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Examples of Toric Scalar-flat Kähler Surfaces with

Mixed-type Ends

Yueqing Feng

Abstract

Given a strictly unbounded toric symplectic 4-manifold, we explicitly construct complete

toric scalar-flat Kähler metrics on the complement of a toric divisor. These symplectic 4-

manifolds correspond to a specific class of non-compact Kähler surfaces. We also provide an

alternative construction of toric scalar-flat Kähler metrics with conical singularity along the

toric divisor, following the approach of Abreu and Sena-Dias.

1 Introduction

Let X be a non-compact toric symplectic 4-manifold. In [4], Abreu and Sena-Dias construct
complete toric scalar-flat Kähler metrics on strictly unbounded toric symplectic 4-manifold X . We
say X is strictly unbounded if the moment polytope of X is unbounded with the unbounded edges
being non-parallel. This condition is equivalent to saying there exists a finite sequence of
blow-downs of X from which we obtain a minimal resolution of C2{Γ for some finite cyclic
subgroup Γ Ă Up2q. The metrics constructed in [4] include the well-known examples of the
LeBrun-Simanca metrics [24], the (multi-)Taub-NUT metrics [23], the gravitational instantons of
Gibbons-Hawking [16] and Kronheimer [22], etc.

In this article, using Donaldson’s ansatz [11] of toric scalar-flat Kähelr metrics, we explicitly
construct complete toric scalar-flat Kähler metrics on the complement of a torus-invariant divisor
in X , which exhibit Poincaré type singularity along the divisor. The study of Poincaré type
Kähler metrics stems from the standard Poincaré cusp metric

ω∆˚ “
?

´1dz ^ dz̄

p|z| log |z|q2 “ 4
?

´1BB̄ logp´ log |z|2q

on the punctured unit disk. In general, for a smooth divisor D in X , we study complete Kähler
metrics of Poincaré type(see Definition 2.4). Geometrically, near every point on the divisor, the
Poincaré type metric is asymptotic to the model product metric given by the Poincaré cusp metric
on the punctured disc and a smooth metric on the divisor. Known constructions of canonical
Kähler metrics of Poincaré type include the negative Kähler-Einstein ones studied in [9], [21], [27];
the toric ones studied in [2] and [8]; and the constant scalar curvature Kähler and extremal Kähler
ones studied in [25] and [13]. Most of these metrics are not explicit, while in this article the
constructions of toric scalar-flat Kähler metrics of Poincaré type are explicit.

First, we focus on the case where X is strictly unbounded, or equivalently, as a complex surface, it
arises as a finite sequence of blow-ups of minimal resolution of C2{Γ, as described in
Definition-Proposition 2.1:
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Theorem 1.1. (Theorem 3.1+Theorem 3.2) Given X a strictly unbounded toric symplectic

4-manifold and D “
m
ÿ

i“1

Di a divisor on X such that each Di is an irreducible prime divisor fixed

by the torus action and Di X Dj “ H for any 1 ď i ‰ j ď m. On XzD, we have

• a toric scalar-flat Kähler metric with Poincaré type singularity along D, and is
asymptotically locally Euclidean(ALE) on the remaining end;

• a two-parameter family of toric scalar-flat Kähler metrics with Poincaré type singularity
along D, and are asymptotic to either the generalized Taub-NUT metrics or the exceptional
Taub-NUT metrics on the remaining end.

Along the proof, we will see the complex structures induced from these metrics are biholomorphic
to that on X away from the divisor D. Here the generalized Taub-NUT metrics live on C2 and are
scalar-flat Kähler generalizations of the Ricci-flat Kähler Taub-NUT metrics. These metrics are
introduced by Donaldson in [12] and later explored by Abreu and Sena-Dias in [4] and Weber in
[28] and [29]. They all have quadratic curvature decay and cubic volume growth, but except for
the standard Taub-NUT metric, they are not asymptotically locally flat(ALF). The exceptional
Taub-NUT metrics are also scalar-flat Kähler metrics living on C2. These metrics are studied by
Weber in [29], where he showed these metrics have quadratic curvature decay and quartic volume
growth but are not ALE.

A previously known example of toric scalar-flat Kähler metric of Poincaré type is first discussed
by Fu-Yau-Zhou in [14], and later studied by the author in [13], which we refer to as the
Hwang-Singer metric ωHS . It lives on C2 ´ t0u. Near the origin, it has Poincaré type singularity,
and it is asymptotically Euclidean on the other end. This S1-invariant metric is in fact toric and
we will discuss it in detail in Example 3.1. Theorem 1.1 then gives us a two-parameter family
deformation of ωHS .

Intuitively, Poincaré type metrics can be viewed as the limit of a conical family of metrics when
the cone angle approaches 0. Similarly, smooth metrics can be viewed as the limit when the cone
angle approaches 2π. This was proved by Guenancia [17] in the Kähler-Einstein setting. For the
metrics constructed in Theorem 1.1, we can explicitly write down a conical family of toric Kähler
metrics connecting the Poincaré type metrics with those in [4]. This family of conical metrics is
not necessarily scalar-flat, though.

On the other hand, Weber [30] gave a construction of toric scalar-flat Kähler metrics with conical
singularity along the divisor. The cone angle along a given edge is closely related to the notion of
"label" introduced there. In [30], the label is interpreted as a characterization of the growth speed
of the Killing field vanishing along the edge. We formulate the problem from a different
perspective, emphasizing the various boundary conditions specified by the cone angles. More
precisely, following the method of Abreu and Sena-Dias, we give an independent construction of
the conical toric scalar-flat Kähler metrics:

Theorem 1.2. (Theorem 4.1) Consider the same setting as in Theorem 1.1. Fix θi P p0, 1q for
i “ 1, ¨ ¨ ¨ ,m, on X, we have

• a conical toric scalar-flat Kähler metric with angle 2πθi along Di and is asymptotically
locally Euclidean(ALE) on the remaining end;
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• a two-parameter family of them with angle 2πθi along Di and are asymptotic to either the
generalized Taub-NUT metrics or the exceptional Taub-NUT metrics on the remaining end.

Besides the general case where X is strictly unbounded, we construct toric scalar-flat Kähler
metrics of Poincaré type when the unbounded edges of the momentum polytope are parallel:

Theorem 1.3. Consider the same setting as in Theorem 1.1 except that the unbounded edges of
X are parallel. On XzD, we have a one-parameter family of toric scalar-flat Kähler metrics with
Poincaré type singularity along D and are asymptotic to the model product metric on S2 ˆ R2 on
the remaining end.

The scalar-flat metrics we constructed belong to a particular class of Poincaré type metrics,
characterized by the specific behavior of their potential functions along the divisor, which we
denote as the Sα,β type (Definition 2.5). We have the following uniqueness result:

Theorem 1.4. (Theorem 5.1) Given the same setting as in Theorem 1.1. Assume g is a toric
scalar-flat Kähler metric on XzD, and its symplectic potential u is of Sα,β type along D, then g

can only be one of the metrics constructed in Theorem 1.1.

Naturally, we would ask if we still have the uniqueness result without assuming u to be of Sα,β

type:

Question 1.1. (Strong uniqueness) Without assuming the potential function is of Sα,β type along
the divisor in Theorem 1.4, can we still obtain the uniqueness result?

A related question is to determine, locally, whether Sα,β type represents the only Guillemin
boundary behavior for scalar-flat Kähler metric of Poincaré type.

Outline of the article. In Section 2, we discuss the preliminaries of the construction. In
Section 3, under a specific boundary condition, we give an explicit construction of toric scalar-flat
Kähler metrics of Poincaré type using Donaldson’s local ansatz for scalar-flat Kähler metrics, and
discuss their asymptotic behavior, hence proving Theorem 1.1 and Theorem 1.3. We also include
a discussion on the example of the Hwang-Singer metric. In Section 4, we use similar arguments
to construct a family of conical toric scalar-flat Kähler metrics. In the Appendix 5, we show the
uniqueness result with prescribed explicit boundary behavior along the divisor.

Acknowledgements The author is deeply grateful to her advisor, Song Sun, for inspiring
discussions and patient guidance. She also sincerely thanks Vestislav Apostolov, Charles Cifarelli,
and Lars Martin Sektnan for valuable suggestions on an earlier version of this work, and Rosa
Sena-Dias for clarifying a question addressed in [4]. The work was partially supported by NSF
Grant DMS-2304692 and conducted in part during the author’s stay at IASM, whose support is
appreciated.

2 Preliminaries

In this section, we recall some basics of toric Kähler metrics on toric symplectic 4-manifolds and
discuss the local ansatz for finding scalar-flat Kähler metrics. First, we recall the basic definition
of a toric symplectic 4-manifold:
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Definition 2.1. A symplectic 4-manifold pX,ωq is said to be toric if it admits an effective
Hamiltonian T2-action τ of the standard torus to the diffeomorphism group of pX,ωq such that the
corresponding moment map µ : X Ñ R2 is proper onto its image P .

Here the moment map of the T2-action is a map µ : X Ñ R2 such that ιξω “ ´dµ for each
infinitesimal generator ξ of T2. For a compact symplectic 4-manifold, the moment image of µ is
the convex hull of the image of fixed points of T2 in X , and the classical
Atiyah-Guillemin-Sternberg tells us this image is a polytope. For a non-compact symplectic
4-manifold, we first introduce the definition of the moment polytope:

Definition 2.2. ([4], Definition 2.2) We say a convex polytope P Ă R2 is a moment polytope if

(i) for each edge, we can find a primitive vector of Z2, which is an interior normal to this edge;

(ii) for each pair of intersecting edges, their chosen interior normals form a Z-basis of Z2.

We say two moment polytopes are equivalent if there exists a translation in R2 and a GLp2,Zq
transformation mapping one to the other, and two symplectic toric manifolds are equivalent if
there is an equivariant symplectomorphism mapping one to the other. Delzant’s theorem [10] tells
us in the compact setting, the moment polytope determines the symplectic toric 4-manifold up to
equivariant symplectomorphism. It turns out that in the non-compact setting, we also have the
following correspondence:

Proposition 2.1. ([20]) There is a bijective correspondence between the equivalence class of
symplectic toric 4-manifolds and the equivalence class of moment polytopes.

