that equation, including the inviscid limit presumably
related to the turbulence, but different from the Euler
equation due to the dissipation anomaly.

In our dual theory, representing the same Navier-
Stokes dynamics as a quantum system, the dynamical
equation (81) is universal; it does not depend upon the
Reynolds number. This number enters initial data and
the relation between our solution for F⃗ and the loop func-
tional (i.e., the PDF for the circulation as a functional of
the shape of the loop).

The evolution of the loop functional Ψ inside the unit
circle in the complex plane in Fig.1 goes by universal
trajectories, determined by (81). The Reynolds number
describes the initial position of this Ψ inside the circle.
The distance |Ψ − 1| from the fixed point Ψ∗ = 1 is the
true measure of turbulence. One could expect a laminar
flow solution in some small vicinity of this fixed point
(corresponding to potential flow).

X. LAMINAR FLOW AT SMALL TIME AND SEEDS OF
TURBULENCE

The viscosity enters the MLE’s denominator, making
it straightforward to investigate the laminar flow (large
viscosity) and even turbulent flow (small viscosity).

Let us start with the laminar flow. It corresponds to
small F⃗ , in which case the equation (81) linearizes and
can be explicitly solved

F⃗ (θ, t) → P⃗0(θ)
√

2(t0 + t)
ν

+O(F 3) (85)

This solution will stay smooth when starting with the
smooth initial value P⃗0(θ). There will be no discontinuity
in F⃗ (θ, t) and no discontinuity in P⃗ (θ, t).

For the loop functional this means zero area derivative,
in other words, potential flow without vorticity. More-
over, this flow will stay as a potential flow in every order

of the formal perturbation expansion in inverse powers
of ν for an arbitrary smooth initial value P⃗0(θ).

However, any finite initial discontinuity in P⃗0(θ) would
lead to nontrivial terms of this perturbation expansion.
These terms will be singular but scale as higher powers of
∆F⃗ . One may expect these corrections to be controlled at
a large enough viscosity (compared to initial circulation).

The above thermal fluctuations lead to a small but
singular contribution to the initial momentum loop. The
Fourier coefficients p⃗n do not decrease with order n, lead-
ing to the delta function singularity in the correlation
function

〈
P⃗ (θ) ⊗ P⃗ (θ′)

〉
∝ δ(θ − θ′), which is stronger

than the discontinuity, required for the presence of vor-
ticity.

After sufficient time, these small singular terms may
lead to larger singular terms in the solution.

The recent paper3 argued that the thermal fluctuations
could produce turbulence in finite time, comparable with
experimental times of the large eddy formation. In other
words, these small fluctuations could quickly grow and
end up as large random eddies observable in experiments
by order of magnitude estimates in3.

Our theory considers two possible asymptotic regimes:
decaying turbulence or a finite-time explosion. We study
these regimes in the subsequent sections.

XI. DECAYING TURBULENCE

The solutions originating deep inside the unit circle,
far from Ψ = 1, can become turbulent and eventually
decay to Ψ → 1 due to energy dissipation by vorticity
micro-structures. This decay for P⃗ (θ, t) corresponds to
the fixed point equation for F⃗(

(∆F⃗ )2 − 1
)
F⃗ =

∆F⃗
(
γ2F⃗ · ∆F⃗ + ıγ

(
(F⃗ · ∆F⃗ )2

∆F⃗ 2
− F⃗ 2

))
(86)

This fixed point F⃗ (θ) is not a solution of the Cauchy
problem for the loop functional, though we expect the
solution of some Cauchy problems to asymptotically ap-
proach this fixed point at a large time.

This fixed point represents the solution of the loop
equation with the boundary condition Ψ(θ,+∞) = 1.
This boundary condition describes the flow eventually
stopping as a result of dissipation of kinetic energy

E =
∫
d3r

v⃗2

2 , ∂tE = −ν
∫
d3rω⃗2 < 0

.

A. Fixed point solution

The saddle point equation (86) was solved and inves-
tigated in previous papers9,10. The solution for F⃗ (θ) is
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a fractal curve defined as a limit N → ∞ of the polygon
F⃗0 . . . F⃗N = F⃗0 with the following vertices

F⃗k =

{
cos(αk), sin(αk), ı cos

(
β
2

)}
2 sin

(
β
2

) ; (87)

θk = k

N
; β = 2πp

q
; N → ∞; (88)

αk+1 = αk + σkβ; σk = ±1, β
∑

σk = 2πpr;(89)

The parameters Ω̂, p, q, r, σ0 . . . σN = σ0 are random,
making this solution for F⃗ (θ) a fixed manifold rather than
a fixed point. We suggested in9 calling this manifold the
big Euler ensemble of just the Euler ensemble.

