Real Left-Symmetric Algebras with Positive Definite Koszul Form and Kähler-Einstein Structures

Mohamed Boucetta, Hasna Essoufia,1

^aUniversit´e Cadi-Ayyad Facult´e des sciences et techniques BP 549 Marrakech Maroc e-mail: m.boucetta@uca.ma ^bUniversit´e Cadi-Ayyad Facult´e des sciences et techniques BP 549 Marrakech Maroc e-mail: essoufi.hasna@gmail.com

Abstract

Let (g, \bullet) be a real left symmetric algebra, and $(g^-, [,])$ the corresponding Lie algebra. We denote by L the left multiplication operator associated with the product •. The symmetric bilinear form $B(X, Y) = \text{tr}(L_{X \bullet Y})$, referred to as the Koszul form of (g, \bullet) , is introduced. We provide a complete characterization, along with a broad class of examples, of real left symmetric algebras that possess a positive definite Koszul form. In particular, we show that for a left symmetric algebra with positive definite Koszul form being commutative or associative or Novikov implies that this algebra is isomorphic to \mathbb{R}^n endowed with its canonical product. Beyond their algebraic interest, we show that any real left symmetric algebra (g, \bullet) with a positive definite Koszul form induces a Kähler-Einstein structure with negative scalar curvature on the tangent bundle *TG* of any connected Lie group G associated to $(g^{-}, [,])$. Furthermore, the characterization of left symmetric algebras with a positive definite Koszul form leads to a new class of non-associative algebras, which are of independent interest and generalize Hessian Lie algebras.

Keywords: Left symmetric algebras, Hessian Lie algebras, Einstein manifolds, *2000 MSC:* 53C25, *2000 MSC:* 17B05, *2000 MSC:* 17B99

1. Introduction

A Hessian manifold (for details, see [\[7,](#page-24-0) [8\]](#page-24-1)) is a triple (M, g, ∇) where *g* is a Riemannian metric and ∇ is a flat torsionless connection such that *g* satisfies the Codazzi equation

$$
\nabla_X(g)(Y,Z) = \nabla_Y(g)(X,Z)
$$
 (1)

for any vector fields *X*, *Y*, *Z*. Denote by D the Levi-Civita connection of (M, g) . The Koszul 1-form α and the second Koszul form β of (M, g, ∇) are given by

$$
\alpha(X) = \text{tr}(\gamma_X) \quad \text{and} \quad \beta(X, Y) = \nabla_X(\alpha)(Y), \quad X, Y \in \Gamma(TM),
$$
\n(2)

Preprint submitted to Elsevier November 5, 2024

where $\gamma_X Y = \mathcal{D}_X Y - \nabla_X Y$. The 1-form α is closed which implies that β is symmetric. One of the key properties of Hessian manifolds is that their tangent bundle *TM* naturally admits a Kähler structure (\hat{g} , *J*). Moreover, this structure is μ -Einstein^{[1](#page-1-0)} if and only if $\beta = -\mu g$.

A Hessian Lie group is a Lie group *G* endowed with a left invariant Hessian structure (*g*, ∇). The couple (g, ∇) induces on the Lie algebra $(g, [,])$ of *G* identified to the vector space of left invariant vector fields, a scalar product \langle , \rangle and product \bullet defined by

$$
\langle X, Y \rangle = g(X, Y)
$$
 and $X \bullet Y = \nabla_X Y$, $X, Y \in \mathfrak{g}$.

Since both *g* and ∇ are left invariant, the connection ∇ is flat and torsion-free if and only if

$$
X \bullet Y - Y \bullet X = [X, Y] \quad \text{and} \quad \text{ass}(X, Y, Z) = \text{ass}(Y, X, Z), \quad X, Y, Z \in \mathfrak{g},\tag{3}
$$

where ass(*X*, *Y*, *Z*) = ($X \bullet Y \bullet Z - X \bullet (Y \bullet Z)$ is the associator. Additionally, the Codazzi equation [\(1\)](#page-0-0) is equivalent to:

$$
\langle X \bullet Y - Y \bullet X, Z \rangle = \langle Y \bullet Z, X \rangle - \langle X \bullet Z, Y \rangle, \quad X, Y, Z \in \mathfrak{g}.\tag{4}
$$

Recall that an algebra (g, \bullet) is called a left symmetric algebra if its associator satisfies the second condition in [\(3\)](#page-1-1). It is well known that, in this case, \bullet is Lie admissible, i.e, the bracket $[X, Y] =$ *X* • *Y* − *Y* • *X* is a Lie bracket. We introduce the Koszul form of (g, \bullet) as the bilinear symmetric form B given by

$$
B(X, Y) = tr(L_{X \bullet Y})
$$
\n(5)

where L is the left multiplication operator of \bullet . The left symmetry of the associator implies that B satisfies

$$
B(X \bullet Y - Y \bullet X, Z) = B(Y \bullet Z, X) - B(X \bullet Z, Y), \quad X, Y, Z \in \mathfrak{g}.
$$
 (6)

A Hessian algebra is a left symmetric algebra (q, \bullet) endowed with a scalar product \langle , \rangle satisfying [\(4\)](#page-1-2). Left symmetric algebras and Hessian algebras play a significant role in geometry, physics, and algebra (see $[1, 5, 6, 10]$ $[1, 5, 6, 10]$ $[1, 5, 6, 10]$ $[1, 5, 6, 10]$).

Let (G, g, ∇) be a Hessian Lie group, and $(g, \bullet, \langle \cdot, \cdot \rangle)$ its associated Hessian algebra. The key observation here is that the second Koszul form of (G, g, ∇) is independent of the metric *g* and, when restricted to g, it coincides with the Koszul form *B* of (g, \bullet). Since we have established that the Kähler structure on *TG* is μ -Einstein if and only if the second Koszul form β satisfies $\beta = -\mu g$, we can now state our first main result:

Theorem 1.1. 1. Let (G, g, ∇) be a Hessian Lie group such that the Koszul form of its asso*ciated Hessian algebra vanishes.Then the Kähler structure of TG is Ricci-flat.*

2. *Let* (g, •) *be a real left symmetric algebra with a positive definite Koszul form B, and let G be a connected Lie group whose Lie algebra corresponds to the underlying Lie algebra of* (g, •)*. Then* (g, •, *B*) *is a Hessian algebra, G is solvable and, for any* α > 0*,* (α*B*, •) *defines a left-invariant Hessian structure* (g, ∇) *on G, and the associated Kähler structure on TG* $is -\frac{1}{\alpha}$ -Einstein.

It is important to mention that there is Lie group structure on *TG* such that the associated Kähler structure is left invariant (see [\[2\]](#page-24-5)). As a consequence, the Koszul form *B* can never be

¹A Riemannian manifold (*M*, *g*) is called μ -Einstein if its Ricci tensor ric satisfies ric = μ g.

negative definite, otherwise *TG* will have an Einstein metric with positive scalar curvature which is not possible since *TG* is not compact.

Theorem [1.1](#page-1-3) underscores the significance of studying left symmetric algebras with a positive definite Koszul form for short LSPK, beyond their inherent interest as a subclass of Hessian algebras. Consequently, the second part of this paper is dedicated to a complete examination of this class of non-associative algebras. We first show by using the famous Artin-Wedderburn theorem that for a LSPK being associative or commutative or Novikov implies that the algebra is isomorphic to \mathbb{R}^n with its canonical associative commutative product (see Theorem [3.1\)](#page-7-0). The general case is treated in Theorem [3.2](#page-13-0) where a complete description of this class of algebras is given. This theorem shows that these algebras can be constructed from a class of algebras that generalize Hessian algebras. To our knowledge, this broader class has not been previously considered. Let us introduce this class.

For $k \in \mathbb{R}$, a *k*-Hessian algebra is an algebra (g, \bullet) endowed with a scalar product satisfying [\(4\)](#page-1-2) and, for any *X*, $Y, Z \in \mathfrak{g}$,

$$
ass(X, Y, Z) - ass(Y, X, Z) = k(\langle X, Z \rangle Y - \langle Y, Z \rangle X). \tag{7}
$$

Clearly a 0-Hessian algebra is a Hessian algebra. Note that the relation [\(7\)](#page-2-0) implies that the bracket $[X, Y] = X \cdot Y - Y \cdot X$ defines a Lie bracket. Moreover, if *G* is a connected Lie group whose Lie algebra is $(g, [,])$ then $(\bullet, \langle , \rangle)$ induces on *G* a left invariant Riemannian metric *g* and a left invariant torsion free connection ∇ such that *g* satisfies the Codazzi equation [\(1\)](#page-0-0) and, for any *X*, $Y \in \Gamma(TG)$,

$$
R^{\nabla}(X,Y) := \nabla_{[X,Y]} - \nabla_X \nabla_Y + \nabla_Y \nabla_X = kX \wedge Y,\tag{8}
$$

where $(X \wedge Y)(Z) = \langle X, Z \rangle Y - \langle Y, Z \rangle X$. This leads to an important generalization of Hessian manifolds, referred to as *k*-Hessian manifolds. A *k*-Hessian manifold is a Riemannian manifold (M, g) endowed with a torsion-free connection ∇ satisfying [\(1\)](#page-0-0) and [\(8\)](#page-2-1). Note that a Riemannian manifold with constant sectional curvature is a *k*-Hessian manifold if ∇ is the Levi-Civita connection.

In conclusion, the study of LSPK provides a valuable framework for constructing Einstein-Kähler manifolds. Additionally, this exploration has led to the discovery of two new structures: *k*-Hessian algebras and *k*-Hessian manifolds. These structures are of independent interest and merit further investigation on their own. We devote Section [4](#page-14-0) to a preliminary study of *k*-Hessian algebras where we prove an important result (see Theorem [4.1\)](#page-15-0) and we give many examples.

The paper is organized as follows. In Section [2,](#page-2-2) to ensure the paper is self-contained, we calculate the Ricci curvature of the Kähler structure on the tangent bundle of a Hessian manifold using a method distinct from that in [\[7](#page-24-0)], and provide a proof of Theorem [1.1.](#page-1-3) Section [3](#page-6-0) is dedicated to the algebraic study of LSPK, culminating in Theorem [3.2](#page-13-0) and its corollary. In Section [4,](#page-14-0) we introduce *k*-Hessian algebras, present several classes of examples, and characterize a subclass of these algebras (see Theorem [4.1\)](#page-15-0). Section [5](#page-18-0) addresses the classification of LSPK in dimensions 2 and 3, along with two examples in dimensions 4 and 5. Finally, Section [6](#page-20-0) is an appendix that provides detailed computations required for the proof of Proposition [3.3.](#page-12-0)

2. Ricci curvature of the Kähler structure on the tangent bundle of a Hessian manifold and a proof of Theorem [1.1](#page-1-3)

In this section, we describe the Kähler structure on the tangent bundle of a Hessian manifold and we compute its Ricci curvature.

Let (M, g, ∇) be a Hessian manifold of dimension *n*. We denote by D the Levi-Civita connection of *g*, $K(X, Y) = D_{[X,Y]} - D_X D_Y + D_Y D_X$ its curvature, ric its Ricci curvature and γ the difference tensor given by

$$
\gamma_X Y = \mathcal{D}_X Y - \nabla_X Y, \quad X, Y \in \Gamma(TM).
$$

Since both ∇ and *D* are torsionless, γ is symmetric and it is easy to check that, for any *X*, *Y*, *Z* ∈ Γ(*T M*),

$$
\nabla_X(g)(Y,Z) = g(\gamma_X Y + \gamma_X^* Y, Z).
$$

and hence the Codazzi equation [\(1\)](#page-0-0) is equivalent to $\gamma = \gamma^*$, i.e,

$$
g(\gamma_X Y, Z) = g(Y, \gamma_X Z), \quad X, Y, Z \in \Gamma(TM).
$$

Let α and β the Koszul forms given by [\(2\)](#page-0-1). The 1-form α is closed and hence β symmetric. Denote by *H* the vector field given by $g(H, X) = \alpha(X)$.