We are particularly interested in the following class of non-compact symplectic toric 4-manifold:

Definition-Proposition 2.1. ([4] Definition 2.4, Proposition 2.8)) A symplectic toric 4-manifold
is said to be strictly unbounded if the following equivalent conditions hold:

(i) the image of the moment map, P , is an unbounded polytope with finitely many edges, with
the unbounded edges being non-parallel;

(ii) X as a complex surface, arises as a finite sequence of blow-ups of a minimal resolution of
C2{Γ for some finite cyclic group Γ Ă Up2q such that C2{Γ has an isolated singularity point
at the origin.

Let P be a moment polytope given by

P :“ tx P R
2 : ℓipxq :“ xx, νiy ` λi ě 0, i “ 1, ¨ ¨ ¨ , du. (1)

Here νi “ pαi, βiq P Z2 are the primitive interior normals to the edges. We order its edges so that
ℓ1, ℓd are the unbounded edges and ℓi X ℓi`1 ‰ H for i “ 1, ¨ ¨ ¨ , d ´ 1. From [4] Remark 2.5, we
know we can further assume the Delzant condition for the polytope:

detpνi, νi`1q “ ´1, for i “ 1, ¨ ¨ ¨ , d ´ 1.

Let pXP , ωP , τP q be the associated symplectic 4-manifold of P with moment map µP . It admits a
canonical integrable, torus-invariant, compatible complex structure JP . We denote the resulting
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Kähler surface by pXP , ωP , JP , gP q. Let P ˝ be the interior of P , and consider X˝
P :“ µ´1

P pP ˝q,
then

X˝
P – P ˝ ˆ T

2 “ tpx, θq : x “ px1, x2q P P ˝, θ “ pθ1, θ2q P R
2{Z2u.

Here px, θq are interpreted as the action-angle coordinates for ωP , i.e.,

ωP “ dx1 ^ dθ1 ` dx2 ^ dθ2.

From [18], we know the symplectic potential uP P C8pP ˝q is written as

uP “ 1

2

d
ÿ

i“1

ℓipxq log ℓipxq.

The metric gP is given by

gP “
2

ÿ

i,j“1

ppHess uP qijdxi b dxj ` pHessuP qijdθi b dθjq.

From [1] and [6], given any toric complex structure J which is ωP -compatible, there exist
action-angle coordinates px, θq on P ˝ such that for some symmetric and positive-definite 2 ˆ 2

matrix Upxq, we can write J in the following form

J “ ´
2

ÿ

i,j“1

pUpxqij B
Bxi

b dθj ` Upxqij
B

Bθi b dxjq.

Furthermore, the integrability of J is equivalent to the existence of u P C8pP ˝q such that
Upxq “ Hessxpuq. Then u is the potential corresponding to J , and the Kähler metric is written as

g “
2

ÿ

i,j“1

ppHess uqijdxi b dxj ` pHess uqijdxi b dxjq. (2)

For simplicity concern, we will use uij , u
ij to denote pHess uqij , pHess uqij respectively. From [3],

[2], we know when the Hessian of the symplectic potential u on P ˝ is positive-definite and the
boundary behavior of u is specified by the Guillemin’s boundary condition, it determines a
complex structure on X˝

P which extends to pXP , ωP , τP q. We say u satisfies Guillemin’s boundary
condition if modulo a smooth function,

upxq “ 1

2

d
ÿ

i“1

ℓipxq log ℓipxq, (3)

and its restriction to the interior of each face of P is strictly convex and smooth.

Definition 2.3. ([5], Definition 4.2) Given P , write L :“ tℓ1pxq, ¨ ¨ ¨ , ℓdpxqu. We say a symplectic
potential u : P ˝ Ñ R belongs to the class SpP,Lq if it is smooth, strictly convex, and satisfies the
Guillemin boundary condition.
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We mention that as discussed in [6] and [5] Proposition 4.3, there is an equivalent characterization
of SpP,Lq, which we refer to as the first-order boundary conditions.

This article focuses on finding scalar-flat Kähler metrics. Direct calculations show the scalar
curvature of the metric has the following expression:

s “ ´
ÿ

i,j

B2uij

BxiBxj

.

Then the scalar-flat equation we aim at solving becomes
ÿ

i,j

B2uij

BxiBxj

“ 0. In [11], Donaldson gave a

reformulation of Joyce’s construction in [19], which allows us to write down explicit symplectic
potentials of scalar-flat Kähler metrics on complex surfaces. The key is to use the
axi-symmetric harmonic function as the local model. More precisely:

Theorem 2.1. ([11], local model) Let ξ1, ξ2 be two solutions to

B2ξ

BH2
` B2ξ

Br2 ` 1

r

Bξ
Br “ 0 (4)

on

H :“ tpH, rq P R
2 : r ą 0u.

Then the 1-forms

ǫ1 “ r

ˆBξ2
Br dH ´ Bξ2

BHdr

˙

, ǫ2 “ ´r

ˆBξ1
Br dH ´ Bξ1

BHdr

˙

are closed. Let x1, x2 be their primitives, then the 1-form ǫ “ ξ1dx1 ` ξ2dx2 is also closed. Let u
be its primitive. Assume for ξ “ pξ1, ξ2q, we have

detDξ ą 0. (5)

Then u is a local symplectic potential for a scalar-flat Kähler toric metric on R4.

Some known solutions to (4) include

aH ` b, a log r ` b,
1

2
log

´

H `
a

pH ` aq2 ` r2
¯

(6)

where a, b P R. In [4], the authors used these solutions to construct scalar-flat Kähler metrics on
unbounded symplectic toric 4-manifolds. These metrics belong to the class SpP,Lq, and are
precisely those whose complex structures are equivariantly biholomorphic to JP .

The situation is different for toric scalar-flat Kähler metrics of Poincaré type. We first recall the
definition of Poincaré type Kähler metrics:

Definition 2.4. (Poincaré type Kähler metric, [7]) Given pX,ω0q a compact complex manifold
and D a smooth divisor in X with σ P H0pX,OpDqq being a holomorphic defining section. Fix λ a
sufficiently large constant such that

ωh :“ ω0 ´
?

´1BB̄ logpλ ´ logp|σ|2qq

6



is a positive p1, 1q-form on XzD. We say a closed, smooth p1, 1q-form

ωPT :“ ω0 `
?

´1BB̄ϕ

on XzD is a Poincaré type Kähler metric if

• ωPT is quasi-isometric to ωh, which means there exists some C ą 0, such that
1

C
ωh ď ωPT ď Cωh and @i ě 1, supXzD |∇i

ωh
ωPT | ă 8;

• ϕ is a smooth function on XzD with ϕ “ Ophq, and @i ě 1, supXzD |∇i
ωh

ϕ| ă 8.

Let D be a torus-invariant divisor in X , and let ℓF be the edge corresponding to D in the moment
polytope. In [5], Section 4.3, the authors introduced a special type of Guillemin boundary
condition for symplectic potential u, which gives rise to a Poincaré type Kähler metric. For the
setting of complex surfaces, we recall the definition as follows:

Definition 2.5. ([5], Definition 4.16) Given α P R`, β P R, we say a symplectic potential
u : P ˝ Ñ R belongs to the class Sα,βpP,L, F q if it is strictly convex and smooth on P ˝, its
restriction to the interior of each edge of P is strictly convex and smooth, and

u ` pα ` βℓF q log ℓF ´ 1

2

d
ÿ

j“2

ℓj log ℓj (7)

is smooth on P .

From [5] Theorem 4.18, we know for u P Sα,βpP,L, F q, the induced Kähler metric (2) exhibits
Poincaré type behavior along D. Let dλ be the Lebesgue measure on R2, we define a measure dλi

on ℓi by

´dℓi ^ dλi “ ´νi ^ dλi “ dλ.

On ℓF , the induced measure is zero for the class SpP,L, F q, which is obtained by sending the
corresponding label ℓi to infinity. Although the Guillemin boundary condition does not have a
straightforward extension to describe the behavior of u near ℓF , the first-order boundary
condition does, as pointed out in [5] Definition 4.6. Note Sα,βpP,L, F q is only a proper subset of
SpP,L, F q, which we see by comparing [5] Definition 4.6 and Proposition 4.19.

We write

uP,F,α,β “ 1

2

d
ÿ

j“2

ℓj log ℓj ´ pα ` βℓF q log ℓF

as the potential of the model metric for the class Sα,βpP,L, F q. To construct scalar-flat Kähler
metrics of Poincaré type in this class, we need other solutions to (4) besides the ones (6). We
consider

ξ “ 1

2

1
a

pH ` aq2 ` r2
, a P R.

This solution, together with the solutions to (4) mentioned above, serve as local models for our
construction in the next section.
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3 Construction of scalar-flat Kähler metrics of Poincaré type

Given X a strictly unbounded symplectic toric 4-manifold and let P be its moment polytope

defined by (1). Write L “ tℓ1pxq, ¨ ¨ ¨ , ℓdpxqu. Let D “
m
ÿ

i“1

Di be a smooth divisor on X such that

each Dj is fixed by the torus action. Let ℓij be its image on the moment polytope. Assume

i1 ą 1, i2 ą i1 ` 1, ¨ ¨ ¨ , d ą im ą im´1 ` 1. (8)

Let I “ ti1, ¨ ¨ ¨ imu Ă t1, 2, ¨ ¨ ¨ , du be the index set and ℓI “ Ťm
j“1

ℓij be the union of the edges
corresponding to Di, then P zℓI is the moment polytope of XzD.

ℓi1

ℓim

...

...

... ℓd

...
ℓ1

Figure 1: The moment polytope P zℓI

We prove Theorem 1.1 by giving an explicit construction of the toric scalar-flat Kähler metrics of
Poincaré type on XzD. Consider ν “ pα, βq a vector in R2 s.t.

detpν, ν1q, detpν, νdq ě 0. (9)

As discussed in [4], since P is strictly unbounded, this set of vectors forms a cone bounded by ´ν1
and νd.