It is a fixed point of (81) with the discrete version of
discontinuity and principal value:

∆F⃗ ≡ F⃗k+1 − F⃗k; (90)

F⃗ ≡ F⃗k+1 + F⃗k

2 (91)

Both terms of the right side (81) vanish; the coefficient
in front of ∆F⃗ and the one in front of F⃗ are both equal
zero. Otherwise, we would have F⃗ ∥ ∆F⃗ , leading to zero
vorticity9.

This requirement leads to two scalar equations

(∆F⃗ )2 = 1; (92a)

F⃗ 2 − γ2

4 =
(
F⃗ · ∆F⃗ − ıγ

2

)2
; (92b)

The integer numbers σk = ±1 came as the solution of
the loop equation, and the requirement of the rational
p
q came from the periodicity requirement, as we prove
below.

In our limit, the integral for velocity circulation be-
comes the Lebesque sum:∮

dF⃗ (θ) · C⃗(θ) →
∑

k

∆F⃗k · C⃗k; (93)

A remarkable property of this solution F⃗ (θ, t) of the
loop equation is that even though it satisfies the complex
equation and has an imaginary part, the resulting circu-
lation (93) is real! The imaginary part of the F⃗k does not
depend on θ and thus drops from the discontinuity ∆F⃗k.

B. The proof of the Euler ensemble as a fixed point of
MLE

Let us present here the proof of this solution.

Euler Ensemble Theorem.

The Euler ensemble solves the discrete MLE.

We start from the general Anzatz with real vectors A⃗, f⃗k

, corresponding to the real circulation in (93)

F⃗k = ıA⃗+ (f⃗k+1 + f⃗k)/2; (94)
∆F⃗k = f⃗k+1 − f⃗k; (95)
(f⃗k+1 − f⃗k)2 = 1 (96)

Analyzing the imaginary and parts of the second equation
in (92), we observe that the imaginary part will vanish
provided

A⃗ · f⃗k = 0∀k; (97)
f⃗2

k = f⃗2
k+1∀k; (98)

We conclude that f⃗k belongs to a circle with some radius
R in the origin of the plane, which plane is orthogonal to
A⃗. In the coordinate frame where A⃗ = {0, 0, A}

f⃗k = R {cos(αk), sin(αk), 0} (99)

The SO(3) matrix needed to rotate our vectors to this
coordinate frame can be absorbed into the rotation matrix
Ω we have in our solution.

The radius R and A are determined by the real part of
our equations as follows

4A2 = 2R2 (1 + cos(αk+1 − αk)) ; (100a)
1 = 2R2 (1 − cos(αk+1 − αk)) ; (100b)

Solving these two equations, we find the Z2 variables at
every step

αk+1 = αk + βσk, σ
2
k = 1; (101)

The radius R and the length A = |A⃗| are related to this
angular step β

R = 1
2 sin

(
β
2

) ; (102)

A = 1
2 tan

(
β
2

) ; (103)

The periodicity of the sequence f⃗k requires the angular
step to be a fraction of 2π, which brings us to the Euler
ensemble (87).■

C. Euler ensemble as a random walk on a regular star
polygon

Geometrically, the vertices f⃗k belong to the regular
star polygon with q sides of unit length, with vertices at
R exp (ıkβ) , k = 1 . . . q. They were classified by Thomas
Bradwardine (archbishop of Canterbury) and later by Jo-
hannes Kepler in the 17th Century and are denoted as
{q/p} ( so-called Schläfli symbol).
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Figure 3. regular star polygons for Euler ensembles of various
p, q. The σk variable indicates the direction of the random
step of the link k ↔ k + 1. The random walk could go several
times around the polygon as long as it ends where it started.

We show several examples in Fig. 3. The general
polygon is characterized by co-prime p, q with p < q <
N, (N − q) = 0 mod 2. Euler totients count these poly-
gons. The number N > q counts the coordinates f⃗k

covering our polygon several times, so that, in general,
each geometric vertex is covered more than once.

The Ising variables σk describe a random walk around
this polygon with the extra condition that it comes to
the initial point after N steps. The random walk goes
k ↔ k + 1 according to the sign of σk. The periodicity
condition requires β to be a rational fraction of 2π.