Proposition 2.1. *Let* (M, g, ∇) *be a Hessian manifold. Then, for any* $X, Y, Z \in \Gamma(TM)$ *,*

$$
\begin{cases} \mathcal{D}_X(\gamma)(Y,Z) = \mathcal{D}_X(\gamma)(Z,Y) = \mathcal{D}_Y(\gamma)(X,Z), \\ K(X,Y) = [\gamma_X, \gamma_Y], \text{ric}(X,Y) = \text{tr}(\gamma_X \circ \gamma_Y) - \text{tr}(\gamma_{\gamma_X Y}). \end{cases}
$$

Moreover, for any orthonormal local frame (E_1, \ldots, E_n) *,*

 λ

$$
H = \sum_{i=1}^{n} \gamma_{E_i} E_i \quad and \quad \mathcal{D}_X H = \sum_{i=1}^{n} \mathcal{D}_X(\gamma)(E_i, E_i).
$$

Proof. Since $\gamma_X Y = \gamma_Y X$ we have obviously $\mathcal{D}_X(\gamma)(Y, Z) = \mathcal{D}_X(\gamma)(Z, Y)$. On the other hand, since $\gamma = \gamma^*$, we have, for any $T \in \Gamma(TM)$,

$$
g(\mathcal{D}_X(\gamma)(Y,Z),T) = g(\mathcal{D}_X(\gamma)(Y,T),Z). \tag{9}
$$

Now, we have

$$
K(X, Y)Z = \mathcal{D}_{[X,Y]}Z - \mathcal{D}_X \mathcal{D}_Y Z + \mathcal{D}_Y \mathcal{D}_X Z
$$

\n
$$
= \nabla_{[X,Y]}Z + \gamma_{[X,Y]}Z - \mathcal{D}_X \nabla_Y Z - \mathcal{D}_X \gamma_Y Z + \mathcal{D}_Y \nabla_X Z + \mathcal{D}_Y \gamma_X Z
$$

\n
$$
= \nabla_{[X,Y]}Z + \gamma_{\mathcal{D}_X Y}Z - \gamma_{\mathcal{D}_Y X}Z - \nabla_X \nabla_Y Z - \gamma_X \nabla_Y Z - \mathcal{D}_X \gamma_Y Z + \nabla_Y \nabla_X Z + \gamma_Y \nabla_X Z + \mathcal{D}_Y \gamma_X Z
$$

\n
$$
= \gamma_{\mathcal{D}_X Y}Z - \gamma_{\mathcal{D}_Y X}Z - \gamma_X \mathcal{D}_Y Z + \gamma_X \gamma_Y Z - \mathcal{D}_X \gamma_Y Z + \gamma_Y \mathcal{D}_X Z - + \gamma_Y \gamma_X Z + \mathcal{D}_Y \gamma_X Z
$$

\n
$$
= \mathcal{D}_Y(\gamma)(X, Z) - \mathcal{D}_X(\gamma)(Y, Z) + [\gamma_X, \gamma_Y]Z.
$$

Now $K(X, Y)$ and $[\gamma_X, \gamma_Y]$ are skew-symmetric with respect to *g* and, by virtue of [\(9\)](#page-3-0), the tensor field $Z \mapsto \mathcal{D}_Y(\gamma)(X, Z) - \mathcal{D}_X(\gamma)(Y, Z)$ is symmetric so we must have

$$
\mathcal{D}_Y(\gamma)(X,Z)=\mathcal{D}_X(\gamma)(Y,Z)\quad\text{and}\quad K(X,Y)=[\gamma_X,\gamma_Y].
$$

The expression of the Ricci curvature follows immediately from the expression of *K*.

On the other hand, Fix a point $p \in M$. It is known that there exists a local orthonormal frame (E_1, \ldots, E_n) in a neighborhood of *p* such that $(\mathcal{D}E_j)(p) = 0$ for $j = 1, \ldots, n$. We have, for any *X* ∈ Γ(*TM*)

$$
g(H, X) = \text{tr}(\gamma_X) = \sum_{i=1}^n g(\gamma_X E_i, E_i) = \sum_{i=1}^n g(\gamma_{E_i} E_i, X),
$$

$$
\sum_{i=1}^n \mathcal{D}_X(\gamma)(E_i, E_i) = \mathcal{D}_X(H) - 2\gamma_{\mathcal{D}_X E_i} E_i.
$$

By evaluating at *p* we get that the desired result.

Let us describe now the Kähler structure on *TM* associated to (M, g, ∇) . Denote by π : *TM* → *M* the canonical projection. It is well-known that the connection ∇ gives rise to a splitting

$$
TTM = \ker T\pi \oplus \mathcal{H},
$$

where

$$
\mathcal{H}_u = \{ X^h(u), X \in T_{\pi(u)}M \} \quad \text{and} \quad X^h(u) = \frac{d}{dt}_{|t=0} \tau^t(u)
$$

where τ^t : $T_{\pi(u)}M \longrightarrow T_{\exp(tu)}M$ is the parallel transport associated to ∇ along the ∇ -geodesic $t \mapsto \exp(tu)$. For any $X \in \Gamma(TM)$, we denote by X^h its horizontal lift and by X^v its vertical lift. For any *X*, $Y \in \Gamma(TM)$,

$$
[Xh, Yh] = [X, Y]h, [Xh, Yv] = (\nabla_X Y)v \text{ and } [Xv, Yv] = 0.
$$
 (10)

We define on TM a Riemannian metric \hat{g} and a complex structure J by putting

$$
\begin{cases}\n\hat{g}(X^h, Y^h) = g(X, Y) \circ \pi, & \hat{g}(X^v, Y^v) = g(X, Y) \circ \pi \quad \text{and} \quad \hat{g}(X^h, Y^v) = 0, \\
JX^h = X^v, & JX^v = -X^h, \quad X, Y \in \Gamma(TM).\n\end{cases}
$$

Then (TM, \hat{g}, J) is a Kähler manifold (see [\[7\]](#page-24-0)).

By using [\(10\)](#page-4-0) and the Koszul formula of the Levi-Civita connection, one can check easily that the Levi-Civita connection ∇^{LC} of \hat{g} is given by

$$
\nabla_{X^h}^{LC} Y^h = (D_X Y)^h, \ \nabla_{X^v}^{LC} Y^v = -(\gamma_X Y)^h, \ \nabla_{X^v}^{LC} Y^h = (\gamma_X Y)^v \quad \text{and} \quad \nabla_{X^h}^{LC} Y^v = (D_X Y)^v, \quad X, Y \in \Gamma(TM).
$$

Let us compute the curvature of (TM, \hat{g}) .

Proposition 2.2. *We have, for any X, Y, Z* $\in \Gamma(TM)$ *,*

$$
\begin{cases} R(X^h, Y^h)Z^h = (K(X, Y)Z)^h, \ R(X^h, Y^h)Z^v = (K(X, Y)Z)^v, \ R(X^v, Y^v)Z^h = ([\gamma_X, \gamma_Y]Z)^h, \\ R(X^v, Y^v)Z^v = ([\gamma_X, \gamma_Y]Z)^v, \ R(X^h, Y^v)Z^h = -(\mathcal{D}_X(\gamma)(Z, Y))^v - (\gamma_Z \gamma_X Y)^v, \ R(X^h, Y^v)Z^v = (\mathcal{D}_X(\gamma)(Y, Z))^h + (\gamma_Z \gamma_X Y)^h. \end{cases}
$$

 \Box

Proof. We have

$$
R(X^{h}, Y^{h})Z^{h} = (K(X, Y)Z)^{h},
$$

\n
$$
R(X^{h}, Y^{h})Z^{v} = \nabla_{[X, Y]^{h}}^{LC}Z^{v} - \nabla_{X^{h}}^{LC}\nabla_{Y^{h}}^{LC}Z^{v} + \nabla_{Y^{h}}^{LC}\nabla_{X^{h}}^{LC}Z^{v}
$$

\n
$$
= (\mathcal{D}_{[X, Y]Z})^{v} - \nabla_{X^{h}}^{LC}(\mathcal{D}_{Y}Z)^{v} + \nabla_{Y^{h}}^{LC}(\mathcal{D}_{X}Z)^{v}
$$

\n
$$
= (K(X, Y)Z)^{v},
$$

\n
$$
R(X^{v}, Y^{v})Z^{h} = -\nabla_{X^{v}}^{LC}\nabla_{Y^{v}}^{LC}Z^{h} + \nabla_{Y^{v}}^{LC}\nabla_{X^{v}}^{LC}Z^{h}
$$

\n
$$
= -\nabla_{X^{v}}^{LC}(\gamma_{Y}Z)^{v} + \nabla_{Y^{v}}^{LC}(\gamma_{X}Z)^{v}
$$

\n
$$
= (\gamma_{X}\gamma_{Y}Z)^{h} - (\gamma_{Y}\gamma_{X}Z)^{h},
$$

\n
$$
= (\gamma_{X}, \gamma_{Y}]Z)^{h}
$$

\n
$$
R(X^{v}, Y^{v})Z^{v} = -\nabla_{X^{v}}^{LC}\nabla_{Y^{v}}^{LC}Z^{v} + \nabla_{Y^{v}}^{LC}\nabla_{X^{v}}^{LC}Z^{v}
$$

\n
$$
= (\gamma_{Y}, \gamma_{Y}]Z)^{v},
$$

\n
$$
R(X^{h}, Y^{v})Z^{h} = \nabla_{(\nabla_{X}Y)^{v}}^{LC}Z^{h} - \nabla_{X^{h}}^{LC}(\gamma_{Z}Y)^{v} + \nabla_{Y^{v}}^{LC}(\mathcal{D}_{X}Z)^{h}
$$

\n
$$
= (\gamma_{Z}\mathcal{D}_{X}Y)^{v} - (\mathcal{D}_{X}\gamma_{Z}Y)^{v} + (\gamma_{Y}\mathcal{D}_{X}Z)^{v}
$$

\n
$$
= -(\mathcal{D}_{X}(Y)(Y, Z))^{v} - (\mathcal{D}_{X}\gamma_{Z}Y)^{v}
$$

$$
R(X^h, Y^v)Z^v = \nabla_{(\nabla_X Y)^v}^{LC} Z^v + \nabla_{X^h}^{LC} (\gamma_Y Z)^h + \nabla_{Y^v}^{LC} (\mathcal{D}_X Z)^v
$$

= -(\gamma_Z \mathcal{D}_X Y)^h + (\gamma_Z \gamma_X Y)^h + (\mathcal{D}_X \gamma_Y Z)^h - (\gamma_Y \mathcal{D}_X Z)^h
= (\mathcal{D}_X(\gamma)(Y, Z))^h + (\gamma_Z \gamma_X Y)^h.

The Ricci curvature of (TM, \hat{g}) is related to the second Koszul form β .

Proposition 2.3. *We have, for any X, Y* $\in \Gamma(TM)$ *,*

$$
\text{ric}^{\hat{g}}(X^h, Y^h) = \text{ric}^{\hat{g}}(X^v, Y^v) = -\beta(X, Y) \circ \pi \quad \text{and} \quad \text{ric}^{\hat{g}}(X^h, Y^v) = 0.
$$

In particular, (TM, \hat{g}) *is* μ *-Einstein if and only if* $\beta = -\mu g$.

Proof. Note first that since (TM, \hat{g}, J) is a Kähler manifold then its Ricci curvature satisfies ric^{$\hat{g}(JU, JV) =$ ric^{$\hat{g}(U, V)$} for any vector fields *U*, *V* on *TM*. This implies that ric^{$\hat{g}(X^v, Y^v) =$}}

ric^{$\hat{g}(X^h, Y^h)$. Let (E_1, \ldots, E_n) be a local orthonormal frame of *M*. We have}

$$
\operatorname{ric}^{\hat{g}}(X^h, Y^h) = \sum_{i=1}^n \left(g(R(X^h, E_i^h)) Y^h, E_i^h) + g(R(X^h, E_i^v)) Y^h, E_i^v) \right)
$$

\n
$$
= \operatorname{ric}(X, Y) \circ \pi - \sum_{i=1}^n \left(\langle \mathcal{D}_X(\gamma)(Y, E_i), E_i \rangle \circ \pi + \langle \gamma_Y \gamma_X E_i, E_i \rangle \circ \pi \right)
$$

\n
$$
= \operatorname{tr}(\gamma_X \circ \gamma_Y) \circ \pi - \operatorname{tr}(\gamma_{\gamma_X Y}) \circ \pi - \sum_{i=1}^n \langle \mathcal{D}_X(\gamma)(E_i, E_i), Y \rangle \circ \pi - \operatorname{tr}(\gamma_X \circ \gamma_Y) \circ \pi
$$

\n
$$
\stackrel{(2.1)}{=} - \langle \mathcal{D}_X H, Y \rangle \circ \pi - \operatorname{tr}(\gamma_{\gamma_X Y}) \circ \pi
$$

\n
$$
= -X \cdot \langle H, Y \rangle + \langle H, \mathcal{D}_X Y \rangle - \langle \gamma_X Y, H \rangle
$$

\n
$$
= -X \cdot \alpha(Y) + \alpha(\nabla_X Y) = -\nabla_X(\alpha)(Y),
$$

\n
$$
\operatorname{ric}^{\hat{g}}(X^h, Y^v) = \sum_{i=1}^n \left(g(R(X^h, E_i^h)) Y^v, E_i^h) + g(R(X^h, E_i^v)) Y^v, E_i^v) \right) = 0.
$$

Let (G, g, ∇) be a Hessian Lie group and $(g, \langle , \rangle, \bullet)$ its associated Hessian algebra. The Levi-Civita connection of g induces \underline{a} product \star on \underline{a} , referred to as the Levi-Civita product. We define the endomorphisms L_X and \overline{L}_X by $L_XY = X \cdot Y$ and $\overline{L}_XY = X \cdot Y$, respectively. The Levi-Civita product ★ is characterized by the properties that $X \star Y - Y \star X = [X, Y]$, and \overline{L}_X is skew-symmetric with respect to \langle , \rangle .

