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Abstract: We investigate two-dimensional conformal field theories (CFTs) with affine ŝu(2)

and ŝu(3) algebra symmetry. Their bosonic modular-invariant partition functions have been

fully classified based on the ADE classification. In this work, we extend the classification to in-

clude fermionic and parafermionic CFTs with the same affine symmetries, utilizing techniques

of fermionization and parafermionization. We find that the fermionic and parafermionic ŝu(2)

models are related to non-simply laced Dynkin diagrams.

http://arxiv.org/abs/2411.01926v2


Contents

1 Introduction 1

2 Modular invariants in WZW models 3

3 Orbifold, fermionization, and parafermionization 7

4 Classification of ŝu(2) models 11
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1 Introduction

The classification of modular-invariant partition functions has been a central topic in two-

dimensional conformal field theories (CFTs). The spectrum of 2d bosonic theories is strongly

constrained by the modular invariance of the torus partition function. A classic result is the

classification of modular-invariant partition functions for the Wess-Zumino-Witten (WZW)

models with affine Lie algebra symmetries, such as ŝu(2) models [1–4], ŝu(3) models [5, 6],

level-one WZW models for simple algebras [7, 8], and heterotic models [9]. In particular, the

ŝu(2) models are fully classified based on simply laced Dynkin diagrams of the ADE type.

The correspondence between modular invariants and graphs has been extensively studied

including the generalization to ŝu(3) models [10–13].

A natural question is whether the classification of bosonic CFTs can be extended to

fermionic and parafermionic CFTs. When the theory is fermionic, it contains operators with

half-integral spin and depends on the choice of spin structure of our spacetime. Correspond-

ingly, the torus partition function is not invariant but covariantly transforms under modular

transformation.1 Among numerous constructions of fermionic CFTs, a recently proposed

1Toward the classification of fermionic rational CFTs, a modular bootstrap method has been recently

developed in [14–16], which is closely related to the modular tensor categories (see e.g. [17, 18]).
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procedure called fermionization is a powerful tool for classification [19, 20]. Through fermion-

ization, one can construct a fermionic CFT from a bosonic CFT with a global Z2 symmetry.

Exploiting this technique has classified fermionic minimal models [21–23] and chiral fermionic

CFTs with relatively small central charges [24–26]. Similarly, for parafermionic theories, the

torus partition functions depend on the choice of paraspin structure and intricately transform

under modular transformation. As well as fermionization, one can map a bosonic CFT with a

global ZN symmetry to a parafermionic CFT via the so-called parafermionization. Through

the technique, the parafermionic analogs of minimal models have also been classified [27].

This paper aims to classify fermionic and parafermionic CFTs with affine ŝu(2) and ŝu(3)

symmetries at arbitrary levels. Our approach utilizes the techniques of fermionization and

parafermionization, which establish a one-to-one correspondence between a (para)fermionic

theory and a bosonic theory with ZN symmetry. Fermionization and parafermionization

require us to ensure the absence of ’t Hooft anomaly for the ZN symmetry. Notably, the

global symmetries without anomaly have been enumerated for ŝu(2) and ŝu(3) modular in-

variants, under the assumption that the symmetry group preserves the affine algebra [28].

Based on each identified non-anomalous symmetry, we construct corresponding fermionic

and parafermionic CFTs, achieving a complete classification.

For ŝu(2) symmetry, each modular invariant labeled by ADE has a symmetry group

equal to the automorphism group of the related Dynkin diagram [28]. While many have only

Z2 symmetry, the theory related to the Dynkin diagram D4 has the permutation group S3,

which contains a Z3 subgroup. We utilize the ZN group symmetries (N = 2, 3) to construct

fermionic and parafermionic theories with ŝu(2) symmetry. We summarize the classification

result of fermionic and parafermionic ŝu(2) theories in table 2. For ŝu(3) symmetry, most

modular invariants have only Z3 symmetry, but a theory called D6 has an enhanced symmetry

group equal to the alternating group A4. Correspondingly, in addition to Z3 parafermionic

theories, we have a fermionic theory obtained via fermionization of the Z2 subgroup of the

alternating group A4. We show the classification of ŝu(3) theories in table 3.

Our results reveal that each fermionic and parafermionic ŝu(2) theory is related to a

non-simply laced Dynkin diagram. As in the ADE classification of ŝu(2) modular invariants,

the relation is based on two facts:

1. The height n = k + 2 (k : level) equals the Coxeter number.

2. The diagonal terms in the partition function Z[0, 0] consist of the exponents.

Here, Z[0, 0] denotes the torus partition function with spin structure (NS,NS) for fermionic

theories and its analog for parafermionic theories. While fermionic CFTs labeled by Bn
2
and

Cn
2
form a regular class consisting of an infinite number of theories, an exceptional class

consists of the fermionic theory F4 at height n = 12 and the parafermionic theories G2,

G2 at height n = 6. Their relationships to bosonic ŝu(2) theories are shown in Fig. 3 and

Fig. 4, which suggests that the (para)fermionization map is related to the folding of Dynkin
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diagrams, a technique for constructing a non-simply laced diagram from a simply laced one by

using its automorphism. These observations show that the conventional relationship between

bosonic ŝu(2) theories and simply-laced Dynkin diagrams is extended to non-simply laced

cases when fermionic and parafermionic theories are included.

The organization of this paper is as follows. Section 2 provides our convention and reviews

modular invariants in WZW models with ŝu(2) and ŝu(3) symmetries. In section 3, we review

the gauging of ZN global symmetry including orbifold, fermionization, and parafermioniza-

tion. We emphasize the relationship between an original bosonic theory and a fermionized or

parafermionized theory. The main part of this paper is section 4 and section 5. Through the

gauging technique, we classify fermionic and parafermionic CFTs with ŝu(2) symmetries in

section 4 and with ŝu(3) symmetries in section 5. We explicitly perform fermionization and

parafermionization starting with the bosonic torus partition function graded by an element

of a global symmetry. We conclude in section 6 with some discussions.

2 Modular invariants in WZW models

In this section, we review the modular-invariant torus partition functions of WZW models

with ŝu(2) and ŝu(3) symmetries. We emphasize that the theories with diagonal or non-

diagonal modular invariants are both called WZW models.

Let B be a two-dimensional bosonic CFT with an affine Lie algebra symmetry. We take

our spacetime as a torus with modulus τ = τ1+iτ2 valued in the upper half-plane H. A torus

has two independent cycles:

spacial: w ∼ w + 1 , temporal: w ∼ w + τ , (2.1)

where w is a cylindrical coordinate on a torus. Then, the torus partition function of the

bosonic theory B is given by

ZB =
∑

p, p′

χpMp, p′ χ̄p′ , (2.2)

where χp := χp(τ) is a character of a representation labeled by p. Here, a mass matrixMp, p′

consists of non-negative integers and glues holomorphic and anti-holomorphic characters.

Note that the partition function ZB depends on both τ and τ̄ , although we omit them.

The torus partition function is invariant under modular transformations. The general

modular transformation forms a PSL(2,Z) group and can be expressed by

τ → aτ + b

cτ + d
, a, b, c, d ∈ Z and ad− bc = 1 . (2.3)

In terms of an SL(2,Z) group, the transformation is denoted by a matrix
(
a b
c d

)
∈ SL(2,Z).

Since a torus does not change under modular transformations, the torus partition function

ZB should be invariant under modular transformations.
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For a theory to be physical, we additionally require that each primary is included in the

spectrum by only non-negative integers and the vacuum is unique. One important task is to

classify the physical partition functions satisfying modular invariance, the non-negativity of

Mp,p′, and the uniqueness of the vacuum. This work was completed for ŝu(2) WZW models

in [1–3] and for ŝu(3) WZW models in [5, 6]. (See e.g., [29, 30] and references therein for

recent developments in the classification of 2d rational CFTs with few primaries.)

Modular invariants of ŝu(2) WZW models. Let us consider the affine ŝu(2) algebra

with level k, i.e., the affine ŝu(2)k algebra. Below, we heavily use the height n = k+2 instead

of the level k for notational convenience. Based on the Sugawara construction [31], the central

charge is given by c = 3(n− 2)/n and there are n− 1 highest weight states |p〉 where p is the

shifted weight valued in P
(n)
++ = {1, 2, · · · , n − 1}. The trivial representation corresponds to

p = 1. The conformal dimension of the highest weight state |p〉 is given by

hp =
p2 − 1

4n
. (2.4)

Denoting the highest weight representation by Vp, we define its character by

χp(τ) = TrVp

[
qL0−

c
24

]
, (2.5)

where L0 is the zero-mode of Virasoro generators and q = e2πiτ . Under the modular trans-

formation, these characters transform as

S : χp(−1/τ) =
∑

p′

Sp,p′ χp′(τ) , T : χp(τ + 1) =
∑

p′

Tp,p′ χp′(τ) , (2.6)

where Sp,p′ and Tp,p′ are the modular transformation matrices

Sp,p′ =

√
2

n
sin

(
πpp′

n

)
, Tp,p′ = δp,p′ e

2πi( p
2

4n
− 1

8
) , (2.7)

for p, p′ ∈ P (n)
++. Note that the charge conjugation C = S2 is trivial for affine ŝu(2) algebras.