This quantization of the angle and the radius brings
the number theory to the statistical distribution. Each
polygon may be covered several times during this random
walk with this periodicity condition. A certain winding
number w is related to

∑N
1 σi = qr, w = pr. Surprisingly,

such a fundamental random walk problem on the 500-
year-old geometric manifold has been solved only now.

D. Euler ensemble as string theory with discrete target
space

This random walk problem can also be interpreted as
a closed fermionic string in the discrete target space con-
sisting of regular star polygons on a (randomly rotated)
plane. Integrating over fermionic degrees of freedom in a
quantum trace of the evolution operator is equivalent to
summation over occupation numbers nk = 0, 1, providing
directions σk = 2nk − 1 of the random walk.

The target space coordinates are the vertices of the
regular star polygons {q, p}.

The integration over target space made of these regu-
lar star polygons becomes a discrete sum over states of
the Euler ensemble: the fraction p

q , the configurations of
fermionic occupation numbers νk = 0, 1 and the winding
number w = p

q

∑
(2νk − 1).

Placing these polygons for a fixed N on a torus in 3D
space ordered by the angle β shows the world sheet of
our discrete string in Fig.4, with red/green colors of sides
indicating random directions of random walk (occupation
number of fermions). The large disk (infinite at N = ∞)
corresponds to endpoints β = 2π

N , 2π(N−1)
N .

Out[ ]=

Figure 4. The world sheet of our discrete string made of
regular star polygons with unit side. The red/green colors of
the sides indicate random directions of random walk.

The solution of the Euler ensemble9 is based on new
number theory identities for sums of powers of cotangent
of fractions of π. These identities relate these sums to
Jordan multi-totient functions weighted with Bernoulli
coefficients.

The nontrivial part of using the Euler ensemble is the
formula (84) relating this ensemble to the observable loop
functional of the decaying turbulence theory.

In the string theory language, where the momentum
loop is the target space along with fermionic occupation
numbers, this formula is the dual amplitude for the dis-
crete string theory, with ∆C⃗(θ)√

2ν(t+t0)
playing the role of

external momentum distributed along the closed string
position (regular star polygon) F⃗ (θ).

This turbulence/string duality reveals the hid-
den beauty of primes under the ugly mask of
chaos in the observable turbulent flow.

The corresponding universal energy spectrum for the
decaying turbulence was computed in quadrature10 in
the quasiclassical limit at ν ∝ 1/N → 0, and it closely
matched the data of real and numerical experiments.

E. An open problem of the stability of Euler ensemble as
MLE fixed point

The interesting and unexpected property of the Euler
ensemble solution of the MLE is its independence of the
spectral parameter γ. The γ dependence reappears in
the linearized MLE for the small deviations δF⃗ from the
fixed point. These deviations describe the approach of
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the solution of the MLE to the fixed trajectory of decay-
ing turbulence.

As we found in the first paper9, these deviations decay
by power laws with some indexes, depending on γ

δF⃗ (i)(θ) ∝ ψi(θ|γ)t−µi(γ) (104)

The spectral equation for these decay indexes µi(γ) was
written down in9 for the finite N in the Euler ensemble.
The problem of the continuum limit of this spectrum is
yet to be solved.

XII. INCONSISTENCY OF EXPLOSIVE SOLUTION

Within our dual theory, there is, in principle, a possi-
bility for finite-time explosion with F⃗ → ∞ at some finite
moment τc.

In that case, only the third-degree terms will remain
on the right side, with the linear term becoming negli-
gible at τ → τc − 0. The scale invariance fixes the time
dependence in this case, so the solution becomes

F⃗ (θ, τ) → (τc − τ)−1/2f⃗(θ); (105)

The vector function f⃗(θ) must satisfy the following equa-
tion: (

(∆f⃗)2 + 1
)
f⃗ =

∆f⃗
(
γ2f⃗ · ∆f⃗ + ıγ

(
(f⃗ · ∆f⃗)2

∆f⃗2
− f⃗2

))
(106)

The left side of this equation for f⃗(θ) differs from the left
side of the equation (86) for the fixed point for F⃗ .

The following theorem proves the lack of a solution for
this fixed point f⃗ .

No explosion Theorem.

There is no explosive solution to the MLE.