Interestingly, although the Koszul 1-form and the second Koszul form generally depend on both ∇ and *g*, in the case of Hessian Lie groups, they depend only on ∇. This is demonstrated by the following key result.

Proposition 2.4. *Let* $(G, \nabla, \langle , \rangle)$ *be a Hessian Lie group. Then its Koszul 1-form and second Koszul form are given by*

$$
\alpha(X) = -\text{tr}(L_X)
$$
 and $\beta(X, Y) = \text{tr}(L_{X \bullet Y}), X, Y \in \mathfrak{g}.$

Proof. For any $X \in \mathfrak{g}$, $\gamma_X = \overline{L}_X - L_X$ and since \overline{L}_X is skew-symmetric, $\alpha(X) = \text{tr}(\gamma_X) = -\text{tr}(L_X)$. Moreover, for any $X, Y \in \mathfrak{g}$,

$$
\beta(X, Y) = \nabla_X(\alpha)(Y) = -\alpha(\nabla_X Y) = -\alpha(X \bullet Y) = \text{tr}(L_{X \bullet Y})
$$

which completes the proof.

2.1. Proof of Theorem [1.1](#page-1-3)

Proof. Note first that according to [\[8](#page-24-1), Corollary 4] that underlying Lie algebra of a Hessian algebra is solvable and Theorem [1.1](#page-1-3) follows immediately from Propositions [2.3](#page-5-0)[-2.4.](#page-6-1) \Box

3. Left symmetric algebras with positive definite Koszul form.

Theorem [1.1](#page-1-3) emphasizes the importance of LSPK. Accordingly, we dedicate this section to a complete study of this class of algebras culminating in Theorem [3.2.](#page-13-0)

We start this study by addressing two important cases, namely, the associative case and the Novikov case.

 \Box

Remark first that if a LSPK is commutative then it is associative. Recall that a left symmetric algebra (q, \bullet) is called Novikov if, for any *X*, *Y*, *Z* \in q ,

$$
(X \bullet Y) \bullet Z = (X \bullet Z) \bullet Y. \tag{11}
$$

Novikov algebras constitute an important subclass of left symmetric algebras and have been studied by many authors (see [\[3](#page-24-6), [4\]](#page-24-7)). As a consequence of [\(11\)](#page-7-1), the Koszul form of a Novikov algebra satisfies

$$
B(X \bullet Y, Z) = B(X \bullet Z, Y), \quad X, Y, Z \in \mathfrak{g}.
$$

This relation combined with [\(6\)](#page-1-4) implies that

$$
B([X, Y], Z) = 0, \quad X, Y, Z \in \mathfrak{g}.
$$

So if a LSPK is Novikov then its commutative and hence associative.

Example 1. Consider (\mathbb{R}^n , \bullet) endowed with its canonical associative commutative product:

$$
X \bullet Y = (X_1Y_1, \ldots, X_nY_n).
$$

It is easy to check that the Koszul form of (\mathbb{R}^n, \bullet) is the canonical Euclidean product of \mathbb{R}^n . *Moreover,* (R *n* , •) *is a Novikov.*

It turns out that it is the only example of LSPK which is Novikov, commutative or associative.

Theorem 3.1. *Let* (g, •) *be a* LSPK *algebra. Then the following assertions are equivalent.*

- (*i*) (g, •) *is a Novikov algebra.*
- (*ii*) (g, •) *is a commutative algebra.*
- (*iii*) (g, •) *is an associative algebra.*

Moreover, in this case (g, \bullet) *is isomorphic to* \mathbb{R}^n *endowed with its canonical associative commutative product.*

Proof. To prove the theorem, we will show that (*iii*) implies that (g, \bullet) is isomorphic to \mathbb{R}^n endowed with its canonical associative commutative product. Suppose that (g, \bullet) is an associative algebra with positive definite Koszul form. In this case the relation $ass(X, Y, Z) = 0$ implies that the Koszul form B satisfies

$$
\mathcal{B}(X\bullet Y,Z)=\mathcal{B}(X,Y\bullet Z).
$$

Since B is nondegenerate, B becomes a trace form on (g, \bullet) . This implies that if *I* is an ideal of (g, \bullet) then its orthogonal *I*[⊥] is also an ideal and g is semi-simple and splits g = g₁ ⊕... ⊕g_{*r*} where each g_i is a simple associative algebra with positive definite Koszul form. The classification of finite-dimensional simple associative algebras over $\mathbb R$ is quite elegant and follows from the Artin-Wedderburn theorem (see [\[11](#page-24-8)] for instance), which says that any finite-dimensional simple associative algebra over $\mathbb R$ is isomorphic to a matrix algebra over a division algebra over $\mathbb R$.

There are only three types of finite-dimensional division algebras over \mathbb{R} : \mathbb{R} itself, \mathbb{C} and the quaternions $\mathbb H$. So, a finite-dimensional simple associative algebra over $\mathbb R$ is isomorphic to a matrix algebra $M_n(D)$, where *D* is one of these division algebras and $n \ge 1$. Let us show first that if $n \ge 2$, the Koszul form of $M_n(D)$ is not positive definite. Indeed, in the three cases, one can construct a nilpotent matrix $A \neq 0$ satisfying $A^2 = 0$ and hence $B(A, A) = 0$. For $n = 1$, we have

$$
B(X, Y) = \begin{cases} XY & \text{if } D = \mathbb{R}, \\ 2\Re(XY) & \text{if } D = \mathbb{C}, \\ 4\Re(XY) & \text{if } D = \mathbb{H}. \end{cases}
$$

The Koszul form is positive definite if and only if $n = 1$ and $D = \mathbb{R}$. This completes the proof. \Box

Let us now study the general case. Let (g, \bullet) be a left symmetric algebra with the associated Lie bracket [,]. We denote by L and R the left and right multiplication operators associated with \bullet , respectively.

Suppose that the Koszul form $B(X, Y) = \text{tr}(L_{X\bullet Y})$ is positive definite. We have seen that B satisfies [\(6\)](#page-1-4) and (g, \bullet , B) becomes a Hessian algebra. For any vector subspace $V \in \mathfrak{g}$, V^{\perp} denotes its orthogonal with respect to B.

Since B is nondegenerate there exists a non zero vector *H* satisfying $B(X, H) = \text{tr}(L_X)$, for any *X* \in g. Put $\mathfrak{h} = H^{\perp}$. From the definition of B we get

$$
B(X, H) = \text{tr}(L_{X \bullet H}) = B(X \bullet H, H) = B(H \bullet X, H), \quad X \in \mathfrak{g}.
$$
 (12)

Proposition 3.1. *We have* $L_H(f) \subset f$ *,* $R_H(f) \subset f$ *,* R_H *is symmetric with respect to B and H* • *H* = *H.*

Proof. The inclusions $L_H(f) \subset f$ and $R_H(f) \subset f$ follow immediately from [\(12\)](#page-8-0). Moreover, the relation [\(6\)](#page-1-4) gives

$$
B([X, Y], H) = B(RHY, X) - B(RHX, Y).
$$

But B([*X*, *Y*], *H*) = tr($L_{[X,Y]}$) = 0 and $R_H^* = R_H$. Since R_H is symmetric and leaves h invariant then there exists μ such that $H \bullet H = \mu H$. Moreover, $B(H, H) = B(H \bullet H, H) = \mu B(H, H)$ and hence $\mu = 1$. hence $\mu = 1$.

We have $g = \mathbb{R}H \oplus h$ and, for any *X*, $Y \in h$, there exists a unique $X \circ Y \in h$ such that

$$
X \bullet Y = X \circ Y + \frac{1}{\rho} B(X, Y)H.
$$

where $\rho = B(H, H)$. Define $A : \mathfrak{h} \longrightarrow \mathfrak{h}, X \mapsto H \bullet X$ and $S : \mathfrak{h} \longrightarrow \mathfrak{h}, X \mapsto X \bullet H$ (*S* is symmetric) and denote by \langle , \rangle the restriction of $\frac{1}{\rho}B$ to b. The left multiplication operator and the associator and denote by χ , γ the restriction of β **b** to η . The ferr manippedator operator and the associated to \circ will be denoted by L^{β} and ass_{\circ}, respectively. For any endomorphism *F* of h, F^* is its adjoint with respect to \langle , \rangle . To summarize, we have, for any *X*, *Y* \in *h*,

$$
X \bullet Y = X \circ Y + \langle X, Y \rangle H, \ H \bullet X = AX, \ X \bullet H = SX \quad \text{and} \quad H \bullet H = H. \tag{13}
$$

Since, for any *X* \in *b*, $B(X, H) = \text{tr}(L_X) = 0$, we deduce that $\text{tr}(L_X^{\circ}) = 0$.

Proposition 3.2. *Let* (g, \bullet) *be a* LSPK*. With the notations above, for any X, Y, Z* \in h *,*

$$
\begin{cases}\n\langle X \circ Y - Y \circ X, Z \rangle = \langle Y \circ Z, X \rangle - \langle X \circ Z, Y \rangle, \\
\text{ass}_{\circ}(X, Y, Z) - \text{ass}_{\circ}(Y, X, Z) = (\langle Y, Z \rangle S X - \langle X, Z \rangle S Y), \\
S([X, Y]) = X \circ S Y - Y \circ S X, \\
A(X \circ Y) = AX \circ Y + X \circ AY - S X \circ Y, \\
S = A + A^* - \text{Id}_b, [S, A] = S^2 - S, \\
[X, Y] = X \circ Y - Y \circ X, \quad \text{tr}(\mathbb{L}_X^{\circ}) = 0.\n\end{cases}
$$
\n(14)

Proof. We have, for any $U, V, W \in \mathfrak{g}$,

$$
B(U \bullet V - U \bullet V, W) = B(V \bullet W, U) - B(U \bullet W, V).
$$

By using the splitting $g = f \oplus \mathbb{R}H$ and [\(3\)](#page-8-1), this relation gives:

• For any *X*, $Y, Z \in \mathfrak{h}$,

$$
\langle X\circ Y-Y\circ X,Z\rangle=\langle Y\circ Z,X\rangle-\langle X\circ Z,Y\rangle.
$$

• For $X, Y \in \mathfrak{h}$,

$$
B(X \bullet Y - Y \bullet X, H) = B(Y \bullet H, X) - B(X \bullet H, Y).
$$

But $B(X \bullet Y - Y \bullet X, H) = 0$ and hence *S* is symmetric.

• For any $X, Y \in \mathfrak{h}$,

$$
B(X \bullet H - H \bullet X, Y) = B(H \bullet Y, X) - B(X \bullet Y, H).
$$

This can be written

$$
B((S - A)X, Y) = B(AY, X) - B(X, Y)
$$

and hence

$$
S = A + A^* - \mathrm{Id}_{\mathfrak{h}}.
$$

• For any $X \in \mathfrak{h}$,

$$
B(X \bullet H - H \bullet X, H) = B(H \bullet H, X) - B(X \bullet H, H)
$$

holds.

On the other hand, for any $U, V, W \in \mathfrak{g}$,

$$
ass(U, V, W) = ass(V, U, W).
$$

Let us expand this relation by using [\(3\)](#page-8-1).