Theorem 3.1. For X,D,P, I, ν defined as above, there exist constants Λi1 , ¨ ¨ ¨ ,Λim ą 0

determined by the polytope P , for pH, rq P H, set

ξ1 :“ α1 log r` 1

2

d´1
ÿ

i“1

pαi`1 ´αiq log
´

H ` ai `
a

pH ` aiq2 ` r2
¯

´ 1

2

ÿ

kPI

Λkαk
a

pH ` ak´1q2 ` r2
`αH,

ξ2 :“ β1 log r` 1

2

d´1
ÿ

i“1

pβi`1 ´βiq log
´

H ` ai `
a

pH ` aiq2 ` r2
¯

´ 1

2

ÿ

kPI

Λkβk
a

pH ` ak´1q2 ` r2
`βH.

Here a1, ¨ ¨ ¨ , ad´1 are real numbers determined by P satisfying

aj´1 ą aj if j R I and aj´1 “ aj if j P I. (10)

8



Let x1, x2 be the primitives of

ǫ1 “ r

ˆBξ2
Br dH ´ Bξ2

BHdr

˙

, ǫ2 “ ´r

ˆBξ1
Br dH ´ Bξ1

BH dr

˙

.

Then they define the momentum action coordinates on P ˝ of some toric scalar-flat Kähler metric
of Poincaré type on XzD whose symplectic potential satisfies

du “ ξ1dx1 ` ξ2dx2.

Furthermore, for each k P I,

u P SΛk
2

, 1
2
detpνk´1,νk`1q

pP,L, ℓkq. (11)

Proof. The first step is to show the assumption (5) in Theorem 2.1 is satisfied. We compute Dξ:

Dξ “

¨

˚

˚

˚

˚

˝

α ` 1

2

d´1
ÿ

i“1

αi`1 ´ αi

ρi
` 1

2

ÿ

kPI

ΛkαkHk´1

ρ3k´1

α1

r
` 1

2

d´1
ÿ

i“1

pαi`1 ´ αiqr
ρipρi ` Hiq

` 1

2

ÿ

kPI

Λkαkr

ρ3k´1

β ` 1

2

d´1
ÿ

i“1

βi`1 ´ βi

ρi
` 1

2

ÿ

kPI

ΛkβkHk´1

ρ3k´1

β1

r
` 1

2

d´1
ÿ

i“1

pβi`1 ´ βiqr
ρipρi ` Hiq

` 1

2

ÿ

kPI

Λkβkr

ρ3k´1

˛

‹

‹

‹

‹

‚

.

(12)

Here Hi :“ H ` ai, ρi :“
b

H2
i ` r2. Set a0 :“ ´8, ad :“ 8 and set H0, Hd, ρ0, ρd accordingly, we

rewrite Equation (12) as

Dξ “

¨

˚

˚

˚

˚

˝

α ` 1

2

d
ÿ

i“1

αi

ˆ

1

ρi´1

´ 1

ρi

˙

` 1

2

ÿ

kPI

ΛkαkHk´1

ρ3k´1

1

2r

d
ÿ

i“1

αi

ˆ

Hi´1

ρi´1

´ Hi

ρi

˙

` 1

2

ÿ

kPI

Λkαkr

ρ3k´1

β ` 1

2

d
ÿ

i“1

βi

ˆ

1

ρi´1

´ 1

ρi

˙

` 1

2

ÿ

kPI

ΛkβkHk´1

ρ3k´1

1

2r

d
ÿ

i“1

βi

ˆ

Hi´1

ρi´1

´ Hi

ρi

˙

` 1

2

ÿ

kPI

Λkβkr

ρ3k´1

˛

‹

‹

‹

‹

‚

.

(13)
Note from [4] Theorem 4.1, we know the determinant of the following matrix is positive:

¨

˚

˚

˚

˚

˝

α ` 1

2

d
ÿ

i“1

αi

ˆ

1

ρi´1

´ 1

ρi

˙

1

2r

d
ÿ

i“1

αi

ˆ

Hi´1

ρi´1

´ Hi

ρi

˙

β ` 1

2

d
ÿ

i“1

βi

ˆ

1

ρi´1

´ 1

ρi

˙

1

2r

d
ÿ

i“1

βi

ˆ

Hi´1

ρi´1

´ Hi

ρi

˙

˛

‹

‹

‹

‹

‚

. (14)

Comparing the expression of detpDξq with the above, it suffices to show their difference is still
positive. A key step in showing the positivity is the following lemma:

Lemma 3.1.1. Given k P I, @i, the term involving i and k in the expression of detpDξq has the
following expression and is non-negative:

pβkαi ´ αkβiq
1

4rρ3k´1

ˆ

r2 ` Hk´1Hi´1

ρi´1

´ r2 ` Hk´1Hi

ρi

˙

. (15)
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Proof. We rewrite Equation (15) as follows:

pβkαi ´ αkβiq
1

4ρ3k´1

ˆ

r

ˆ

1

ρi´1

´ 1

ρi

˙

` Hk´1

ˆ

Hi´1

rρi´1

´ Hi

rρi

˙˙

.

Note for any i, r, ρi ą 0, and from detpνi, νi`1q “ ´1 we deduce that βkαi ´ αkβi ą 0 ðñ i ą k.
Thus, it suffices to show

ρipr2 ` Hk´1Hi´1q ´ ρi´1pr2 ` Hk´1Hiq ą 0 for i ą k (16)

and

ρipr2 ` Hk´1Hi´1q ´ ρi´1pr2 ` Hk´1Hiq ă 0 for i ă k. (17)

When i ą k, we rewrite the expression as

ρipr2 `Hk´1Hi´1q ´ ρi´1pr2 `Hk´1Hiq “ pρi ´ ρi´1qr2
ρiHi´1 ` ρi´1Hi

pρipHi´1 ´Hk´1q ` ρi´1pHi ´Hk´1qq.
(18)

We claim that ρi´1Hi ´ ρiHi´1 ą 0. It is because fpxq “ x
a

x2 ` y2
is an increasing function

given y ą 0, then
Hi

b

H2
i ` r2

ą Hi´1
b

H2
i´1

` r2
. Hence, we know

ρiHi´1`ρi´1Hi ą 0 ðñ pρi´1Hi´ρiHi´1qpρiHi´1`ρi´1Hiq ą 0 ðñ r2pH2

i ´H2

i´1q ą 0. (19)

On the other hand, we have

ρi ´ ρi´1 ą 0 ðñ pρi ` ρi´1qpρi ´ ρi´1q ą 0 ðñ H2

i ´ H2

i´1 ą 0. (20)

Combining Hi´1 ´ Hk´1 ą 0, Hi ´ Hk´1 ą 0 with (19) and (20), we obtain (16). Similarly, for
i ă k,

ρipr2`Hk´1Hi´1q´ρi´1pr2`Hk´1Hiq “ pρi ´ ρi´1qr2
ρiHi´1 ` ρi´1Hi

pρipHi´1´Hk´1q`ρi´1pHi´Hk´1qq ă 0.

(21)

For k, k1 P I, the term involving k and k1 in
ÿ

kPI

αkHk´1

ρ3k´1

ÿ

kPI

βkr

ρ3k´1

´
ÿ

kPI

αkr

ρ3k´1

ÿ

kPI

βkHk´1

ρ3k´1

has the

following expression and is non-negative:

r

ρ3kρ
3
k1

pαkβk1 ´ αk1βkqpHk´1 ´ Hk1´1q. (22)

Finally, for ν satisfying (9), given k P I, detDξ changes by adding
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detpν, ν1q
ˆ

1

r
´ r

2ρ1pH1 ` ρ1q

˙

` r

2

d´1
ÿ

i“1

detpν, νiq
ˆ

1

ρi´1pHi´1 ` ρi´1q ´ 1

ρipHi ` ρiq

˙

` r

2
detpν, νdq 1

ρdpHd ` ρdq ` pαβk ´ βαkq r

ρ3k´1

. (23)

WLOG we assume one of the unbounded edges of P is the x1-axis, then ν1 “ p0, 1q. Consider the
interior normals νi satisfying detpνi´1, νiq “ ´1, i “ 2, ¨ ¨ ¨ , d, we obtain αi ą 0, i “ 2, ¨ ¨ ¨ , d and
βd

αd

ă βd´1

αd´1

ă ¨ ¨ ¨ ă β2

α2

. The condition (9) implies

αβk ´ βαk ě 0 for k P I.

Thus by comparing with [4] Equation (7), we know the above additional term is non-negative.
Combining (14), (15), (22), and (23), we conclude detpDξq ą 0.

Next, we prove that x “ px1, x2q define global symplectic action coordinates on P zℓI and at the
same time upxq has the desired boundary behavior on BP zℓI . Note for

ξ “ 1

2
a

pH ` aq2 ` r2
,

the primitive of ǫ “ r

ˆBξ
BrdH ´ Bξ

BHdr

˙

, up to constants, is given by

1

2

˜

1 ´ H ` a
a

pH ` aq2 ` r2

¸

.

Then for ν “ 0, up to constants, we have

x1 “ β1H ` 1

2

d´1
ÿ

i“1

pβi`1 ´ βiqpHi ´ ρiq ´ 1

2

ÿ

kPI

Λkβk

ˆ

1 ´ Hk´1

ρk´1

˙

,

x2 “ ´α1H ´ 1

2

d´1
ÿ

i“1

pαi`1 ´ αiqpHi ´ ρiq ` 1

2

ÿ

kPI

Λkαk

ˆ

1 ´ Hk´1

ρk´1

˙

.