Let us assume such a solution with some vector func-
tion f⃗(θ) and arrive at a contradiction. This vector equa-
tion is a linear combination of two vectors af⃗ = b∆f⃗ .
Both coefficients a, b must be zero. Otherwise, these two
vectors are parallel, or else one of them vanishes. In both
cases, the vorticity at the loop vanishes ω⃗(C⃗) ∝ f⃗×∆f⃗ =
0 at every point θ on the unit circle. Without vorticity,
the solution reduces to the trivial fixed point Ψ(γ,C) = 1.

Now, the first coefficient a can only vanish if ∆f⃗ has
some imaginary component, which contradicts the re-
quirement that the circulation

∮
dC⃗(θ) · f⃗(θ) is a real

variable.
This requirement allows for a constant imaginary term

in f⃗(θ) = f⃗R(θ) + ı⃗c, as this constant term will drop in
the closed loop integral. This requirement implies real
discontinuity ∆f⃗ . In the explosion equation (105) with
a = (∆f⃗R)2+1 > 1, there is no real solution with a = 0.■

We have proven the inconsistency of the finite-time ex-
plosion in the momentum loop dynamics, i.e., the Navier-
Stokes dynamics with noisy initial data and constant or
vanishing velocity at infinity.

This inconsistency is a consequence of the universality
and dimensional reduction of the dual fluid dynamics,
leading to much more stringent conditions on a potential
explosion solution, which we have proven inconsistent.

In the conventional approach to the Navier-Stokes
equation, without the noise in initial data, Constantin
and Fefferman have proven a theorem about the solu-
tion’s regularity4. As a consequence of this theorem, any
singular solution must have vorticity growing to infinity
at some point in time in some region in space.

In the MLE equation, vorticity at the loop would have
a finite time singularity with the above hypothetical so-
lution 〈

ω⃗(C⃗(θ)) exp
(
ıγΓ(C, v)

ν

)〉
∝ 1
tc − t〈

f⃗(θ) × ∆f⃗(θ) exp
(
ı
∮
f⃗(θ′)dC⃗(θ′)√
2ν(tc − t)

)〉
f

(107)

In particular, the mean square of vorticity (so-called en-
strophy) would have a double pole

〈
ω⃗2〉 ∝

〈(
f⃗(θ) × ∆f⃗(θ)

)2
〉

(tc − t)2 (108)

The growth of vorticity was proven necessary for the sin-
gular solution of Navier-Stokes equation in4, and in our
theory, it is ruled out.

If proven to stay in the smooth limit σ → 0, this proof
would provide a negative answer to the notorious prob-
lem of the explosion in the Navier-Stokes equation, leav-
ing two remaining alternatives: smooth (laminar) solu-
tion and a stochastic (turbulent) solution which we have
found before9,10 and reinterpreted in this work as a string
theory.

Presumably, decaying turbulence occurs at a large
enough Reynolds number in the initial data; otherwise,
the solution stays smooth.

XIII. CONCLUSIONS

This work demonstrated the duality between classi-
cal incompressible fluid mechanics in Euclidean space R3
and a nonlinear equation in loop space. Key takeaways
include:

• The classical Navier-Stokes equation, when supple-
mented by thermal fluctuations, is reformulated as
a 1 + 1 dimensional equation (81) for momentum
loop trajectory F⃗ (θ, t). The loop functional (86) is
related to the momentum loop by equation (84).
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• The viscosity drops from this momentum loop
equation (81), making momentum loop trajecto-
ries completely universal. The Reynolds number
becomes the property of initial data F⃗ (θ, 0), a
stochastic loop in R3.

• There is a degenerate fixed point for F⃗ (θ, t) = F⃗⋆(θ)
covered by decaying turbulence solution: periodic
random walk on a regular star polygon with N →
∞ steps. This fixed point (Euler ensemble) was
found analytically in previous works9,10, where the
decaying energy spectrum was computed in quadra-
ture and verified by the experimental data.

• This Euler ensemble is equivalent to a string
theory with the target space made of regular
star polygons. This ensemble is an explicit
example of a decaying stochastic solution of
the unforced Navier-Stokes equation.

• We have not proven that this solution is reachable
from smooth initial data, corresponding to vanish-
ing noise σ = 0 or |Ψ(t = 0)| = 1, so we can-
not claim a stochastic solution of the conventional
Cauchy problem.

• We established a No explosion theorem, elim-
inating finite-time blow-up solutions for arbitrary
initial data and leaving two alternatives: the well-
known smooth laminar solutions and decaying tur-
bulence solution (Euler ensemble = discrete string
theory)9,10.
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