• For any *X*, $Y, Z \in \mathfrak{h}$,

$$
ass(X, Y, Z) = (X \circ Y + \langle X, Y \rangle H) \bullet Z - X \bullet (Y \circ Z + \langle Y, Z \rangle H)
$$

= $ass_{\circ}(X, Y, Z) + (\langle X \circ Y, Z \rangle - \langle X, Y \circ Z \rangle) H + (\langle X, Y \rangle AZ - \langle Y, Z \rangle SX),$
 $ass(Y, X, Z) = ass_{\circ}(Y, X, Z) + (\langle Y \circ X, Z \rangle - \langle Y, X \circ Z \rangle) H + (\langle X, Y \rangle AZ - \langle X, Z \rangle SY)$

So

$$
\begin{cases} \langle X \circ Y - Y \circ X, Z \rangle = \langle Y \circ Z, X \rangle - \langle X \circ Z, Y \rangle, \\ \text{ass}_{\circ}(X, Y, Z) - \text{ass}_{\circ}(Y, X, Z) = (\langle Y, Z \rangle S X - \langle X, Z \rangle S Y). \\ 10 \end{cases}
$$

• For any $X, Y \in \mathfrak{h}$,

$$
ass(X, Y, H) = S(X \circ Y) + \langle X, Y \rangle H - X \circ SY - \langle X, SY \rangle H
$$

So

$$
S([X,Y]) = X \circ SY - Y \circ SX.
$$

• For any $X, Y \in \mathfrak{h}$,

$$
ass(X, H, Y) = (X \bullet H) \bullet Y - X \bullet (H \bullet Y)
$$

= $S X \circ Y + \langle SX, Y \rangle H - X \circ AY - \langle X, AY \rangle H$,

$$
ass(H, X, Y) = AX \circ Y + \langle AX, Y \rangle H - A(X \circ Y) - \langle X, Y \rangle H \bullet H.
$$

So

$$
SX \circ Y + A(X \circ Y) = AX \circ Y + X \circ AY \quad \text{and} \quad S = A + A^* - \text{Id}_\mathfrak{h}.
$$

• For any $X, Y \in \mathfrak{h}$,

$$
ass(X, Y, H) = S(X \circ Y) + \langle X, Y \rangle H - X \circ SY - \langle X, SY \rangle H
$$

 $\text{So } S([X, Y]) = X \circ SY - Y \circ SX.$

• For any $X \in \mathfrak{h}$,

$$
ass(X, H, H) = S^2 X - SX, \quad \text{ass}(H, X, H) = SAX - ASX.
$$

So $[S, A] = S^2 - S$. This completes the proof.

The following two lemmas will be highly useful in completing our study.

Lemma 3.1. *Let* (V, \langle , \rangle) *be an Euclidean vector space and S, A two endomorphisms such that S is symmetric and*

$$
S = A + A^* - Id_V, [S, A] = S^2 - S.
$$

Then $V = V_1 \oplus V_2$ *where* $V_2 = V_1^{\perp}$, V_1 , V_2 *are invariant* by A *and* S *and*

$$
S_{|V_1} = 0
$$
, $S_{|V_2} = \text{Id}_{V_2}$, $A_{|V_1} = B_1 + \frac{1}{2} \text{Id}_{V_1}$, $A_{|V_2} = B_2 + \text{Id}_{V_2}$

where $B_1: V_1 \longrightarrow V_1$ *and* $B_2: V_2 \longrightarrow V_2$ *are skew-symmetric.*

Proof. Since *S* is symmetric, we have $V = V_1 \oplus V_2$ where $V_1 = \text{ker } S$ and $V_2 = \text{Im } S$. The relation $[A^*, S] = S^2 - S$ and its adjoint $[S, A] = S^2 - S$ imply that A, A^* leaves invariant V_1 and V_2 .

In restriction to V_1 , $A - \frac{1}{2}Id_{V_1}$ is skew-symmetric and hence $A_{|V_1} = B_1 + \frac{1}{2}Id_{V_1}$ and $B_1 : V_1 \longrightarrow$ *V*¹ is skew-symmetric.

In restriction to V_2 , S is invertible and diagonalizable. So there exists an orthonormal basis $(e_1, ..., e_r)$ of V_2 such that $S(e_i) = \lambda_i e_i$. For any $i \in \{1, ..., r\}$,

$$
SA(e_i) - \lambda_i A(e_i) = (\lambda_i^2 - \lambda_i)e_i.
$$

So

$$
\sum_{j=1}^{n} (\lambda_j - \lambda_i) a_{ji} e_j = (\lambda_i^2 - \lambda_i) e_i
$$

.

This implies that $\lambda_i = 1$ hence $S_{|V_2} = \text{Id}_{V_2}$ and $A_{|V_2} = B_2 + \text{Id}_{V_2}$. This completes the proof. \Box 11

 \Box

Lemma 3.2. *Let* $(h, \circ, \langle , \rangle)$ *be a Hessian algebra. Suppose that there exists a skew-symmetric endomorphism B such that, for any X,* $Y \in \mathfrak{h}$ *,*

$$
B(X \circ Y) = B(X) \circ Y + Y \circ B(X) + \frac{1}{2}X \circ Y.
$$

Then \circ = 0*.*

Proof. Not first $\mu(A, B) = \text{tr}(AB^t)$ defines on the Lie algebra so(b, \langle , \rangle) a scalar product satisfying

$$
\mu([A, C], D) + \mu(C, [A, D]) = 0, \quad A, C, D \in \text{so}(0, \langle , \rangle).
$$

Since *B* is skew-symmetric, $\mathfrak{h} = \ker B \oplus \operatorname{Im} B$ and there exists $(\lambda_1, \ldots, \lambda_s)$ and an orthonormal basis $(e_1, f_1, \ldots, e_s, f_s)$ of ImB such that $B(e_j) = \lambda_j f_j$ and $B(f_j) = -\lambda_j e_j$, $j \in \{1, \ldots, s\}$.

Let $X \in \text{ker } B$. Then

$$
[B, L_X] = \frac{1}{2} L_X.
$$

and hence $tr(L_X) = 0$. Since *B* is skew-symmetric then $[B, L_X^*] = \frac{1}{2}L_X^*$ and hence

$$
[B, L_X - L_X^*] = \frac{1}{2}(L_X - L_X^*).
$$

By applying μ to we get that $L_X - L_X^* = 0$ and hence L_X is symmetric.

On the other hand, fix $i \in \{1, ..., s\}$ and put $(X, Y) = (e_i, f_i)$, $E = L_X - L_X^*$ and $F = L_Y - L_Y^*$. Then

$$
[B, L_X] = \lambda L_Y + \frac{1}{2}L_X \quad \text{and} \quad [B, L_Y] = -\lambda L_X + \frac{1}{2}L_Y.
$$

This relation implies obviously that tr(L_X) = tr(L_Y) = 0. Since *B* is skew-symmetric, we deduce that

$$
[B, E] = \lambda F + \frac{1}{2}E \quad \text{and} \quad [B, F] = -\lambda E + \frac{1}{2}F.
$$

By applying μ , we get

$$
\begin{cases} \frac{1}{2}\mu(E,E) + \lambda\mu(E,F) = 0, \\ -\lambda\mu(E,F) + \frac{1}{2}\mu(F,F) = 0. \end{cases}
$$

The discriminant of of this system is equal to $\frac{1}{4} + \lambda^2 \neq 0$ we deduce that $E = F = 0$. So far, we have shown that, for any $X \in \mathfrak{h}$, L_X is symmetric and tr(L_X) = 0. This property and the relation

$$
\langle X\circ Y-Y\circ X,Z\rangle=\langle Y\circ Z,X\rangle-\langle X\circ Z,Y\rangle
$$

implies that \circ is commutative. But a commutative left symmetric product must be associative and hence, for any *X*, $Y \in \mathfrak{h}$, $L_{X \circ Y} = L_X \circ L_Y$. This implies that $tr(L_X^2) = 0$ and since L_X is symmetric, we get that $L_X = 0$. This completes the proof. \Box

We have seen in Proposition [3.2](#page-9-0) that the study of left symmetric algebras with definite positive Koszul form reduces to the sturdy of Euclidean algebras (b, \circ , \langle , \rangle) endowed with two endomorphism *A*, *S* where *S* is symmetric and the system [\(14\)](#page-9-1) holds. Let $(f, \circ, \langle , \rangle)$ be a such algebra. According to Lemma [3.1,](#page-10-0) $b = b_1 \oplus b_2$ such that $S_{|b_1} = 0$, $S_{|b_2} = Id_{b_2}$, $A_{|b_1} = B_1 + \frac{1}{2}Id_{b_1}$ and $A_{\vert b_2} = B_2 + \text{Id}_{b_2}$ with B_1 and B_2 are skew-symmetric.

For any *X*, $Y \in \mathfrak{h}_1$ and $Z, T \in \mathfrak{h}_2$, put

$$
X \circ Y = X \circ_1 Y + \omega_1(X, Y) \quad \text{and} \quad Z \circ T = \omega_2(Z, T) + Z \circ_2 T
$$

where $X \circ_1 Y$, $\omega_2(Z, T) \in \mathfrak{h}_1$ and $Z \circ_2 T$, $\omega_1(X, Y) \in \mathfrak{h}_2$. From the third relation in [\(14\)](#page-9-1), We deduce that $S([X, Y]) = 0$ and $S([Z, T]) = [Z, T]$ and b_1 and b_2 are two subalgebras and ω_1 and ω_2 are symmetric.

On the other hand, for any $X \in \mathfrak{h}_1$ and $Y \in \mathfrak{h}_2$, from the third relation in [\(14\)](#page-9-1), we get $S([X, Y]) = X \circ Y$ and hence $X \circ Y \in \text{Im}S = \mathfrak{h}_2$. Furthermore,

$$
S([X,Y])=S(X\circ Y)-S(Y\circ X)=X\circ Y.
$$

ans since $S(X \circ Y) = X \circ Y$, we deduce that $Y \circ X \in \text{ker } S = \mathfrak{h}_1$.

Define $\rho_1 : \mathfrak{h}_1 \longrightarrow \text{End}(\mathfrak{h}_2)$ and $\rho_2 : \mathfrak{h}_2 \longrightarrow \text{End}(\mathfrak{h}_1)$ by putting

$$
\rho_1(X)(Y) = X \circ Y
$$
 and $\rho_2(Y)(X) = Y \circ X$, $X \in \mathfrak{h}_1, Y \in \mathfrak{h}_2$.

So far, we have shown that $\mathfrak{h} = \mathfrak{h}_1 \oplus \mathfrak{h}_2$, there exists two products \circ_i on \mathfrak{h}_i for $i = 1, 2, \omega_1$: $\mathfrak{h}_1 \times \mathfrak{h}_1 \longrightarrow \mathfrak{h}_2, \omega_2 : \mathfrak{h}_2 \times \mathfrak{h}_2 \longrightarrow \mathfrak{h}_1$ symmetric, $\rho_1 : \mathfrak{h}_1 \longrightarrow \text{End}(\mathfrak{h}_2)$ and $\rho_2 : \mathfrak{h}_2 \longrightarrow \text{End}(\mathfrak{h}_1)$ such that the product \circ is given by

$$
X \circ Y = \begin{cases} X \circ_1 Y + \omega_1(X, Y), & \text{if } X, Y \in \mathfrak{h}_1, \\ \omega_2(X, Y) + X \circ_2 Y, & \text{if } X, Y \in \mathfrak{h}_2, \\ \rho_1(X)(Y) & \text{if } X \in \mathfrak{h}_1, Y \in \mathfrak{h}_2, \\ \rho_2(X)(Y) & \text{if } X \in \mathfrak{h}_2, Y \in \mathfrak{h}_1. \end{cases}
$$
(15)

 $S_{\vert i_1} = 0$, $S_{\vert i_2} = \text{Id}_{i_2}$, $A_{\vert i_1} = B_1 + \frac{1}{2} \text{Id}_{i_1}$ and $A_{\vert i_2} = B_2 + \text{Id}_{i_2}$ with B_1 and B_2 are skew-symmetric. We denote by \langle , \rangle_i the restriction of \langle , \rangle to \mathfrak{h}_i . For $X \in \mathfrak{h}_i$, we have

$$
\operatorname{tr}(\mathcal{L}_X) = \operatorname{tr}(\mathcal{L}_X^{\circ_i}) + \operatorname{tr}(\rho_i(X)).
$$

On the other hand, it is to check that the first relation in [\(14\)](#page-9-1) is equivalent to

$$
\begin{cases}\n\langle X \circ_i Y - Y \circ_i X, Z \rangle_i = \langle Y \circ_i Z, X \rangle_i - \langle X \circ_i Z, Y \rangle_i, X, Y, Z \in \mathfrak{h}_i, \\
\langle \omega_1(X, Y), Z \rangle_2 = \langle \rho_2(Z)(X), Y \rangle_1 + \langle \rho_2(Z)(Y), X \rangle_1, X, Y \in \mathfrak{h}_1, Z \in \mathfrak{h}_2, \\
\langle \omega_2(X, Y), Z \rangle_1 = \langle \rho_1(Z)(X), Y \rangle_2 + \langle \rho_1(Z)(Y), X \rangle_2, X, Y \in \mathfrak{h}_2, Z \in \mathfrak{h}_1.\n\end{cases} (16)
$$

This shows that ω_1 and ω_2 are defined by ρ_1 and ρ_2 via the metrics.

Next, we expand [\(14\)](#page-9-1) using [\(15\)](#page-12-1) and, crucially, we find that $(b_1, o_1, \langle , \rangle_1, B_1)$ satisfies the conditions of Lemma [3.2,](#page-11-0) leading to the conclusion that $\circ_1 = 0$. The details of the computation are given in the Appendix.