The modular-invariant partition functions of ŝu(2) WZW models are completely classi-

fied [1–4]. The list of modular invariants is as follows: (n = k + 2)

An−1 (n ≥ 3) :

n−1∑

p=1

|χp|2

Dn
2
+1 (n = 4m+ 2) :

2m−1∑

p=1, odd

|χp + χn−p|2 + 2 |χ2m+1|2

Dn
2
+1 (n = 4m+ 4) :

n−1∑

p=1, odd

|χp|2 +
n−2∑

p=2, even

χp χ̄n−p

E6 (n = 12) : |χ1 + χ7|2 + |χ4 + χ8|2 + |χ5 + χ11|2

E7 (n = 18) : |χ1 + χ17|2 + |χ5 + χ13|2 + |χ7 + χ11|2 + |χ9|2 + (χ9 (χ̄3 + χ̄15) + c.c.)

E8 (n = 30) : |χ1 + χ11 + χ19 + χ29|2 + |χ7 + χ13 + χ17 + χ23|2
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Type Coxeter Number Exponents

Ar r + 1 1, 2, . . . , r

Br 2r 1, 3, 5, . . . , 2r − 1

Cr 2r 1, 3, 5, . . . , 2r − 1

Dr 2r − 2 1, 3, 5, . . . , 2r − 3, r − 1

E6 12 1, 4, 5, 7, 8, 11

E7 18 1, 5, 7, 9, 11, 13, 17

E8 30 1, 7, 11, 13, 17, 19, 23, 29

F4 12 1, 5, 7, 11

G2 6 1, 5

Table 1: Coxeter number and exponents for each Dynkin diagram, including both simply

laced and non-simply laced types.

The notable observation is that each modular invariant is related to a simply laced Dynkin

diagram. The relation is based on the two facts:

1. The height n is equal to the Coxeter number of the corresponding Lie algebra.

2. The set of p ∈ P
(n)
++ appearing in the diagonal terms |χp|2 of a modular invariant is

exactly the set of exponents of the associated Dynkin diagram.

We show the Coxeter number and exponents for each Dynkin diagram in table 1. Compare

it with the above modular invariants. We emphasize that the corresponding Lie algebra does

not reflect a global symmetry of the modular invariant.

Modular invariants of ŝu(3) WZW models. Next, we consider the affine ŝu(3) algebra

with level k, i.e., the affine ŝu(3)k algebra. We use the height n = k + 3 for notational

convenience. Based on the Sugawara construction, the central charge is c = 8(n − 3)/n and

the highest weight states |p〉 are labeled by the shifted weights valued in

P
(n)
++ = {p = (a, b) ∈ Z

2 | 1 ≤ a, b, a+ b ≤ n− 1} . (2.8)

In this notation, the trivial representation is labeled by p = (1, 1). The conformal dimension

of the highest weight state |p = (a, b)〉 is given by

hp =
a2 + ab+ b2 − 3

3n
. (2.9)
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As in the ŝu(2) case, we denote the character of the highest weight representation Vp by

χp(τ). The modular transformation matrices are given by

Sp,p′ =
−i√
3n

∑

w∈W (su(3))

(detw) e−2πiw(p)·p′

n ,

Tp,p′ = δp,p′ e
2πi

(
a2+ab+b2

3n
− 1

3

)

,

(2.10)

where p = (a, b) and p′ = (a′, b′), and W (su(3)) is the Weyl group of su(3) algebra. Note

that the charge conjugation C = S2 acts on a weight p = (a, b) as C(a, b) = (b, a).

The modular invariants of ŝu(3) models were considered in [32, 33] and their completion

was demonstrated in [5, 6]. The list of ŝu(3) modular invariants is the following: (n = k+3)

An (n ≥ 4) :
∑

p

|χp|2

Dn (n /∈ 3Z) :
∑

p

χµnt(p)(p) χ̄p

Dn (n ∈ 3Z) :
∑

t(p)=0mod 3

[
|χp|2 + χµ(p) χ̄p + χµ2(p) χ̄p

]

E8 (n = 8) : |χ(1,1) + χ(3,3)|2 + |χ(3,1) + χ(3,4)|2 + |χ(1,3) + χ(4,3)|2

+ |χ(4,1) + χ(1,4)|2 + |χ(2,3) + χ(6,1)|2 + |χ(3,2) + χ(1,6)|2

E12 (n = 12) : |χ(1,1) + χ(1,10) + χ(10,1) + χ(2,5) + χ(5,2) + χ(5,5)|2 + 2 |χ(3,3) + χ(3,6) + χ(6,3)|2

E ′12 (n = 12) : |χ(1,1) + χ(10,1) + χ(1,10)|2 + |χ(3,3) + χ(3,6) + χ(6,3)|2 + 2 |χ(4,4)|2

+ |χ(1,4) + χ(7,1) + χ(4,7)|2 + |χ(4,1) + χ(1,7) + χ(7,4)|2

+ |χ(5,5) + χ(5,2) + χ(2,5)|2 + (χ(4,4) (χ̄(2,2) + χ̄(2,8) + χ̄(8,2)) + c.c.)

E24 (n = 24) : |χ(1,1) + χ(5,5) + χ(7,7) + χ(11,11) + χ(22,1) + χ(1,22)

+ χ(14,5) + χ(5,14) + χ(11,2) + χ(2,11) + χ(10,7) + χ(7,10)|2

+ |χ(16,7) + χ(7,16) + χ(16,1) + χ(1,16) + χ(11,8) + χ(8,11)

+ χ(11,5) + χ(5,11) + χ(8,5) + χ(5,8) + χ(7,1) + χ(1,7)|2

Here, µ is the order-three automorphism of P
(n)
++: µ(a, b) = (n−a−b, a), µ2(a, b) = (b, n−a−b),

µ3(a, b) = (a, b). Also, t(a, b) = a+ 2b mod 3 is called the triality of p = (a, b) ∈ P (n)
++. Under

the action of automorphism µ, the triality t transforms as a+2b→ a+2b+n→ a+2b+2n

mod 3. When n ∈ 3Z, the triality is invariant under automorphism µ.

In analogy with the ŝu(2) case, the ŝu(3) modular invariants are labeled by ADE. Note

that each modular invariant is not related to a Dynkin diagram, but to a generalized ADE

diagram, which is constructed to extend the relationship between ŝu(2) modular invariants

and graphs (see e.g. section 17.10 of [34]).
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Finally, we mention that the above modular invariants have a charge-conjugated partner

by replacing the mass matrix Mp,p′ by Mp,C(p′), and some of them are invariant under the

charge conjugation: D6 = D∗
6, D9 = D∗

9, E12 = E∗12, and E24 = E∗24.

3 Orbifold, fermionization, and parafermionization

This section briefly reviews the orbifold, fermionization, and parafermionization of a 2d

bosonic CFT with ZN global symmetry. These transformations are a generalized version

of Jordan-Wigner transformation [35, 36] and can be described as gauging a bosonic the-

ory with a non-anomalous ZN symmetry. Throughout this paper, we collectively refer to

fermionization and parafermionization as the generalized Jordan-Wigner transformation.

Let B be a two-dimensional bosonic theory with a non-anomalous ZN symmetry G =

{1, g, g2, · · · , gN−1}. One can insert the background ZN fields on our spacetime and compute

the corresponding partition functions. The torus partition functions twisted by the elements

(ga1 , ga2) are given by

ZB[a1, a2] = TrHa1

[
ga2qL0−

c
24 q̄L̄0−

c
24

]
, (3.1)

where Ha denotes the Hilbert space quantized under the ga-twisted periodicity: φ(x+2π) =

ga · φ(x) for a bosonic field φ with a unit charge. The twisted partition functions transform

under the modular transformation by (see e.g. [37])

S : ZB[a1, a2]→ ZB[a2,−a1] , T : ZB[a1, a2]→ ZB[a1, a1 + a2] , (3.2)

where we used the definition of the modular S transformation
(
0 −1
1 0

)
and modular T trans-

formation
(
1 1
0 1

)
in the general expression (2.3).