Then we see x extends continuously to r “ 0 except at the points pH, rq “ p´ak, 0q for k P I. The
point pH, rq “ p´ak, 0q corresponds to the cusp edge ℓk for k P I. Consider the behavior of x in
the intervals on the H-axis:

(i) For H ą ´a1, then x1 “ β1H , and x2 “ ´α1H ;

(ii) for 1 ď j ă i1 ´ 1, ´aj`1 ă H ă ´aj, then x1 “ βj`1H `
j

ÿ

i“1

aipβi`1 ´ βiq, and

x2 “ ´αj`1H ´
j

ÿ

i“1

aipαi`1 ´ αiq;

11



(iii) for j “ i1 ´ 1, ´ai1`1 ă H ă ´ai1´1 “ ´ai1 , then x1 “ βi1`1H `
i1
ÿ

i“1

aipβi`1 ´ βiq ´ Λi1βi1 ,

and x2 “ ´αi1`1H ´
i1
ÿ

i“1

aipαi`1 ´ αiq ` Λi1αi1 ;

(iv) similar calculations show for 2 ď k ď m, and ik´1 ` 1 ď j ă ik ´ 1, with ´aj`1 ă H ă ´aj,

we have x1 “ βj`1H `
j

ÿ

i“1

aipβi`1 ´ βiq ´
k´1
ÿ

ℓ“1

Λiℓβiℓ , and

x2 “ ´αj`1H ´
j

ÿ

i“1

aipαi`1 ´ αiq `
k´1
ÿ

ℓ“1

Λiℓαiℓ ; for j “ ik ´ 1, with

´aik`1 ă H ă ´aik´1 “ ´aik , we have x1 “ βik`1H `
ik
ÿ

i“1

aipβi`1 ´ βiq ´
k

ÿ

ℓ“1

Λiℓβiℓ , and

x2 “ ´αik`1H ´
ik
ÿ

i“1

aipαi`1 ´ αiq `
k

ÿ

ℓ“1

Λiℓαiℓ ;

(v) for H ă ´ad´1, then x1 “ βdH `
d´1
ÿ

i“1

aipβi`1 ´ βiq ´
m
ÿ

ℓ“1

Λiℓβiℓ , and

x2 “ ´αdH ´
d´1
ÿ

i“1

aipαi`1 ´ αiq `
m
ÿ

ℓ“1

Λiℓαiℓ .

We want to show the following:

1. x “ px1, x2q gives a proper homeomorphism

xpH, 0q : BHz
ď

kPI

pak´1, 0q Ñ BP zℓI . (24)

2. upxq modulo a smooth function is given by

1

2

ÿ

iRI

ℓipxq log ℓipxq ` 1

2

ÿ

kPI

pdetpνk`1, νk´1qℓkpxq ´ Λkq log ℓkpxq. (25)

First, we discuss the choice of aj . Note from [4] Theorem 1.2, there exist real numbers
a1
1 ă a1

2 ă ¨ ¨ ¨ ă a1
d´1

determined by P such that for 1 ď j ď d ´ 1,

j
ÿ

i“1

a1
i detpνi`1 ´ νi, νj`1q “ λj`1. (26)

More precisely, from [26] Lemma 7.2, we know a1
i ´ a1

i´1
“ Li

2π|νi|2
. Here Li is the length of the

ith edge of P . On the other hand, from the boundary behavior of the non-cusp edges in (25), with
the same proof as [26] Lemma 7.2, we have
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ai ´ ai´1 “ Li

2π|νi|2
.

For k P I, we set ak “ ak´1. Later we will see that this ensures the desired boundary behavior.
Then we obtain the following relations between aj and a1

j :

aj “ a1
j if j ă i1; aj “ a1

j `
k

ÿ

ℓ“1

pa1
iℓ´1 ´a1

iℓ
q if ik ď j ă ik`1; aj “ a1

j `
m
ÿ

ℓ“1

pa1
iℓ´1 ´a1

iℓ
q if im ď j ă d.

(27)
First, we look at condition (24). For simplicity, we write k “ i1. Near the edge ℓk`1, as r “ 0 and
´ak`1 ă H ă ´ak, we have

x1 “ βk`1H `
k

ÿ

i“1

aipβi`1 ´ βiq ´ Λkβk, x2 “ ´αk`1H ´
k

ÿ

i“1

aipαi`1 ´ αiq ` Λkαk.

Then condition (24) ℓk`1pxq “ 0 translates to

k
ÿ

i“1

ai detpνi`1 ´ νi, νk`1q ` Λk “ λk`1. (28)

Using (26) and the relation (27), it simplifies to

Λk “ a1
k ´ a1

k´1. (29)

For edges ℓj with i ă k, the argument is the same as the standard case as in [4] Theorem 4.1; for
i “ k ` j, with 1 ď j ă i2 ´ k, the condition (24) ℓk`jpxq “ 0 on ´ak`j ă H ă ak`j´1 becomes

k`j´1
ÿ

i“1

ai detpνi`1 ´ νi, νk`jq ` Λk detpνk`j , νkq “ λk`j .

Using (26) it suffices to check detpνk`j , νkqpΛk ` a1
k´1

´ a1
kq “ 0, which holds from (29). Thus

we’ve shown condition (25) for 1 ď j ă i2 given the choice of Λk as in (29). It remains to apply
the same procedure to indices i2, ¨ ¨ ¨ , im respectively. For simplicity, we write t “ i2. For
´at`1 ă H ă ´at, we have

x1 “ βt`1H `
t

ÿ

i“1

aipβi`1 ´ βiq ´ Λtβt ´ Λkβk, x2 “ ´αt`1H ´
t

ÿ

i“1

aipαi`1 ´ αiq ` Λtαt ` Λkαk.

Then condition (24) ℓt`1pxq “ 0 on ´at`1 ă H ă ´at translates to

t
ÿ

i“1

ai detpνi`1 ´ νi, νt`1q ` Λt ` Λk detpνt`1, νkq “ λt`1, (30)

and it simplifies to

Λt “ a1
t ´ a1

t´1. (31)
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For i2 ă i ă i3, condition (24) can be shown in exactly the same way. For i3, ¨ ¨ ¨ , im, it’s now
clear this procedure also works. We deduce that given the choices of Λi “ a1

i ´ a1
i´1 for all i P I,

x : pH, BHq Ñ pP, BP q is a proper homeomorphism, and its restriction to H is a smooth proper
diffeomorphism onto P ˝.

Next, we look at the condition (25). Near a non-cusp edge ℓi, we have ξ “ νi log r ` Op1q, and the
boundary condition is standard as desired. We focus on the situation near the cusp edge ℓk. For
this, we prove the following lemmas:

Lemma 3.1.2. Assume for k P I, Λk “ a1
k ´ a1

k´1
, then

ℓkpxq “ ρk´1 ` Opr2q, (32)

and there exist smooth positive function δk´1,k,k`1 such that

ρk´1 ` Hk´1 “ ρk´1 ¨ 2ℓk`1pxq ` Opr2q
δk´1,k,k`1pxq , ρk´1 ´ Hk´1 “ ρk´1 ¨ 2ℓk´1pxq ` Opr2q

δk´1,k,k`1pxq . (33)

Proof. We first consider k “ i1. As both Hk´1 and r go to zero, for i ą k, we have

Hi ´
b

H2
i ` r2 “ ´ r2

2ai
, and for i ă k ´ 1, we have Hi ´

b

H2
i ` r2 “ 2ai. Then for the behavior

of x near ℓkpxq “ 0, we write

x1 “ βk´1H ` 1

2
pβk`1 ´ βk´1qpHk´1 ´ ρk´1q ´ 1

2
Λkβk

ˆ

1 ` Hk´1

ρk´1

˙

`
k´2
ÿ

i“1

aipβi`1 ´ βiq ` Opr2q,

x2 “ ´αk´1H ´ 1

2
pαk`1 ´αk´1qpHk´1 ´ ρk´1q ` 1

2
Λkαk

ˆ

1 ` Hk´1

ρk´1

˙

´
k´2
ÿ

i“1

aipαi`1 ´αiq `Opr2q.

Then

νk ¨ x “ ρk´1 ´ ak´1 `
k´2
ÿ

i“1

ai detpνk, νi`1 ´ νiq ` Opr2q.

To prove Equation (32), it’s equivalent to show

k´2
ÿ

i“1

ai detpνk, νi`1 ´ νiq ´ ak´1 ` λk “ 0. (34)

From the relations between aj and a1
j in Equation (27) and the expression of λj in Equation (26),

direct computation shows this automatically holds.

Similarly, we have

νk´1 ¨ x “ 1

2
detpνk`1, νk´1qpρk´1 ´ Hk´1q ` Λk

2
p1 ´ Hk´1

ρk´1

q `
k´2
ÿ

i“1

ai detpνk´1, νi`1 ´ νiq ` Opr2q.
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Under the normalization assumption detpνj , νj`1q “ ´1 for all j, straightforward calculations give

detpνj`1, νj´1q “ αj`1 ` αj´1

αj

“ βj`1 ` βj´1

βj

. (35)

Combining (35) and (32) with the above calculations, we obtain

Hk´1 “ ρk´1 ¨
pνk`1 ´ νk´1q ¨ x ` λk detpνk`1, νk´1q ` 2

k´2
ÿ

i“1

ai detpνk´1, νi`1 ´ νiq ` Λk ` Opr2q

pνk`1 ` νk´1q ¨ x ` λk detpνk`1, νk´1q ` Λk ` Opr2q .

Thus to prove Equation (33), it suffices to show

λk`1 “ Λk ` λk detpνk`1, νk´1q `
k´2
ÿ

i“1

ai detpνk´1, νi`1 ´ νiq, (36)

and

λk´1 “ ´
k´2
ÿ

i“1

ai detpνk´1, νi`1 ´ νiq. (37)

We claim that

λk`1 ´ λk detpνk`1, νk´1q ` λk´1 ´ Λk “ 0. (38)

Using (26), we have

λk`1 ` λk´1 “ ak ´ ak´1 ` ak´1 detpνk`1, νk´1q `
k´2
ÿ

i“1

ai detpνk´1 ` νk`1, νi`1 ´ νiq,

then by simplifying this equation with (27), we obtain (38). Then (36) is reduced to (37), which is
straightforward from (26). Then we obtain Equation (33) with

δk´1,k,k`1 “ ℓk`1pxq ` ℓk´1pxq ` Opr2q.
It remains to show Equations (32) and (33) for i2, ¨ ¨ ¨ , im. Write t “ i2, near ℓtpxq “ 0, we write

x1 “ βt´1H ` 1

2
pβt`1 ´βt´1qpHt´1 ´ρt´1q´ 1

2
Λtβt

ˆ

1 ` Ht´1

ρt´1

˙

`
t´2
ÿ

i“1

aipβi`1 ´βiq´Λkβk `Opr2q,

x2 “ ´αt´1H´ 1

2
pαt`1´αt´1qpHt´1´ρt´1q` 1

2
Λtαt

ˆ

1 ` Ht´1

ρt´1

˙

´
t´2
ÿ

i“1

aipαi`1´αiq´Λkαk`Opr2q.