Proposition 3.3. (h, ∘, \langle , \rangle) *satisfies* [\(14\)](#page-9-1) *if and only if* $\rho_1 : h_1 \longrightarrow so(h_2, \langle , \rangle_2)$ *and* $\rho_2 : h_2 \longrightarrow$ so($\mathfrak{h}_1, \langle , \rangle_1$) *are two representations of Lie algebras,* $\circ_1 = 0$, B_1 *is skew-symmetric,* tr($\rho_1(X) = 0$ *for any* $X \in \mathfrak{h}_1$ *and the following systems hold:*

$$
\begin{cases}\n\langle \omega_1(X,Y), Z \rangle_2 = \langle \rho_2(Z)(X), Y \rangle_1 + \langle \rho_2(Z)(Y), X \rangle_1, & X, Y \in \mathfrak{h}_1, Z \in \mathfrak{h}_2, \\
\langle \omega_2(X,Y), Z \rangle_1 = \langle \rho_1(Z)(X), Y \rangle_2 + \langle \rho_1(Z)(Y), X \rangle_2, & X, Y \in \mathfrak{h}_2, Z \in \mathfrak{h}_1.\n\end{cases}
$$
\n(17)

$$
\begin{cases}\n(X \circ_2 Y - Y \circ_2 X, Z)_2 = \langle Y \circ_2 Z, X \rangle_2 - \langle X \circ_2 Z, Y \rangle_2, \\
\text{ass}_{\circ_2}(X, Y, Z) - \text{ass}_{\circ_2}(Y, X, Z) = (\langle Y, Z \rangle_2 X - \langle X, Z \rangle_2 Y), \\
B_2(X \circ_2 Y) = B_2(X) \circ_2 Y + X \circ_2 B_2(Y), \\
\langle B_2 X, Y \rangle_2 = -\langle B_2 Y, X \rangle_2, \text{tr}(\mathbb{L}_X^{\circ_2}) = -\text{tr}(\rho_2(X)), \quad X, Y, Z \in \mathfrak{h}_2.\n\end{cases} (18)
$$

 $\Big(\rho_1(X)(Y\circ_2 Z)=Y\circ_2\rho_1(X)(Z)+\rho_1(X)(Y)\circ_2 Z-\rho_1(\rho_2(Y)(X))(Z)-\omega_1(X,\omega_2(Y,Z)),\quad X\in\mathfrak{h}_1,Y,Z\in\mathfrak{h}_2,$ $\rho_2(\rho_1(Y)(X))(Z) + \omega_2(X, \omega_1(Y, Z)) = 0, X \in \mathfrak{h}_2, Y, Z \in \mathfrak{h}_1$ $\rho_1(X)(\omega_1(Y,Z)) - \rho_1(Y)(\omega_1(X,Z)) = 0$, *X*, *Y*, *Z* \in *h*₁, $\rho_2(X)(\omega_2(Y,Z)) - \rho_2(Y)(\omega_2(X,Z)) + \omega_2(X,Y \circ_2 Z) - \omega_2(Y,X \circ_2 Z) - \omega_2([X,Y],Z) = 0, X, Y, Z \in \mathfrak{h}_2,$ $\omega_2(\rho_1(X)(Y), Z) + \omega_2(Y, \rho_1(X)(Z)) = 0, X \in \mathfrak{h}_1, Y, Z \in \mathfrak{h}_2,$ $X \circ_2 (\omega_1(Y, Z)) = \omega_1(\rho_2(X)(Y), Z) + \omega_1(Y, \rho_2(X)(Z)) - \langle Y, Z \rangle_1 X, X \in \mathfrak{h}_2, Y, Z \in \mathfrak{h}_1$ $[B_2, \rho_1(X)] = \rho_1(B_1(X)) + \frac{1}{2}\rho_1(X), X \in \mathfrak{h}_1,$ $[[B_1, \rho_2(X)] = \rho_2(B_2(X)), X \in \mathfrak{h}_2.$ (19)

Proof. See the Appendix.

 \Box

In conclusion, we have shown the following result which is our main result and gives a complete description of LSPK.

Theorem 3.2. *Let* $(b_1, \langle , \rangle_1)$ *be a Euclidean vector space,* $(b_2, \circ_2, \langle , \rangle_2)$ *a Euclidean algebra,* B_i *is skew-symmetric endomorphism of* \mathfrak{h}_i , $i = 1, 2, \rho_1 : \mathfrak{h}_1 \longrightarrow \text{End}(\mathfrak{h}_2)$, $\rho_2 : \mathfrak{h}_2 \longrightarrow \text{End}(\mathfrak{h}_1)$ *such that:*

- (*i*) $tr(\rho_1(X)) = 0$ *and* $[\rho_1(X), \rho_1(Y)] = 0$ *,*
- (*ii*) $\rho_2(X \circ_2 Y Y \circ_2 X) = [\rho_2(X), \rho_2(Y)]$ *for any* $X, Y \in \mathfrak{h}_2$,
- (*iii*) ω_1 *and* ω_2 *are defined by* [\(17\)](#page-12-2) *and* [\(18\)](#page-13-1)-[\(19\)](#page-13-2) *hold.*

Then $g = h_1 \oplus h_2 \oplus \mathbb{R}H$ *endowed with the product* \bullet *given by*

^X•*^Y* ⁼ $\left(\omega_1(X, Y) + \langle X, Y \rangle_1 H, \quad X, Y \in \mathfrak{h}_1, \right)$ $\left\{\right.$ $\omega_2(X, Y) + X \circ_2 Y + \langle X, Y \rangle_2 H$, $X, Y \in \mathfrak{h}_2$, $\rho_1(X)(Y)$, $X \in \mathfrak{h}_1, Y \in \mathfrak{h}_2$, $\rho_2(X)(Y)$, $X \in \mathfrak{h}_2, Y \in \mathfrak{h}_1$. $\left\{\right\}$ $\overline{\mathcal{L}}$ $H \bullet X = B_1(X) + \frac{1}{2}X, X \bullet H = 0, X \in \mathfrak{h}_1,$ *H* \bullet *X* = *B*₂(*X*) + *X*, *X* \bullet *H* = *X*, *X* ∈ \mathfrak{h}_2 , $H \bullet H = H$, '

is a LSPK *and the Koszul form* B *is given by* $B(\mathfrak{h}_1, \mathfrak{h}_2) = B(H, \mathfrak{h}_1) = B(H, \mathfrak{h}_2) = 0$,

$$
B(X,Y) = \rho \langle X, Y \rangle_i, \quad X, Y \in \mathfrak{h}_i, \ i = 1,2 \quad and \quad B(H,H) = \rho,
$$

where $\rho = \left(\frac{1}{2} \dim b_1 + \dim b_2 + 1\right)$ *. Moreover, all* LSPK *are obtained in this way.*

Remark 1. *When* $\rho_1 = 0$, $\omega_2 = 0$ *and* [\(18\)](#page-13-1) *and* [\(19\)](#page-13-2) *reduce to*

$$
X \circ_2(\omega_1(Y,Z)) = \omega_1(\rho_2(X)(Y), Z) + \omega_1(Y, \rho_2(X)(Z)) - \langle Y, Z \rangle_1 X \quad and \quad [B_1, \rho_2(X)] = \rho_2(B_2(X)), \quad X \in \mathfrak{h}_2, Y, Z \in \mathfrak{h}_1.
$$

This theorem has an important corollary.

Corollary 3.1. 1. Let $(\mathfrak{h} \langle , \rangle)$ be a Euclidean vector space of dimension n and D a skew*symmetric endomorphism on* \mathfrak{h} *. Then* $\mathfrak{q} = \mathfrak{h} \oplus \mathbb{R}$ *H* endowed with \bullet given by

$$
X \bullet Y = \langle X, Y \rangle H, \ H \bullet X = \frac{1}{2}X + D(X), \ X \bullet H = 0, \ H \bullet H = H, \ X, Y \in \mathfrak{h}, \tag{20}
$$

is a LSPK *and its Koszul form* B *is given by*

$$
B(X, Y) = \left(\frac{n}{2} + 1\right) \langle X, Y \rangle, \ B(X, H) = 0, \ B(H, H) = \frac{n}{2} + 1, \ X, Y \in \mathfrak{h}.
$$

2. *Let* $(b, \circ, \langle , \rangle)$ *be a Euclidean algebra of dimension n such that, for any X,* $Y \in b$ *, tr*(L_X) = 0 *and*

$$
\begin{cases} \langle X \circ Y - Y \circ X, Z \rangle = \langle Y \circ Z, X \rangle - \langle X \circ Z, Y \rangle, \\ \text{ass}(X, Y, Z) - \text{ass}(Y, X, Z) = (\langle Y, Z \rangle X - \langle X, Z \rangle Y), \end{cases}
$$

and D is a skew-symmetric derivation of (b, \circ). Then $g = h \oplus \mathbb{R}$ *H endowed with* • *given by*

$$
X \bullet Y = X \circ Y + \langle X, Y \rangle H, \ H \bullet X = X + D(X), \ X \bullet H = X, \ H \bullet H = H, \ X, Y \in \mathfrak{g}, \tag{21}
$$

is a LSPK *and its Koszul form* B *is given by*

$$
B(X, Y) = (n + 1)\langle X, Y \rangle, B(X, H) = 0, B(H, H) = n + 1, X, Y \in \mathfrak{h}.
$$

4. A new class of non-associative algebras: *k*-Hessian algebras

Theorem [3.2](#page-13-0) shows that all LSPK can be constructed from a class of algebras that, to our knowledge, is new and of independent interest.

A *k*-Hessian algebra is an algebra (h, ∘) equipped with a scalar product $\langle \cdot, \cdot \rangle$, such that for any *X*, *Y*, *Z* ∈ h:

$$
\begin{cases}\n\langle X \circ Y - Y \circ X, Z \rangle = \langle Y \circ Z, X \rangle - \langle X \circ Z, Y \rangle, \\
\text{ass}(X, Y, Z) - \text{ass}(Y, X, Z) = k(\langle X, Z \rangle Y - \langle Y, Z \rangle X).\n\end{cases} \tag{22}
$$

It is important to note that a *k*-Hessian algebra is Lie-admissible, meaning the bracket $[X, Y] =$ $X \circ Y - Y \circ X$ satisfies the properties of a Lie bracket. Furthermore, if *G* is a connected Lie group with Lie algebra $(g, [\, , \,])$, the pair $(\langle , \, \rangle, \circ)$ defines a left-invariant metric *h* on *G* and a torsionfree connection ∇ , such that (h, ∇) satisfies the Codazzi equation [\(1\)](#page-0-0) and the curvature R^V of ∇ satisfies

$$
R^{\nabla}(X, Y) = kX \wedge Y.
$$

We refer to the structure (G, h, ∇) as a *k*-Hessian Lie group, establishing a correspondence between *k*-Hessian Lie algebras and *k*-Hessian Lie groups. In particular, if ∇ is the Levi-Civita connection of (G, h) , we obtain an important subclass of k -Hessian algebras: the Lie algebras associated with Lie groups that have a left-invariant Riemannian metric of constant sectional curvature *k*.

For $k > 0$, the only connected and simply connected Lie group carrying a left-invariant metric with constant sectional curvature *k* is *S U*(2) (see [\[12\]](#page-24-9)).

For *k* < 0, Milnor in [\[9](#page-24-10)] provided a class of Euclidean Lie algebras with constant sectional curvature *k*. Indeed, let (h, \langle , \rangle) be Euclidean vector space and $h \in \mathfrak{h} \setminus \{0\}$. The bracket on $\mathfrak h$ defined by:

$$
[X, Y] = (X \wedge Y)(\mathbf{h})
$$

15

is a Lie bracket and the Levi-Civita product of $(g, [,], \langle , \rangle)$ is given by

$$
X \circ Y = \langle X, Y \rangle \mathbf{h} - \langle Y, \mathbf{h} \rangle X, \quad X, Y \in \mathfrak{h}.
$$

Furthermore, the associator satisfies the relation:

$$
ass(X, Y, Z) - ass(X, Y, Z) = -|\mathbf{h}|^2 (X \wedge Y)(Z), \quad X, Y, Z \in \mathfrak{h}.
$$

Thus $(h, o, \langle , \rangle)$ is $-|h|^2$ -Hessian algebra. We refer to $(h, o, \langle , \rangle)$ as a Milnor algebra. Note that L_h = 0 and, in fact, a *k*-Hessian algebra with $k < 0$ and having a non zero vector *u* satisfying $L_u = 0$ is a Milnor algebra.