Orbifold. Orbifolding by the non-anomalous ZN symmetry constitutes a new consistent

bosonic theory O = B/G [38–40]. The orbifold theory does not have the original ZN symmetry

G because it is gauged and becomes trivial in the new theory O. Instead, a dual ZN symmetry

Ĝ emerges after orbifolding [41, 42]. We can insert the background fields associated with Ĝ

on a torus. The twisted partition functions of the orbifold theory O are given by

ZO[â1, â2] =
1

N

∑

a

ω
−(â1a2−â2a1)
N ZB[a1, a2] , (3.3)

where ωN = exp(2πi/N). The untwisted partition function ZO[0, 0] is still invariant under

modular transformations. This indicates that the orbifold theory O has a consistent spectrum

by itself. Note that if the original symmetry G has an ’t Hooft anomaly, then the orbifold

theory is not invariant under modular transformations, which implies we can diagnose the

anomalies by modular transformations on a torus [43–45]. We can further take the orbifold

by the dual symmetry Ĝ, which results in the original theory O/Ĝ = B.
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Fermionization. A fermionic theory includes a half-integral spin in its spectrum and re-

quires a choice of the spin structure of spacetime. When the spacetime is a torus, one can

specify its spin structure by the periodicity of fermionic fields ψ along the two independent

cycles. A choice of spin structure can be denoted by s = (s1, s2) where si ∈ {0, 1}. For si = 0,

fermionic fields ψ are anti-periodic, while, for si = 1, they are periodic. The Hilbert space

quantized under the anti-periodic boundary condition ψ → −ψ is called the NS sector HNS,

and the one under the periodic boundary condition ψ → ψ is called the R sector HR.

The partition functions of a fermionic theory F depend on the choice of spin structure.

For a spin structure (s1, s2), the torus partition functions are given by

ZF [s1, s2] = TrHι(s1)

[
(−1)s2F qL0−

c
24 q̄L̄0−

c
24

]
, (3.4)

where ι : {0, 1} → {NS,R} such that ι(0) = NS and ι(1) = R. We call ZF [0, 0] the NS-NS

partition function, ZF [0, 1] the NS-R partition function, and so on.

Unlike bosonic partition functions, the fermionic partition functions covariantly transform

under the modular transformation. The transformation rules are given by ([46])

T : ZF [s1, s2]→ ZF [s1, 1 + s1 + s2] , S : ZF [s1, s2]→ ZF [−s2, s1] . (3.5)

The NS-NS partition function is invariant under the modular transformations generated by

S and T 2, while the R-R partition function is invariant under the full SL(2,Z) group.

A bosonic theory with a non-anomalous Z2 symmetry can be mapped to a fermionic

one by fermionization [19, 20]. (see [21, 47] for algebraic description and [48–51] for its

applications). This utilizes the low-energy limit of a non-trivial fermionic topological phase

described by the Kitaev-Majorana chain [52]. We call the spin topological theory the Arf

theory. The partition function of the Arf theory under the spin structure s = (s1, s2) is

ZKitaev[s1, s2] = (−1)Arf[s] , (3.6)

where Arf[s] shows the Arf invariant. On a torus with spin structure s = (s1, s2), the Arf

invariant becomes

Arf[s] = s1s2 . (3.7)

Namely, the Arf invariant is −1 for s = (1, 1) and +1 otherwise. By coupling the Kitaev-

Majorana chain to the original bosonic theory B through a non-anomalous Z2 symmetry, the

bosonic theory B turns into the fermionic one F :

F =
B × (−1)Arf

Z2
. (3.8)

Correspondingly, the fermionized partition functions are

ZF [s1, s2] =
1

2

∑

a

(−1)Arf[s+a] ZB[a1, a2] . (3.9)
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O
bosonize

fermionize
F̃

B
bosonize

fermionize F

stackorbifold

Figure 1: Fermionization/bosonization map associated with a non-anomalous Z2 symmetry.

The inverse transformation gives the bosonization map (GSO projection)

ZB[a1, a2] =
1

2

∑

s

(−1)Arf[s+a] ZF [s1, s2] . (3.10)

We can start with the orbifold theory O whose partition functions are (3.3) with N = 2.

When the dual Z2 symmetry Ĝ is non-anomalous, this bosonic theory O can be fermionized

into another theory F̃ . One can show that the two fermionized theories are related by stacking

the Arf theory:

Z
F̃
[s1, s2] = (−1)Arf[s]ZF [s1, s2] . (3.11)

We summarize the relationships between orbifold and fermionization in Fig. 1. The stacking

of the Arf theory is converted into Z2-orbifolding via bosonization/fermionization map. When

a bosonic theory is self-dual under orbifolding, the associated fermionic theory is invariant

under stacking the Arf theory.

Parafermionization. A parafermionic theory has a fractional spin in its spectrum [36, 53,

54] and requires choosing a paraspin structure of our spacetime. Since a paraspin structure is

not fully understood beyond a torus, we set our spacetime as a torus. For a ZN parafermionic

theory, a paraspin structure on a torus is specified by the periodicity (k1, k2) ∈ ZN × ZN of

parafermionic fields along the two independent cycles.

We can construct a parafermionic theory from a bosonic theory with a non-anomalous ZN
symmetry via parafermionization [27] (see also [55–58]). As in fermionization, parafermioniza-

tion can be described by gauging a bosonic theory with the low-energy limit of a parafermionic

chain [59]. The torus partition functions are given by

ZTQFT[k1, k2] = ω
ArfN [k]
N , (3.12)

where ArfN [k] represents one generalization of the Z2-valued Arf invariant to the ZN case.

On a torus with paraspin structure k = (k1, k2),

ArfN [k] = k1k2 mod N . (3.13)
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By coupling the parafermionic chain to a bosonic theory B and gauging the diagonal ZN
symmetry, we obtain a parafermionic theory

PF =
B × ωArfN

N

ZN
. (3.14)

The ZN parafermionized partition functions are given by

ZPFρ [k1, k2] =
1

N

∑

a1, a2 ∈ZN

ω
ρ (k1+a1)(k2+a2)
N ZB[a1, a2] , (3.15)

where a parameter 1 ≤ ρ < N is coprime with N . In general, ρ is valued in the automor-

phism group of ZN , a multiplicative group Z
×
N , whose order is Euler’s totient function φ(N).

When N = 2, the expression reproduces the fermionization map (3.9). Under the modular

transformation τ → (aτ + b)/(cτ + d), the parafermionic partition functions transform as

ZPFρ [k1, k2]→
∑

k′1,k
′
2

M
k′1,k

′
2

k1,k2
ZPFρ [k

′
1, k

′
2] , (3.16)

where a matrix M is a representation of
(
a b
c d

)
∈ SL(2,Z) given by

M
k′1,k

′
2

k1,k2
=

1

N2

∑

ℓ1,ℓ2

(ωρN )
ArfN [k+ℓ′]−ArfN [k′+ℓ] . (3.17)

Here, ℓi, ℓ
′
i ∈ ZN and ℓ′ = (ℓ′1, ℓ

′
2) = (aℓ1 − cℓ2,−bℓ1 + dℓ2). This shows that the ZN -

parafermionized partition functions do not transform covariantly when N ≥ 3 [27, 58].

The inverse of this procedure yields the bosonization map

ZB[a1, a2] =
1

N

∑

a1, a2 ∈ZN

ω
−ρ (k1+a1)(k2+a2)
N ZPFρ [k1, k2] . (3.18)

Also, starting with the orbifold theory O, one can obtain another parafermionic theory P̃F.

The two parafermionic theories are related by

Z
P̃Fρ

[k1, k2] = ωρ k1k2N ZPF1/ρ
[−ρk1, ρk2] . (3.19)

Thus, the two parafermionic theories are exchanged by the combined operation of stacking

the ArfN theory and conjugation (k1, k2) → (−ρk1, ρk2) (see Fig. 2). Note that the two

parafermionic theories are identical if the bosonic theory B is self-dual under the ZN orbifold.

Finally, we comment on the Z3 parafermionization, which is the only case we need in the

later sections. For Z3 symmetry, the parameter ρ takes values ρ = ±1 mod 3. For ρ = 1, the

relation (3.19) simplifies to

Z
P̃F1

[k1, k2] = ωk1k2N ZPF1 [−k1, k2] . (3.20)

For ρ = −1 = 2 mod 3, this becomes

Z
P̃F2

[k1, k2] = ω−k1k2
N ZPF2 [k1,−k2] . (3.21)

Note that the theories with and without tilde have the same partition function when the

paraspin structure is (k1, k2) = (0, 0).
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O
bosonize

parafermionize
P̃F

B
bosonize

parafermionize
PF

stack

+conjugate
orbifold

Figure 2: Parafermionization/bosonization map associated with a non-anomalous ZN sym-

metry for a given ρ ∈ Z
×
N .

4 Classification of ŝu(2) models

In this section, we classify the fermionic and parafermionic CFTs with affine ŝu(2) algebra

symmetry. As discussed in section 2, the ADE classification completes the list of bosonic

modular invariants [1, 3, 5]. Our strategy for classification is based on the generalized Jordan-

Wigner transformation of the bosonic modular invariants by non-anomalous ZN symmetries,

which was applied to the classification of fermionic and parafermionic minimal models [22,

23, 27] and chiral fermionic CFTs [24–26].

The basic logic is as follows: Let us take a fermionic or parafermionic theory. We can

always bosonize the theory to obtain a bosonic theory B with a non-anomalous ZN symmetry.