Then Equation (32) holds automatically under the assumption Λt “ a1
t ´ a1

t´1, and the first
equation in Equation (33) simplifies to
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0 “ λt`1 ´ λt detpνt`1, νt´1q ` λt´1 ´ Λt. (39)

Direct computation as the previous situation shows this equation holds. For i3, ¨ ¨ ¨ , im, it’s now
clear this procedure also works.

Lemma 3.1.3. There exists a smooth and strictly positive function δ on P such that

detpHessxpuqq “
˜

δ

d
ź

i“1

ℓi
ź

kPI

ℓk

¸´1

. (40)

Proof. From [12], we know r “ pdetHessxpuqq´1{2
. Then it suffices to show there exists a smooth

and strictly positive function δ, such that

d
ź

i“1

ℓi
ź

kPI

ℓk “ r2

δ
. (41)

From the above discussions, we know

Bx1

Br “ ´ r

2

d´1
ÿ

i“1

βi`1 ´ βi

ρi
´ r

2

ÿ

kPI

Λkβk

Hk´1

ρ3k´1

,
Bx2

Br “ r

2

d´1
ÿ

i“1

αi`1 ´ αi

ρi
` r

2

ÿ

kPI

Λkαk

Hk´1

ρ3k´1

.

Then

Bℓj
Br “ Bx1

Br αj ` Bx2

Br βj (42)

“ r

2

d´1
ÿ

i“1

detpνi`1 ´ νi, νjq
ρi

` r

2

ÿ

kPI

ΛkHk´1

ρ3k´1

pαkβj ´ αjβkq (43)

“ r

2

˜

´detpν1, νjq
ρ1

`
d´1
ÿ

i“2

detpνi, νjq
ˆ

1

ρi´1

´ 1

ρi

˙

` detpνd, νjq
ρd´1

¸

` r

2

ÿ

kPI

ΛkHk´1

ρ3k´1

detpνk, νjq.

(44)

We want to show for j R I, as we approach each edge Ej of P ,
Bℓj
Br “ rδj for some smooth and

positive function δj ; for j P I, as H approaches ´aj and r approaches 0, ℓ2jℓj´1ℓj`1 “ r2δj for
some smooth and positive function δj . To show these, we have the following discussions:

(i) When j “ 1, for r “ 0, ´a1 ă H , it’s immediate to see each term of (44) is positive. This

implies
Bℓj
Br “ rδj for some function δj smooth and strictly positive.

(ii) When j ą 1 and j, j ` 1 R I. For r “ 0, ´aj ă H ă ´aj´1, given 1 ď i ă j, we have

detpνi, νjq ă 0,
1

ρi´1

´ 1

ρi
ă 0; given j ` 1 ď i ă d, we have detpνi, νjq ą 0,

1

ρi´1

´ 1

ρi
ą 0;

given k P I, k ă j, we have detpνk, νjq ă 0, Hk´1 ă 0; given k P I, k ą j, we have
detpνk, νjq ą 0, Hk´1 ą 0. Hence, each term of (44) is again positive.
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(iii) When j “ d, for r “ 0, H ă ´ad, similar arguments show each term is positive.

(iv) When j ` 1 P I, for r “ 0, ´aj “ ´aj`1 ă H ă ´aj´1, the only difference is when
i “ j ` 1 P I, we have ρi “ ρi´1 and detpνi, νjq ą 0, Hj ą 0, thus the involved terms are still
positive. All other terms are still positive from the discussion in the second case.

(v) When j P I. For H “ ´aj “ ´aj´1, r doesn’t take the value 0, we let r Ñ 0, then

ρj , ρj´1 Ñ 0. In this case,
1

ρj´1

goes to infinity, and we need a different argument. Using

Equation (33), we obtain

r2 “ pρj´1 ` Hj´1qpρj´1 ´ Hj´1q “ ℓ2j ¨ p2ℓj´1 ` Opr2qqp2ℓj`1 ` Opr2qq
δ2j´1,j,j`1

,

here δj´1,j,j`1 is a smooth and positive function. Thus ℓ2jℓj´1ℓj`1 “ r2δj for some smooth
and positive function δj.

With the preparation of these lemmas, we are ready to show the boundary condition (25) holds
for the cusp edges of P . Consider k P I, near ℓkpxq “ 0,

ξ1 “ αk´1 log r ` 1

2
pαk`1 ´ αk´1q logpHk´1 ` ρk´1q ´ Λk

2

αk

ρk´1

` Op1q,

ξ2 “ βk´1 log r ` 1

2
pβk`1 ´ βk´1q logpHk´1 ` ρk´1q ´ Λk

2

βk

ρk´1

` Op1q.

From Lemma 3.1.3, we know r2 “ δ1ℓk´1ℓ
2

kℓk`1 for some smooth and strictly positive function δ1

near ℓk. Note from Equations (32) and (33), we obtain from (35) that

du “ 1

2

ˆ

logpℓk´1qαk´1 ` logpℓk`1qαk`1 `
ˆ

detpνk`1, νk´1q logpℓkq ´ Λk

ℓk

˙

αk

˙

dx1

` 1

2

ˆ

logpℓk´1qβk´1 ` logpℓk`1qβk`1 `
ˆ

detpνk`1, νk´1q logpℓkq ´ Λk

ℓk

˙

βk

˙

dx2 ` Op1q. (45)

This is the desired boundary behavior. Hence proving (25). This completes the construction of
the metric. The corresponding potential u P SΛk

2
, 1
2
detpνk´1,νk`1q

pP,L, ℓkq for k P I is immediate

from the construction.

Remark 3.1. We remark here that we can modify the assumption (8) on the index set to
1 ă i1 ď i2 ď ¨ ¨ ¨ ď id ă d. If k, k ` 1 P I and k ´ 1, k ` 2 R I, which means there are two adjacent
cusp edges, then we have ak´1 “ ak “ ak`1. Now define for i ă k, α1

i :“ αi, β
1
i :“ βi; for i “ k,

α1
k
:“ αk ` αk`1, β

1
k
:“ βk ` βk`1; for i ą k, α1

i :“ αi´1, β
1
i :“ βi´1. Then, the situation is reduced

to that discussed in the theorem. Similarly, we can extend the arguments to the case for any
number of adjacent cusp edges with this argument. From this, we can relax the assumption of
Di X Dj “ H for all i ‰ j to allow some non-empty intersection of them.
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We are interested in studying the asymptotic behavior of these Poincaré type scalar-flat Kähler
metrics away from the divisor. For this, we compare them with the scalar-flat Kähler metrics on
C2 discussed in [12] and [29]. From [29], we know the symplectic coordinates

x1 “ 1?
2

p´r `
a

H2 ` r2q ` αH2, x2 “ 1?
2

pr `
a

H2 ` r2q ` βH2, for α, β ě 0

induce the Taub-NUT metric when α “ β “ 0, the generalized Taub-NUT metrics when
α ą 0, β ą 0, and the exceptional Taub-NUT metrics when α “ 0, β ą 0 or β “ 0, α ą 0.

Theorem 3.2. Consider the metrics constructed in Theorem 3.1. The metric is (1) ALE if
α “ β “ 0; (2) asymptotic to a generalized Taub-NUT metric if α, β ą 0; (3) asymptotic to an
exceptional Taub-NUT metric if either α “ 0, β ą 0 or α ą 0, β “ 0.

Proof. From [11], Section 3, given angular coordinates θ1, θ2 for x1, x2, the metrics constructed in
Theorem 3.1 have the following form

ÿ

uijdxi b dxj `
ÿ

uijdθi b dθj .

Equivalently
ÿ

uijdxi b dxj can be written as

r ¨ detDξpdH2 ` dr2q.

For H ě 0, and ρ :“
a

H2 ` r2, as ρ Ñ 8, we have

1

ρi ` Hi

´ 1

ρ ` H
“ O

ˆ

1

ρ2

˙

,
1

ρi
´ 1

ρ
“ O

ˆ

1

ρ2

˙

,

then as ρ Ñ 8, we rewrite Dξ as

Dξ “
ˆ

α 0

β 0

˙

` 1

r

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

r

d´1
ÿ

i“1

pαi`1 ´ αiq

2ρ
α1 `

d´1
ÿ

i“1

pαi`1 ´ αiqr2

2ρpρ ` Hq

r

d´1
ÿ

i“1

pβi`1 ´ βiq

2ρ
β1 `

d´1
ÿ

i“1

pβi`1 ´ βiqr2

2ρpρ ` Hq

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

` O

ˆ

1

ρ2

˙

. (46)

We see that compared to the Abreu and Sena-Dias case, the additional terms of the form
αk

ρk
in ξ

only create terms of the form O

ˆ

1

ρ2

˙

. Then under similar computations as in [4] Proposition 5.1,

we know

r detDξ “ detpνd, ν1q
2ρ

` O

ˆ

1

ρ2

˙

, for α “ β “ 0;

r detDξ “ detpν, ν1q
ˆ

1 ´ r2

2ρpH ` ρq

˙

`detpν, νdq r2

2ρpH ` ρq`detpνd, ν1q
2ρ

`O

ˆ

1

ρ2

˙

, for pα, βq ‰ p0, 0q.
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For H ď 0, we argue the same way by considering pH, rq ÞÑ p´H, rq, pν1, ¨ ¨ ¨ , νdq ÞÑ pνd, ¨ ¨ ¨ , ν1q,
pa1, ¨ ¨ ¨ , adq ÞÑ p´ad, ¨ ¨ ¨ , a1q. Hence, we deduce the desired asymptotic behavior for the first two
cases. The completeness of these metrics is immediate with the above calculations, for details, see
[4] Proposition 5.1.