Theorem 4.1. *Let* $(0, o, \langle , \rangle)$ *be a k-Hessian algebra such that k* < 0 *and there exists u* \neq 0 *such that* $L_u = 0$ *. Then there exists* $\mathbf{h} = \mu u$ such that, for any $X, Y \in \mathfrak{h}$ *,*

$$
X \circ Y = \langle X, Y \rangle \mathbf{h} - \langle \mathbf{h}, Y \rangle X.
$$

Proof. Denote by \lceil , \rceil the Lie bracket associated to \circ . We have, for any *X*, *Y* \in *h*,

$$
L_{[X,Y]}-[L_X,L_Y]=kX\wedge Y
$$

where $X \wedge Y$ is the skew-symmetric endomorphism given by

$$
(X\wedge Y)(Z)=\langle X,Z\rangle Y-\langle Y,Z\rangle X.
$$

We can suppose that $|u| = 1$. Since $L_u = 0$, for any $X \in \mathfrak{h}$,

$$
L_{X \circ u} = kX \wedge u. \tag{23}
$$

This relation implies that ker $R_u = \mathbb{R}u$ and $\mathfrak{h} = \mathbb{R}u \oplus \text{Im}R_u$. So, for any $X \in \mathfrak{h}$, L_X is skewsymmetric. We deduce that $u^{\perp} = \text{Im}R_u := \mathfrak{h}_1$.

If dim h = 2, choose a unit vector *e* such that $\langle u, e \rangle = 0$. We have $e \circ u = \lambda e$ and $e \circ e = -\lambda u$. So

$$
L_{e\circ u}e = \lambda e \circ e = k(e \wedge u)(e) = ku
$$

and hence $\lambda^2 = -k$. We can choose *u* such that $e \circ u = -\sqrt{|k|}e$ and the vector $\mathbf{h} = \sqrt{|k|}u$ satisfies the desired relation.

Suppose dim $\mathfrak{h} \geq 3$ and choose (e_2, \ldots, e_n) an orthonormal basis of \mathfrak{h}_1 and (w_2, \ldots, w_n) its image by R_u , i.e., $w_i = e_i \circ u$. According to [\(23\)](#page-15-1), for any $i, j \in \{2, ..., n\}$,

$$
w_i \circ u = L_{w_i} u = k(e_i \wedge u)(u) = -ke_i,
$$

\n
$$
e_i \circ e_j = -\frac{1}{k} L_{w_i \circ u}(e_j) = -\langle w_i, e_j \rangle u,
$$

\n
$$
w_i \circ w_j = k(e_i \wedge u)(w_j) = k\langle e_i, w_j \rangle u.
$$
\n(24)

Now, it is easy to check that for any skew-symmetric endomorphism *A* and for any *X*, *Y*,

$$
[A, X \wedge Y] = (AX) \wedge Y + X \wedge AY.
$$

By using this relation, we get for any $i \neq j$,

$$
kw_i \wedge w_j = -[L_{w_i}, L_{w_j}] = -k[L_{w_i}, e_j \wedge u] = -kL_{w_i}(e_j) \wedge u - ke_j \wedge L_{w_i}(u) = k^2 e_j \wedge e_i.
$$

So $w_i \wedge w_j = -ke_i \wedge e_j$. This relation implies that, for any $l \notin \{i, j\}$,

$$
\langle w_i, e_l \rangle w_j - \langle w_j, e_l \rangle w_i = 0
$$

and hence

$$
\langle w_i, e_l \rangle = \langle w_j, e_l \rangle = 0.
$$

Fix $i \neq j$. We have

$$
w_i = ae_i + be_j \quad \text{and} \quad w_j = ce_i + de_j.
$$

Put $a = \langle w_i, e_i \rangle$, $b = \langle w_i, e_j \rangle$, $c = \langle w_j, e_i \rangle$ and $d = \langle w_j, e_j \rangle$. Note first that the relation $w_i \wedge w_j =$ $-ke_i \wedge e_j$ implies

$$
ad-bc=-k.
$$

Moreover, according to [\(24\)](#page-15-2),

$$
e_i \circ e_i = -au
$$
, $e_i \circ e_j = -bu$, $e_j \circ e_i = -cu$ and $e_j \circ e_j = -du$.

We get

$$
L_{w_i}e_i = -(a^2 + bc)u = k(e_i \wedge u)(e_i) = ku,
$$

\n
$$
L_{w_i}e_j = -(ab + bd)u = k(e_i \wedge u)(e_j) = 0,
$$

\n
$$
L_{w_j}e_i = -(ac + dc)u = k(e_j \wedge u)(e_i) = 0,
$$

\n
$$
L_{w_j}e_j = -(cb + d^2)u = k(e_i \wedge u)(e_i) = ku.
$$

Thus

$$
a^2 + bc = cb + d^2 = ad - bc = -k, b(a + d) = c(a + d) = 0.
$$

If $a + d = 0$ then $cb + d^2 = -d^2 - bc = -k$ which is impossible so $b = c = 0$ and $a^2 = d^2 = -k$. By replacing *u* by −*u* if necessary, we get

$$
e_i \wedge e_i = e_j \circ e_j = -\sqrt{|k|}u
$$
, $e_i \circ e_j = e_j \circ e_i = 0$ and $e_i \circ u = \sqrt{|k|}e_i$.

By taking $\mathbf{h} = -\sqrt{|k|}u$ we get the desired result.

Another important class of *k*-Hessian algebras is formed by *k*-Hessian commutative algebras. Let $(h, \circ, \langle , \rangle)$ be a *k*-Hessian algebra such that \circ is commutative. Then the first relation in [\(22\)](#page-14-1) equivalent to L_X being symmetric for any $X \in \mathfrak{h}$ and the second relations is equivalent to

$$
[L_X, L_Y] = -kX \wedge Y, X, Y \in \mathfrak{h}.
$$

In dimension 2, a *k*-Hessian algebra such that, for any *X*, $L_X = 0$ is either a Milnor algebra or a commutative *k*-Hessian algebra.

 \Box

Proposition 4.1. *Let* $(h, \circ, \langle , \rangle)$ *be a k-Hessian algebra such that, for any* $X \in h$, tr(L_X) = 0*. Then* $k \leq 0$ *and if* $k = 0$ *then* \circ *is trivial. If* $k < 0$ *then there exists an orthonormal basis* (e_1, e_2) *of* h *such that one of the following situations occurs:*

$$
\begin{cases}\ne_1 \circ e_1 = -\sqrt{|k|} \cos(\theta) e_2, \\
e_1 \circ e_2 = \sqrt{|k|} \cos(\theta) e_1, \\
e_2 \circ e_1 = -\sqrt{|k|} \sin(\theta) e_2, \\
e_2 \circ e_2 = \sqrt{|k|} \sin(\theta) e_1, \\
b = \frac{\sqrt{|k|}}{2} \cos(\theta), \\
y = \frac{\sqrt{|k|}}{2} \sin(\theta),\n\end{cases}\n\qquad or \qquad\n\begin{cases}\ne_1 \circ e_1 = -ye_1 + be_2, \\
e_1 \circ e_2 = be_1 + ye_2, \\
e_2 \circ e_1 = be_1 + ye_2, \\
e_2 \circ e_2 = ye_1 - be_2, \\
b = \frac{\sqrt{|k|}}{2} \cos(\theta), \\
y = \frac{\sqrt{|k|}}{2} \sin(\theta).\n\end{cases}
$$

Proof. We choose an orthonormal basis (e_1, e_2) of h and put

$$
L_{e_1} = \begin{pmatrix} a & b \\ c & -a \end{pmatrix} \quad \text{and} \quad L_{e_2} = \begin{pmatrix} x & y \\ z & -x \end{pmatrix}.
$$

The metric is Hessian if and only if $c = 2x - b$ and $z = -(2a + y)$. Now the relation

$$
ass(X, Y, Z) - ass(Y, X, Z) = k(\langle X, Z \rangle Y - \langle Y, Z \rangle X)
$$

is equivalent to

$$
\begin{cases} ab + xy = 0, \\ bx - ay + b^2 + y^2 + k = 0, \\ 6a^2 + 5ay - 5bx + 6x^2 + b^2 + y^2 + k = 0. \end{cases}
$$

If we take the difference between the third relation and the second one we get

$$
6(a^2 + ay - bx + x^2) = 0.
$$

 \overline{a}

But $ay - bx = b^2 + y^2 + k$ and hence

$$
a^2 + x^2 + b^2 + y^2 = -k.
$$

Then $k \le 0$ and if $k = 0$, $a = x = b = y = 0$ and $\circ = 0$.

Suppose that $k < 0$. Then $(b, y) \neq (0, 0)$ and from the relation $ab + xy = 0$, we deduce that there exists μ such that $x = \mu b$ and $a = -\mu y$. So

$$
\begin{cases} \mu b^2 + \mu y^2 + b^2 + y^2 + k = 0, \\ 6\mu^2 y^2 - 5\mu y^2 - 5\mu b^2 + 6\mu^2 b^2 + b^2 + y^2 + k = 0. \end{cases}
$$

Thus

$$
(1 + \mu)(b^2 + y^2) = -k \quad \text{and} \quad (\mu^2 - \mu)(y^2 + b^2) = 0.
$$

So $\mu \in \{0, 1\}, b = \frac{\sqrt{|k|}}{\sqrt{1 + \mu}} \cos \theta$ and $y = \frac{\sqrt{|k|}}{\sqrt{1 + \mu}} \sin \theta$.

If we drop the condition tr(L_X) = 0, we can find examples of *k*-Hessian algebras with $k > 0$ as illustrated by the following example. We give also an example of −1-Hessian commutative algebra of dimension 3.

Example 2. 1. *Consider* \mathbb{R}^2 *endowed with the metric and the product* \circ *given by*

$$
\langle\,\,,\,\,\rangle=\left[\begin{array}{cc}\lambda & 0 \\ 0 & \mu\end{array}\right],\;\begin{cases}e_1\circ e_1=\frac{(y+2)\lambda}{2\mu}e_2,e_2\circ e_2=ye_2,\\ e_1\circ e_2=(\frac{y}{2}-1)e_1,\; e_2\circ e_1=\frac{y}{2}e_1,\;\mu=\frac{1}{k}(\frac{1}{4}y^2-1),\quad k|y|>2.\end{cases}
$$

Then $(\mathbb{R}^2, \circ, \langle , \rangle)$ *is a k-Hessian algebra.*

2. *Consider* R 3 *endowed with its canonical scalar product and the product* ◦ *given by*

 $e_1 \circ e_2 = e_2 \circ e_1 = e_3, e_1 \circ e_3 = e_3 \circ e_1 = e_2, e_1 \circ e_3 = e_3 \circ e_1 = e_2.$

Then $(\mathbb{R}^3, \circ, \langle , \rangle)$ *is a* -1*-Hessian commutative algebra.*

3. *By using Milnor algebras introduced in Section [4,](#page-14-0) we can build a large class of* LSPK*.* Let (h, \langle , \rangle) *be a Euclidean vector space and* **h** *is a unit vector. The product*

 $X \circ Y = \langle X, Y \rangle \mathbf{h} - \langle Y, \mathbf{h} \rangle X$

defines on h *a structure of* −1*-Hessian algebra. Moreover, one can see easily that D is a derivation of* (f_1, \circ) *if and only if D is skew-symmetric and D(h)* = 0*. By using Corollary [3.1,](#page-14-2)* we get that $\mathfrak{h} \oplus \mathbb{R}$ *H* endowed with the product \bullet given by [\(21\)](#page-14-3) is a LSPK.

The discovery of *k*-Hessian algebras, as the infinitesimal counterpart of *k*-Hessian Lie groups, represents an important consequence of our study. This naturally leads to a meaningful generalization of Hessian manifolds, introducing the concept of *k*-Hessian manifolds, as outlined in the introduction.

5. Left symmetric algebras with positive definite Koszul form of dimension \leq 3 and some examples of dimension 4 and 5

In this section, we give all LSPK of dimension ≤ 3 and some examples of dimension 4 and 5.

The classification of 2-dimensional LSPK follows directly from Theorem [3.2.](#page-13-0)

Proposition 5.1. *Let* (g, •) *be a 2-dimensional* LSPK*. Then* (g, •) *is either isomorphic to* ^R ² *with its canonical associative product or there exists a basis* (e, H) *of* g *such that* $e \bullet e = H$, $H \bullet e =$ $\frac{1}{2}e$, *H* • *H* = *H*. *In this case, the matrix of the Koszul form is* $\frac{3}{2}I_2$.

The situation in dimension 3 is more intricate.