Namely, a fermionic and parafermionic CFT has a one-to-one correspondence with a bosonic

theory B with a non-anomalous ZN symmetry:

B with Z2 symmetry ←→ Fermionic theory F ,
B with ZN symmetry ←→ Parafermionic theory PF .

(4.1)

On the other hand, the authors of [28] determine the non-anomalous finite symmetries, which

preserves the affine algebra, in ŝu(2) and ŝu(3) modular invariants. Thus, for each ZN

symmetry of bosonic theories, we can perform the generalized Jordan-Wigner transformation

and obtain the classification of fermionic and parafermionic theories.

Before proceeding to the detailed construction of each theory, we summarize the classi-

fication results of fermionic and parafermionic ŝu(2) models. We show the list of fermionic

and parafermionic theories with ŝu(2)k symmetry at an arbitrary level k in table 2. The list

provides fermionic and parafermionic torus partition functions for each theory. We can see

that they are related to Dynkin diagrams based on two facts: (1) The height n = k + 2 is

equal to the Coxeter number. (2) The diagonal terms in the partition function with (para)spin

structure (0, 0) consist of the exponents. One can check these from table 1. Except for G2, we

can see a one-to-one correspondence between ŝu(2) theories and non-simply Dynkin diagrams.

The relationship demonstrates a generalization of the ADE classification to non-simply laced
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BCFG diagrams. Thus, bosonic, fermionic, and parafermionic theories with ŝu(2) symmetry

are classified following both simply laced and non-simply laced Dynkin diagrams.

The B-type and C-type fermionic theories are related to the A-type and D-type bosonic

theories through the left of Fig. 3. Note that the Dynkin diagrams Br and Cr have the

same Coxeter number and exponents at a fixed r. Thus, there is the freedom to swap their

names. The only difference between B-type and C-type is the stacking of the Arf theory.

In particular, for n = 4, the two theories B2 and C2 coincide. This is consistent with the

accidental isomorphism of the Dynkin diagrams: B2
∼= C2. The fermionic theory F4 is the

fermionization of the modular invariant E6 as in the right of Fig. 3. The parafermionic

theories G2 and G2 are the Z3 parafermionization of the modular invariant D4 with ρ = 1

and ρ = 2, respectively (see Fig. 4). We observe that these relationships are quite similar to

the folding of Dynkin diagrams, which we will discuss in section 6.

4.1 Fermionic models from An−1 and Dn
2
+1.

Let us consider the fermionization of the diagonal modular invariants An−1, which has a

Z2 symmetry. Since the Z2 symmetry is anomalous unless the level k is even, we focus on

n = k + 2 ∈ 2Z. The twisted partition functions of the bosonic theory are given by

ZAn−1 [0, 0] =

n−1∑

p=1

|χp|2 , ZAn−1 [0, 1] =

n−1∑

p=1

(−1)p+1 |χp|2 ,

ZAn−1 [1, 0] =

n−1∑

p=1

χn−p χ̄p , ZAn−1 [1, 1] =

n−1∑

p=1

(−1)p+n/2 χn−p χ̄p .
(4.2)

Due to the last partition function ZAn−1 [1, 1], the action of the Z2 symmetry depends on

whether n/2 is even or odd, and the corresponding orbifold yields the modular invariant Dℓ

(ℓ : even) for n ∈ 4Z+ 2 and Dℓ (ℓ : odd) for n ∈ 4Z.

Let us consider the fermionization of the diagonal modular invariant by the Z2 symme-

try (4.2). For n = 4m + 4, the fermionized theory of the modular invariant An−1 has the

following partition functions:

ZF , An−1 [0, 0] =

n
2
−1∑

p=1, odd

|χp + χn−p|2 , ZF , An−1 [0, 1] =

n
2
−1∑

p=1, odd

|χp − χn−p|2 ,

ZF , An−1 [1, 0] =

n
2
−2∑

p=2, even

|χp + χn−p|2 + 2 |χn
2
|2 , ZF , An−1 [1, 1] = −

n
2
−2∑

p=2, even

|χp − χn−p|2 .

(4.3)

These fermionic partition functions are block-diagonal. Note that the diagonal terms |χp|2 of

the NS-NS partition function consist of p = 1, 3, · · · , 4m + 3. Notably, this set is the same

as the set of the exponents of the Dynkin diagram Cn
2
where n = 4m + 4. Additionally, the
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Name Fermionic or parafermionic partition functions

Bn
2

(n = 4m+ 4)
ZF [0, 0] =

n

2
−1∑

p=1, odd

|χp + χn−p|2 ZF [1, 1] =

n

2
−2∑

p=2, even

|χp − χn−p|2

Bn
2

(n = 4m+ 2)

ZF [0, 0] =

n−1∑

p=1, odd

|χp|2 +
n−2∑

p=2, even

χn−p χ̄p

ZF [1, 1] =

n−2∑

p=2, even

|χp|2 −
n−1∑

p=1, odd

χn−p χ̄p

Cn
2

(n = 4m+ 4)
ZF [0, 0] =

n

2
−1∑

p=1, odd

|χp + χn−p|2 ZF [1, 1] = −
n

2
−2∑

p=2, even

|χp − χn−p|2

Cn
2

(n = 4m+ 2)

ZF [0, 0] =

n−1∑

p=1, odd

|χp|2 +
n−2∑

p=2, even

χn−p χ̄p

ZF [1, 1] =

n−1∑

p=1, odd

χn−p χ̄p −
n−2∑

p=2, even

|χp|2

F4 (n = 12) ZF [0, 0] = |χ1 + χ5 + χ7 + χ11|2 ZF [1, 1] = 0

G2 (n = 6) ZPF[0, 0] = |χ1 + χ5|2 + 2 (χ1 + χ5) χ̄3

G2 (n = 6) ZPF[0, 0] = |χ1 + χ5|2 + 2χ3 (χ̄1 + χ̄5)

Table 2: List of fermionic and parafermionic CFTs with affine ŝu(2) algebra symmetry at

each height n = k + 2. We label each theory using the related Dynkin diagram. For the

fermionic theories Bn
2
, Cn

2
, and F4, we show the NS-NS partition function ZF [0, 0] and R-

R partition function ZF [1, 1]. For the Z3 parafermionic theories G2 and G2, we show the

partition function ZPF[0, 0] with the paraspin structure (k1, k2) = (0, 0).

height n is the Coxeter number of the Dynkin diagram Cn
2
. Following the ADE classification

of modular invariants, we denote by Cn
2
the fermionic partition functions (4.3).

Also, we can start with the modular invariant Dn
2
+1 (n = 4m+ 4). Then, the resulting

fermionic theory has the partition functions

ZF ,Dn
2 +1

[s1, s2] = (−1)s1s2 ZF , An−1 [s1, s2] , (4.4)

which are the same as (4.3) up to the sign of the R-R partition function. This sign flip can

be interpreted as the stacking of the Arf theory. Since the NS-NS partition function is the
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same as (4.3), its diagonal terms are also p = 1, 3, · · · , 4m + 3. This time, we propose to

call this fermionic theory Bn
2
. One reason is that the Dynkin diagram Bn

2
has the exponents

1, 3, · · · , 4m + 3 and the Coxeter number n. The other reason is that we can observe the

accidental isomorphism B2
∼= C2 in the associated fermionic theories:

ZC2 [s1, s2] = ZB2 [s1, s2] , (4.5)

where we renamed ZF , A3 as ZC2 and ZF , D3 as ZB2 . This follows from that these theories

are equivalent to 3 copies of Majorana fermions with the vanishing R-R partition function

ZB2 [1, 1] = ZC2 [1, 1] = 0. Hence, the fermionized theories of the D-type modular invariants

can be denoted by Bn
2
. Note that the difference between Bn

2
and Cn

2
theories is only stacking

the Arf theory: Bn
2
= (−1)Arf Cn

2
.

For n = 4m+2, we can similarly construct fermionic partition functions. The fermionized

theory of modular invariant An−1 has the torus partition functions

ZF , An−1 [0, 0] =

n−1∑

p=1, odd

|χp|2 +
n−2∑

p=2, even

χn−p χ̄p ,

ZF , An−1 [0, 1] =

n−1∑

p=1, odd

|χp|2 −
n−2∑

p=2, even

χn−p χ̄p ,

ZF , An−1 [1, 0] =

n−2∑

p=2, even

|χp|2 +
n−1∑

p=1, odd

χn−p χ̄p ,

ZF , An−1 [1, 1] =

n−1∑

p=1, odd

χn−p χ̄p −
n−2∑

p=2, even

|χp|2 .