For the last case where either α ą 0, β “ 0 or α ą 0, β “ 0, we compare detDξ with that for the
model exceptional Taub-NUT metrics on C2, introduced in [29]. Let ξAS be the Legendre
transform of its momentum coordinate for the toric scalar-flat metric constructed in [4] for the
given polytope P , and ξexc be the one for the exceptional Taub-NUT metric, then we know from
[28] Section 5 that detDξAS “ detDξexc ` Opρ´2q. For our case, from the above expression (46),
we have detDξ “ detDξAS ` Opρ´2q, and thus the metrics are asymptotic to the exceptional
Taub-NUT metrics.

Example 3.1. (Hwang-Singer metric, [13], [14]) Consider the polytope with three edges whose
normal vectors are ν1 “ p0, 1q, ν2 “ p1, 1q, ν3 “ p1, 0q and I “ t2u. Let

L “ tx1 “ 0, x2 “ 0, x1 ` x2 ´ 1 “ 0u.

Figure 2: The moment polytope of the Hwang-Singer metric

Then, from the construction, we obtain

ξ1 “ 1

2
log

´

H `
a

H2 ` r2
¯

´ 1

2

1
a

H2 ` r2
, ξ2 “ 1

2
log

´

´H `
a

H2 ` r2
¯

´ 1

2

1
a

H2 ` r2
;

x1 “ 1

2

´

H `
a

H2 ` r2
¯

` 1

2

H
a

H2 ` r2
, x2 “ 1

2

´

´H `
a

H2 ` r2
¯

´ 1

2

H
a

H2 ` r2
.

Then, we obtain the symplectic potential u, which is

u “ 1

2
x1 log x1 ` 1

2
x2 log x2 ` 1

2
px1 ` x2 ´ 1q logpx1 ` x2q ` h

for some smooth function h. Let ω be the corresponding Kähler form. It lives on the complement
of the zero section E of the total space of the line bundle Op´1q over CP

1, which we denote by Y .
Then u P S 1

2
,´ 1

2

pY, L,Eq. Consider the momentum coordinate

τ :“ 2px1 ` x2q “ 2
a

H2 ` r2,

let X be the generator of the S1-action satisfying iXω “ ´dτ , then from [30] Section 2.3, we can
compute the norm }X}2 as follows:
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}X}2 “ r ¨

ˆ Bτ
BH

˙2

`
ˆBτ

Br

˙2

Bτ
BH

Bx1

Br ´ Bτ
Br

Bx1

BH

“ 2τ2

2 ` τ
.

We see it is exactly the momentum profile of the Hwang-Singer metric discussed in [13] Section 2
and Section 3. If we vary the length of the edge corresponding to the divisor, then we obtain a
one-parameter family of toric scalar-flat Kähler metrics of Poincaré type introduced in [14]. More
precisely, consider

ξ1 “ 1

2
log

´

H `
a

H2 ` r2
¯

´ a

2

1
a

H2 ` r2
, ξ2 “ 1

2
log

´

´H `
a

H2 ` r2
¯

´ a

2

1
a

H2 ` r2
,

the corresponding symplectic potential is given by

u “ 1

2
x1 log x1 ` 1

2
x2 log x2 ` 1

2
px1 ` x2 ´ aq logpx1 ` x2q ` ha

for some smooth function ha. Then u P S a
2
, 1
2

pY, L,Eq.
With a similar approach, we can prove Theorem 1.3, again by explicitly constructing the toric
metrics:

Proof of Theorem 1.3. Compared with the case in Theorem 3.1, all arguments of the construction
work for the parallel edges case except for the choice of ν “ pα, βq. Since ν1 “ ´νd, ν needs to
satisfy

detpν, ν1q “ 0; detpν, νkq ě 0,@k P I,

then with the same arguments, we see ξ1, ξ2 give a one-parameter family of toric scalar-flat Kähler
metrics. To understand the asymptotic behavior of these metrics, we compare them with that of
the product metric gprod on S2 ˆ R2. On S2, we take the round metric, and on R2, we take the
hyperbolic metric. Then S2 ˆ R2 is biholomorphic to CP1 ˆ D. The symplectic coordinates of this
product metric, as discussed in [30], can be written as

dx1 “ 1

2

´

´1 `
a

H2 ` r2 `
a

pH ´ 1q2 ` r2
¯

, dx2 “ 1

2

´

1 ´
a

H2 ` r2 `
a

pH ´ 1q2 ` r2
¯

.

The toric scalar-flat metrics whose moment polytope has parallel unbounded edges are discussed
by Weber in [30] and [29]. These metrics satisfy the Guillemin boundary condition. Let ξWeb be
the Legendre coordinate of the momentum coordinate of the metric for the given polytope, and
ξprod be the one for the model metric. Then we know from [28] Section 5 that
detDξWeb “ detDξprod ` Opρ´2q. For our case, from the formula in Equation (46), we have
detDξ “ detDξWeb ` Opρ´2q, thus conclude the asymptotic behavior of the constructed
metrics.

At the end of this section, we remark that for a toric scalar-flat Kähler metric whose symplectic
potential lives in Sα,βpP, F q, the α, β are uniquely determined by the polytope. We recall the
following theorem in [5]:
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Theorem 3.3. ([5], Proposition 4.20) Consider u P Sα,βpP,L, F q satisfies

´
ÿ

i,j

B2uij

BxiBxj

“ spP,L,F q

for some extremal affine linear function spP,L,F q of pP,L, F q. Then α, β are determined by the
data pP,L, F q.

Following the proof of this theorem, an explicit expression of α and β are obtained in
Equations (46) and (48). For our case where spP,L,F q “ 0, we see α, β are expressed in terms of
functions on F , thus for non-compact P , they are still determined by the data pP,L, F q. Hence,
for a fixed polytope P , if the symplectic potential of the toric scalar-flat Kähler metric lives in
Sα,β , then the choices of α, β must agree with those in Theorem 3.1. In the Appendix 5, we will
discuss a uniqueness result under this prescribed class of symplectic potential.

4 A conical family of toric metrics

Given a cone angle 2πθ0 for θ0 P p0, 1q, motivated by the conical family in [15] Remark 1.2, we
consider the following boundary behavior of potential u of a toric metric which has conical
singularity along the divisor corresponding to the edge ℓpxq “ 0 on its moment polytope:

upxq “ 1

2θ0
¨ ℓpxq log ℓpxq ` h0pxq (47)

for some smooth function h0. For the ALE scalar-flat Kähler metric of Poincaré type constructed
in Theorem 3.1(i.e., ν “ 0) whose moment polytope is P zℓI . Let u be its symplectic potential,
write

u “ 1

2

ÿ

iRI

ℓi log ℓi ` 1

2

ÿ

iPI

pαi ` βiℓiq log ℓi ` h

for some h P C8pP q. Here αi “ ´1

2
Λi, βi “ 1

2
detpνi`1, νi´1q for i P I. Consider the smooth

scalar-flat Kähler metric on P constructed by Abreu and Sena-Dias in [4], let uAS be the
symplectic potential, we can write

uAS “ 1

2

d´1
ÿ

i“1

ℓi log ℓi ` hAS

for some hAS P C8pP q. For any θ “ pθi1 , ¨ ¨ ¨ , θimq, consider

upθq :“ 1

2

ÿ

iRI

ℓi log ℓi ` 1

2

ÿ

iPI

1

θi
¨ ℓi log ℓi ` vθ `

ź

iPI

p1 ´ θiq ¨ h `
ź

iPI

θi ¨ hAS . (48)

Here vθ “ 0 for θ “ 1 and for θ P p0, 1q,

vθ :“
ÿ

iPI

”

ˆ

βi ´ 1

2θi

˙

ℓi log

ˆ

ℓi ` θi

1 ´ θi

˙

`αi log

ˆ

ℓi ` θi

1 ´ θi

˙

`
ˆ

βi ´ 1

2

˙

ℓi log
1

1 ´ θi
´αi log

1

1 ´ θi

ı

.
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Then upθq Ñ u as θi Ñ 0 for all i and upθq Ñ uAS as θi Ñ 1 for all i. This family of conical
metrics, however, are not necessarily scalar-flat.

In the remaining part of this section, we will follow the framework of Abreu and Sena-Dias to
explicitly construct toric conical scalar-flat Kähler metrics:

Theorem 4.1. Given X satisfying the same conditions as in Theorem 3.1 and let P be the
moment polytope for X. Consider an index set J “ tj1, ¨ ¨ ¨ jmu Ă t1, 2, ¨ ¨ ¨ , du with
1 ď j1 ă ¨ ¨ ¨ ă jm ď d. For each ji P J , fix a cone angle 2πθji , we write θ “ pθj1 , ¨ ¨ ¨ θjmq. For the
normal vector νi “ pαi, βiq, consider

α1
i :“ αi if i R J, α1

i :“
αi

θi
if i P J ; β1

i :“ βi if i R J, β1
i :“

βi

θi
if i P J. (49)

Let ℓJ “
Ťm

i“1
ℓji be the union of edges ℓji indexed by the elements in J , here ℓji corresponds to

Di,@i “ 1, ¨ ¨ ¨m. Consider ν “ pα, βq a vector in R2 satisfying (9). Set

ξ1 :“ α1
1 log r ` 1

2

d´1
ÿ

i“1

pα1
i`1 ´ α1

iq log
ˆ

H ` a
pθq
i `

b

pH ` a
pθq
i q2 ` r2

˙

` αH,

ξ2 :“ β1
1 log r ` 1

2

d´1
ÿ

i“1

pβ1
i`1 ´ β1

iq log
ˆ

H ` a
pθq
i `

b

pH ` a
pθq
i q2 ` r2

˙

` βH,

where a
pθq
1

, ¨ ¨ ¨ , apθq
d´1

are real numbers determined by P and θ. Let x1, x2 be the primitives of

ǫ1 “ r

ˆBξ2
Br dH ´ Bξ2

BHdr

˙

, ǫ2 “ ´r

ˆBξ1
Br dH ´ Bξ1

BH dr

˙

.