Proposition 5.2. *Let* (g, •) *be a 3-dimensional* LSPK*. Then Then* (g, •) *is either isomorphic to* \mathbb{R}^3 with its canonical associative product or there exists a basis (e_1, e_2, H) of $\mathfrak g$ such that one of *the following cases holds:*

1.

$$
\begin{cases} e_1 \bullet e_1 = e_2 \bullet e_2 = H, & e_1 \bullet e_2 = e_2 \bullet e_1 = 0, \ H \bullet e_1 = \lambda e_2 + \frac{1}{2} e_1, \\ H \bullet e_2 = -\lambda e_1 + \frac{1}{2} e_2, & e_1 \bullet H = e_2 \bullet H = 0, H \bullet H = H, \ \lambda \in \mathbb{R}. \end{cases}
$$

The matrix of the Koszul form is 2I3*.*

2.

$$
\begin{cases} e_1 \bullet e_1 = -\cos(\theta)e_2 + H, & e_1 \bullet e_2 = \cos(\theta)e_1, & e_2 \bullet e_1 = -\sin(\theta)e_2, \\ e_2 \bullet e_2 = \sin(\theta)e_1 + H, & H \bullet e_1 = e_1 \bullet H = e_1, H \bullet e_2 = e_2 \bullet H = e_2, & H \bullet H = H. \end{cases}
$$

The matrix of the Koszul form is 3I3*.*

$$
3. \nonumber
$$

$$
\begin{cases} e_1 \bullet e_1 = -2ae_2 + H, e_1 \bullet e_2 = 0, e_2 \bullet e_1 = -ae_1, \\ e_2 \bullet e_2 = ae_2 + H, H \circ e_1 = \frac{1}{2}e_1, H \circ e_2 = e_2, \\ e_1 \circ H = 0, e_2 \circ H = e_2, H \circ H = H, \quad a = \pm \frac{1}{\sqrt{6}}. \end{cases}
$$

The matrix of the Koszul form is $\frac{5}{2}I_3$.

Proof. According to Theorem [3.2,](#page-13-0) $g = b_1 \circ b_2 \oplus \mathbb{R}H$ with data $(\circ_1, \circ_2, B_1, B_2, \rho_1, \rho_2)$ satisfying the conditions in the theorem. There are three possibilities:

- 1. dim $b_1 = 2$ and $b_2 = 0$. We apply Corollary [3.1](#page-14-2) to get the first case.
- 2. dim $\mathfrak{h}_2 = 2$ and $\mathfrak{h}_1 = 0$. We apply Proposition [4.1](#page-17-0) and Corollary [3.1](#page-14-2) to get two algebras one of them is commutative and by Theorem [3.1](#page-7-0) is isomorphic to \mathbb{R}^3 . The other gives the second case.
- 3. dim $\mathfrak{h}_1 = \dim \mathfrak{h}_2 = 1$. Put $\mathfrak{h}_1 = \mathbb{R}e_1$ and $\mathfrak{h}_2 = \mathbb{R}e_2$ with $|e_1| = |e_2| = 1$. $B_1 = B_2 = 0$, $\circ_1 = 0$ and $e_2 \circ_2 e_2 = ae_2$, $\rho_1 = 0$ and $\rho_2(e_2) = -aid_{\theta_1}$. We have $\omega_2 = 0$ and $\omega_1(e_1, e_1) = -2ae_2$. The relation

$$
X \circ_2 (\omega_1(Y, Z)) = \omega_1(\rho_2(X)(Y), Z) + \omega_1(Y, \rho_2(X)(Z)) - \langle Y, Z \rangle_1 X
$$

gives $-2a^2 = -2a(-2a) - 1$ and hence $1 = 6a^2$.

To get examples in dimension 4 and 5, let us solve the systems [\(17\)](#page-12-2)-[\(19\)](#page-13-2) when dim $\mathfrak{h}_1 \in \{2, 3\}$, dim $\mathfrak{h}_2 = 1$ and $B_1 \neq 0$. Put $\mathfrak{h}_2 = \mathbb{R}f$, $A = \rho_2(f)$ and $f \circ_2 f = af$. We have $B_2 = 0$, $\rho_1 = 0$, $\omega_2 = 0$, $\omega_1 = \omega f$ and B_1 skew-symmetric. The triple (ω, B_1, A) satisfies

$$
\begin{cases} \text{tr}(A) = -a, & \omega(X, Y) = \langle A(X), Y \rangle_1 + \langle A(Y), X \rangle_1, & [B_1, A] = 0, \\ a\omega(X, Y) = \omega(A(X), Y) + \omega(A(Y), X) - \langle X, Y \rangle_1, & X, Y \in \mathfrak{h}_1. \end{cases}
$$
(25)

• dim $\mathfrak{h}_1 = 2$ and $B_1 \neq 0$. There exists an orthonormal basis (e_1, e_2) of \mathfrak{h}_1 such that B_1 and A are given by their matrices

$$
B_1 = \begin{pmatrix} 0 & \lambda \\ -\lambda & 0 \end{pmatrix} \quad \text{and} \quad A = \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix}, \ \lambda > 0, \ a = -2\alpha.
$$

We have

$$
\omega(e_1, e_1) = \omega(e_2, e_2) = 2\alpha
$$
 and $\omega(e_1, e_2) = 0$.

The last equation in [\(25\)](#page-19-0) is equivalent to $8\alpha^2 - 1 = 0$.

We get a 4-dimensional LSPK where the non vanishing products are given by

$$
\begin{cases} e_1 \bullet e_1 = e_2 \bullet e_2 = 2\alpha f + H, \\ f \bullet f = -2\alpha f + H, \ f \bullet e_1 = \alpha e_1 - \beta e_2, f \bullet e_2 = \beta e_1 + \alpha e_2, \\ H \bullet e_1 = -\lambda e_2 + \frac{1}{2} e_1, H \bullet e_2 = \lambda e_1 + \frac{1}{2} e_2, H \bullet f = f \bullet H = f, H \bullet H = H, \ \alpha^2 = \frac{1}{8}, \beta \in \mathbb{R}, \ \lambda > 0. \end{cases}
$$

The matrix of the Koszul form is $3I₄$.

• dim $\mathfrak{h}_1 = 3$ and $B_1 \neq 0$. There exists an orthonormal basis (e_1, e_2, e_3) of \mathfrak{h}_1 such that B_1 and *A* are given by their matrices

$$
B_1 = \begin{pmatrix} 0 & \lambda & 0 \\ -\lambda & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \text{ and } A = \begin{pmatrix} \alpha & \beta & 0 \\ -\beta & \alpha & 0 \\ 0 & 0 & \gamma \end{pmatrix}, \lambda > 0, a = -(2\alpha + \gamma).
$$

We have

$$
\omega(e_1, e_1) = \omega(e_2, e_2) = 2\alpha
$$
, $\omega(e_3, e_3) = 2\gamma$ and $\omega(e_1, e_2) = \omega(e_1, e_3) = \omega(e_2, e_3) = 0$.

The last equation in [\(25\)](#page-19-0) is equivalent to

$$
8\alpha^{2} + 2\alpha\gamma - 1 = 0 \text{ and } 6\gamma^{2} + 4\alpha\gamma - 1 = 0.
$$

$$
(\gamma, \alpha) = \left(\pm \frac{1}{\sqrt{3}}, \pm \frac{-3}{4\sqrt{3}}\right) \text{ or } (\gamma, \alpha) = \left(\pm \frac{1}{\sqrt{10}}, \pm \frac{1}{\sqrt{10}}\right)
$$

.

We get a 5-dimensional LSPK where the non vanishing products are given by

$$
\begin{cases} e_1 \bullet e_1 = e_2 \bullet e_2 = 2\alpha f + H, e_3 \bullet e_3 = 2\gamma f + H \\ f \bullet f = -(2\alpha + \gamma)f + H, \ f \bullet e_1 = \alpha e_1 - \beta e_2, f \bullet e_2 = \beta e_1 + \alpha e_2, f \bullet e_3 = \gamma e_3, \\ H \bullet e_1 = -\lambda e_2 + \frac{1}{2}e_1, H \bullet e_2 = \lambda e_1 + \frac{1}{2}e_2, H \bullet e_3 = \frac{1}{2}e_3, H \bullet f = f \bullet H = f, H \bullet H = H, \\ \beta \in \mathbb{R}, \ (\alpha, \gamma) \in \left\{ \left(\pm \frac{1}{\sqrt{3}}, \pm \frac{-3}{4\sqrt{3}} \right), \left(\pm \frac{1}{\sqrt{10}}, \pm \frac{1}{\sqrt{10}} \right) \right\}, \ \lambda > 0. \end{cases}
$$

The matrix of the Koszul form is $\frac{7}{2}I_5$.

6. Appendix

6.1. Proof of Proposition [3.3](#page-12-0)

Let $(h, \circ, \langle , \rangle)$ be an algebra endowed with a scalar product and *A*, *S* two endomorphisms of h such that *S* is symmetric and the system [\(14\)](#page-9-1) holds. We have shown that $h = h_1 \oplus h_2$, there exists a product \circ_i and a metric \langle , \rangle_i on \mathfrak{h}_i for $i = 1, 2$ satisfying [\(16\)](#page-12-3), $\rho_1 : \mathfrak{h}_1 \longrightarrow \text{End}(\mathfrak{h}_2)$, $\rho_2 : \mathfrak{h}_2 \longrightarrow \text{End}(\mathfrak{h}_1)$ and $\omega_1 : \mathfrak{h}_1 \times \mathfrak{h}_1 \longrightarrow \mathfrak{h}_2, \omega_2 : \mathfrak{h}_2 \times \mathfrak{h}_2 \longrightarrow \mathfrak{h}_1$ given by [\(16\)](#page-12-3) such that the product \circ is given by [15,](#page-12-1) $S_{[b_1]} = 0$, $S_{[b_2]} = Id_{b_2}$, $A_{[b_1]} = B_1 + \frac{1}{2}Id_{b_1}$ and $A_{[b_2]} = B_2 + Id_{b_2}$ with B_1 and B_2 are skew-symmetric. Moreover, [\(14\)](#page-9-1) reduces to

$$
\begin{cases}\n\operatorname{ass}_{\circ}(X, Y, Z) - \operatorname{ass}_{\circ}(Y, X, Z) = (\langle Y, Z \rangle S X - \langle X, Z \rangle S Y), \\
A(X \circ Y) = AX \circ Y + X \circ AY - SX \circ Y.\n\end{cases}
$$
\n(26)

Let us expand the first relation in [\(26\)](#page-20-1). We distinguish many cases.

• For any *X*, $Y, Z \in \mathfrak{h}_1$,

$$
ass_o(X, Y, Z) = (X ∘ Y) ∘ Z − X ∘ (Y ∘ Z)
$$

= (X ∘₁ Y) ∘₁ Z + ω₁(X ∘₁ Y, Z) + ρ₂(ω₁(X, Y))(Z) − X ∘₁ (Y ∘₁ Z) − ω₁(X, Y ∘₁ Z) − ρ₁(X)(ω₁(Y, Z))
= ass_{o₁}(X, Y, Z) + ρ₂(ω₁(X, Y))(Z) − ω₁(X, Y ∘₁ Z) − ρ₁(X)(ω₁(Y, Z))
21

 $\left\{\right.$ $ass_{\circ_1}(X, Y, Z) = ass_{\circ_1}(Y, X, Z),$ $\rho_1(X)(\omega_1(Y,Z)) - \rho_1(Y)(\omega_1(X,Z)) + \omega_1(X,Y \circ_1 Z) - \omega_1(Y,X \circ_1 Z) - \omega_1([X,Y],Z) = 0,$ $X, Y, Z \in \mathfrak{h}_1$,

In the same way, we get

$$
\begin{cases}\n\operatorname{ass}_{\circ_2}(X, Y, Z) - \operatorname{ass}_{\circ_2}(Y, X, Z) = (\langle Y, Z \rangle X - \langle X, Z \rangle Y), \\
\rho_2(X)(\omega_2(Y, Z)) - \rho_2(Y)(\omega_2(X, Z)) + \omega_2(X, Y \circ_2 Z) - \omega_2(Y, X \circ_2 Z) - \omega_2([X, Y], Z) = 0, \\
X, Y, Z \in \mathfrak{h}_2.\n\end{cases}
$$

• For *X*, $Y \in \mathfrak{h}_1$ and $Z \in \mathfrak{h}_2$, we have

$$
ass_o(X, Y, Z) = (X \circ Y) \circ Z - X \circ (Y \circ Z)
$$

= $\rho_1(X \circ_1 Y)(Z) + \omega_1(X, Y) \circ_2 Z + \omega_2(\omega_1(X, Y), Z) - \rho_1(X) \circ \rho_1(Y)(Z).$

So ρ_1 is a representation of Lie algebras. In the same way, we get that ρ_2 is a also a representation of Lie algebras.