(4.6)

In the NS-NS partition function ZF , An−1 [0, 0], the second term does not contribute to the

diagonal terms |χp|2 since n ∈ 4Z + 2. Thus, the diagonal terms of the NS-NS partition

function consist of p = 1, 3, · · · , 4m+1. As in n = 4m+4, we propose to name the fermionic

partition functions (4.6) as Cn
2
. Also, the fermionization of modular invariant Dn

2
+1 with

n = 4m+ 2 yields the partition functions related by (4.4). Similarly, we call this theory Bn
2
.

We summarize the relationship between bosonic modular invariants (A-type and D-type)

and their fermionization (B-type and C-type) in the left of Fig. 3. Under the Z2 orbifolding,

the modular invariant An−1 is related to Dn
2
+1. After fermionization, this relation is encoded

into the stacking of the Arf theory.

Finally, we mention that the fermionization should be related to the folding of the corre-

sponding Dynkin diagram. When a simply laced Dynkin diagram has an automorphism, one

can obtain a non-simply laced Dynkin diagram by an operation called folding (see Fig. 5.3

in [60]). The Dynkin diagrams An−1 and Dn
2
+1 can be folded only when n is even and yield

Cn
2
and Bn

2
, respectively. This exactly agrees with our fermionization map in Fig. 3.
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Dn
2
+1

bosonize

fermionize
Bn

2

An−1
bosonize

fermionize
Cn

2

stackorbifold

E6
bosonize

fermionize
F4

orbifold stack

Figure 3: The relationship between bosonic modular invariants and their fermionizations.

The left panel shows the bosonization/fermionization maps of modular invariants An−1 and

Dn
2
+1 for an even n. The right panel shows the maps associated with modular invariant E6.

4.2 Fermionic model from E6.

Although exceptional modular invariants E7 and E8 do not have any global symmetry, the

modular invariant E6 at level k = 10 has a Z2 symmetry without anomaly [28]. Using this,

we can fermionize the exceptional modular invariant E6. The Z2 twisted partition functions

of E6 invariant are given by

ZE6 [0, 0] = |χ1 + χ7|2 + |χ4 + χ8|2 + |χ5 + χ11|2 ,
ZE6 [0, 1] = |χ1 + χ7|2 − |χ4 + χ8|2 + |χ5 + χ11|2 ,
ZE6 [1, 0] = |χ4 + χ8|2 + (χ1 + χ7)(χ̄5 + χ̄11) + (χ5 + χ11)(χ̄1 + χ̄7) ,

ZE6 [1, 1] = |χ4 + χ8|2 − (χ1 + χ7)(χ̄5 + χ̄11)− (χ5 + χ11)(χ̄1 + χ̄7) .

(4.7)

The orbifold of the Z2 symmetry reproduces the modular invariant E6 and the theory is

self-dual under Z2 gauging. The fermionized theory has the torus partition functions

ZF , E6 [0, 0] = |χ1 + χ5 + χ7 + χ11|2 , ZF , E6 [0, 1] = |χ1 − χ5 + χ7 − χ11|2 ,
ZF , E6 [1, 0] = 2 |χ4 + χ8|2 , ZF , E6 [1, 1] = 0 .

(4.8)

We can see that the fermionic partition functions are block-diagonal. The diagonal terms

|χp|2 consist of p = 1, 5, 7, 11. This suggests a correspondence to the Dynkin diagram F4

because its exponents are m = 1, 5, 7, 11. Also, the height n = 12 is exactly the Coxeter

number of the Dynkin diagram F4. See table 1. Thus, the fermionized theory of modular

invariant E6 is called F4.
2

The stacking of the Kitaev-Majorana chain does not affect the partition functions due to

the vanishing R-R partition function. This signals self-duality under gauging the Z2 symmetry

in the modular invariant E6 (see the right of Fig. 3). We remark that the folding of the

Dynkin diagram E6 yields the Dynkin diagram F4, which supports the relationship between

fermionization and folding of the Dynkin diagram.

2A partition function related to Dynkin diagram F4 were discussed in [61]. Their construction was the

projection onto the Z2-even sector in the original modular invariant E6, while we further add the twisted

sector to the spectrum for a theory to be consistent by itself.
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Note that the fermionized theory F4 can be understood from the conformal embedding

ŝu(2)10 ⊂ ŝp(4)1. The affine ŝp(4)1 algebra has three primaries labeled by (0, 0), (0, 1), and

(1, 0), whose conformal dimensions are h(0,0) = 0, h(0,1) = 1/2, and h(1,0) = 5/16. The

characters of the two algebras are related by (refer to section 17.5.2 of [34])

χ(0,0) = χ1 + χ7 , χ(0,1) = χ5 + χ11 , χ(1,0) = χ4 + χ8 . (4.9)

Thus, we can rewrite the torus partition functions (4.8) in terms of the affine ŝp(4)1 characters.

To diagnose the profile of the fermionic theory F4, consider the small q expansion of the

NS-NS partition function

ZF , E6 [0, 0] = q−
5
48 q̄−

5
48

(
1 + 5 q

1
2 + 5 q̄

1
2 + 10 q + 25 q

1
2 q̄

1
2 + 10 q̄ + · · ·

)
. (4.10)

This partition function contains the terms q1/2 and q̄1/2, which reflects the inclusion of free

fermions. In fact, this exactly agrees with the NS-NS partition function of 5 copies of free

Majorana fermion with central charge (c, c̄) = (12 ,
1
2)

Zψ⊗5 [0, 0] =

∣∣∣∣
θ3(q)

η(q)

∣∣∣∣
5

, (4.11)

where θ3(q) :=
∑

n∈Z q
n2

2 is the Jacobi theta function and η(q) is the Dedekind eta function.

Thus, the fermionization of ŝu(2)10 model with modular invariant E6 can be described by 5

copies of Majorana fermions.

4.3 Parafermionic models from D4.

Let us move on to the classification of parafermionic ŝu(2) WZWmodels. The parafermioniza-

tion is applicable when the theory has a non-anomalous ZN≥3 symmetry. For ŝu(2)k models,

such a symmetry arises only in the theory with modular invariant D4 at level k = 4. The

non-anomalous symmetry group of the corresponding theory is the permutation group S3 [28].

In addition to the Z2 symmetry we fermionized in (4.6), the group S3 contains a cyclic group

Z3 as a subgroup. The torus partition functions twisted by the Z3 symmetry are

ZD4 [0, 0] = |χ1 + χ5|2 + 2 |χ3|2 , ZD4 [0, 1] = ZD4 [0, 2] = |χ1 + χ5|2 − |χ3|2 ,
ZD4 [1, a] = |χ3|2 + ωa3 χ3 (χ̄1 + χ̄5) + ω2a

3 (χ1 + χ5) χ̄3 ,

ZD4 [2, a] = |χ3|2 + ω2a
3 χ3 (χ̄1 + χ̄5) + ωa3 (χ1 + χ5) χ̄3 ,

(4.12)

where ω3 = exp(2πi/3). The orbifold of modular invariant D4 by the Z3 symmetry returns

back to itself. The Z3 parafermionization with ρ = 1 gives the following partition functions:

ZPF1,D4 [0, 0] = |χ1 + χ5|2 + 2 (χ1 + χ5) χ̄3 ,

ZPF1,D4 [0, 1] = ZPF1, D4 [0, 2] = |χ1 + χ5|2 − (χ1 + χ5) χ̄3 ,

ZPF1,D4 [1, k] = ω2k
3

(
χ3 (χ̄1 + χ̄5) + (ωk3 + ω2k

3 )χ3 χ̄3

)
,

ZPF1,D4 [2, k] = ωk3

(
χ3 (χ̄1 + χ̄5) + (ωk3 + ω2k

3 )χ3 χ̄3

)
.

(4.13)
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Figure 4: Parafermionization of modular invariant D4.

We can easily check that the partition functions are invariant under stacking and conjugation

given by (3.20), which is consistent with the self-duality under the orbifold. Notably, we can

see that the parafermionic partition function ZPF1, D4 [0, 0] contains the diagonal terms |χp|2
with p = 1, 5. This suggests a relation to the Dynkin diagram G2 since its exponents are just

1 and 5. Furthermore, the height n = 6 is the Coxeter number of the Dynkin diagram G2.

We denote by G2 the parafermionic theory with the partition functions (4.13).

Let us see the spectrum of the parafermionic theory G2. The affine ŝu(2)4 primary

operators labeled by p = 1, 3, 5 have conformal dimensions h = 0, 1/3, 1, respectively. Since

the partition function with paraspin structure (k1, k2) = (0, 0) contains the terms χ1χ̄3 and

χ5χ̄3, there exists fractional spin operators with spin proportional to 1/3 in its spectrum.

Similarly, from the partition functions with paraspin structure (k1, k2) = (1, 0), (2, 0), one

can see that the other sectors also include a fractional spin.

We summarize the relationship between D4 and its parafermionization in Fig. 4. The

original bosonic theory D4 is self-dual under Z3 orbifolding and the parafermionized theory

G2 is self-dual under stacking and conjugation. Notably, the folding of the Dynkin diagram

D4 by the Z3 automorphism yields the Dynkin diagram G2. Thus, the Z3 parafermionization

can be interpreted as folding by Z3 automorphism in terms of the associated Dynkin diagram.