Then they define the momentum action coordinates on P ˝ of some conical toric scalar-flat Kähler
metric on X whose cone angle along Di is 2πθji . Its symplectic potential satisfies

du “ ξ1dx1 ` ξ2dx2.

Proof. Firstly, the positivity of detDξ can be proved with the same arguments as in Theorem 3.1,

it is because pα1
i, β

1
iq either equals to pαi, βiq, or is rescaled by a positive constant

1

θi
from pαi, βiq

along edges corresponding to conical divisors. Next, to check the boundary behavior of u, we note

for ´a
pθq
j ă H ă ´a

pθq
j´1

, we have

ξ1 “ α1
1 log r `

j´2
ÿ

i“1

pα1
i`1 ´ α1

iq log r “ α1
j log r ` Op1q, ξ2 “ β1

j log r ` Op1q,

which gives

du “ log rpα1
jdx1 ` β1

jdx2q ` Op1q.

We claim that we still have r “ pδ
śd

i“1
ℓiq1{2 for some smooth and positive function δ. The

reason is that with a similar analysis as in Lemma 3.1.3, we obtain

22



Bx
Br “ ´ r

2

d´1
ÿ

i“1

β1
i`1

´ β1
i

ρ
pθq
i

,
Bℓj
Br “ r

2

d´1
ÿ

i“1

detpν1
i`1

´ ν1
i, νjq

ρ
pθq
i

,

here ν1
i :“ pα1

i, β
1
iq, H

pθq
i

:“ H ` a
pθq
i and ρ

pθq
i

:“
b

pHpθq
i q2 ` r2. Again, since α1

i, β
1
i are rescaled

from αi, βi, we still have

r

2

˜

´detpν1
1, νjq

ρ
pθq
1

`
d´1
ÿ

i“2

detpν1
i, νjq

˜

1

ρ
pθq
i´1

´ 1

ρ
pθq
i

¸

` detpν1
d, νjq

ρ
pθq
d´1

¸

ą 0,

and this proves the claim. Thus, du “ log ℓjpα1
jdx1 ` β1

jdx2q ` Op1q, giving the desired boundary
behavior.

Lemma 4.1.1. Given j P J ,

a
pθq
j ´ a

pθq
j´1

“ θj ¨ Lj

2π|νj |2 . (50)

Proof. Note

ω|ℓj “ r
Bξ2
Br dH ^ dθ1 ´ r

Bξ1
Br dH ^ dθ2,

then from ξ “ 1

θj
νj log r ` Op1q on ℓj, we get ω|ℓj “ |νj |2

θj
dH ^ dt. Then

Lj “
ż

ℓj

ω “ 2πpapθq
j ´ a

pθq
j´1

q ¨ |νj |2
θj

,

concluding (50).

Also we know for j R J , a
pθq
j ´ a

pθq
j´1

“ a1
j ´ a1

j´1
. Then, we obtain the relation between a

pθq
j and a1

j :

a
pθq
j “ a1

j if j ă j1; a
pθq
j “ a1

j `
k

ÿ

ℓ“1

p1 ´ θjℓqpa1
jℓ´1 ´ a1

jℓ
q if jk ď j ă jk`1;

and a
pθq
j “ a1

j `
m
ÿ

ℓ“1

p1 ´ θjℓqpa1
jℓ´1 ´ a1

jℓ
q if jm ď j ď d. (51)

From the expression of ξ1, ξ2 we deduce the expression of x1, x2 as follows:

x1 “ β1
1H ` 1

2

d´1
ÿ

i“1

pβ1
i`1 ´ β1

iqpHpθq
i ´ ρ

pθq
i q, x2 “ ´α1

1H ´ 1

2

d´1
ÿ

i“1

pα1
i`1 ´ α1

iqpHpθq
i ´ ρ

pθq
i q.

When r “ 0, we have

x1 “ β1
1H ` 1

2

d´1
ÿ

i“1

pβ1
i`1 ´ β1

iqpHpθq
i ´ |Hpθq

i |q, x2 “ ´α1
1H ´ 1

2

d´1
ÿ

i“1

pα1
i`1 ´ α1

iqpHpθq
i ´ |Hpθq

i |q.

23



Equivalently, we know

(i) If ´a
pθq
1

ă H , then x1 “ β1
1H, x2 “ ´α1

1H ;

(ii) if ´a
pθq
j`1

ă H ă ´a
pθq
j , then

x1 “ β1
j`1H `

j
ÿ

i“1

a
pθq
i pβ1

i`1 ´ β1
iq, x2 “ ´α1

i`1H ´
j

ÿ

i“1

a
pθq
i pα1

i`1 ´ α1
iq;

(iii) if H ă ´a
pθq
d´1

, then x1 “ β1
dH ´

d´1
ÿ

i“1

a
pθq
i pβ1

i`1 ´ β1
iq, x2 “ ´α1

dH ´
d´1
ÿ

i“1

a
pθq
i pα1

i`1 ´ α1
iq.

We want to show x1 “ px1
1, x

1
2q, when restricted to pH, 0q, defines a global proper homeomorphism.

Again, we first focus on its behavior along ℓj for j1 ď j ă j2. For simplicity, we write k “ j1, then

x1 “ β1
k´1H ` 1

2
pβ1

k ´ β1
k´1qpHpθq

k´1
´ ρ

pθq
k´1

q `
k´2
ÿ

i“1

a
pθq
i pβ1

i`1 ´ β1
iq ` Opr2q,

x2 “ ´α1
k´1H ´ 1

2
pα1

k ´ α1
k´1qpHpθq

k´1
´ ρ

pθq
k´1

q ´
k´2
ÿ

i“1

a
pθq
i pα1

i`1 ´ α1
iq ` Opr2q.

From (51), we know ℓkpxq “ 0 holds. For k ă j ă j2, note ℓjpxq “ 0 is equivalent to

j´1
ÿ

i“2

detpνi, νjqpapθq
i´1

´ a
pθq
i q ´ a

pθq
1

detpν1, νjq “
j´1
ÿ

i“2

detpν1
i, νjqpa1

i´1 ´ a1
iq ´ a1

1 detpν1, νjq.

From (51), direct computation shows the above equation holds. With essentially the same
arguments applied to ji ď j ă ji`1 for i ě 2, we see ℓjpxq “ 0 holds. Hence x defines a global
proper homeomorphism as desired.

For the asymptotic behavior of the conical metrics, note as ρ Ñ 8,

r detDξ “ detpν1
d, ν

1
1q

2ρ
` O

ˆ

1

ρ2

˙

, for α “ β “ 0;

r detDξ “ detpν, ν1
1q

ˆ

1 ´ r2

2ρpH ` ρq

˙

`detpν, ν1
dq r2

2ρpH ` ρq`detpν1
d, ν

1
1q

2ρ
`O

ˆ

1

ρ2

˙

, for pα, βq ‰ p0, 0q.

The arguments in Theorem 3.2 still work here, and hence the asymptotic behavior of conical
metrics coincide with those for the cuspidal metrics with a given choice of pα, βq.

5 Appendix: Uniqueness of toric metrics under given boundary conditions

Theorem 5.1. Consider the same setting as in Theorem 3.1. Assume g is a toric scalar-flat
Kähler metric of Poincaré type and its symplectic potential u satisfies the prescribed boundary
behavior given in (11), then g can only be one of the metrics constructed in Theorem 3.1.
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Proof. The proof closely follows the arguments of Sena-Dias in [26], with the essential differences
in Claim 5.1.3, Lemma 5.1.2 and Lemma 5.1.3.

Starting from a scalar-flat Kähler metric on a symplectic 4-manifold, Donaldson shows in [11]
Theorem 1 that each solution of the scalar-flat Kähler equation locally arises from axi-symmetric
harmonic functions ξ1, ξ2 in the way described in Theorem 2.1. Here ξ1, ξ2 are unique up to
translation in the H variable and addition of constants. More precisely, given upxq the symplectic
potential of a scalar-flat Kähler metric, we consider pH, rq satisfying

r “ pdetHess uq´1{2,
BH
Bx1

“ ´u2j

r

Br
Bxj

,
BH
Bx2

“ u1j

r

Br
Bxj

. (52)

Then for the moment P ˝ endowed with the metric gpoly “ uij

2
ÿ

i,j“1

dxi b dxj , r is harmonic and H

is its harmonic conjugate. The metric gpoly induces a complex structure Jpoly via its Hodge star.
We obtain a Jpoly-holomorphic local coordinate on P ˝, written as

z :“ H ` ir.

The coordinates pH, rq, as functions of x1, x2, are known as the isothermal coordinates. Note the
boundary behavior of u is determined on BP . Then r extends continuously to BP zℓI, as does H .
Thus, z extends to BP zℓI as a continuous function, denoted by z̃. Note r “ 0 on BP zℓI, then
z̃pBP zℓIq Ă BHz

Ť

kPIp´ak, 0q. From the boundary behavior of the metric we know z̃ is a bijection
from BP zℓI to BHz Ť

kPIp´ak, 0q.
Lemma 5.1.1. The map z : P ˝ Ñ H is a bijection.