• For $X, Z \in \mathfrak{h}_1$ and $Y \in \mathfrak{h}_2$, we have

$$
ass_{\circ}(X, Y, Z) = (X \circ Y) \circ Z - X \circ (Y \circ Z)
$$

= $\rho_2(\rho_1(X)(Y))(Z) - X \circ_1 \rho_2(Y)(Z) - \omega_1(X, \rho_2(Y)(Z)),$

$$
ass_{\circ}(Y, X, Z) = (Y \circ X) \circ Z - Y \circ (X \circ Z)
$$

= $\rho_2(Y)(X) \circ_1 Z + \omega_1(\rho_2(Y)(X), Z) - \rho_2(Y)(X \circ_1 Z) - Y \circ_2 (\omega_1(X, Z)) - \omega_2(Y, \omega_1(X, Z)))$

So

$$
\begin{cases}\nY \circ_2 (\omega_1(X, Z)) = \omega_1(\rho_2(Y)(X), Z) + \omega_1(X, \rho_2(Y)(Z)) - \langle X, Z \rangle Y, \\
\rho_2(Y)(X \circ_1 Z) = X \circ_1 \rho_2(Y)(Z) + \rho_2(Y)(X) \circ_1 Z - \omega_2(Y, \omega_1(X, Z)) - \rho_2(\rho_1(X)(Y))(Z).\n\end{cases}
$$

• For $X, Z \in \mathfrak{h}_2$ and $Y \in \mathfrak{h}_1$, we have

$$
asso(X, Y, Z) = (X ∘ Y) ∘ Z – X ∘ (Y ∘ Z)
$$

= ρ₁(ρ₂(X)(Y))(Z) – X ∘₂ ρ₁(Y)(Z) – ω₂(X, ρ₁(Y)(Z)),
ass_o(Y, X, Z) = (Y ∘ X) ∘ Z – Y ∘ (X ∘ Z)
= ρ₁(Y)(X) ∘₂ Z + ω₂(ρ₁(Y)(X), Z) – ρ₁(Y)(X ∘₂ Z) – Y ∘₁ ω₂(X, Z) – ω₁(Y, ω₂(X, Z)).

So

$$
\begin{cases} Y \circ_1 \omega_2(X, Z) = \omega_2(\rho_1(Y)(X), Z) + \omega_2(X, \rho_1(Y)(Z)), \\ \rho_1(Y)(X \circ_2 Z) = X \circ_2 \rho_1(Y)(Z) + \rho_1(Y)(X) \circ_2 Z - \omega_1(Y, \omega_2(X, Z)) - \rho_1(\rho_2(X)(Y))(Z). \end{cases}
$$

Let us expand the second relation in [\(26\)](#page-20-1). We distinguish many cases.

So

• For *X*, $Y \in \mathfrak{h}_1$, we get

$$
A(X \circ Y) = B_1(X \circ_1 Y) + \frac{1}{2}X \circ_1 Y + B_2(\omega_1(X, Y)) + \omega_1(X, Y),
$$

\n
$$
AX \circ Y = B_1(X) \circ_1 Y + \omega_1(B_1(X), Y) + \frac{1}{2}X \circ_1 Y + \frac{1}{2}\omega_1(X, Y),
$$

\n
$$
X \circ AY = X \circ_1 B_1(Y) + \omega_1(X, B_1(Y)) + \frac{1}{2}X \circ_1 Y + \frac{1}{2}\omega_1(X, Y).
$$

So

$$
\begin{cases} B_1(X \circ_1 Y) = B_1(X) \circ_1 Y + X \circ_1 B_1(Y) + \frac{1}{2}X \circ_1 Y, \\ B_2(\omega_1(X, Y)) = \omega_1(B_1(X), Y) + \omega_1(X, B_1(Y)). \end{cases}
$$

• For $X, Y \in \mathfrak{h}_2$, we get

$$
A(X \circ Y) = B_2(X \circ_2 Y) + X \circ_2 Y + B_1(\omega_2(X, Y)) + \frac{1}{2}\omega_2(X, Y),
$$

\n
$$
AX \circ Y = B_2(X) \circ_2 Y + \omega_2(B_2(X), Y) + X \circ_2 Y + \omega_2(X, Y),
$$

\n
$$
X \circ AY = X \circ_2 B_2(Y) + \omega_2(X, B_2(Y)) + X \circ_2 Y + \omega_2(X, Y),
$$

\n
$$
-X \circ Y = -X \circ_2 Y - \omega_2(X, Y).
$$

So

$$
\begin{cases}\nB_2(X \circ_2 Y) = B_2(X) \circ_2 Y + X \circ_2 B_2(Y), \\
B_1(\omega_2(X, Y)) = \omega_2(B_2(X), Y) + \omega_2(X, B_2(Y)) + \frac{1}{2}\omega_2(X, Y).\n\end{cases}
$$

• For $X \in \mathfrak{h}_1$ and $Y \in \mathfrak{h}_2$, we get

$$
A(X \circ Y) = B_2(\rho_1(X)(Y)) + \rho_1(X)(Y),
$$

\n
$$
AX \circ Y = \rho_1(B_1(X))(Y) + \frac{1}{2}\rho_1(X)(Y),
$$

\n
$$
X \circ AY = \rho_1(X)(B_2(Y)) + \rho_1(X)(Y).
$$

So $[B_2, \rho_1(X)] = \rho_1(B_1(X)) + \frac{1}{2}\rho_1(X)$.

• For $X \in \mathfrak{h}_2$ and $Y \in \mathfrak{h}_1$, we get

$$
A(X \circ Y) = B_1(\rho_2(X)(Y)) + \frac{1}{2}\rho_2(X)(Y),
$$

\n
$$
AX \circ Y = \rho_2(B_2(X))(Y) + \rho_2(X)(Y),
$$

\n
$$
X \circ AY = \rho_2(X)(B_1(Y)) + \frac{1}{2}\rho_2(X)(Y),
$$

\n
$$
-X \circ Y = -\rho_2(X)(Y).
$$

So

$$
[B_1, \rho_2(X)] = \rho_2(B_2(X)).
$$
 and $B_2(\omega_1(X, Y)) = \omega_1(B_1(X), Y) + \omega_1(X, B_1(Y)).$

The algebra ($\mathfrak{h}_1, \mathfrak{o}_1, \langle , \rangle$) satisfies the hypothesis of Lemma [3.2](#page-11-0) and hence \mathfrak{o}_1 is trivial.

To sum up the algebras $(b_i, o_i, \langle , \rangle_i)$ and the associated data $(\rho_1, \rho_2, \omega_1, \omega_1, B_1, B_2)$ satisfy the following properties: $\circ_1 = 0$, B_1 is skew-symmetric, tr($\rho_1(X)$) = 0 for any $X \in \mathfrak{h}_1$ and

$$
\begin{cases} \langle \omega_1(X,Y), Z \rangle_2 = \langle \rho_2(Z)(X), Y \rangle_1 + \langle \rho_2(Z)(Y), X \rangle_1, & X, Y \in \mathfrak{h}_1, Z \in \mathfrak{h}_2, \\ \langle \omega_2(X,Y), Z \rangle_1 = \langle \rho_1(Z)(X), Y \rangle_2 + \langle \rho_1(Z)(Y), X \rangle_2, & X, Y \in \mathfrak{h}_2, Z \in \mathfrak{h}_1. \end{cases}
$$

 $\int (X \circ_2 Y - Y \circ_2 X, Z)_2 = \langle Y \circ_2 Z, X \rangle_2 - \langle X \circ_2 Z, Y \rangle_2,$ $\left\{\right.$ $\begin{array}{c} \hline \end{array}$ $\text{ass}_{\circ_2}(X, Y, Z) - \text{ass}_{\circ_2}(Y, X, Z) = (\langle Y, Z \rangle_2 X - \langle X, Z \rangle_2 Y),$ $B_2(X \circ_2 Y) = B_2(X) \circ_2 Y + X \circ_2 B_2(Y),$ $\langle B_2 X, Y \rangle_2 = -\langle B_2 Y, X \rangle_2, \text{tr}(L_X^{\circ_2}) = -\text{tr}(\rho_2(X)).$

$$
\begin{cases} B_2(\omega_1(X,Y)) = \omega_1(B_1(X), Y) + \omega_1(X, B_1(Y)), \\ B_1(\omega_2(X,Y)) = \omega_2(B_2(X), Y) + \omega_2(X, B_2(Y)) + \frac{1}{2}\omega_2(X, Y). \end{cases}
$$

$$
\begin{cases}\n\rho_1(X)(Y \circ_2 Z) = Y \circ_2 \rho_1(X)(Z) + \rho_1(X)(Y) \circ_2 Z - \rho_1(\rho_2(Y)(X))(Z) - \omega_1(X, \omega_2(Y, Z)), \\
\rho_2(\rho_1(Y)(X))(Z) + \omega_2(X, \omega_1(Y, Z)) = 0, \\
\rho_1(X)(\omega_1(Y, Z)) - \rho_1(Y)(\omega_1(X, Z)) = 0, \\
\rho_2(X)(\omega_2(Y, Z)) - \rho_2(Y)(\omega_2(X, Z)) + \omega_2(X, Y \circ_2 Z) - \omega_2(Y, X \circ_2 Z) - \omega_2([X, Y], Z) = 0, \\
\omega_2(\rho_1(X)(Y), Z) + \omega_2(Y, \rho_1(X)(Z)) = 0, \\
X \circ_2(\omega_1(Y, Z)) = \omega_1(\rho_2(X)(Y), Z) + \omega_1(Y, \rho_2(X)(Z)) - \langle Y, Z \rangle_1 X, \\
[B_2, \rho_1(X)] = \rho_1(B_1(X)) + \frac{1}{2}\rho_1(X), \\
[B_1, \rho_2(X)] = \rho_2(B_2(X)).\n\end{cases}
$$

Let us show that relations $[B_2, \rho_1(X)] = \rho_1(B_1(X)) + \frac{1}{2}\rho_1(X), [B_1, \rho_2(X)] = \rho_2(B_2(X))$ and the definition of ω_i implies the system

$$
\begin{cases} B_2(\omega_1(X,Y)) = \omega_1(B_1(X),Y) + \omega_1(X,B_1(Y)), \\ B_1(\omega_2(X,Y)) = \omega_2(B_2(X),Y) + \omega_2(X,B_2(Y)) + \frac{1}{2}\omega_2(X,Y) \end{cases}
$$

and hence this system is redundant. Indeed,

 \overline{a}

$$
\langle B_2(\omega_1(X,Y)),Z\rangle_2 = -\langle \rho_2(B_2(Z))(X),Y\rangle_1 - \rho_2(B_2(Z))(Y),X\rangle_1
$$

\n
$$
= -\langle B_1(\rho_2(Z)(X)),Y\rangle_1 + \langle \rho_2(Z)(B_1(X)),Y\rangle_1 - \langle B_1(\rho_2(Z)(Y)),X\rangle_1 + \langle \rho_2(Z)(B_1(Y)),X\rangle_1,
$$

\n
$$
\langle \omega_1(B_1(X),Y),Z\rangle_2 = \langle \rho_2(Z)(B_1(X)),Y\rangle_1 + \langle \rho_2(Z)(Y),B_1(X)\rangle_1,
$$

\n
$$
\langle \omega_1(X,B_1(Y)),Z\rangle_2 = \langle \rho_2(Z)(B_1(Y)),X\rangle_1 + \langle \rho_2(Z)(X),B_1(Y)\rangle_1
$$

and the first relation follows. The second relation follows in a similar way.

References

^[1] Chengming Bai and Xiang Nia, Pseudo-Hessian Lie algebras and L-dendriform bialgebras, Journal of Algebra 400 (2014) 273–289.

- [2] Mohamed Boucetta, On the Hermitian structures of the sequence of tangent bundles of an affine manifold endowed with a Riemannian metric, Complex Manifolds 2022; 9:18-51.
- [3] D. Burde, K. Dekimpe. Novikov structures on solvable Lie algebras. J. Geom. Phys. 56(9):1837-1855 2006.
- [4] D. Burde, K. Dekimpe and K. Verkammen. Novikov algebras and Novikov structures on Lie algebras. Linear Algebra Appl. 429(1):31-41 (2008).
- [5] D. Burde, Left-symmetric algebras, or pre-Lie algebras in geometry and physics, Cent. Eur. J. Math. 4 (2006) 323-357.
- [6] J.-L. Koszul, Domaines bornés homogènes et orbites de groupes de transformation affines, Bull. Soc. Math. France 89 (1961) 515–533.
- [7] Hirohiko Shima, The geometry of Hessian structures, World Scientific Publishing (2007).
- [8] H. Shima, Homogeneous Hessian manifolds, Ann. Inst. Fourier (Grenoble) 30 (1980) 91–128.
- [9] J. Milnor, *Curvatures of left invariant metrics on Lie Groups*, Advances in Mathematics 21 (1976), 293-329.
- [10] E.B. Vinberg, Convex homogeneous cones, Trans. Moscow Math. Soc. 12 (1963) 340–403.
- [11] E. B. Vinberg, A course in Algebra, Graduate Studies in Mathematics Volume 56 (2001).
- [12] N. Wallach, *Compact homogeneous Riemannian manifolds with strictly positive curvature*, Ann. Math. 96 (1972), 277-29.