There is another parafermionization by choosing ρ = 2. The corresponding partition

functions are given by

ZPF2,D4 [0, 0] = |χ1 + χ5|2 + 2χ3 (χ̄1 + χ̄5) ,

ZPF2,D4 [0, 1] = ZPF2, D4 [0, 2] = |χ1 + χ5|2 − χ3 (χ̄1 + χ̄5) ,

ZPF2,D4 [1, k] = ωk3

(
(χ1 + χ5) χ̄3 + (ωk3 + ω2k

3 )χ3 χ̄3

)
,

ZPF2,D4 [2, k] = ω2k
3

(
(χ1 + χ5) χ̄3 + (ωk3 + ω2k

3 )χ3 χ̄3

)
.

(4.14)

This theory is also invariant under stacking and conjugation as in the case of ρ = 1. Note that

these parafermionic partition functions are complex conjugates of (4.13) with ρ = 1. We call

this parafermionic theory by G2. As in ρ = 1, the parafermionized theory with ρ = 2 includes

a fractional spin operator, while the holomorphic and anti-holomorphic parts are flipped.
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5 Classification of ŝu(3) models

This section is devoted to classifying fermionic and parafermionic ŝu(3) models using fermion-

ization and parafermionization. First, we summarize the classification result of fermionic and

parafermionic ŝu(3) models. We show the list of fermionic and parafermionic theories with the

affine ŝu(3) algebra in table 3. The list provides the height and the torus partition functions

for each fermionic and parafermionic theory.

In table 3, there are seven theories (the above six are parafermionic and the last one

is fermionic). Among them, the above two are infinite series at height n ≥ 4. The other

five theories are exceptional and only appear at the special height n = 8, 12, 6. The six

parafermionic theories form three pairs for n ≥ 4, n = 8, and n = 12, which correspond

to the parafermionization of An, E8, and E12, respectively (see Fig. 5 and Fig. 6). Each

pair consists of parafermionization with ρ = 1 and ρ = 2. The only fermionic theory is the

fermionization of modular invariant D6 (see the right of Fig. 5). The fermionic theory is self-

dual under the stacking of the Arf theory. Note that the list classifies parafermionic CFTs up

to charge-conjugation and the operation (3.19) consisting of ArfN stacking and conjugation.

The last three theories at height n = 12 and n = 6 are self-dual under charge conjugation.

5.1 Parafemionic models from A(∗)
n and D(∗)

n .

First, we consider the parafermionization of the diagonal modular invariants An. The bosonic
theories always have a non-anomalous Z3 symmetry. The twisted partition functions are

ZAn [0, a] =
∑

p

ω
at(p)
3 |χp|2 ,

ZAn [1, a] =
∑

p

ω
at(µ(p))
3 χµ2(p) χ̄p ,

ZAn [2, a] =
∑

p

ω
at(µ2(p))
3 χµ(p) χ̄p .

(5.1)

As mentioned in section 2, the triality t(p) is invariant under automorphism µ when n ∈ 3Z,

but otherwise it is shifted to t(µ(p)) = t(p)+n mod 3. After orbifolding by the Z3 symmetry,

we obtain the modular invariant Dℓ (ℓ /∈ 3Z) when n /∈ 3Z and Dℓ (ℓ ∈ 3Z) when n ∈ 3Z.

Associated with the Z3 symmetry, we can parafermionize the diagonal modular invariant

An. The parafermionized theory of the diagonal modular invariant An with ρ = 1 has the

partition functions

ZPF1,An [0, k] =
∑

t(p)=0

|χp|2 + ωk3
∑

t(µ(p))=2

χµ2(p) χ̄p + ω2k
3

∑

t(µ2(p))=1

χµ(p) χ̄p ,

ZPF1,An [1, k] =
∑

t(µ2(p))=0

χµ(p) χ̄p + ωk3
∑

t(p)=2

|χp|2 + ω2k
3

∑

t(µ(p))=1

χµ2(p) χ̄p ,

ZPF1,An [2, k] =
∑

t(µ(p))=0

χµ2(p) χ̄p + ωk3
∑

t(µ2(p))=2

χµ(p) χ̄p + ω2k
3

∑

t(p)=1

|χp|2 .

(5.2)
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Height Fermionic or parafermionic partition functions

n ≥ 4
∑

t(p)=0

|χp|2 +
∑

t(µ(p))=2

χµ2(p) χ̄p +
∑

t(µ2(p))=1

χµ(p) χ̄p

n ≥ 4
∑

t(p)=0

|χp|2 +
∑

t(µ2(p))=2

χµ(p) χ̄p +
∑

t(µ(p))=1

χµ2(p) χ̄p

n = 8

(
χ(1,1) + χ(3,3) + χ(1,6) + χ(3,2) + χ(2,3) + χ(6,1)

) (
χ̄(1,1) + χ̄(3,3)

)

+
(
χ(1,4) + χ(4,1) + χ(1,3) + χ(4,3) + χ(3,1) + χ(3,4)

) (
χ̄(1,4) + χ̄(4,1)

)

n = 8

(
χ(1,1) + χ(3,3)

) (
χ̄(1,1) + χ̄(3,3) + χ̄(1,6) + χ̄(3,2) + χ̄(2,3) + χ̄(6,1))

)

+
(
χ(1,4) + χ(4,1)

) (
χ̄(1,4) + χ̄(4,1) + χ̄(1,3) + χ̄(4,3) + χ̄(3,1) + χ̄(3,4)

)

n = 12

(
χ(1,1) + χ(1,10) + χ(10,1) + χ(2,5) + χ(5,2) + χ(5,5) + 2

(
χ(3,3) + χ(3,6) + χ(6,3)

))

×
(
χ̄(1,1) + χ̄(1,10) + χ̄(10,1) + χ̄(2,5) + χ̄(5,2) + χ̄(5,5)

)

n = 12

(
χ(1,1) + χ(1,10) + χ(10,1) + χ(2,5) + χ(5,2) + χ(5,5)

)

×
(
χ̄(1,1) + χ̄(1,10) + χ̄(10,1) + χ̄(2,5) + χ̄(5,2) + χ̄(5,5) + 2

(
χ̄(3,3) + χ̄(3,6) + χ̄(6,3)

))

n = 6 ZF [0, 0] = |χ(1,1) + χ(1,4) + χ(4,1) + χ(2,2)|2 ZF [1, 1] = 0

Table 3: List of fermionic and parafermionic CFTs with affine ŝu(3) algebra symmetry at

each height n = k + 3. For the six types of the parafermionic theory above, we show the

partition function ZPF[0, 0] on the paraspin structure (k1, k2) = (0, 0). For the last fermionic

theory with n = 6, we show the NS-NS and R-R partition functions. We omit the theories

related to the above list by the charge conjugation and the operation (3.19) consisting of the

ArfN stacking and conjugation.

On the other hand, the parafermionized theory with ρ = 2 is given by

ZPF2,An [0, k] =
∑

t(p)=0

|χp|2 + ωk3
∑

t(µ2(p))=2

χµ(p) χ̄p + ω2k
3

∑

t(µ(p))=1

χµ2(p) χ̄p ,

ZPF2,An [1, k] =
∑

t(µ2(p))=0

χµ(p) χ̄p + ωk3
∑

t(µ(p))=2

χµ2(p) χ̄p + ω2k
3

∑

t(p)=1

|χp|2 ,

ZPF2,An [2, k] =
∑

t(µ(p))=0

χµ2(p) χ̄p + ωk3
∑

t(p)=2

|χp|2 + ω2k
3

∑

t(µ2(p))=1

χµ(p) χ̄p .

(5.3)

We can also start with its orbifold, i.e., the modular invariant Dn. The modular invariant

Dn has a non-anomalous Z3 symmetry, which is the dual symmetry of the diagonal modular
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invariant An. From (3.3), the twisted partition functions of Dn are

ZDn [a1, a2] =

2∑

j=0

∑

t(µj (p))=2a1

ω2ja2
3 χµ2j(p) χ̄p . (5.4)

We can parafermionize the modular invariant Dn using the Z3 symmetry. The parafermionized

partition functions with ρ = 1 are

ZPF1,Dn [0, k] =
∑

t(p)=0

|χp|2 + ωk3
∑

t(µ(p))=2

χµ2(p) χ̄p + ω2k
3

∑

t(µ2(p))=1

χµ(p) χ̄p ,

ZPF1,Dn [1, k] =
∑

t(p)=1

|χp|2 + ωk3
∑

t(µ(p))=0

χµ2(p) χ̄p + ω2k
3

∑

t(µ2(p))=2

χµ(p) χ̄p ,

ZPF1,Dn [2, k] =
∑

t(p)=2

|χp|2 + ωk3
∑

t(µ(p))=1

χµ2(p) χ̄p + ω2k
3

∑

t(µ2(p))=0

χµ(p) χ̄p .