Proof. The proof relies on the real sub-manifold associated with the symplectic 4-manifold X .
From the discussions in [20] Theorem 6.7 and [26], we know since the moment map is proper, X is
symplectomorphic to the quotient of some complex plane Cd by a sub-torus of the standard torus,
with d being the number of edges of the moment map of X . Note complex conjugation descends
to a function on X and D. We denote its fixed point set(which are real submanifolds) of X and D

by XR and DR, respectively. The moment map

φ : XzD Ñ R
2z

ď

kPI

p´ak, 0q,

when restricted to XRzDR is denoted by φR. It is a 4 to 1 branched cover with the branched set

being φ´1pBP zℓIq and write φ´1

R
pP ˝q “ Ť3

j“0
Pj as a disjoint union of the open sets Pj . Let gR be

the induced metric on XRzDR and P0, then gpoly :“ φR˚
pgRq “ uijdxi b dxj . Let

pXRzDRq˝ Ñ XRzDR

be the orientable double cover of XRzDR and φ˝
R

be the lifting of φR to pXRzDRq˝. For each Pj ,
k “ 0, 1, 2, we write P 0

j and P 1
j as the pre-image under the double cover. Via the Hodge star

operator, we obtain from the metric induced by gR on pXRzDRq˝ a complex structure JR, whose
pushforward under φ˝

R
defines a complex structure Jpoly on P zℓI .
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Claim 5.1.1. Given w P BP zℓI, and p an element in pφ˝
R

q´1pwq Ă pXRzDRq˝, then there is a
neighbourhood Vp of p in pXRzDRq˝ such that z ˝ φ˝

R
extends to Vp as a holomorphic function for

JR.

The proof is a lifting and extension argument for the harmonic function r and the harmonic
conjugate H on XzD, and this argument is essentially the same as in [26] Lemma 6.2.

Now, we show the injectivity. For the holomorphic map z, we consider its degree; it suffices to
show the degree is 1. If we consider a point w0 P BHz Ť

kPIp´ak, 0q and let w P BP zℓI be its
pre-image of z̃. Fix p in the closure of P 0

0 X P 0
1 . From Claim 5.1.1, there exists an extension of z

to Vp. Assume Vp is small enough to admit a complex chart z : Vp Ñ C. Then following the
arguments of the proof of injectivity in [26] Section 6.1, we know for any ǫ ą 0 such that
Bǫ X P Ă φ˝

R
pVpq, there exists δ such that z´1pBδpw0qq Ă Bǫpwq; furthermore, given a point

w1
0 P Bδpw0q X H, we can enlarge the loop γ enclosing all pre-images of z so that it also encloses

w, then as w1
0 tends to w0. The number of pre-images of w1

0 given by the integral

ż

γ

dz
ds

psqds
zpsq ´ w1

0

equals to that of w0, which is 1.

Then we show the surjectivity. The different boundary behavior for the symplectic potential in
our case compared to that in [26] doesn’t cause any essential difference to the arguments of the
proof. Note P is non-compact and admits non-trivial harmonic functions, from the uniformization
theorem, we know there exists a holomorphic map κ : P ˝ Ñ H.

Claim 5.1.2. κ extends as a homeomorphism to P zℓI Ñ Hz Ť

kPIp´ak, 0q, and it’s a bijection.

Proof. First, we show the map is extendable. The different boundary behavior for the symplectic
potential in our case compared to that in [26] doesn’t cause any essential difference to the
arguments of the proof, for details we refer the readers to Lemma 5.4.

To see the extension is bijective, we argue by contradiction. Assume it’s not injective, let
w, v P BP zℓI such that κ̃pwq “ κ̃pvq. Take o P P ˝ and consider the Jordan curve going through
κpoq and κ̃pwq “ κ̃pvq. Let C be the interior of this Jordan curve, then the segment S joining w

and v satisfies κ̃pSq Ă BA X BH, and thus κ̃ is constant on S. In particular, we see S doesn’t
contain ℓk for any k P I. Then, the same arguments as in [26] give a contradiction. Similarly, we
can prove that the inverse is also injective.

We use this extension map as an auxiliary to show the surjectivity of z. Let U :“ zpP ˝q, write

BU “ pBU X BHq Y pBU X Hq,
then the surjectivity of z is equivalent to BU X H “ H. Consider zκ :“ z ˝ κ´1 : H Ñ H, it is a
holomorphic, injective map which can be extended bijectively to
BHz

Ť

kPIp´ak, 0q Ñ BHz
Ť

kPIp´ak, 0q. Consider

fpwq :“ 1

zκp´ 1

w
q : H Ñ H,
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as in [26], the same arguments show that it is holomorphic and can be extended to a holomorphic
function on C˚ with 0 being an isolated singularity using the Schwarz reflection principle. Rewrite
U “ zκpHq, we claim that

Claim 5.1.3. BU X H “ tlim zκpwnk
q, pwkq unbounded with pwnk

q being a subsequenceu.

Proof. For any point z8 in the above set, we take a sequence wk P H such that zκpwkq Ñ z8. If
the sequence is bounded, there is a convergent subsequence wnk

in H converging to w P H. We
have the following possibilities:

(i) If w P H, then z̃κpwq “ zκpwq P U but since U is open, z8 R BU ;

(ii) if w P BHz Ť

kPIp´ak, 0q, then z̃κ P BHz Ť

kPIp´ak, 0q, then z8 R H;

(iii) if w “ p´ak, 0q for some k P I, consider κ´1pwnk
q :“ pnk

, we have zppnk
q Ñ z8 P H. From

z : P zℓI Ñ Hz Ť

kPIp´ak, 0q is bijective we know pnk
Ñ z´1pz8q P P zℓI and from

κ : P zℓI Ñ Hz Ť

kPIp´ak, 0q is bijective we know κppnk
q Ñ z´1

κ pz8q P Hz Ť

kPIp´ak, 0q. This
implies wnk

tends to an element in Hz
Ť

kPIp´ak, 0q, a contradiction.

Equivalently we know

BU X H “ tlim fpwnk
q, wk P H, wk Ñ 0, pwnk

q a subsequenceu :“ fp0q.
Now, this set contains either 8 or a single point, which is a pole. If the latter holds, we know z´1

κ

is a holomorphic function with an isolated pole, but the image can not lie in H. Hence we
conclude that BU X H “ H. This concludes the proof.

Now we know z is a bijection, define µ :“ z´1, and let µALE :“ z´1

ALE be the corresponding map
for the ALE metric gALE(i.e., the case where ν “ 0) constructed in Theorem 3.1.

Lemma 5.1.2. Consider µ0 :“ µ ´ µALE, we have µ0 “ r2f for some f P C8pHz Ť

kPIp´ak, 0qq,
and f satisfies

fHH ` frr ` 3fr

r
“ 0.

Proof. Consider

η :“ pux1
, ux2

q, ηALE :“ puALE,x1
, uALE,x2

q,
we write

ξpH, rq “ η ˝ µpH, rq, ξ0pH, rq “ η ˝ µ0pH, rq.
To show µ0 extends as an analytic function to Hz Ť

kPIp´ak, 0q, it’s equivalent to show ξ0 extends
as an analytic function on Hz Ť

kPIp´ak, 0q. Since ξ0 is an axi-symmetric harmonic function on H,
from the mean value theorem, it is sufficient to show ξ0 is bounded in a neighborhood of each
point on BHz

Ť

kPIp´ak, 0q. Write

ξ0 “ ηALE ˝ µALE ´ η ˝ µ “ pηALE ˝ µALE ´ ηALE ˝ µq ` pηALE ˝ µ ´ η ˝ µq.
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Note ηALE ´ η P C8, and µ extends as a continuous function on Hz Ť

kPIp´ak, 0q, we know the
second term is bounded. For the first term, rewrite it as ξALE ´ ξALE ˝ pµ´1

ALE ˝ µq. Near
BHz Ť

kPIp´ak, 0q, there is a singularity of ξALE with

ξALE “ νi log r ` Op1q on each internal ´ ai`1 ă H ă ´ai and r “ 0 given i R I.

It’s equivalent to show as r Ñ 0, log
r

rpµ´1

ALE ˝ µq
is bounded. Composing with µ´1 it suffices to

show

(i) For the conjugate harmonic coordinate H 1 for z, for i ` 1 R I,
´ai`1 ă H ă ´ai ðñ ´ai`1 ă H ă ´ai, and for i ` 1 P I, H “ ´ai`1 ðñ H 1 “ ´ai`1;

(ii) log
r ˝ µ´1

r ˝ µ´1

ALE

is bounded as r approaches 0.

The first claim follows from [26] Theorem 6.2 and our choice of coefficients (27). For the second
claim, recall r ˝ µ´1 “ det(Hess u ˝ µ´1q´1{2, then it’s equivalent to show that

pdet Hess u ˝ µ´1q´1{2

pdet Hess uALE ˝ µ´1q´1{2

is bounded. This follows from the assumed boundary behavior of u and uALE. Direct calculation
gives fHH ` frr ` 3fr

r
“ 0, for details see [26] Lemma 6.3.

Lemma 5.1.3. For the normal vector ν1 “ p1, 0q, consider f1 :“ f ¨ ν1, then f1 is a constant.

Proof. Since f1 is harmonic, it suffices to show it is bounded. From f “ µ0

r2
and ν ¨ ν1 ě 0 we

deduce that f1 ď µALE ¨ ν1
r2

. From the expression of x1, x2 in Theorem 3.1, we know

|µALEpH, rq| ď C
a

H2 ` r2 ` 1.

As in [26], we view f as a harmonic function in R
5, which only depends on the coordinate H and

the distance to the H-axis, r. Then @w P R5,

f1pwq ď Cp|w| ` 1q
r2

.

Let A denote the subset of R5 whose H coordinate does not take values ´ak for any k P I when
the distance r vanishes. For a fixed z P A, there exists Rz ą 0 large enough such that

BBpz,Rzq Ă A, and with the mean value theorem, we get f1pzq À 1

R3

ż

BBpz,Rq

dw

r2
. Then from [26]

Lemma 6.4, for R large enough, direct calculations show

ż

BBpz,Rq

dw

r2
À R2, thus f1 is bounded

from above.

Similarly, for the normal vector ν2, we can define f2 :“ f ¨ ν1, then f2 is a constant. Thus f is a
constant, which implies ξ0 “ H ¨ ν for some constant vector. Hence when ν “ 0, g is the ALE
metric constructed in Theorem 3.1 and otherwise g is the generalized or exceptional Taub-NUT
ones constructed there.
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