(5.5)

These partition functions are related to the parafermionized theory (5.2) of the diagonal

modular invariant An by (3.20). The parafermionized partition functions with ρ = 2 are

ZPF2,Dn [0, k] =
∑

t(p)=0

|χp|2 + ωk3
∑

t(µ(p))=1

χµ2(p) χ̄p + ω2k
3

∑

t(µ2(p))=2

χµ(p) χ̄p ,

ZPF1,Dn [1, k] =
∑

t(p)=1

|χp|2 + ωk3
∑

t(µ(p))=2

χµ2(p) χ̄p + ω2k
3

∑

t(µ2(p))=0

χµ(p) χ̄p ,

ZPF1,Dn [2, k] =
∑

t(p)=2

|χp|2 + ωk3
∑

t(µ(p))=0

χµ2(p) χ̄p + ω2k
3

∑

t(µ2(p))=1

χµ(p) χ̄p .

(5.6)

These partition functions are related to the parafermionized theory (5.3) of the diagonal

modular invariant An by (3.21). We summarize the relationship among the bosonic theories

An, Dn, and their parafermionization with a fixed parameter ρ ∈ {1, 2} in the left panel of

Fig. 5. One can start with the charge-conjugated theories A∗
n and D∗

n. Since those theories

have a Z3 symmetry and their twisted partition functions are exactly charge conjugate of

(5.1) and (5.4), the parafermionized theories of A∗
n and D∗

n are given by charge conjugate of

the above parafermionic partition functions.

5.2 Fermionic model from D6.

Consider the D-type modular invariant D6 at level 3:

ZD6 [0, 0] = |χ(1,1) + χ(1,4) + χ(4,1)|2 + 3 |χ(2,2)|2 , (5.7)

where this bosonic theory is invariant under charge conjugation: D6 = D∗
6. The global

symmetry of this theory is known to be the alternating group A4 of degree 4 [28], which

contains one Z3 group and one Z2 ×Z2 group as a maximal abelian subgroup. Let us denote

generators of the Z2×Z2 symmetry by g and g′: Z2×Z2 = 〈g, g′〉. Then, the modular invariant

D6 admits the action of three Z2 subgroups 〈g〉, 〈g′〉, 〈gg′〉. However, the three Z2 symmetries

– 20 –



Dn
bosonize

parafermionize
PF[Dn]

An
bosonize

parafermionize
PF[An]

stack

+conjugate
orbifold

D6
fermionize

bosonize F [D6]

orbifold stack

Figure 5: The parafermionization of modular invariants An and Dn with a given ρ (the left),

and the fermionization of modular invariant D6 (the right). For the theory T , we denote its

fermionization by F [T ] and its parafermionization by PF[T ].

act on the partition function (5.7) in the same way. More precisely, they act on the three

degenerate fields |χ(2,2)|2 by g = diag(1,−1,−1), g′ = diag(−1, 1,−1), gg′ = diag(−1,−1, 1).
Thus, the twisted partition functions are the same and can be written as

ZD6 [0, 1] = |χ(1,1) + χ(1,4) + χ(4,1)|2 − |χ(2,2)|2 ,
ZD6 [1, 0] = (χ(2,2) + χ(1,1) + χ(1,4) + χ(4,1)) χ̄(2,2) + χ(2,2) (χ̄(2,2) + χ̄(1,1) + χ̄(1,4) + χ̄(4,1)) ,

ZD6 [1, 1] = (χ(2,2) − χ(1,1) − χ(1,4) − χ(4,1)) χ̄(2,2) + χ(2,2) (χ̄(2,2) − χ̄(1,1) − χ̄(1,4) − χ̄(4,1)) .

(5.8)

Note that the Z2 twisted partition functions are still invariant under charge conjugation,

inherited from the original modular invariant D6 = D∗
6. After orbifolding by the Z2 symmetry,

the partition function is again given by

ZO,D6 [0, 0] = |χ(1,1) + χ(1,4) + χ(4,1)|2 + 3 |χ(2,2)|2 . (5.9)

Thus, the modular invariant D6 is self-dual under the Z2 orbifold.

As mentioned above, the three non-anomalous Z2 symmetries in the bosonic theory D6

yield the same twisted partition functions. As a consequence, the fermionized partition func-

tions are also irrelevant to which Z2 symmetry is gauged and are given by

ZF ,D6 [0, 0] = |χ(1,1) + χ(1,4) + χ(4,1) + χ(2,2)|2 ,
ZF ,D6 [0, 1] = |χ(1,1) + χ(1,4) + χ(4,1) − χ(2,2)|2 ,
ZF ,D6 [1, 0] = 4 |χ(2,2)|2 , ZF ,D6 [1, 1] = 0 .

(5.10)

Since the Z2 twisted partition functions are invariant under charge conjugation C, the fermion-

ized theory is also self-conjugate. Since the R-R partition function is zero, this fermionic the-

ory is invariant under the stacking of the Arf theory. This is consistent with the self-duality

of D6 under orbifolding. We summarize the relationship between the bosonic theory D6 and

the fermionized theory in the right of Fig. 5.
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To capture the profiles of the fermionic theory, we use the conformal embedding ŝu(3)3 ⊂
ŝo(8)1 [62, 63] to rewrite the partition functions in terms of ŝo(8)1 characters. Since ŝo(8)1
has four primaries labeled by 0, v, s, and c, whose conformal dimensions are h0 = 0 and

hv = hs = hc = 1/2, respectively. The characters of ŝu(3)3 and ŝo(8)1 are related by ([32])

χ0 = χ(1,1) + χ(1,4) + χ(4,1) , χv = χs = χc = χ(2,2) , (5.11)

where the second equation implies the triality of the three non-trivial representations v, s, c in

ŝo(8)1 algebra. From these relations, we can represent the fermionic partition functions (5.10)

by ŝo(8)1 characters, which can be described by four pairs of Dirac fermions.

5.3 Parafermionic models from E(∗)8 .

Let us consider an exceptional modular invariant E8 of ŝu(3) at level k = 5. This modular

invariant is not self-conjugate: E8 6= E∗8 . The non-anomalous global symmetry is a cyclic

group Z3 and the corresponding twisted partition functions of E8 are given by

ZE8 [0, k] = |χ(1,1) + χ(3,3)|2 + ωk3 |χ(3,1) + χ(3,4)|2 + ω2k
3 |χ(1,3) + χ(4,3)|2

+ |χ(4,1) + χ(1,4)|2 + ωk3 |χ(2,3) + χ(6,1)|2 + ω2k
3 |χ(3,2) + χ(1,6)|2 ,

ZE8 [1, k] =
(
χ(1,6) + χ(3,2)

) (
χ̄(2,3) + χ̄(6,1)

)
+

(
χ(1,3) + χ(4,3)

) (
χ̄(3,1) + χ̄(3,4)

)

+ ωk3
[(
χ(1,1) + χ(3,3)

) (
χ̄(1,6) + χ̄(3,2)

)
+

(
χ(1,4) + χ(4,1)

) (
χ̄(1,3) + χ̄(4,3)

)]

+ ω2k
3

[(
χ(2,3) + χ(6,1)

) (
χ̄(1,1) + χ̄(3,3)

)
+

(
χ(3,1) + χ(3,4)

) (
χ̄(1,4) + χ̄(4,1)

)]
,

ZE8 [2, k] =
(
χ(3,1) + χ(3,4)

) (
χ̄(1,3) + χ̄(4,3)

)
+

(
χ(2,3) + χ(6,1)

) (
χ̄(1,6) + χ̄(3,2)

)

+ ω2k
3

[(
χ(1,4) + χ(4,1)

) (
χ̄(3,1) + χ̄(3,4)

)
+

(
χ(1,1) + χ(3,3)

) (
χ̄(2,3) + χ̄(6,1)

)]

+ ωk3
[(
χ(1,6) + χ(3,2)

) (
χ̄(1,1) + χ̄(3,3)

)
+

(
χ(1,3) + χ(4,3)

) (
χ̄(1,4) + χ̄(4,1)

)]
.

(5.12)

Note that the twisted partition functions of the conjugate theory E∗8 are obtained by replacing

the mass matrix Mp,p′ by Mp,C(p′). After Z3 orbifold, the modular invariant E8 turns into

the charge-conjugated modular invariant E∗8 . The parafermionized theory of E8 with ρ = 1

has the following partition functions:

ZPF1, E8 [0, k] =
(
χ(1,1) + χ(3,3) + ω2k

3 (χ(1,6) + χ(3,2)) + ωk3 (χ(2,3) + χ(6,1))
) (
χ̄(1,1) + χ̄(3,3)

)

+
(
χ(1,4) + χ(4,1) + ω2k

3 (χ(1,3) + χ(4,3)) + ωk3 (χ(3,1) + χ(3,4))
) (
χ̄(1,4) + χ̄(4,1)

)
,

ZPF1, E8 [1, k] =
(
χ(2,3) + χ(6,1) + ω2k

3 (χ(1,1) + χ(3,3)) + ωk3 (χ(1,6) + χ(3,2))
) (
χ̄(1,6) + χ̄(3,2)

)

+
(
χ(3,1) + χ(3,4) + ω2k

3 (χ(1,4) + χ(4,1)) + ωk3 (χ(1,3) + χ(4,3))
) (
χ̄(1,3) + χ̄(4,3)

)
,

ZPF1, E8 [2, k] =
(
χ(1,6) + χ(3,2) + ω2k

3 (χ(2,3) + χ(6,1)) + ωk3 (χ(1,1) + χ(3,3))
) (
χ̄(2,3) + χ̄(6,1)

)

+
(
χ(1,3) + χ(4,3) + ω2k

3 (χ(3,1) + χ(3,4)) + ωk3 (χ(1,4) + χ(4,1))
) (
χ̄(3,1) + χ̄(3,4)

)
.

(5.13)
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Figure 6: The parafermionization of modular invariants E(∗)8 in the left and E12 in the right.

We denote the parafermionization of the theory T by PF[T ].

The other parafermionization with parameter ρ = 2 yields another theory, whose partition

functions are

ZPF2, E8 [0, k] =
(
χ(1,1) + χ(3,3)

) (
χ̄(1,1) + χ̄(3,3) + ω2k

3 (χ̄(1,6) + χ̄(3,2)) + ωk3 (χ̄(2,3) + χ̄(6,1))
)

+
(
χ(1,4) + χ(4,1)

)(
χ̄(1,4) + χ̄(4,1) + ω2k

3 (χ̄(1,3) + χ̄(4,3)) + ωk3 (χ̄(3,1) + χ̄(3,4))
)
,

ZPF2, E8 [1, k] =
(
χ(6,1) + χ(2,3)

) (
χ̄(3,2) + χ̄(1,6) + ω2k

3 (χ̄(2,3) + χ̄(6,1)) + ωk3 (χ̄(1,1) + χ̄(3,3))
)

+
(
χ(3,1) + χ(3,4)

)(
χ̄(1,3) + χ̄(4,3) + ω2k

3 (χ̄(1,3) + χ̄(4,3)) + ωk3 (χ̄(1,4) + χ̄(4,1))
)
,

ZPF2, E8 [2, k] =
(
χ(3,2) + χ(1,6)

) (
χ̄(2,3) + χ̄(6,1) + ω2k

3 (χ(1,1) + χ(3,3)) + ωk3 (χ(1,6) + χ(3,2))
)

+
(
χ(1,3) + χ(4,3)

)(
χ̄(3,1) + χ(3,4) + ω2k

3 (χ(1,4) + χ(4,1)) + ωk3 (χ(1,3) + χ(4,3))
)
.

(5.14)

Similarly, we can start with the charge-conjugated partition function E∗8 . Since the twisted

partition functions of E∗8 are the charge conjugate of (5.12), its parafermionic partition func-

tions are also the charge conjugate of (5.13) for ρ = 1 and (5.14) for ρ = 2. While the

untwisted partition function ZPF1,2, E8 [0, 0] is invariant under charge conjugation, the other

twisted partition functions ZPF1,2, E8 [a, b] (a 6= 0, b 6= 0) are not self-conjugate. Thus, the two

parafermionic theories are distinct: PF[E8] 6= PF[E∗8 ] in the dependence on a paraspin struc-

ture. We show the relationship of parafermionization associated with the modular invariants

E8 and E∗8 in the left of Fig. 6.

5.4 Parafermionic models from E12.

Consider the exceptional modular invariant E12 = E(∗)12 at level k = 9. While the other ex-

ceptional modular invariants E ′(∗)12 at the same level have no symmetry, the modular invariant

E12 = E(∗)12 has a non-anomalous Z3 symmetry. Thus, we can parafermionize this theory using

– 23 –



the Z3 symmetry. The twisted partition functions are

ZE12 [0, k] = |χ1|2 + (ωk3 + ω2k
3 ) |χ3|2 ,

ZE12 [1, k] = |χ3|2 + ωk3 χ1 χ̄3 + ω2k
3 χ3 χ̄1 ,

ZE12 [2, k] = |χ3|2 + ω2k
3 χ1 χ̄3 + ωk3 χ3 χ̄1 .

(5.15)

Here, to simplify the notation, we defined χ1 = χ(1,1)+χ(1,10)+χ(10,1)+χ(2,5)+χ(5,2)+χ(5,5)

and χ3 = χ(3,3) + χ(3,6) + χ(6,3), which is based on the conformal embedding ŝu(3)9 ⊂ ê(6)1.

There are three primaries a, b, c in ê(6)1, whose conformal dimensions are ha = 0 and hb =

hc = 2/3. Also, their characters are given by χa = χ1 and χb = χc = χ3 [32]. Note that

the new characters χ1 and χ3 are invariant under charge conjugation C(a, b) = (b, a). The

parafermionized E12 theory with ρ = 1 has the partition functions

ZPF1, E12 [0, k] =
(
χ1 + (ωk3 + ω2k

3 )χ3

)
χ̄1 ,

ZPF1, E12 [1, k] = ω2k
3

(
χ1 + (ωk3 + ω2k

3 )χ3

)
χ̄3 ,

ZPF1, E12 [2, k] = ωk3

(
χ1 + (ωk3 + ω2k

3 )χ3

)
χ̄3 .

(5.16)

These partition functions are invariant under the operation of stacking and conjugation, which

is consistent with the self-duality of E12 under orbifold. We show the relation between the

modular invariant E12 and the parafermionized theory in the right of Fig. 6.

One can also consider the other Z3 parafermionization with ρ = 2. The torus partition

functions ZPF2, E12 [a, b] are given by

ZPF2, E12 [0, k] = χ1

(
χ̄1 + (ωk3 + ω2k

3 ) χ̄3

)
,

ZPF2, E12 [1, k] = ωk3 χ3

(
χ̄1 + (ωk3 + ω2k

3 ) χ̄3

)
,

ZPF2, E12 [2, k] = ω2k
3 χ3

(
χ̄1 + (ωk3 + ω2k

3 ) χ̄3

)
.

(5.17)

The parafermionic theories (5.16) and (5.17) are self-dual under the charge conjugation

C(a, b) = (b, a) since the new characters χ1 and χ3 are self-conjugate.

6 Discussion

We have considered two-dimensional CFTs with the affine ŝu(2) and ŝu(3) algebra symme-

tries. The bosonic modular-invariant partition functions have already been classified in the

ADE classification. We generalized the classification to the fermionic and parafermionic theo-

ries with the same affine symmetries. As in the ADE classification, we found the relationship

between (para)fermionic ŝu(2) theories and the non-simply Dynkin diagrams, which leads to

the BCFG classification.

For ŝu(2) theories, we found the correspondence to non-simply Dynkin diagrams. The

relationship between the bosonic theories labeled by ADE and the (para)fermionic theories
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labeled by BCFG can be summarized in Fig. 3 and Fig. 4. This relation is similar to the

folding of the simply laced Dynkin diagrams. When a simply laced Dynkin diagram has an

automorphism, then one can perform the folding and obtain a non-simply laced one:

Folding: A2ℓ−1 → Cℓ , Dℓ+1 → Bℓ , E6 → F4 , D4 → G2 , (6.1)

where ℓ is a positive integer. Note that one cannot fold A2ℓ for ℓ ∈ Z, while it has an Z2

automorphism. This corresponds to the non-anomalous condition on the CFT side. Com-

pared with Fig. 3 and Fig. 4, we can see that the fermionization and parafermionization map

can be understood as folding in terms of the corresponding Dynkin diagrams. This extends

the already-known correspondence between modular invariants and simply-laced Dynkin di-

agrams. It would be interesting to pursue the origin of the extended correspondence between

our ŝu(2) theories and Dynkin diagrams.

This work gives the classification of 2d fermionic and parafermionic CFTs with ŝu(2) and

ŝu(3) symmetries. In terms of 3d topological field theories, each torus partition function gives

the corresponding topological interface [64–66]. From the topological interfaces in 3d picture,

the authors of [67] discuss the constraints on the renormalization group flow of bosonic ŝu(2)

WZW models. We may be able to generalize their discussion to fermionic and parafermionic

cases since we have the list of topological interfaces.

Our models may serve as a testing ground for studying profiles of parafermionic CFTs.

Although a systematic approach to parafermionization has been established, the properties

of parafermionic theories remain unclear, as only a limited number of parafermionic models

have been constructed. Representative models include parafermionic minimal models [27],

parafermionized coset models [58], and composite parafermionic models [57]. It would be in-

teresting to study topological line defects in (para)fermionic CFTs [68–71] as well as conformal

boundary states (see [72–74] for fermionization).
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